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The concept of correlated equilibrium has received much attention in the
literature since its introduction by Aumann in 1974. An important focus
of the discussion has involved the relationship and applicability of the cor-
related equilibrium solution concept to the rationalistic and evolutionary
frameworks.! The correlated equilibrium is an extension of the Nash equi-
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librium solution concept, allowing for correlation between the actions of dif-
ferent players. A common interpretation for the correlating device is an
exogenous instrument that sends to players potentially correlated signals,
the distribution of which is common knowledge. Each player chooses an op-
timal strategy given the strategies of her opponents and her knowledge of
the signal distribution.

A key feature of evolutionary and learning frameworks is that they permit
us to relax the assumptions about knowledge and rationality of players. In
fact, a useful characteristic of evolutionary models is that they provide a
test for how sensitive game theoretic results are to these typical assumptions.
The appropriateness of the Nash equilibrium solution concept in models with
evolutionary dynamics has been well established in the literature. However,
how to interpret the correlated equilibrium solution concept in a this setting
is not as well understood.

We develop a dynamic evolutionary model that gives rise to correlated
equilibria. As noted above, a correlated equilibrium can be thought of as a
Nash equilibrium in a game where rational players observe external signals
for which they know the joint distribution. Such a game is mathematically
equivalent to a game where players have multiple types, the distribution of
types is known to each player, and players can condition their actions on their
realized types. We assert that a game with types has a natural interpretation
with large populations that are partitioned into subpopulations. Rather than
matching particular types of each player role, the matching occurs over the
subpopulations of each player population. Correlation in how the individuals
are chosen from among these subpopulations generates replicator dynamics
that produce correlated equilibria.

Specifically, we show that for every correlated equilibrium, there exists
some subpopulation breakdown and match distribution for which there is an
equivalent stationary state under the replicator dynamics. We also show that
for stationary states that are interior for all subpopulations, there exists an
equivalent correlated equilibrium. Furthermore, we show that any Lyapunov
stable state or any limit to an interior solution may be represented by a cor-
related equilibrium. We then discuss an additional restriction that generates
Nash equilibria in this subpopulation model, and we discuss the relationship
of this model to the standard replicator dynamics.

We believe that the subpopulation interpretation fits more naturally in
many contexts. The replicator dynamics with subpopulations appears espe-
cially well suited to locational models. Players in one geographic region may
be matched more frequently with opponents from nearby regions. Hence, if
the populations are divided into discrete neighborhoods, the matching distri-
bution can reflect such proximities. As we will show, correlated equilibrium



is an appropriate solution concept for such games, even if the agents are
assumed to behave in a purely evolutionary manner.

This paper is certainly not the first to analyze correlated equilibria in the
context of evolutionary-like behavior. Hart and Mas-Colell (2000), for exam-
ple, apply correlated equilibria to adaptive models. Their work is similar to
ours in that it emphasizes the dynamic mechanisms for which the play con-
verges to a correlated equilibrium. However, agents in Hart and Mas-Colell’s
model exhibit learning and regret in that they weigh their past actions against
alternatives. Rather than assuming specific behavior on the part of agents,
we show that correlated equilibria can arise simply from the way in which
individuals are matched for play. Even with the most basic evolutionary
dynamics, the replicator dynamics, we obtain a representation of correlated
equilibrium. The replicator dynamics have the advantage of both simplicity
and widespread applicability. A model of replicator dynamics can apply to
purely biological contexts, where one imagines agents as pre-programmed to
play a pure strategy and hence unable to exhibit learning or regret. The
replicator dynamics can also be interpreted as an aggregate representation of
certain types of boundedly rational social learning. By deriving a represen-
tation of correlated equilibrium directly in terms of the replicator dynamics,
we ensure that our results can be useful in a wide variety of contexts.

The model of Cripps (1991) is closer in spirit to the present work. Cripps
shows that for a class of evolutionary models, strict correlated equilibria can
be interpreted in a framework of evolutionary stability. In particular, the
set. of evolutionary stable strategies in simple contests is identical to the
set of strict correlated equilibria. Cripps’s use of player roles is similar to
our use of subpopulations. We choose to explore these issues in a dynamic
setting, rather than with a static solution such as evolutionary stability. We
also offer a more detailed comparison to the standard evolutionary model,
highlighting what attributes give rise correlated equilibria outside of the set
of Nash equilibria. Based on the relationship between evolutionary stability
and stability in replicator dynamics, we are confident that our model of
subpopulation-matching in a context of evolutionary stability would generate
results that are compatible with those of Cripps.

