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Abstract

Given two players holding a common prior and distinct information

partitions, the No Bet theorem says that when at a state it is common

knowledge that one’s conditional expectation is no less than a certain

number but the other one’s is not greater than it, their conditional expec-

tations must be the same. The extended theorem generalizes the result

by taking away the separating number which is sometimes not available

in practice. We also generalize the extended theorem to the case where

priors are heterogeneous, and find it can not be generalized with nonparti-

tional information structures. As the applications, we show if the ranking

of each player’s expectation, or just the identity of the highest(lowest)

one is common knowledge, players must agree in the logic of the extended

theorem, but may not agree under the original No Bet theorem.

1 Introduction

Initiated by Aumann’s “agreeing to disagree” [1976], lots of literatures has

shown consensus among people at common knowledge of certain information

under a set of assumptions. An intuitive surprise behind it is that with incom-

plete information about states of nature, players can derive more information

from known differences in their opinions or behavior, without exchanging private

information; and commonly known differences ultimately eliminate differences.

Theoretical economists use this notion to simplify the complication of incom-

plete information games, see Geanakoplos [1994].
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These results rely on common knowledge about individuals’ private esti-

mates or statistics of them. Existing examples are conditional posterior in Au-

mann [1976], conditional expectation in Polemarchakis and Geanakoplos [1982],

strictly monotonic aggregate statistic of above estimates in McKelvey and Page

[1986] and Nielsen et al. [1990]. Meanwhile, some results only require common

knowledge about the inequality of individuals’ private estimates. An interesting

example in this category is the No Bet theorem in Sebenius and Geanakoplos

[1983], which presents that if it is common knowledge that one player’s expec-

tation is not less than a separating number and the other one’s expectation

is not greater than it, then their expectations must be the same.1 The other

example is the No Trade result by Milgrom and Stokey [1982], which is noted

in Rubinstein and Wolinsky [1990] as a special case of No Bet theorem.

We extend the No Bet theorem by taking away the separating number. If

it is common knowledge at a state that one individual’s expectation is not less

than the other’s expectation, then these expectations should be the same. We

also generalize the theorem to the case where priors are heterogeneous; however

in the case where information structures are nonpartitional, even though the

original No Bet theorem is hold, the extended one is not.

After all, our result provides an insight into the situations where less infor-

mation about players’ opinions are available thus the No Bet theorem is not

applicable, e.g., given the ranking of each player’s expectation or just the iden-

tity of the highest(lowest) expectation being common knowledge.

In section 2 we adopt a semantic formalization of common knowledge by

Aumann [1976] and give an alternative proof of No Bet theorem. Then in

section 3 we use similar method to prove the extended version. We discuss the

cases when priors are different and information structures are nonpartitional

in section 4. Implications which can be applied in auctions or speculation are

introduced in section 5.

While deriving these results, we discovered that similar results have already

been obtained by Hanson [1998]. We compare the differences between our work

and his, as well as the conclusion, in the last section of this paper.
1This theorem is called the No Bet theorem because it can be interpreted as saying that it

cannot be common knowledge between two risk-neutral individuals who both expect to profit

from a bet. If it is common knowledge that they both expect to gain from the bet, then

it is common knowledge that for A the expectation of his payoff is positive and for B the

expectation of her payoff is negative, while the sum of both is zero.
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2 Common Knowledge and the No Bet Theo-

rem

We follow the definitions as Aumann [1976]. Consider two players A and B in

a closed small world, meaning that the state space Ω is a finite set. An event

is a subset of Ω. We assume that A and B both believe in a common prior

probability distribution P over Ω, which is positive for every state; and they

hold different information partitions ΠA and ΠB . Members of each partition

are exhaustive and disjoint. So if an arbitrary state ω ∈ Ω is observed by

A, she knows that any event containing ΠA(ω) happens, because she can not

exclude any state ω′ in ΠA(ω) other than ω. Meanwhile B also knows any event

containing ΠB(ω) happens.

