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Abstract

We propose a new location model where consumers are allowed to make multiple purchases

(i.e., one unit from each Þrm). This model Þts many markets (e.g. newspapers, credit cards,

scholarly journals, subscriptions to TV channels, etc.) better than existing models. A common

feature of these markets is that some consumers are loyal to one brand, while others consume

more than one product. Our model yields predictions consistent with this observation. More-

over, it restores Hotelling�s Principle of Minimum Differentiation, by generating an equilibrium

in pure strategies and with a linear transportation cost, where Þrms are located at the center

and charge prices above marginal cost.
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1 Introduction

Hotelling (1929), in his seminal paper, introduced a model of spatial competition where two Þrms

are located at the two end points of a busy street producing homogeneous products. Consumers

have unit demands, are uniformly distributed on the street and each one buys from the Þrm which

offers the best deal in terms of price and distance that has to be travelled. Later versions of that

model have relaxed a number of Hotelling�s assumptions, but the one that is Þrmly maintained

is that consumers purchase from one Þrm exclusively. Implicitly, this says that consumers do not

care for diversity. This would be certainly true under the initial hypothesis that the two products

are homogenous, but not necessarily under the broader interpretation of the model by which the

products are differentiated and the distance that a consumer has to travel serves as a measure

of disutility. In many markets, consumers cannot purchase more than one unit of a given brand,

but, nevertheless, variety is valued. For example, it does not make sense to buy two copies of the

same newspaper, but, for some people, it makes perfect sense to read two different newspapers.1

Other products that fall into this category include credit cards,2 software3, subscriptions to TV

channels4, scholarly journals,5 and magazines. Our aim in this paper is to develop a modeling

framework capable of capturing some of the key features of the above examples.6

We extend Hotelling�s model by allowing consumers to buy from both Þrms. The model we

propose generates a very realistic equilibrium where some consumers remain loyal to one brand,

while another group of consumers consumes both brands. We begin by assuming that the Þrms�

horizontal locations are Þxed at the two extreme points of the unit interval. Our analysis yields

several interesting new insights. We show that when the incremental utility from consuming both

brands is not high, then the unique equilibrium is the same as the one in the standard Hotelling

1Gentzkow (2003) studies the newspapers market in Washington DC and Þnds that one third of the consumers in
his sample read more than one newspaper.

2People usually hold only one credit card from a given issuer, but a second card, from a different issuer, provides
to the holder a higher credit limit and consequently a higher utility.

3For example, there is a great deal of horizontal preference heterogeneity regarding the typesetting software
ScientiÞcWord (or WorkPlace) and Microsoft Word. Nevertheless, utility increases if both are used, since this enhances
a person�s ability to communicate and collaborate with others.

4A baseball fan may have a stronger preference for the New York Yankees than the rival New York Mets, and
therefore if he had to choose between subscribing to the TV channel which broadcasts the Yankee games and to the
one which broadcasts the Met games, he would certainly choose the former. But at the same time he likes the game
of baseball and his utility if he subscribes to both channels is higher than if he subscribes to the Yankee channel
exclusively.

5Consider two Economics journals differentiated by the mix of applied theory and applied econometrics papers
they publish. Although users� strength of preferences for these two products varies, one thing seems to be common
among all scholars: appreciation of variety [see McCabe (2002)].

6There is a growing interest for empirical applications based on models which combine spatial competition with
preference for diversity. For instance, Pinske et al. (2002) propose such a model to study the nature of competition
in the U.S. wholesale gasoline markets.
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model, that is, half of the consumers buy from one Þrm and half from the other, exclusively (i.e.,

no consumer, in equilibrium, purchases from both Þrms). When the incremental utility is in an

intermediate range, then there are two equilibria: i) the standard Hotelling outcome remains an

equilibrium and ii) a new equilibrium emerges which is characterized by a fraction of consumers

that consumes both brands. The Þrst equilibrium Pareto dominates the second one. Finally, when

the incremental utility is high, only the second equilibrium from the previous case survives. Overall,

this says that the desire for diversity on part of the consumers has to be sufficiently strong for the

Þrms to switch to an equilibrium where some consumers Þnd it beneÞcial to consume both brands.

The presence of a group of consumers who consumes both products acts as a buffer which alters the

nature of price competition signiÞcantly. When a Þrm lowers its price the demand for its product

increases, but not necessarily at the expense of its rival. This produces interesting comparative

statics. For instance, as products become more differentiated, equilibrium proÞts decrease, when in

equilibrium some consumers consume both brands. The non-cooperative outcome is, for a certain

range of parameter values, inefficient. In particular, output is lower than the socially optimal level.

This contrasts with the standard Hotelling model, which always yields an efficient equilibrium, for

Þxed Þrm locations and a covered market.

Then, we endogenize the locations of the Þrms. Hotelling claimed that Þrms will agglomerate in

the middle of the unit interval (Principle of Minimum Differentiation). d�Aspermont et al. (1979)

showed that this claim is incorrect. The reason is that when Þrms are sufficiently close to each

other a pure strategy price equilibrium fails to exist. They also demonstrated that if the linear

transportation cost is replaced by a quadratic one, then the price equilibrium is restored, but Þrms

locate at the extremes, rather than the middle (Principle of Maximum Differentiation).7 In the

present paper, we assume a linear transportation cost and we show that a pure strategy price

equilibrium exists regardless of where the Þrms are located, provided that the incremental utility

from buying both brands is above a Þxed threshold. Firm proÞts monotonically increase when they

move towards the center. Thus, we retrieve Hotelling�s Principle of Minimum Differentiation.

Consumers in our model have an elastic demand of a special kind. Although they cannot buy

more than one unit from the same Þrm, they are allowed to purchase up to two units each one from

a different Þrm. A number of papers in the literature [e.g. Anderson et al. (1989), Hamilton et al.

(1994) and Rath and Zhao (2001)] have already introduced models with an elastic demand. In those

papers, however, consumers are allowed to buy more than one unit from the same Þrm, but cannot

purchase from other Þrms (and hence the issue of variety does not arise). The results with regards

to product selection are also different from ours. Hamilton et al. assume a linear transportation

7Other remedies to the problem include, mixed strategy equilibrium, [e.g., Gal-Or (1982)] and heterogeneity in
consumers� tastes, [e.g., de Palma et al. (1985)]. Gal-Or does not restore the Principle of Minimum Differentiation,
while de Palma et al. do.