Mailath, Samuelson, and Shaked (1997) present an approach that leads
to a characterization similar to ours. They generalize the concept of Nash
equilibrium to an equilibrium with local interactions and demonstrate equiv-
alencies between this equilibrium concept and correlated equilibrium. Their
equilibrium with local interactions is effectively a pure strategy Nash equi-
librium of a transformed version of the original game, in which they create a
finite population of individuals for each player role and match individuals for



play according to exogenously given probability distribution. Correlation in
how individuals are matched allows for correlation in strategies played at the
aggregate level, and hence Nash equilibria of the transformed game would
be correlated equilibria of the original game. Our approach is the natural
analog of Mailath et al.’s in a dynamic evolutionary framework. Intuitively,
given their main proposition, along with appropriate results for standard
replicator dynamics, one would expect equivalencies similar to those that we
demonstrate.? Instead, we prefer to establish our results directly from the
mechanics of our subpopulation replicator dynamics. In addition to find-
ing the direct approach more accessible, we find that it helps us to better
demonstrate the necessity of certain assumptions to our results.

The remainder of the paper is structured as follows. In Section 2, we define
a model of subpopulation replicator dynamics and develop notation that we
will use throughout the paper. In Section 3, we demonstrate the connection
between stationarity in the subpopulation replicator dynamics and correlated
equilibrium. In Section 4, we discuss how Lyapunov stable states and the
limits of interior solutions are related to correlated equilibria. We describe
in Section 5 an additional restriction that generates Nash equilibria.

2 Model and Notation

Let T' = (I, (Si)ier, (m:)icr) be a finite n-player normal form game. The set
of players, or in the evolutionary context, the set of n player populations is
I ={1,...,n}. Let the finite set of pure strategies for each player population
be denoted S; and let S = Xx;¢; S; be the set of possible pure-strategy profiles.
Each player population has a payoff function 7; : S — R.

As is standard, we denote a profile of strategies excluding that of player
ias s_; € S_; = Xz S;. Furthermore, (k,s_;) is a strategy profile in which
player ¢ plays strategy £ € S; and her opponents play s ; € S ;. We will
carry this notation over to the various functions and subpopulations defined
below.

2To explicitly make this connection, one would first have to allow individuals in Mailath
et al’s model to play mixed strategies and extend their equivalency result to mixed-
strategy Nash equilibria of the transformed game.



2.1 Subpopulations and Replicator Dynamics

Each player population 7 can be partitioned into a finite set of subpopulations
indexed by a set M;.> For every subpopulation h € M;, let the SUBPOPU-
LATION STATE, z; 5 be a point in the mixed-strategy simplex AS; such that
xf,h is the share of the subpopulation h that plays pure strategy k£ € S;.
The subpopulation state gives the distribution of play in subpopulation A of
population 2.

One subpopulation from each population is selected for play. Let M =
Xicr M; be the set of possible subpopulation matches and let m € M be a
vector of subpopulations that characterizes a match. Define x,, = (2, )icr,
so that x,, describes the distribution of play in the active subpopulation of
each population under the match m. Then, let the POPULATION STATE be
2 = (Tm)mem- The population state fully describes the distribution of play
under all subpopulation matches. Furthermore, define z,,_, = (a;j,mj )jel:ji-

For every subpopulation match m € M, let n(m) give the probability of
that match. Note that the probability that subpopulation m; € M; plays is
ni(mi) = X _.enr_, N(mi, m_;). One can interpret n;(m;) as the share of pop-
ulation 7 in subpopulation m;. In standard models of replicator dynamics,
the probability distribution of which individual in each of the populations
will play is uniform, so we would have the probability that the individu-
als come from subpopulations my, ..., m, equal to n;(m1)n2(msz) - - - np(my,).
However, in our model there is the potential for correlation between which
subpopulation of population # plays and which subpopulations of the other
populations play: that is, n might not be a product measure. For any game
', we will call the pair (M, 7n) a SUBPOPULATION SETTING of T'.