We call an event common knowledge at ω when everyone in the scenario

knows it, everyone knows that everyone knows it, and so on ad infinitum. We

want to emphasize that in this case knowing something means logically deriving

something. Thus if some news is literally public, the content of news is not

necessarily common knowledge, since it might contradict logical consequences

of some players’ knowledge.

The meet Π ≡ ΠA ∧ ΠB is the finest common coarsening of ΠA and ΠB ;

the join Π̂ ≡ ΠA ∨ ΠB is the coarsest common refinement of ΠA and ΠB .

According to the insightful characterization of common knowledge by Aumann

[1976], given a state ω ∈ Ω, an event E is common knowledge at ω if and only

if E contains the member of the meet Π that contains ω or in short, Π(ω) ⊆ E.

As usually defined, the conditional expectation of random variable X for player

A is

fA(ω) = E(X|ΠA(ω)) =
∑

ω′∈ΠA(ω)

x(ω′)P (ω′|ΠA(ω)),

Clearly, fB(ω) is similarly defined over ΠB .

Here we prove the No Bet theorem, the proof is different from the original

one in Sebenius and Geanakoplos [1983].

Theorem 2.0.1 If it is common knowledge at ω that fA(ω) > a and fB(ω) 6 a,

then fA(ω) = fB(ω) = a.

Proof. Let {Πi
A} be the set of all members of ΠA contained in Π(ω), the {Πj

B}
be the set of all members of ΠB contained in Π(ω). By definition for every

3



member of ΠA, fA(ω) is constant for any ω in it, then for any ω′ ∈ Πi
A

∑

ω′∈Πi
A

fA(ω′)P (ω′|Π(ω)) = fA(ω′)P (Πi
A|Π(ω)),

thus we can derive

E(X|Π(ω)) =
∑

ω′∈Π(ω) x(ω′)P (ω′|Π(ω))

=
∑

Πi
A⊆Π(ω)

[∑
ω′∈Πi

A
x(ω′)P (ω′|Πi

A)
]
P (Πi

A|Π(ω))

=
∑

Πi
A⊆Π(ω), Πi

A3ω′ fA(ω′)P (Πi
A|Π(ω))

=
∑

Πi
A⊆Π(ω)

∑
ω′∈Πi

A
fA(ω′)P (ω′|Π(ω))

=
∑

ω′∈Π(ω) fA(ω′)P (ω′|Π(ω))

Similarly E(X|Π(ω)) =
∑

ω′∈Π(ω) fB(ω′)P (ω′|Π(ω)).

It is common knowledge at ω that fA(ω) > a, then the meet

Π(ω) ⊆ {ω′|fA(ω′) > a},

meaning fA(ω′) > a for every ω′ ∈ Π(ω).

So it must be true that

E(X|Π(ω)) =
∑

ω′∈Π(ω)

fA(ω′)P (ω′|Π(ω)) > a,

and by the same reason,

E(X|Π(ω)) =
∑

ω′∈Π(ω)

fB(ω′)P (ω′|Π(ω)) 6 a.

Then E(X|Π(ω)) = a. Because fA(ω′) > a for all ω′ ∈ Π(ω), we must have

fA(ω′) = a for all ω′ ∈ Π(ω). Naturally fA(ω) = a. Similarly fB(ω) = a, so

fA(ω) = fB(ω) = a. ¥

3 An Extended Version.

Indeed, we can go one step further to remove the separating number, thus we

have an extended No Bet theorem.

Theorem 3.0.2 If it is common knowledge at ω that fA(ω) > fB(ω), then

fA(ω) = fB(ω) = E(X|Π(ω)).
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Proof. As in the proof of theorem 2.0.1,

E(X|Π(ω)) =
∑

ω′∈Π(ω)

fA(ω′)P (ω′|Π(ω)) =
∑

ω′∈Π(ω)

fB(ω′)P (ω′|Π(ω)).