3



cost paid for every unit of the product and they show that a price equilibrium, in pure strategies,

may not exist. Rath and Zhao assume a quadratic lump-sum transportation cost and they show

that Þrms may locate at the extremes or strictly inside the interval (including the middle point)

depending upon the ratio of the reservation price and the transportation cost parameter.8

Spatial models have been utilized extensively in the literature to address a number of interesting

questions related to, price discrimination, entry decisions, product variety, vertical integration and

market foreclosure, to mention a few. The modeling framework presented in this paper, Þts many

markets better than the existing models and it can be adopted to study old and new issues through

different lenses. For example, a large body of the spatial price discrimination literature [e.g.,

Fudenberg and Tirole (2000), Liu and Serfes (2003) and Shaffer and Zhang (2000)], builds on the

presumption that Þrms can easily segment the consumers into two groups: own customers and rival

Þrm�s customers. If consumers buy only from one Þrm, then this distinction is clear, but not when

some consumers purchase from both Þrms. As a second example, consider the incentives of vertically

integrated Þrms in the market for broadband access [e.g. a content provider (upstream Þrm) and

an Internet service provider (downstream Þrm)] to practice conduit and/or content discrimination,

[see Rubinfeld and Singer (2001)]. The major element of differentiation comes from the various

contents that a service provider carries. In this case, it seems natural to assume that consumers

have heterogeneous preferences for different contents, e.g. music, video games, movies, news etc.

At the same time, though, variety is valued. A standard location model would ignore the preference

bias towards variety. On the other hand, a representative consumer model [e.g. Singh and Vives

(1984)], where preferences are symmetric, would miss the key element of preference heterogeneity.9

The rest of the paper is organized as follows. Section 2 presents the model. In section 3,

we solve for the Nash equilibrium, assuming that the locations of the Þrms are Þxed at the two

endpoints of the unit interval, and in subsection 3.1 we compare the non-cooperative outcome with

the social optimum. In section 4, we endogenize product selection, by allowing the Þrms to choose

their horizontal locations. We conclude in section 5.

8Caplin and Nalebuff (1991) introduce a general model with multi-dimensionally differentiated products and prove
existence of pure strategy price equilibrium, by showing that the proÞt functions are quasi-concave in a Þrm�s own
price [proposition 4, p.39]. Their model encompasses many of the alternative approaches to the theory of differentiated
products [e.g. C.E.S. preferences, characteristics approach models and multi-dimensional probabilistic choice models]
as special cases. Nevertheless, our framework does not satisfy the assumptions made by Caplin and Nalebuff and
therefore it is not nested in theirs. As we demonstrate later, our model yields proÞt functions which are not quasi-
concave.

9In Kim and Serfes (2003), we build on the present model to investigate the incentives of two vertically integrated
Þrms to engage in content and/or network discrimination.
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2 The description of the model

There are two Þrms A andB who produce differentiated brands and are located at the two endpoints

of the unit interval [0, 1]. A unit mass of consumers is uniformly distributed on the [0, 1] interval.

Each consumer can buy at most one unit from a given Þrm and has the following valuation:

V = αqi + βqAqB, where i = A,B and qi represents the quantity of brand i that a consumer buys,

with qi ∈ {0, 1}. These valuations do not depend on a consumer�s particular horizontal location.
Hence, if a consumer buys only one brand his valuation is equal to V (1) = α > 0, while if he

buys both brands his valuation is V (2) = α + β, with β ≥ 0, or V (2) ≥ V (1). Moreover, we

assume diminishing incremental (marginal) utility, i.e, β ≤ α, or V (2)−V (1) ≤ V (1). Let θ denote
the incremental utility, i.e., θ = V (2) − V (1), with θ ∈ [0, V (1)]. In addition, consumers incur
a disutility from not being able to purchase their �ideal� brand. A consumer who is located at

x ∈ [0, 1] incurs a disutility equal to tx if he buys brand A, a disutility equal to t (1− x) if he buys
brand B and a disutility equal to tx+ t(1− x) = t if he buys both, with t > 0.

Firm prices are denoted by pA and pB. We assume that the market is covered, i.e., each

consumer buys at least one brand. If a consumer who is located at x buys from Þrm A his indirect

utility is, V (1)− tx− pA; if he buys from Þrm B his indirect utility is, V (1)− t (1− x)− pB; and
if he buys from both Þrms his indirect utility is, V (2)− t − pA − pB. There will be two marginal
consumers, one denoted by x1, who is indifferent between buying from Þrm A only and buying from

both Þrms and the other, denoted by x2, who is indifferent between buying from Þrm B exclusively

and buying from both Þrms (see Þgure 1). The Þrst marginal consumer is located at,

V (1)− tx1 − pA = V (2)− t− pA − pB ⇐⇒ x1 =
t− θ + pB

t
. (1)

The second marginal consumer is located at,

V (1)− t (1− x2)− pB = V (2)− t− pA − pB ⇐⇒ x2 =
θ − pA
t

. (2)

Note that,

x2 ≥ x1 ⇐⇒ pA + pB ≤ 2θ − t. (3)

Also,

x1 ≥ 0⇐⇒ pB ≥ θ − t, (4)

and

x2 ≤ 1⇐⇒ pA ≥ θ − t. (5)
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When x2 = x1, then the marginal consumer is indifferent between buying one unit from Þrm

A and one unit from Þrm B. In this case, no consumer purchases from both Þrms. Therefore, the

marginal consumer is located at,

�x = x1 = x2 =
pB − pA + t

2t
.

Hence, the consumers who are located in [0, x1] purchase Þrm A�s product exclusively, the

consumers in (x1, x2) purchase from both Þrms and the ones in [x2, 1] buy only Þrm B�s product

(see Þgure 1).

ApV −)1( BpV −)1(

BA pptV −−−)2(

AptxV −−)1(
BpxtV −−− )1()1(

10
1x 2x

A A&B B

BA pptV −−−)2(

Figure 1

It then follows that Þrm A�s demand function is,

dA =

 x2 =
θ−pA
t , if pA + pB ≤ 2θ − t, i.e., x2 ≥ x1

�x = pB−pA+t
2t , if pA + pB ≥ 2θ − t, i.e., x2 = x1.

Firm B�s demand function is,

dB =

 1− x1 =
θ−pB
t , if pA + pB ≤ 2θ − t, i.e., x2 ≥ x1

1− �x = pA−pB+t
2t , if pA + pB ≥ 2θ − t, i.e., x2 = x1.