Note that for a given subpopulation match m, the conditional proba-
bility that a certain pure-strategy profile s is played is [[.; xflmz For a
given subpopulation match m, the expected utility function for a member of
subpopulation m; of population 7 is:

uilam) = [Hx;fmj}m(s) (1)

seS jeI

Let e¥ be the point in population i’s mixed-strategy simplex that puts
probability one on pure strategy k. When one fixes a pure strategy k for a
subpopulation m;, the utility function is written as u;(e¥, z,,_,). Note that:

ui(€f, Tm_.) = z [sz”m]}m(k,s_z) (2)

s_€S—; JFi

3In many situations, it is convenient to think of a set of subpopulations as a subset of
the natural numbers: M; = {1,...,|M;|}.



Let xfmz denote the derivative of the share of subpopulation m; playing
strategy k with respect to time. The 7-REPLICATOR DYNAMICS for any ¢ € I,
m; € M;, and k € S; are defined:

= Y nlmemo) e o) — ulzn)|ak,, 3)
m_;EM_;

One might alternatively define the replicator dynamics using the condi-
tional distribution that an individual from population ¢ plays against oppo-
nents from subpopulations m_; given that he is from subpopulation m;. That
is, one would replace n(m;, m_;) with n(m_;|m;) in Equation (3). We believe
that using the joint distribution is preferable because it permits the replicator
dynamics to capture the relative size of each of the subpopulations. Intu-
itively, a relatively small subpopulation would play less often and therefore
evolve more slowly than a large subpopulation. In contrast, the conditional
distribution would allow subpopulations to evolve at rates independent of
their size.

A population state is STATIONARY in the 7-replicator dynamics if xfml =
0 foralli € I, m; € M;, and k£ € S;. A population state is INTERIOR if
Tim; > 0 for all ¢ € I, m; € M;. One should note that this definition of
interiority requires that all subpopulations play a completely mixed strategy.

2.2 Correlated Equilibrium

We will use the following definition of a correlated equilibrium:

Definition 1 A CORRELATED EQUILIBRIUM in I' is a probability distribu-
tion 1 on S such that for all i € I and for any f; : S; — S;,

21/1(5) [Wz'(fz'(si),&i) - Wi(s)} <0. (4)

SES

One can conceptualize a correlated equilibrium as a random signal that
recommends that the players play the strategy profile s with probability v (s).
Each player 7 receives the recommendation for her own strategy; however,
she is unaware of the recommendations given to the other players. In this
sense, the recommendation given to a player gives her information about the
state of the world, but does not necessarily fully reveal the state of the world.
Each player 7 can condition her action on this information by choosing a map-
ping f; : S; — S;. The distribution ¢ constitutes a correlated equilibrium
if following the recommendation s; is weakly preferred by all players to any
other strategy given by f;(s;). Let 1¥;(s;) be the marginal probability that
strategy s; is recommended to player i, so that ¥;(s;) = D2, g (s, 5-4)-
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Note that 1) need not be a product measure: it is not necessarily true that
Y(s) = [L;er i(si). At any population state, the average play over all sub-
population matches is a distribution on S of particular interest:

Definition 2 Given a game I' and a subpopulation setting (M,n), a proba-
bility distribution 1 on S, not necessarily a correlated equilibrium, is EQUIV-
ALENT to a population state x if and only if for all s € S:

v(s) = 3 n(m) | [T ] (5)

meM el

3 Stationarity

An important result of standard replicator dynamics is the relationship be-
tween Nash equilibria and interior stationary states. It has been shown that
every Nash equilibrium is stationary in the replicator dynamics and that any
interior stationary state is a Nash equilibrium.* We now show that there
exists a similar relationship between correlated equilibria and stationarity in
our subpopulation model.

Proposition 1 Consider a game T.

1. For any correlated equilibrium 1, there exists a subpopulation setting
(M,n) with a stationary state that is equivalent to 1.

ii. For any subpopulation setting (M,n), if x is an interior stationary state
in the n-replicator dynamaics, then the equivalent probability distribution
1 1s a correlated equilibrium.

Proof: (i) The first claim is almost trivial if we are careful in our con-
struction of the subpopulation setting. Let M = S and n = . In this spec-
ification, each population is divided into subpopulations that correspond to
the available pure strategies for that population. Hence, the possible sub-
population matches are the possible pure strategy profiles. Furthermore, we
set the probability of each subpopulation match to the probability that the
distribution 1) assigns to the strategy profile played under the match.