So ∑

ω′∈Π(ω)

[fA(ω′)− fB(ω′)]P (ω′|Π(ω)) = 0. (1)

Because it is common knowledge that fA(ω) > fB(ω), the meet

Π(ω) ⊆ {ω′|fA(ω′)− fB(ω′) > 0}.

Because the possibility of every state is positive, we know to hold equation 1,

for every ω′ ∈ Π(ω) it must be true that

fA(ω′) = fB(ω′).

It is then obvious that fA(ω) = fB(ω).

Moreover, let’s define that two different sets Πi
A and Πi′

A are connected via

a set Πj
B , if Πi

A ∩Πj
B 6= φ and Πi′

A ∩Πj
B 6= φ. When Πi

A and Πi′
A are connected

via Πj
B , there are two elements ω ∈ Πi

A and ω′ ∈ Πi′
A, both in Πj

B , then it must

be true that

fA(ω) = fB(ω) = fB(ω′) = fA(ω′).

For Π(ω), all the members of ΠA are connected via some members of ΠB and

vice versa. Therefore fA(ω) = fB(ω) = C, C is a constant, for every ω ∈ Π(ω).

Also C = fA(ω) = fB(ω) = E(X|Π(ω)). ¥

4 Discussions

4.1 On Heterogeneous Priors

In our framework, we assume players hold a common prior though it is subjec-

tive. The effect of heterogeneous priors has been well investigated by Morris

[1994]. Similar to his report, within the context of our paper, the no bet result

still holds with limited heterogeneous priors. Before the rigorous statement, an

example can present the idea.

Let the space Ω = {ω1, ω2, ω3, ω4}, ΠA = {{ω1}, {ω2, ω3}, {ω4}}, ΠB =

{{ω1, ω2}, {ω3}, {ω4}}. Let A and B’s prior probability distributions be
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State ω1 ω2 ω3 ω4

PA
1
5

1
5

1
5

2
5

PB
1
6

1
6

1
6

1
2

Given Π(ω2) is common knowledge, player A and player B hold the same

conditional probability 1
3 for every state in Π(ω2), though their priors are dif-

ferent.

Remark 4.1.1 With everything else unchanged, as long as there is no differ-

ence in the beliefs about the member of meet which contains the state, i.e., the

minimum event that is common knowledge, players with heterogeneous prior

beliefs can not bet.

Proof. Recall that at state ω, every common knowledge event contains Π(ω).

Although players A and B hold heterogeneous priors PA and PB respectively,

since there is no difference in the beliefs about events that are common knowl-

edge, i.e. PA(ω′|Π(ω)) = PB(ω′|Π(ω)), ∀ω′ ∈ Π(ω). Hence

∑

ω′∈Π(ω)

x(ω′)PA(ω′|Π(ω)) =
∑

ω′∈Π(ω)

x(ω′)PB(ω′|Π(ω)),

which can be transformed into

∑

ω′∈Π(ω)

fA(ω′)PA(ω′|Π(ω)) =
∑

ω′∈Π(ω)

fB(ω′)PB(ω′|Π(ω)).

Now because there is no difference in PA(ω′|Π(ω)) and PB(ω′|Π(ω)), ∀ω′ ∈
Π(ω) and also fA(ω′) > fB(ω′), ∀ω′ ∈ Π(ω), we obtain that fA(ω) = fB(ω).¥

4.2 On Nonpartitional Information Structure

In general an information structure can be taken as a function I which tells the

player at state ω that all elements in I(ω) are possible. As a basic tool to model

cognition, or intuitively the process deriving information from environmental

signals, this function should be able to describe not only logically correct cog-

nition, but also cognitive errors. It is well-known that information partition is

logically correct since it entails three important properties of function I:

(P-1) For all ω ∈ Ω, ω ∈ I(ω). That is, if the player knows the set X then

X is true.
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(P-2) For all ω ∈ Ω and for all ω′ ∈ I(ω), I(ω′) ⊆ I(ω). That is, if the

player knows X he also knows that he knows X.

(P-3) For all ω ∈ Ω and for all ω′ ∈ I(ω), I(ω) ⊆ I(ω′). That is, if the

player does not know X he also knows that he does not know X.