Also, di ∈ [0, 1], i = A,B, a condition we have ignored so far. Until the proof of proposition

1, we implicitly assume that di ∈ (0, 1). We deal with the corner solutions in the proof of that
proposition.
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Note that the demand functions exhibit a kink at pA + pB = 2θ − t, i.e., they are non-
differentiable. For low prices, each Þrm is a local monopolist, in the sense that a Þrm�s demand

depends only on its own price. In this case, a reduction in price by one Þrm does not hurt the

demand of the rival. Consumers do not switch brands, but simply more consumers Þnd it advan-

tageous to buy both brands (demand creation effect). As prices increase and after the kink of

the demand function, Þrms compete head-on for consumers and a reduction in price induces some

consumers to switch brands (business stealing effect).

We assume that Þrms have constant and equal marginal costs, which are normalized to zero.

Thus, the proÞt functions are,

πA =


(θ−pA)pA

t , if pA + pB ≤ 2θ − t, i.e., x2 ≥ x1

(pB−pA+t)pA

2t , if pA + pB ≥ 2θ − t, i.e., x2 = x1

(6)

and

πB =


(θ−pB)pB

t , if pA + pB ≤ 2θ − t, i.e., x2 ≥ x1

(pA−pB+t)pB

2t , if pA + pB ≥ 2θ − t, i.e., x2 = x1.

(7)

3 Analysis

First, note that the proÞt functions are not quasi-concave in the strategic variable. Figure 2, depicts

the two functions, as given by (6), when pB = 6, θ = 5 and t = 1.

p
A

πA

Figure 2: Firm A’s profit function.

The proÞt function is the upper envelope of these two functions and it is clearly not quasi-

concave. Therefore, the assumptions of Kakutani�s Þxed point theorem are not satisÞed. In par-
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ticular, the best replies may not be convex-valued. Nevertheless, the game is supermodular10 and

therefore the best replies are increasing. Hence, an equilibrium in pure strategies must exist [see

Vives (1999, Theorem 2.5, p.33)]. The analysis which ensues veriÞes this and furthermore charac-

terizes the equilibrium of the game completely.

We differentiate (6) and (7) with respect to pA and pB respectively, set the derivative equal to

zero and solve with respect to each Þrm�s strategic variable. This yields,

pA =


θ
2 , if pA + pB ≤ 2θ − t, i.e., x2 ≥ x1

pB+t
2 , if pA + pB ≥ 2θ − t, i.e., x2 = x1,

and

pB =


θ
2 , if pA + pB ≤ 2θ − t, i.e., x2 ≥ x1

pA+t
2 , if pA + pB ≥ 2θ − t, i.e., x2 = x1.

Let�s look at Þrm A. Firm B�s problem will be symmetric. Fix pB. Firm A has two choices: i)

to set pA =
θ
2 , provided that pA+pB ≤ 2θ−t, or ii) to set pA = pB+t

2 , provided that pA+pB ≥ 2θ−t.
The Þrst choice yields proÞts equal to θ2

4t and is valid for,

x2 ≥ x1 ⇐⇒ θ

2
+ pB ≤ 2θ − t =⇒ pB ≤ 3θ

2
− t.

The second choice yields proÞts equal to (pB+t)2

8t and is valid for,

x1 = x2 ⇐⇒ pB + t

2
+ pB ≥ 2θ − t =⇒ pB ≥ 4θ

3
− t.

Hence for pB ∈
£

4θ
3 − t, 3θ

2 − t
¤
both choices satisfy the requirements (assuming that 4θ

3 ≥ t).
In this case the best response is the one which yields the higher proÞts. It can be shown that the

Þrst choice yields higher proÞts when pB ≤
√
2θ − t, while when pB ≥

√
2θ − t, the second choice

yields higher proÞts. Therefore, the best reply correspondences are,

pA =


θ
2 , if pB ≤

√
2θ − t, i.e., x2 ≥ x1

pB+t
2 , if pB ≥

√
2θ − t, i.e., x2 = x1,

(8)

and

pB =


θ
2 , if pA ≤

√
2θ − t, i.e., x2 ≥ x1

pA+t
2 , if pA ≥

√
2θ − t, i.e., x2 = x1.

(9)

10See Vives (1999, 2.2.3) for a deÞnition of a supermodular game. It can be easily checked that our game satisÞes
the conditions of a supermodular game.
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Figure 3 presents Þrm A�s best reply correspondence as it is given by Eq.(8). For pB�s less than√
2θ − t, Þrm A�s best response is to charge pA =

θ
2 . This is the region where Þrm A has a local

monopoly and some consumers purchase both brands. At pB =
√
2θ − t, Þrm A has two optimal

prices, θ2 and
√

2θ
2 . At this point a Þrm has two equally proÞtable strategies: i) to offer its product

at a low price and sell even to those consumers whose preferences for its brand are not so strong,

or ii) to increase the price and focus on the more loyal group of consumers. For any pB >
√
2θ− t,

Þrm A�s best response is pA =
pB+t

2 . This is the region where Þrms compete head-on for consumers

and no consumer buys from both Þrms. The best reply correspondence indeed never jumps down.

t−θ2

2

θ

2

2θ

p
A

p
B

Figure 3: Firm A’s best reply correspondence.

Firm B�s best reply correspondence can be obtained in an analogous manner. The next propo-

sition summarizes the equilibrium.

Proposition 1. The Nash equilibrium prices and proÞts are as follows:

1. If 0 ≤ θ < 2t
2
√

2−1
, then the unique equilibrium is,

(pA, pB) = (t, t) and (πA, πB) =

µ
t

2
,
t

2

¶
.

2. If 2t
2
√

2−1
≤ θ ≤ √2t, then there are two equilibria,

(pA, pB) = (t, t) and (πA, πB) =

µ
t

2
,
t

2

¶
,
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and

(pA, pB) =

µ
θ

2
,
θ

2

¶
and (πA, πB) =

µ
θ2

4t
,
θ2

4t

¶
.

3. If
√
2t < θ ≤ 2t, then the unique equilibrium is,

(pA, pB) =

µ
θ

2
,
θ

2

¶
and (πA, πB) =

µ
θ2

4t
,
θ2

4t

¶
.

4. If θ > 2t, then the unique equilibrium is,

(pA, pB) = (θ − t, θ − t) and (πA, πB) = (θ − t, θ − t) .

Proof. We know that θ ∈ [0, V (1)]. This interval can be divided into four regions. The proof
will be based on the best reply correspondences.