Consider a population state = such that z; ,,, = ;" for alli € I, m; € M;.
Here, each subpopulation is programmed to play the pure strategy to which
it corresponds. Thus [[,c; 7%, = 1im(s) for all m € M and for all s € S,

4For the properties of Nash equilibria in standard replicator dynamics see
Weibull (1998).



where 1y is the indicator function. We can quickly see that x is a stationary
state. For any ¢ € I, m; € M;, if K = m; then

ui(€¥, v _,) — ui(2y) = m(k,m_) — mi(m) =0, (6)

so &y, = 0. For any i € I, m; € My, if k # m; then zf, =0, so &, =0.
Tt remains only to show that x is equivalent to 7). For any se s,

> ntm) [ [T 2i] = D2 nm)tam(s) =n(s) =) (7)

meM i€l meM

and hence x and v are equivalent.

(ii) The second claim is slightly more involved The equivalent distribution
Y is given by ¥ (s) = X2, cpr1(m) [Tie; 235, for all s € S. If x is an interior
stationary state in the n-replicator dynamlcs then for all « € I, m; € M;,
and k € S;, we have x . > 0 and therefore:

2 nmi, m-) [ui(el, 2 ,) = ui(zm) | <0 (®)

m_;EM_;

While the above in fact holds with equality, it will be useful later to see
that this weaker condition implies that v is a correlated equilibrium.

Consider any 7 € I and m; € M;, and any mapping f; : S; — S;. For any
si, fi(s) is fixed over s_; and m_;. Equation (8) therefore holds with f;(s;)

in place of k. Furthermore, since ) o 7, = 1, we have:

> nlmim Z[H%,mj]

m_;EM_; seS jeI

= Z n(mi, m_;)ui(zm)

m_;EM_;

= D T 2 n(mimo)ui(wn)
$;€S; m_;EM_;

> 3wt o nlmim e, )
$;€S; m_;EM_;

= Z n(m;, m_; szml Z [Hm }ﬁ, fi(si),8-4)
m_;EM_; $;ES; S_;€S_; j#i

= X im0 [ TT a5 | m i), 5 ) (9)
m_;EM_; seS  jeI

The inequality follows from Equation (8) and the subsequent equality
follows from Equation (2).



Since (9) holds for all m;, we have:

0o > Z [Z Z n(m;, m [Hx]m] mi(fi(si), s=i) — mi(s)]

= Z [ Z [H$]7m]i|] T fz(sz) S— )—71','(8)]
= > o(s) [mi(fi(s:),5-5) — mils)] (10)

Thus ) is a correlated equilibrium.
Q.E.D.

One should note that our definition of interiority in a subpopulation model
is more stringent than in a model without subpopulations. In particular, we
require that all subpopulations play every strategy with strictly positive
probability. However, this stronger definition is necessary to guarantee that
the equivalent distribution is a correlated equilibrium.

For example, consider a game with the following normal form represen-
tation:

I r
t 1,2(0,0
b 0,0]2,1

Suppose that the each of the populations has two subpopulations: that
is, let M; = M, = {1,2}. Suppose that the subpopulation matches occur
with the following probabilities:

1 2
1 [1/2]T 0
2 [0 [1/2

Consider the population state x with subpopulation states

) T1,2 = (1, 0)
) Too = (0, 1)

551,1:( )

To1 = (

WiN Wl
Wi WIN

bl

Notice that x is not an interior state by our definition even though the
average play in each population is a completely mixed strategy. We will
show that z is stationary but does not correspond to a correlated equilibrium.
Similarly to the proof of Proposition 1, since the second subpopulation in each



population is programmed to play a pure strategy, we have j:ﬁ,Q = 3'3?’2 =0
and j:12,2 = 14, = 0. For subpopulation 1 of population 1, we have:

Ty, = uy (€, 22,1) — ua (21, xz,l)}xil

)

O N =N =N -

(11)

and analogously for a'clf’l, Ty, and 15 ;. Therefore, x is a stationary state.
This population state is equivalent to the following distribution over strat-
egy profiles:

I r
t [1/9]5/9
b 2/911/9

To see that this distribution is not a correlated equilibrium, consider a
rational agent as the row player. If she is given the recommendation to
play t, then she knows that column player was recommended to play [ with
probability 1/6 and r with probability 5/6. Her payoff from following the
recommendation would be 1/6, whereas if she deviated and played b, her
payoff would be 5/3. Hence, this distribution is not a correlated equilibrium.