If any one of above properties is relaxed, I is no longer a partition structure.

By a counter example, Geanakoplos [1989] shows if I only satisfy (P-1,2),

the no bet result can not hold. Let the space Ω = {ω1, ω2, ω3}, where all states

are equally likely. Assume IA = {ω1, ω2, ω3}; IB(ω1) = {ω1, ω2}, IB(ω2) =

{ω2}, IB(ω3) = {ω2, ω3}. Note here IB is not partitional.

Then let random variable X be valued as X(ω2) = 1 and X(ω1) = X(ω3) =

0. For all ω it is common knowledge that player 1 knows his expectation is 1
3

and player 2 knows her expectation is 0.5 or 1, which is strictly greater than 1
3 .

Let’s define common knowledge with general information structures. An

event S is called self-evident at ω for a player with information structure I if

ω ∈ S and for all ω′ ∈ S, I(ω′) ⊆ S.

Proposition 4.2.1 If both IA and IB satisfy (P-1), for players A and B the

event E is common knowledge at ω if and only if it contains a self-evident event

S such that ω ∈ S.

Geanakoplos [1989] and Rubinstein [1998] show it is equivalent to the defini-

tion of Aumann [1976]. 2 Using this definition, Geanakoplos [1989] shows the no

bet result with a separating number is reserved under nonpartitional structure

and certain restrictions.

Proposition 4.2.2 (Geanakoplos:1989) If IA and IB satisfy (P-1,2) and is

nested, i.e., if ω 6= ω′ either I(ω) ⊆ I(ω′) or I(ω′) ⊆ I(ω) or I(ω) ∩ I(ω′) = φ,

together with the common prior assumption, it can not be common knowledge

at ω that fA(ω) > a and fB(ω) < a.

However, with the same assumption, our result is no longer true. It can be

demonstrated in a short example.

Let S = {ω1, ω2}, each state happens with equal probability. Let IA(ω1) =

{ω1}, IA(ω2) = S, IB(ω1) = S, IB(ω2) = ω2. As to the random variable X,

2We have a better result which claims that without (P-1), we can also define common

knowledge by self-evident event. But given common knowledge it is not necessary to obtain

self-evident event. We will show the proof and use this finding later.
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X(ω1) = 1, X(ω2) = 0. We see fA(ω1) = 1, fA(ω2) = fB(ω1) = 0.5, fB(ω2) = 0.

So it is common knowledge at both states that fA(ω) > fB(ω).

5 A Few Implications

The main contribution of our result is to show that players need less information

to reach agreement. Apparently knowing whose expectation is greater or smaller

is weaker than knowing the existence of a bet with a known separating number.

This implies some interesting observations which may be applied in analysis

of auction, speculation trade or other incomplete information games. Please

note that in this section we come back to the assumption of common prior and

information partition.

To present the implications better we define a pair (I, Q) as a common

knowledge graph, where I = {i}, i = 1, · · · , N is the set of individuals, Q is a

set of 2-elements subsets of I. Each element of I, an individual, is a vertex in the

graph. Each element of Q is called an common knowledge edge, satisfying the

property that for two individuals in the same edge, it is common knowledge at

a state that one individual’s conditional expectation is not less than the other’s.

So by theorem 3.0.2, for every two individuals as two vertices in the same edge

in Q, their conditional expectations must be the same. Consequently we can

say that

Corollary 5.0.3 In a common knowledge graph (I, Q), for all N vertices in I,

if any two of them can be either directly or indirectly connected by edges in Q,

then the conditional expectations of all N individuals must be equal.

Proof. Just apply theorem 3.0.2. We know for any i,j , i 6= j ∈ I connected

by one edge, fi(ω) = fj(ω). Then for all i ∈ N connected by edges, fi(ω) must

be equal. ¥

Then we can show what will happen if the ranking of people’s conditional

expectations are common knowledge.

Corollary 5.0.4 If at ω the ranking of fi(ω), every i ∈ N , is common knowl-

edge for all individuals in I, then they must be equal.