� Case 1: 0 ≤ θ < 2t
2
√

2−1
.

It can be easily calculated that,

t >

√
2θ

2
≥ θ

2
>
√
2θ − t.

Figure 4 represents the equilibrium. The Nash equilibrium is,

(pA, pB) = (t, t) .

The equilibrium proÞts are,

(πA, πB) =

µ
t

2
,
t

2

¶
.
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t−θ2

t−θ2

2

2θ

2

2θ

2

θ

2

θ

( )tt,

p
A

p
B

Figure 4

This is the standard Hotelling equilibrium. For this equilibrium to be valid it must be that

x2 = x1, or from (3) we must have, x2 = x1 ⇐⇒ pA + pB ≥ 2θ − t. This holds since, t + t >
2θ − t =⇒ 3t

2 > θ a condition which is satisÞed in this case. Therefore, no consumer buys from

both Þrms and each Þrm�s market share is 1
2 . It can be easily checked that each consumer�s indirect

utility is positive provided that V (1) ≥ 3t
2 .

� Case 2: 2t
2
√

2−1
≤ θ ≤ √2t.

It can be easily calculated that,

t ≥
√
2θ

2
≥ √2θ − t ≥ θ

2
.

Figure 5 represents the equilibria. There are two Nash equilibria,

(pA, pB) = (t, t) and (pA, pB) =

µ
θ

2
,
θ

2

¶
.

The associated equilibrium proÞts are,

(πA, πB) =

µ
t

2
,
t

2

¶
and (πA, πB) =

µ
θ2

4t
,
θ2

4t

¶
.

It can be easily calculated that the Þrst equilibrium yields higher proÞts provided that θ ≤ √2t,
a condition that is satisÞed in this case.
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t−θ2

t−θ2

2

2θ

2

2θ
2

θ

2

θ

( )tt,

p
A

p
B

Figure 5

The Þrst equilibrium, following the same logic as in case 1, is valid. For the second one to be

valid it must be that x2 ≥ x1. Given the equilibrium prices, and using (1) and (2), we obtain the

equilibrium cutoffs,

x∗1 =
t− θ + θ

2

t
=
2t− θ
2t

, (12)

and

x∗2 =
θ − θ

2

t
=
θ

2t
. (13)

Note that x∗2 > x∗1 provided that θ > t a condition which is satisÞed. Hence, the consumers in

(x∗1, x∗2) buy from both Þrms. Moreover, if θ < 2t, then x∗1 > 0 and x∗2 < 1 (the same applies to

case 3 below). In the second equilibrium each consumer enjoys a positive indirect utility provided

that V (1) ≥ t.

� Case 3:
√
2t < θ ≤ 2t.

It can be easily calculated that,

√
2θ − t >

√
2θ

2
> t ≥ θ

2
.
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Figure 6 represents the equilibrium. There is one Nash equilibrium,

(pA, pB) =

µ
θ

2
,
θ

2

¶
.

The associated equilibrium proÞts are,

(πA, πB) =

µ
θ2

4t
,
θ2

4t

¶
.

45o

t−θ2

t−θ2

2

2θ

2

2θ
2

θ

2

θ

p
A

p
B

Figure 6

� Case 4: θ > 2t.

This is the boundary case. All consumers buy both products. Firms set their prices such that

x2 = 1 and x1 = 0. Using (1) and (2), this yields,

(pA, pB) = (θ − t, θ − t) .

Since all consumers buy both products the equilibrium proÞts are the same as the prices,

(πA, πB) = (θ − t, θ − t) .

Each consumer enjoys a positive indirect utility, provided that θ ≤ V (1) + t. This inequality is
satisÞed given our assumption of diminishing marginal utility. ¥
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From proposition 1, when 2t
2
√

2−1
≤ θ ≤ √2t, there are two Nash equilibria in pure strategies,

(pA, pB) = (t, t) and (pA, pB) =
¡
θ
2 ,

θ
2

¢
. Moreover, the Þrst one is the Pareto better equilibrium

and consequently it will be the one preferred by the Þrms. This is a property of supermodular

games, when the payoff to a player is increasing in the strategy of the other player, as it is the

case in our model [see Vives, Remark 14, p.34]. We assume that Þrms are able to coordinate their

play on the better equilibrium. To summarize, the non-cooperative outcome is: i) if 0 ≤ θ ≤ √2t,
then (pA, pB) = (t, t), (πA, πB) =

¡
t
2 ,

t
2

¢
and x∗1 = x∗2 =

1
2 [no consumer purchases both brands],

ii) if
√
2t < θ ≤ 2t, then (pA, pB) =

¡
θ
2 ,

θ
2

¢
, (πA, πB) =

³
θ2

4t ,
θ2

4t

´
and [from (12) and (13)]

0 < x∗1 =
2t−θ

2t < x∗2 =
θ
2t < 1 [some consumers purchase both brands] and iii) if θ > 2t, then

(pA, pB) = (θ − t, θ − t), (πA, πB) = (θ − t, θ − t) and 0 = x∗1 < x∗2 = 1 [all consumers consume
both brands].

There are two types of equilibria. The Þrst is the standard Hotelling outcome where no consumer

purchases from both Þrms. In the second type of equilibrium some consumers purchase both

brands. Each type of equilibrium behaves differently when products become more differentiated,

i.e., as t increases. ProÞts associated with the Þrst type of equilibrium increase, while, somewhat

surprisingly, proÞts associated with the second type decrease. Moreover, in case 4 prices also

decrease as products become more differentiated. In the second type of equilibrium, Þrms beneÞt

when products move closer to each other. Demand increases since consumers Þnd it less costly to

consume one more product and for this to happen a Þrm does not have to lower its price. The

consumers in (x1, x2) act as a buffer which lessens, up to a certain extent, the intensity of price

competition. When a Þrm lowers its prices, for example, the demand for its product increases but

not at the expense of its rival. Simply, more consumers Þnd it beneÞcial to incur the incremental

transportation cost and consume both products instead of one. This changes the nature of price

competition.

Next, we calculate the socially optimal outcome and we compare it with the non-cooperative

equilibrium.