We should also discuss another important difference between our subpopu-
lation model and the model without subpopulations. Proposition 1 (ii) states
that for any interior stationary state in the n-replicator dynamics, the equiv-
alent distribution is a correlated equilibrium. Again, in a model without
subpopulations, any interior stationary state in the replicator dynamics is a
Nash equilibrium. In such a model, the converse also holds: any state that
is not stationary is not a Nash equilibrium. In our model Proposition 1 (i)
provides a partial converse to (ii), but the complete converse is not true.
It is possible to have a nonstationary state that is equivalent to a corre-
lated equilibrium. Consider the previous game, again where each population
has subpopulations {1,2} and suppose population matches occur with the
following probabilities:

1 2
1 [1/3] 0
2 [0 [2/3

10



Consider the population state x with subpopulation states

It is straightforward to show that &%, = 2/9 and @5, = 4/9, so « is not
stationary. However, x is equivalent to the correlated equilibrium with the
following distribution:

I r
t 2/911/9
b |4/91]2/9

Notice that this distribution is a product measure. Any correlated equilib-
rium that is a product measure has randomization that is independent across
players and is hence a Nash equilibrium. Thus z is actually equivalent to a
Nash equilibrium.

Proposition 1 (i) states that for any correlated equilibrium there exists
a subpopulation setting with a stationary state equivalent to this correlated
equilibrium. The full converse, which we showed does not hold, would require
that, for any population setting, any state equivalent to a correlated equilib-
rium must be stationary. There are two main reasons for the contrast between
the subpopulation model and the model without subpopulations. The first is
that since the n-replicator dynamics depend on the choice of subpopulations
and their distribution, the same game can have many evolutionary repre-
sentations, whereas models without subpopulations have unique replicator
dynamics. The second is that in our subpopulation model, multiple states
can be equivalent to the same correlated equilibrium. For instance, in the
current example, the state z with subpopulation states z1; = z12 = (5, 2)
and 9 = Tgo = (%, %) is stationary and equivalent to the same correlated
equilibrium.

4 Stability and Limit States

Having discussed the relationship between correlated equilibria and rest points
in the replicator dynamics of subpopulation models, we now turn to stable
states in these replicator dynamics. As we shall see, the relationship between
correlated equilibria and stable states in the replicator dynamics of subpopu-
lation models is similar to the that of Nash equilibria and stability under the
standard replicator dynamics. Definition 3 is merely a reformulation of the
standard dynamics solution concept for a model with subpopulations. With
this construction, the definition of Lyapunov stability remains unchanged
and is simply restated.

11



Definition 3 A SOLUTION through a point x € X to a system of n-replicator
dynamics is a function £(-,z) : R — X such that £(0,x) = x and such that
forallteR, i€ l, m; € M;, and k € S;:

% z{c,m,-(t’ .’l?) = Z n(miam—i) [uz (efagm_i(t’ .T)) - ui(gm(t’ x))i|€zk,mZ (t’ l’)

m_;EM_;
(12)

Definition 4 A state x € X is LYAPUNOV STABLE if every neighborhood U
of T contains a neighborhood U® of x such that £(t,x) € U for allz € U'NX
and t > 0.

The following result establishes the relationship between stability in the
replicator dynamics and correlated equilibria.

Proposition 2 Consider a game I'. Given a subpopulation setting (M,n),
if a population state x € X s Lyapunov stable in the n-replicator dynamics,
then the equivalent distribution is a correlated equilibrium.

Proof: If x is Lyapunov stable, then it is stationary. We must show that
any stationary state for which the equivalent distribution is not a correlated
equilibrium is not Lyapunov stable.

Suppose that x € X is stationary and the equivalent distribution is not
a correlated equilibrium. Then there exist some ¢ € I, m; € M;, and k € S;
such that:

Gm(@) = Y nlmemo) |ulef, om ) = ui(zm)| >0 (13)

m_;EM_;

If this were not the case, then, as we saw in the proof of Proposition 1, x
would be equivalent to a correlated equilibrium. Since z is stationary, this
requires that zf, = 0.

