
Local-Effect Games, and an

Algorithm for Computing their Equilibria

Navin Bhat
Department of Physics
University of Toronto

Kevin Leyton-Brown
Department of Computer Science
University of British Columbia

1 Introduction

There is much interest in modeling large, real-world problems as games and
computing these games’ equilibria. This interest has driven recent advances in
algorithms for computing Nash equilibria of general games. One recent, general-
purpose algorithm is the continuation method of Govindan and Wilson [2003], a
gradient-following algorithm which is based on topological insight into the graph
of the Nash equilibrium correspondence by Kohlberg and Mertens [1986]. The
worst-case complexity of Govindan and Wilson’s algorithm is open because the
worst-case number of gradient-following steps is not known; however, in prac-
tice the algorithm’s runtime is dominated by the computation of the gradient
(mainly the Jacobian of the payoff function), which is both best- and worst-case
exponential in the number of agents. Unfortunately this algorithm, like other
state of the art algorithms for computing Nash equilibria, is generally practical
only on games having relatively small numbers of players and actions.

Researchers have begun to investigate compact game representations that
can be leveraged to yield more efficient computation on large games. One in-
fluential class of representations exploits (strict) independencies between play-
ers’ utility functions; this class includes Graphical Games [Kearns et al., 2001]
and Multi-Agent Influence Diagrams [Koller & Milch, 2001]. Recently, Blum
et al. [2003] introduced the first general algorithm for computing exact equilib-
ria in such games, based on a state-of-the-art algorithm for general games due
to Govindan and Wilson (2003). This gradient-following algorithm has as its
bottleneck step the exponential-time computation of the Jacobian of the pay-
off function. Blum et al.’s algorithm computes this Jacobian in time no worse
than exponential in the tree width of the underlying utility function dependency
graph—an exponential improvement—and is consequently able to compute equi-
libria of considerably larger games.

Although real-world games often have very regular structure, strict indepen-
dence between agents’ utility functions is not a common assumption in the game
theory literature. A second approach to compactly representing games aims to
be more realistic by focusing on games in which all agents can potentially affect

1

each other’s payoffs, but agents’ abilities to affect each other depend on the
actions they choose. In this paper we describe algorithms for computing the
equilibria of local-effect games (LEGs), a class that is able to express any game
and is compact for games having such context-specific independencies in agents’
utilities.

2 Local-Effect Games

A local-effect game1 is a tuple < A,S, ν, u >. Let A = {1, . . . , n} denote the set
of agents in the game. S =< S1, . . . , Sn > is a tuple of sets of actions for each
agent. Agents may have some action choices in common; let S =

⋃
i∈A Si denote

the set of distinct action choices. Let D denote the set of possible distributions
of agents over actions, so for a given distribution D ∈ D, denote by D(s) the
number of agents who chose action s.

Let G be a graph having one node for every action s ∈ S. The neighbor
relation is given by ν : S 7→ 2S . Let there be a directed edge from s′ to s in G
iff s′ ∈ ν(s). Note that s ∈ ν(s) is possible. The utility function u : S ×D 7→ R

maps from an action choice s and a distribution of agents D to a real-valued
payoff. Observe that all agents have the same utility function. The utility
function has the property that given any action s and any pair of distributions
D and D′,

[∀s′ ∈ ν(s), D(s′) = D′(s′)] ⇒ u(s,D) = u(s,D′).

In other words, for every i and j agent i’s utility is independent of agent
j’s action choice conditional on agent j choosing an action which is not in the
neighborhood of agent i’s action choice. Let the in-degree of the local-effect
graph be bounded by I.

LEGs can represent any game. This is easy to see after realizing that in
an arbitrary game ∀i, ∀j 6= i, Si

⋂
Sj = ∅: the agents’ sets of action choices

Si are partitions of the nodes in G, and thus ∀s ∈ S, D(s) ∈ {0, 1}. The
LEG representation becomes more compact than normal form as agents begin
to have actions in common, with utility functions depending only on the number
of agents taking these actions rather than on the identities of the agents.

3 Computing Equilibria of LEGs

Our work adapts Govindan and Wilson’s algorithm to the special case of com-
puting the Nash equilibria of local-effect games. We prove that considerable
computational gains can be realized in the computation of the payoff Jacobian

1A more restricted version of LEGs was first introduced in [Leyton-Brown & Tennenholtz,
2003]. This work concentrated on identifying games that are guaranteed to have pure-strategy
Nash equilibria and on characterizing the intersection between (restricted) LEGs and Rosen-
thal’s congestion games [Rosenthal, 1973].

2

when structure inherent in the LEG representation is taken into account. In-
terestingly, though both the algorithm-construction strategy we employed and
the size of our computational gains are similar to what is reported in the work
of Blum et al. [2003], the details of our algorithm are inherently different, and
Blum et al.’s algorithm is inapplicable to LEGs.2

Our first technical result is an algorithm for computing the payoff Jacobian
for general LEGs. We prove that this algorithm’s computational complexity is
polynomial in |S|, in nI and in (I + 1)n. This is an exponential improvement
over Govindan and Wilson’s method, which requires time polynomial in |S|n.

Next, we consider fully symmetric LEGs in which all agents have the same
action choices; as Nash proved in his seminal paper [Nash, 1950], such games
always have symmetric equilibria. We describe an algorithm for computing the
payoff Jacobian in the case of computing a symmetric equilibrium in this case,
and show that it requires time polynomial in |S| and nI . Thus, in the case
where the in-degree of the graph is bounded by a constant, our algorithm is
able to compute the payoff Jacobian in polynomial time.

Finally, we show techniques for realizing an additional computational speedup.
Specifically, we present dynamic programming techniques to compute successive
elements of the Jacobian more quickly once the first element has been computed.

References

Blum, B., Shelton, C., & Koller, D. (2003). A continuation method for Nash
equilibria in structured games. IJCAI.

Govindan, S., & Wilson, R. (2003). A global Newton method to compute Nash
equilibria. J. Economic Theory, 110, 65–86.

Kearns, M., Littman, M., & Singh, S. (2001). Graphical models for game theory.
UAI.

Kohlberg, E., & Mertens, J. (1986). On the strategic stability of equilibria.
Econometrica, 54(5), 1003–1038.

Koller, D., & Milch, B. (2001). Multi-agent influence diagrams for representing
and solving games. IJCAI.

Leyton-Brown, K., & Tennenholtz, M. (2003). Local-effect games. IJCAI.

Nash, J. (1950). Equilibrium points in n-person games. Proceedings of the
National Academy of Sciences of the United States of America, 36, 48–49.

Rosenthal, R. (1973). A class of games possessing pure-strategy Nash equilibria.
International Journal of Game Theory, 2, 65–67.

2Unfortunately, the description of our algorithm requires the introduction of more notation
than space permits. Details are available in the full version of the paper.

3