3.1 Welfare analysis

The socially optimal outcome can be found as follows. Since a price is only a transfer and marginal

cost is assumed to be zero, a social planner will choose the locations of the two marginal consumers

to maximize the utility minus the transportation cost,

max
(x1,x2)

Z x1

0
[V (1)− tx] dx+

Z x2

x1

[V (2)− t] dx+
Z 1

x2

[V (1)− t(1− x)] dx

= max
(x1,x2)

V (1)x1 − tx
2
1

2
+ V (2)x2 − V (2)x1 + tx1 − t

2
− tx

2
2

2
+ V (1)− V (1)x2. (14)
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The locations which maximize social welfare are,

xso1 =
t− θ
t

and xso2 =
θ

t
. (15)

Note that xso2 > xso1 if and only if θ > t
2 , otherwise it is socially optimal that no consumer

purchases both brands, i.e., x1 = x2. Next, we compare the non-cooperative outcome with the

social optimum.

� 0 ≤ θ ≤ t
2 .

The non-cooperative outcome is efficient. It is socially optimal that no consumer purchases

both brands, which coincides with the non-cooperative outcome.

� t
2 < θ ≤

√
2t.

The non-cooperative outcome is inefficient. In the socially optimal outcome some consumers

buy from both Þrms, but in the non-cooperative equilibrium each consumer still buys exclusively

from one Þrm. Output is below its efficient level.

� √2t < θ < 2t.

The non-cooperative outcome is inefficient. Although, in the non-cooperative outcome, some

consumers consume both products now, they are fewer relative to the number that is socially

desired, since xso2 > x∗2 and xso1 < x∗1. Again, output is below its efficient level.

� θ ≥ 2t.

The non-cooperative outcome is efficient. Efficiency dictates that all consumers should buy

from both Þrms, a situation which is supported when Þrms behave non-cooperatively.

We see that for intermediate values of θ, there is a deadweight loss associated with the Nash

equilibrium, unlike the standard Hotelling model which yields an efficient outcome (if the Þrm

locations are Þxed and the market is covered).

4 Product selection

We consider a two-stage game. In stage 1 Þrms choose their locations on the unit interval. Let

a (the location of Þrm A) and b (the location of Þrm B) denote the distance from 0. We assume
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that 1 ≥ b ≥ a ≥ 0. In stage 2, they choose prices. As we showed in the previous sections, when
Þrms are located at the two extremes, there are, in general, two types of equilibria: one where no

consumer buys from both Þrms and the other where some consumers purchase both brands. The

former case cannot yield an equilibrium for any a and b. As Þrms move close to the middle, a price

equilibrium will not exist (see d�Aspermont et al.). Therefore, the only hope to Þnd a pure strategy

price equilibrium (for any a and b) is to focus on the latter case where some consumers buy from

both Þrms, i.e., x2 > x1. This is what we do next. We then use the result of proposition 2 to argue

that Þrms will agglomerate towards the center (Principle of Minimum Differentiation).11

Proposition 2. A pure strategy price equilibrium exists for any a and b if and only if θ ≥ �θ =
2t

2
√

2−1
(i.e., ≈ 1.0938t). The equilibrium prices and proÞts are,

� (interior solution; x2 < 1) if θ < t(2− a), then,

pA =
θ + ta

2
and πA =

(θ + ta)2

4t

� (corner solution; x2 = 1) if θ ≥ t(2− a), then,

pA = θ − t (1− a) and πA = θ − t (1− a) .

� (interior solution; x1 > 0) if θ < t(1 + b), then,

pB =
θ + t (1− b)

2
and πB =

(θ + t (1− b))2
4t

� (corner solution; x1 = 0) if θ ≥ t(1 + b), then,

pB = θ − tb and πB = θ − tb.

The locations of the marginal consumers are given by,

0 ≤ x1 =
tb− θ + t

2t
< x2 =

θ + ta

2t
≤ 1.

Moreover, the equilibrium we have described above is unique for any a and b if and only if

θ > θ̄ =
√
2t .

11If a consumer who is located at x, with x < a < b, buys from both Þrms, the distance he travels is (a−x)+(b−x).
This is more consistent with the view that the distance is a measure of disutility, rather than a representation of
geographical distance. Under the latter interpretation, it seems more reasonable to assume that the consumer could
go Þrst to the Þrm located at a and then go directly to the one located at b making the total distance that he has to
travel equal to (b− x) (although one can think of situations where this is not true). Previous models did not have to
make this distinction, since consumers in those models buy from one Þrm exclusively.
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Proof. See appendix. ¥

For θ�s in
h
�θ, θ̄

´
, the second stage price equilibrium that is presented in proposition 2, is not

unique for all a and b. For example, as we know from proposition 1, when a = 0 and b = 1,

(t, t) is another equilibrium. Nevertheless, as we argued at the beginning of this section, this type

of outcome which yields exclusive purchases, cannot be an equilibrium for any a and b. That is

why we have focused on the outcome which yields some non-exclusive purchases and guarantees a

price equilibrium regardless of the locations of the two rivals. Moreover, this equilibrium becomes

unique, for any a and b, when θ exceeds θ̄. This is because a high θ makes a deviation, from a pair

of prices which induces exclusive sales only to one where some consumers purchase both brands,

proÞtable for any location conÞguration and not only when Þrms are positioned close to each other

(as it is the case when θ is relatively low).

Now we move up to stage 1 where Þrms choose their locations. Since dπA
da > 0 and dπB

db < 0,

Þrms will have the tendency to agglomerate in the middle, i.e., a = b = 1
2 . The intuition is as

follows. When a Þrm is moving towards the middle, it increases its demand by making its product

more attractive to those who prefer the rival�s brand more. This, however, does not lead to an

all-out competition, since the increase in demand does not automatically imply lower sales for the

rival Þrm, provided of course that consumers value variety, i.e., the incremental utility is above a

Þxed threshold. As a consequence the rival has no incentive to lower its price since its customers

are not switching brands but simply are buying both, and in a way it accommodates the Þrm�s

movement towards the center.

From (A21), the marginal consumers (when a = b = 1
2) are located at,

x∗∗1 =
3t
2 − θ
2t

and x∗∗2 =
θ + t

2

2t
. (16)

Note that if θ < 3t
2 , then x

∗∗
1 > 0 and x∗∗2 < 1. If θ ≥ 3t

2 , then x
∗∗
1 = 0 and x∗∗2 = 1, i.e., all

consumers purchase both brands. The socially optimal locations are given by (15). As we saw in

section 3.1, when Þrms are located at the extremes, xso1 ≤ x∗1 and xso2 ≥ x∗2 and the non-cooperative
outcome is (weakly) inefficient. Moreover, xso1 ≤ x∗∗1 ≤ x∗1 and xso2 ≥ x∗∗2 ≥ x∗2. Since the welfare
function [see (14)] is concave in the locations, efficiency improves when Þrms are free to choose

their positions on the unit interval (i.e., more output is produced).