The growth function g¥,, is multilinear in z and hence (locally) Lipschitz
continuous. Thus, the solution path is well defined, and there exists a § > 0
and a neighborhood V' of z such that gzkml (y) > 6 for all y € VN X. For any
E(t,by) e VNX:

d
T om0 Y) = i, (€04 9)) &, (89) > 0 &, (89) (14)

12



For all y € V Nint(X) and for all ¢ > 0 such that £(¢',y) € V Nint(X)
for all ' € [0,t], we have

In(&F,.(,y)) — In(y,,,) > ot

which implies
Fmi(ty) > yE,,. exp(6t) (15)

Therefore, there exists an € > 0 such that for any neighborhood U° of x
and y € U’Nint(X), there exists 0 < ¢ < oo such that either F,, (¢,y) > € or
&(t,y) ¢ V. That is, we can choose a neighborhood U = {y € V : yf < ¢}
of  so that from every neighborhood U° of x and y € U° N int(X), the
trajectory from y will eventually leave U. Therefore, x is not Lyapunov
stable.

Q.E.D.

Another important relationship in this context is that limit states to in-
terior solutions can also be represented by correlated equilibria. This result
complements the previous proposition in that some limit states, such as sad-
dle points, are not Lyapunov stable and some Lyapunov stable states are not
limit states.

Proposition 3 Consider a game I'. Given a subpopulation setting (M,n), if
the population state x is the limit to some interior solution in the n-replicator
dynamics, then the equivalent distribution is a correlated equilibrium.

Proof: If z° € int(X) and £(t,2%);.0 — 7, then z is stationary.® If
is not equivalent to a correlated equilibrium, then as in the proof of Propo-
sition 2, there exist some ¢ € I, m; € M;, k € S;, and § > 0 and some
neighborhood V' of z such that g}, (y) > forally € VN X.

However, if £(t, 2°) converges to z, then there exists some 7' > 0 such that
£(t,2°%) € V Nint(X) for all ¢ > T'. Since z is stationary and g, (z) > 9,
it must be that 2, = 0. This implies £&F, (¢,2°) < 0 for some ¢ > T,
which requires that gf, (£(¢,2°)) < 0. This contradicts gf,, (y) > 6 for all
y € VN X. Thus z is equivalent to a correlated equilibrium.

Q.E.D.

We have so far shown several sufficient conditions for a state to be equiv-
alent to a correlated equilibrium. One may ask whether these conditions are
in fact sufficient for a state to be equivalent to a Nash equilibrium. We show
here that this is not the case. The following is an example of a game with

5This is a straightforward result from the theory of differential equations.
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a Lyapunov stable state that is also the limit of an interior solution, but is
not a Nash equilibrium.
Consider the following normal form game, appearing in Aumann (1987):

I r
6,627
7.210,0

Suppose that each population has subpopulations {1,2} and that the
population matches occur with the following probabilities:

1 2
1 [1/3]1/3
1/3] 0

Consider the population state z with subpopulation states

T1,1 = (1,0) T12 = (Oa 1

$2’1 = (]., 0) 332’2 = (0, 1

—

Notice that the unplayed action of each subpopulation of population 1
has a negative growth rate:

1 1
g?,l(l‘) = § [ul(e?’ (L‘Q,l) — Uz (./I/'l,la :UZ,I)] + § |:’U/1 (61{’ -/LIQ,Q) — U1 (‘/'Ul,l; x272)
1 1 1
= -[7T-6]+=[0-2]=-2><0
ST =6+ 50— 2 = -3 <
1 1
gb(”’) -~ 3 [Ul(eiaﬂfz,l) - Ul(x1,2,x2,1)] =3 <0

Similarly, g5 ,(x) < 0 and gég(a:) < 0. Since g is continuous, there exists
some open ball V' containing x such that these conditions also hold for any
y € VN X. This implies that = is Lyapunov stable, and in fact, = is the
limit of the solution through any initial state y € V Nint(X). Either of these
conditions is sufficient for x to be equivalent to a correlated equilibrium. The
equivalent correlated equilibrium has the distribution:

I r
1/311/3
b 1/31 0

However, this is clearly not a Nash equilibrium distribution. Furthermore,
this distributions lies outside the convex hull of the Nash equilibria.