Proof. If the ranking is common knowledge at ω for all individuals, then for

arbitrary two individuals it is common knowledge at ω that one’s expectation
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is not less than the other’s. This is equivalent to a common knowledge graph

where arbitrary two vertices are connected by one edge. By corollary 5.0.3, all

individuals’ conditional expectations must be equal. ¥

Thus in auction if the ranking of all bidders’ expected values is common

knowledge, and they have a common prior about the value of object, then their

valuations should be equal.

Hanson [1998] stated and proved a more interesting result saying the iden-

tification of “extremists” implies consensus — if the identity of the individual

who gives the highest or the lowest estimate is common knowledge at ω, all

individuals should agree. This result is just an implication of corollary 5.0.3.

Corollary 5.0.5 If at ω the identity of the individual whose conditional expec-

tation is the maximum or the minimum is common knowledge for all individuals

in I, then their conditional expectations must be equal.

Proof. If it is individual i whose estimate is the maximum, and this is common

knowledge at ω, then it is common knowledge for individuals i and j that

fi(ω) > fj(ω) for all j ∈ I, j 6= i. So in a common knowledge graph, i’s vertex

is connected by edges to all other vertices. It can be seen any two vertices are

therefore connected by edges. By corollary 5.0.3, all individuals’ conditional

expectation must be equal. A similar argument can be made when individual

i’s estimate is the minimum.

So in auction if it is common knowledge who is the bidder with the highest

or the lowest expected value, all bidders must agree, there is no real “extremist”

actually!

6 A Comparison As A Conclusion

It is necessary to compare the difference between this paper and Hanson’s paper.

In both of them, the extended No Bet theorem has been proved, the identifica-

tion of the player with the maximum or minimum expectation deduces consensus

is also obtained as an application. The difference is his work also emphasizes

the aspects of communication and learning process via which players’ opinions

converge. He shows that for n players to do so at most log2 n bits information
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about the extremist is required to broadcast, which is a bounded and moderate

message length in contrast to other types of message.

What is only shown in our paper is many details about the assumptions, the

major findings are: 1) generalization with differences in players’ priors; 2) not

being able to generalize with nonpartitional information structure; 3) common

knowledge of the ranking of conditional expectations also leads to consensus.

References

R. Aumann. Agreeing to disagree. Annal of Statistics, 4:1236–1239, 1976.

J. Geanakoplos. Game theory without partitions, and applications to specula-

tions and consensus. Cowles Foundation Discussion Paper, (914), 1989.

J. Geanakoplos. Handbook of Game Theory, volume 2, chapter 40, pages 1439–

1496. Elsevier Science B.V., 1994.

R. D. Hanson. Consensus by identifying extremists. Theory and Decision, 44

(3):293–301, 1998.

R. McKelvey and T. Page. Common knowledge, consensus and aggregate infor-

mation. Econometrica, 54:109–127, 1986.

P. Milgrom and N. Stokey. Information, trade and common knowledge. Journal

of Economic Theory, 26:17–27, 1982.

S. Morris. Trade with heterogeneous prior beliefs and asymmetric information.

Econometrica, 62:1327–1347, 1994.

L. T. Nielsen, A. Brandenburger, J. Geanacopolos, R. McKelvey, and T. Page.

Common knowledge of an aggregate expectations. Econometrica, 58(5):1235–

1239, 1990.

H. Polemarchakis and J. Geanakoplos. We can’t disagree forever. Journal of

Economic Theory, 28:192–200, 1982.

A. Rubinstein. Modelling Bounded Rationality, chapter 4, page 59. The MIT

Press, 1998.

A. Rubinstein and A. Wolinsky. On the logic of “agreeing to disagree”. Journal

of Economic Theory, 51(1):184–193, 1990.

10



J. Sebenius and J. Geanakoplos. Don’t bet on it: Contingent agreements with

asymmetric information. Journal of the American Statistic Association, 78:

424–426, 1983.

11