5 Conclusion

We introduce a model of differentiated products with two Þrms, each producing one brand. Con-

sumers cannot buy more than one unit from each brand, but they can purchase two brands, one from
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each Þrm. This model is capable of generating a very realistic equilibrium where some consumers

remain loyal to one brand, while another group of consumers consumes both brands. Products

that Þt this description include, credit cards, software, subscriptions to magazines, newspapers,

scholarly journals and TV channels. First, we ignore the issue of product selection, by Þxing the

Þrms� locations at the two extremes of the unit interval. There are two types of equilibria: i) the

standard Hotelling one, where no consumer buys from both Þrms and equilibrium proÞts decrease

as products become less differentiated (i.e, as the transportation cost parameter t decreases) and

ii) an equilibrium where some consumers purchase from both Þrms and equilibrium proÞts increase

as products become less differentiated. When the magnitude of the incremental utility from pur-

chasing both brands is low, then the equilibrium is of the Þrst type. For medium values of the

incremental utility both types of equilibria emerge and for high values of the incremental utility

the unique equilibrium is of the second type.

Then, we allow the Þrms to choose their locations on the horizontal dimension. In particular, we

analyze a two-stage game where Þrms position themselves in stage 1 and in stage 2 they compete in

prices. If the incremental utility exceeds a Þxed threshold, then a price equilibrium in pure strategies

(with a linear transportation cost) exists regardless of the Þrm locations. Equilibrium proÞts

monotonically increase as Þrms move towards the center. Hence, this model restores Hotelling�s

Principle of Minimum Differentiation. It also provides a new explanation as to why retailers, in

many cases, choose to locate very close to each other [e.g. big shopping centers and malls].

The model presented in this paper can be extended to shed light on the issue of product variety

in a monopolistically competitive setting. When competition is localized, as in Salop�s circular

model [Salop (1979)], then the number of brands (Þrms) is excessive from the social point of view.

The reason is the lack of global competition, which tends to boost proÞts and consequently entry.

When consumers can buy from more than one Þrm, as we have postulated in this paper, then Þrms

compete not only with their neighbors, but also with rivals which are not adjacent to them. This

retains the spatial differentiation aspect, but injects into the model a realistic dose of non-localized

competition. This can potentially change the qualitative features of the equilibrium.
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APPENDIX

Proof of proposition 2. We search for an equilibrium where some consumers buy both

brands, i.e., x2 > x1. As in the proof of proposition 1, we assume that V (1) is sufficiently high so

that every consumer buys at least one brand. The proof is divided into two parts. First we show

that a price equilibrium exists (for any a and b) if and only if θ ≥ �θ. Second we show that this

equilibrium is unique (for any a and b) if and only if θ > θ̄.

EXISTENCE. The marginal consumer x1 satisÞes,

V (1)− t |a− x1|− pA = V (2)− t |a− x1|− t |b− x1|− pA − pB.

First note that b ≥ x1. To see this, suppose by way of contradiction that b < x1. The consumer

who is located at x1 is, by deÞnition, indifferent between purchasing brand A exclusively and

purchasing both brands, i.e.,

V (1)− t (x1 − a)− pA = V (2)− t (x1 − a)− t (x1 − b)− pA − pB =⇒
V (1) = V (2)− t (x1 − b)− pB. (*)

Consider now a consumer located at x ∈ (x1, x2) (recall that we maintain the assumption that

x2 > x1). This consumer must strictly prefer to purchase both brands, i.e.,

V (2)− t (x− a)− t (x− b)− pA − pB > V (1)− t (x− a)− pA =⇒
V (1) < V (2)− t (x− b)− pB. (**)

By combining (∗) and (∗∗) we can conclude that,

V (2)− t (x− b)− pB > V (2)− t (x1 − b)− pB =⇒ x < x1,

a contradiction to the assumption that x ∈ (x1, x2).

Then, the Þrst marginal consumer, x1, is given by the following expression,

x1 =
tb− θ + pB

t
. (A1)

The second marginal consumer, x2, satisÞes,

V (1)− t |b− x2|− pB = V (2)− t |b− x2|− t |a− x2|− pA − pB.

By following the same steps as the ones to prove that b ≥ x1, we can show that x2 ≥ a. Then,

x2 =
θ + ta− pA

t
. (A2)
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Note that as long as x2 > x1 the indifferent consumers always have measure zero. Hence, we

avoid the problem that Hotelling faced, which caused the non-existence of price equilibrium.12 Note

that,

x2 > x1 ⇐⇒ pA + pB < 2θ − t (b− a) . (A3)

Also,

x1 > 0⇐⇒ pB > θ − tb, (A4)

and

x2 < 1⇐⇒ pA > θ − t (1− a) . (A5)

Firm A�s demand function is dA = θ+ta−pA
t and Þrm B�s is dB = θ+t(1−b)−pB

t . The proÞt

functions are, πA = pAdA and πB = pBdB.

Interior solution. Assuming that x1 > 0 and x2 < 1, the prices which maximize the proÞt

functions are,

pA =
θ + ta

2
and pB =

θ + t (1− b)
2

. (A6)

The maximized proÞts are,

πA =
(θ + ta)2

4t
and πB =

(θ + t (1− b))2
4t

. (A7)

Based on the optimal prices, this case is valid provided that,

x2 > x1 ⇐⇒ θ >
t

2
+
t (b− a)
2

. (A8)

This case is guaranteed to hold, for any a and b, provided that θ > t (i.e., at a = 0 and b = 1

where t
2 +

t(b−a)
2 is maximized).

Moreover,

x1 > 0⇐⇒ θ < t(1 + b) (A9)

and

x2 < 1⇐⇒ θ < t (2− a) . (A10)

12Nevertheless, the indifferent consumers may have a strictly positive measure in the deviation we consider later
in this proof, where x1 = x2.
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Corner solution. If θ ≥ t(1 + b), then x1 = 0 and if θ ≥ t(2 − a) then x2 = 1. The optimal

prices are found by setting (A1) and (A2) equal to 0 and 1 respectively and solving with respect

to prices. This yields,

pA = θ − t (1− a) and pB = θ − tb. (A11)

The proÞts are,

πA = θ − t (1− a) and πB = θ − tb. (A12)

Now let�s look at Þrm A�s deviation. Firm B�s deviation problem will be symmetric. First, we

begin from the interior pre-deviation solution. Firm B�s price is Þxed at �pB =
θ+t(1−b)

2 [see (A6)].