14



5 Nash Equilibrium

Given the previous example, one might ask what conditions are sufficient, for
a population state in this framework to be equivalent to a Nash equilibrium.
One possibility is to consider a population setting (M,n) in which 7 is a
product measure. In this case, dividing each population into subpopulations
has no effect on the distribution of opponents that a member of a population
will face: the conditional distribution n(m_;|m;) is the same for all m; €
M;. Therefore, one would expect the same results as for standard replicator
dynamics. Namely, the analogs of Proposition 1 (ii), Proposition 2, and
Proposition 3 should hold with Nash equilibrium substituted for correlated
equilibrium. The following proposition shows that this is in fact the case.

Proposition 4 Consider a game . If (M,n) is a subpopulation setting such
that n is a product measure, then for any population state x, the equivalent
distribution b on S is also a product measure.

As we discussed earlier, any correlated equilibrium that is product mea-
sure is also a Nash equilibrium. Thus Proposition 4, combined with the
previous propositions, implies the desired results.

Proof: If7)is a product measure, then for allmm € M, n(m) = [, mi(ma).
Therefore, for all s € S,

o) = > nm)| [Tt | = 30 [TImstma [T

meM jel meM i€l el

= 3 [Mntmies ] = TI[ X mimdais]
meM i€l 1€l m;EM;

= H%‘(Si) (16)
iel

The last equality follows from the fact that for any 7, not necessarily a
product measure, we have:

vils) = 30 3 amaty, [ T[5m,]

S_;€ES_imEM J#i
= 3 wmdaln, X nlmafm) 3 [[Latm,
m; EM; m_;EM_; S_;€ES_; j#i
= > mlm)al, Y n(moilm)
m;EM; m_;EM_;
= D mlm)al, (17)
m; € M;
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Thus v is a product measure.
Q.E.D.

That we obtain the standard relationship between population states and
Nash equilibria when 7 is a product measure is rather intuitive. In such a sub-
population setting, the subpopulation to which an individual is assigned has
no effect on the distribution of his opponents. Basically, the subpopulation
breakdown merely labels individuals and does not introduce any substantive
differences from the standard replicator dynamics. The standard replicator
dynamics are clearly a special case of subpopulation replicator dynamics in
which each population has only one subpopulation. Any subpopulation set-
ting where 7 is a product measure is essentially the same as this standard
setting. The fact that we obtain the same results in setting where 7 is a
product measure as in settings where each population has a single subpop-
ulation serves as a consistency check of our model in that inconsequential
differences in assignments into subpopulations does not affect the results.

6 Concluding Remarks

We have established in the preceding analysis the relationship between cor-
related equilibria and the replicator dynamics of evolutionary games with
subpopulations. We showed that every correlated equilibrium is equivalent
to a stationary state in the replicator dynamics of some subpopulation model.
We also showed that every interior stationary state in a subpopulation model
is equivalent to a correlated equilibrium. We found that any state that is
Lyapunov stable or the limit of an interior solution is equivalent to a corre-
lated equilibrium. We also provided an example with a Lyapunov stable limit
state whose equivalent correlated equilibrium was outside the convex hull of
the set of Nash equilibria. Finally, we proved that any subpopulation setting
in which the matching distribution is a product measure leads to equivalence
with Nash equilibrium, thus demonstrating the connection to the standard
replicator dynamics model.

There is, however, much more to investigate regarding this relationship.
An interesting line of further research is to investigate the robustness of the
correlated equilibria to perturbations in the matching distribution and in
the underlying breakdown of the subpopulations. Consider a subpopula-
tion model with a stable state, which, as we have shown, is equivalent to a
correlated equilibrium. Imagine that a small change occurs in the subpopula-
tion setting. For instance, in a locational context, suppose some individuals
are exogenously moved from one subpopulation to another. One would ask
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if there is then necessarily a stable state in the new subpopulation setting
“near” the original stable state. If so, then this new state will be equivalent
to a correlated equilibrium. The dynamics of adjustment, and whether they
will converge to this new stable state, would be interesting to investigate.

We believe that the main contribution of this paper is its interpretation
of the correlated equilibrium, or more precisely the identification of a class
of games for which the correlated equilibrium is a natural solution concept.
We would like to emphasize the subpopulations framework and its intuitive
relationship to the correlated equilibrium. While we formulate our results
in terms of the replicator dynamics, we believe that similar results could be
obtained if one were to employ learning and more sophisticated adaptation
in this same framework.
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