Clearly, Þrm A would not Þnd it proÞtable to deviate by lowering its price, since that would still

yield x2 > x1 [see (A3) and (A8)] and under this assumption (A6) is optimal. Hence, the only

other deviation for Þrm A is to increase its price so that x1 = x2 (i.e., no consumer buys from both

Þrms). This is the standard Hotelling case. When x1 = x2, Þrm A�s demand function is given by,

dA =


1, if pA < �pB − t (b− a), or pA < θ+t−3tb

2 + ta
p̂B−pA+t(a+b)

2t , if |pA − �pB| ≤ t (b− a), or pA ∈
£
θ+t−3tb

2 + ta, θ+t+tb2 − ta¤
0, if pA > �pB + t (b− a), or pA > θ+t+tb

2 − ta.
(A13)

Denote the two thresholds (where the discontinuities occur) by,

thresh1 =
θ + t− 3tb

2
+ ta and thresh2 =

θ + t+ tb

2
− ta. (A14)

Clearly, thresh2 ≥ thresh1. The deviation price, pdA, must satisfy the following two constraints.

First, it must yield an outcome where x2 = x1, or in other words,

pdA + �pB ≥ 2θ − t (b− a)⇐⇒ pdA ≥ thresh3 =
3θ − t− tb

2
+ ta. (A15)

Note that thresh1 becomes now irrelevant if θ > t. This is due to the fact that,

thresh3 > thresh1⇐⇒ θ > t− tb. (A16)

Hence, if θ > t (i.e., at b = 0, where t − tb is maximized) and since as we argued above, Þrm
A should not lower its price, the Þrst threshold (i.e., thresh1) will never be crossed when Þrm A

deviates by increasing its price.

Second, pdA ≤ thresh2, since otherwise deviation proÞts will be zero. Thus, a deviation price

must satisfy,

pdA ∈ [thresh3, thresh2] . (A17)
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Of course, a deviation will be meaningful only if thresh2 ≥ thresh3. It turns out that thresh2 ≥
thresh3, if and only if θ ≤ t+ tb− 2ta.

Therefore, Þrms A�s demand following its deviation is given by p̂B−pA+t(a+b)
2t [i.e., the second

part of (A13)]. The deviation proÞt function is,

πdA =

£
�pB − pdA + t (a+ b)

¤
pdA

2t
. (A18)

By solving the foc we obtain,

pdA =
θ + t+ tb+ 2ta

4
. (A19)

If θ ≤ 3t+3tb−2ta
5 , then pdA ≥ thresh3. Moreover, if θ ≥ 6ta− t− tb, then pdA ≤ thresh2.

First, we compare the highest deviation proÞts with the ones before deviation [i.e., (A20) with

(A7)] ignoring the constraints [i.e., (A17)] that the deviation price, pdA, must satisfy (see case 1).

We Þnd a threshold, �θ, such that for any θ above �θ, this unconstrained deviation is unproÞtable

for any a and b. Clearly, this threshold is an upper bound. Then, we show that it is also the lower

bound. We do so, by incorporating the constraints that pdA must satisfy (see cases 2 and 3) and we

show that for θ�s below �θ a deviation is proÞtable for some values of a and b.

Case 1. Using (A18) and (A19), the maximized deviation proÞts are,

πdA =
(θ + t+ tb+ 2ta)2

32t
. (A20)

Deviation is proÞtable, i.e., (A20) > (A7), if,

θ ∈
Ã£−6a+ 1 + b− 2√2 (1 + a+ b)¤ t

7
,

£−6a+ 1 + b+ 2√2 (1 + a+ b)¤ t
7

!
.

Zero belongs in this interval for any permissible values of a and b. Therefore, deviation is not

proÞtable if,

θ ≥
£−6a+ 1 + b+ 2√2 (1 + a+ b)¤ t

7
.

Note that when a = 0 and b = 1, the above condition boils down to θ ≥ 2t
2
√

2−1
, which is the same

as the condition for the existence of the second type of equilibrium in proposition 1. Moreover, it

can be easily checked that
[−6a+1+b+2

√
2(1+a+b)]t

7 increases as a decreases and as b increases. Hence,

its highest value is attained if we set a = 0 and b = 1 and is equal to 2t
2
√

2−1
. This implies that if,

θ ≥ �θ = 2t

2
√
2− 1 ,
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then the pair of prices given by (A6), constitute an equilibrium regardless of the Þrms� locations.

Case 2. Suppose Þrst that θ < 6ta− t−tb. In this case, pdA = thresh2. Note that min(a,b) 6ta−
t− tb = −2t, at (a = 0, b = 1) and max(a,b) 6ta− t− tb = 4t, at (a = b = 1).

Case 3. Suppose second that θ > 3t+3tb−2ta
5 . In this case, pdA = thresh3. Note that

min(a,b)
3t+3tb−2ta

5 = 3t
5 , at (a = 0, b = 0) and max(a,b)

3t+3tb−2ta
5 = 6t

5 , at (a = 0, b = 1).

By combining the above three cases and noting that 2t
2
√

2−1
> t (so that pdA never falls below

thresh1), we conclude that the pair of prices given by (A6), constitute an equilibrium for any

permissible values that a and b might take if and only if θ ≥ �θ. The if part is proved in case 1. The
only if part can be seen as follows. First of all, we know from case 1 that if θ < �θ, a = 0 and b = 1,

then an unconstrained deviation is proÞtable. Nevertheless, it could be the case that one of the

two constraints that pdA must satisfy [i.e., (A17)] is violated and this is not taken into consideration

in case 1. This is what we check next. Suppose that θ < �θ, a = 0 and b = 1. From cases 2 and 3, it

follows that if θ ∈ ¡−2t, 6t
5

¢
, then the deviation price satisÞes the constraints and the pre-deviation

solution, from (A9) and (A10), is interior. Hence, and since −2t < t < 2t
2
√

2−1
< 6t

5 , for those θ�s

less than 2t
2
√

2−1
and greater than t a deviation price indeed satisÞes the constraints. This should

also be true for a�s and b�s in the neighborhood of 0 and 1 respectively. Therefore, if θ < �θ, for

some a�s and b�s, (A6) is not an equilibrium.

Next, we check the proÞtability of Þrm A�s deviation when the pre-deviation solution is corner.

For this to be the case, it must be that θ ≥ t(2−a) [see (A10)]. The pre-deviation proÞts are given
by (A12). First observe, as we discussed above, that as long as θ > t− tb, then thresh3 > thresh1
[see (A16)]. As θ increases �pB increases as well until it reaches the boundary solution. The boundary

solution is reached when θ ≥ t(1 + b) [see (A9)]. Since t(1 + b) > t − tb, then thresh3 > thresh1
even when �pB is at the boundary. In addition, t(2− a) > t− tb, so when the pre-deviation solution
for Þrm A is corner, then thresh3 > thresh1. Hence, we can ignore the Þrst part of the demand

function [see (A13)] and focus on the second part of it. We look at the unconstrained deviation as

it is given by (A20). Deviation is proÞtable (i.e., (A20) vs. πA from (A12)) if,

θ < 15t− tb− 2ta− 4t√12− 2b− 2a.

It turns out that t(2 − a) > 15t − tb − 2ta − 4t√12− 2b− 2a, for any a and b. Therefore a
deviation from a corner solution will never be proÞtable.

The locations of the two marginal consumers, after plugging (A6) into (A1) and (A2), are given

by,
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0 ≤ x1 =
tb− θ + t

2t
< x2 =

θ + ta

2t
≤ 1. (A21)

UNIQUENESS. Now we show that there does not exist an equilibrium with x1 = x2, if and

only if θ > θ̄ =
√
2t. Let x be the consumer who is indifferent between buying from Þrm A and

from Þrm B. The Þrms� demand functions are given by,

dA =


1, if pA < pB − t (b− a),
pB−pA+t(a+b)

2t , if |pA − pB| ≤ t (b− a),
0, if pA > pB + t (b− a),

(A22)

and

dB =


1, if pB < pA − t (b− a),
pA−pB+t(2−a−b)

2t , if |pA − pB| ≤ t (b− a),
0, if pB > pA + t (b− a).

(A23)

The proÞt functions are πA = pAdA and πB = pBdB. We begin by noting that an equilibrium

must satisfy the condition |pA − pB| < t (b− a) [for a proof see d�Aspermont et al. p.1147]. Hence,
an equilibrium must maximize,

πA =
[pB − pA + t (a+ b)] pA

2t
and πB =

[pA − pB + t (2− a− b)] pB
2t

.

By taking Þrst order conditions we obtain,

pA =
(2 + a+ b) t

3
and pB =

(4− a− b) t
3

. (A24)

The proÞts are,

πA =
t (2 + a+ b)2

18
and πB =

t (4− a− b)2
18

. (A25)

d�Aspermont et al., p.1146, state that (A24) is not an equilibrium if and only if the two Þrms

are located close to each other. The same applies to our model. It remains to be shown that, in

our model, the pair of prices given by (A24) is not an equilibrium even when the two Þrms are not

located close to each other. For this case to be valid, i.e., x2 = x1, it must be, from (A3) and after

using (A24), that,

pA + pB ≥ 2θ − t (b− a)⇐⇒ θ ≤ t
µ
1 +

b− a
2

¶
. (A26)
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First, we assume that (A26) is satisÞed and we look at Þrm A�s deviation from (A24). Fix Þrm

B�s price at �pB =
(4−a−b)t

3 . In particular, we check the deviation which yields x2 > x1. For this to

happen (A3) must Þrst of all be satisÞed. That is,

pdA + �pB < 2θ − t (b− a)⇐⇒ pdA < 2θ +
t (4a− 2b− 4)

3
. (A27)

We know that if x2 > x1, then the unconstrained optimal price is given by pA =
θ+ta

2 (see A6).

It turns out that,

θ + ta

2
< 2θ +

t (4a− 2b− 4)
3

⇐⇒ θ >
t (4b− 5a+ 8)

9
.

At b = 1 and a = 0, t(4b−5a+8)
9 attains its maximum value of 4t

3 . Hence, if θ >
4t
3 , then p

d
A =

θ+ta
2

and the deviation proÞts are given by (A7), i.e.,

πdA =
(θ + ta)2

4t
. (A28)

Deviation is proÞtable, i.e., πdA > πA [(A28) vs. (A25)], if,

θ >

£−3a+√2 (2 + a+ b)¤ t
3

.

Now observe that max(a,b)
[−3a+

√
2(2+a+b)]t
3 =

√
2t at (a = 0, b = 1). Thus, if θ >

√
2t (which is

also greater than 4t
3 ), then such a deviation is guaranteed to be proÞtable for any a and b.

Second, we turn to the case where (A26) is not satisÞed, i.e., θ > t
¡
1 + b−a

2

¢
. This implies that

for the prices, as given by (A24), pA+pB < 2θ− t (b− a). In this case, an equilibrium must satisfy
pA + pB = 2θ − t (b− a). By rewriting the equality as, pB − pA = 2θ − t (b− a) − 2pA, Þrm A�s

pre-deviation proÞt function becomes,

πA =
(θ + ta− pA) pA

t
.

The maximum possible proÞts for Þrm A are �πA =
(θ+ta)2

4t at �pA =
θ+ta

2 . Let�s Þrst look at Þrm

A�s deviation which leads to x2 > x1. We know that when some consumers consume both brands

the optimal price is θ+ta2 . Hence, when Þrm A deviates from pA, it must do so by lowering its price

to pdA =
θ+ta

2 , in order to enter the region where x2 > x1 (see Þgure A1). To this end, assume that

pA >
θ+ta

2 (southeast of point C in Þgure A1) and Þrm A deviates to pdA =
θ+ta

2 . Such a deviation

is proÞtable since,

πdA =
(θ + ta)2

4t
= �πA > πA.
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Figure A1

Similarly, we can show that Þrm B will deviate to pdB =
θ+t(1−b)

2 , from any pB > p
d
B (northwest

of point D in Þgure A1). This clearly covers all possible price pairs on the constraint pA + pB =

2θ − t (b− a) and therefore no pair of prices on this constraint is an equilibrium (note that point

D is located southeast of point C provided that θ > tb−ta+t
2 , a condition which is clearly satisÞed

if θ >
√
2t).

So far we demonstrated that if θ >
√
2t, then no pair of prices that yields x1 = x2, constitutes

an equilibrium for any a and b. We will show that this condition is also necessary. This follows

easily from proposition 1 where we showed that if θ ≤ √2t, and (a = 0, b = 1) an equilibrium where
no consumers purchases both brands exists. ¥
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