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Recent progress in quantum information theory has stimulated a surprising 
development in game theory. [See references at the end]. In this development 
game theory has been applied to the analysis of conflict situations, where the 
outcome depends on a quantum state. For example in quantum detection theory, it 
is natural to define games in which Nature chooses a quantum state and the 
researcher chooses the measurement of the state. This leads to questions about 
the min-max and equilibrium solutions of these games. In this talk I will 
explain what are the quantum games and what are the questions that arise in 
their study. 
 
States of quantum-mechanical objects -- electrons, photons, atoms, molecules, 
etc. -- are described by density matrices. A density matrix is a self-adjoint, 
non-negative, trace-class operator of a complex Hilbert space with the trace of 
1. A particular case is formed by projectors on one-dimensional subspaces, which 
are called pure states. They play a role of elementary objects in quantum 
theory. 
 
A measurement of a quantum state can be represented by a measure that takes 
values in non-negative operators. For examples, a measure on a finite space of 
events gives a probability of outcome i as trace(rho*M_i) where rho is the state 
and operator M_i represent the outcome. In problems of quantum detection, the 
researcher devises a measurement to find out the most information about what is 
the quantum state. 
 
For example, one possible game of quantum detection is as follows. Consider the 
situation in which a particular pure quantum state is chosen (with known 
probabilities) from a set of pure quantum states. This state is given to player 
N ("Nature") who can add limited amount of noise to it. Player R ("Researcher") 
chooses a measurement on the state. The realization of the measurement is random 
and the task of the R is to guess the initial quantum state with the minimal 
probability of error. This setup extends Wald's approach to hypothesis testing 
to the quantum situation. Does the min-max theorem hold? Is there an 
equilibrium? What are min-max optimal strategies in particular situations? 
 
Another similar example arises when nature can select either a given quantum 
state rho_0 or an arbitrary state rho_1 that have a suitably defined distance of 
at least D from rho_0. The researcher can perform K measurements on K identical 
instances of the chosen state and his task is to guess whether the state is 
rho_0 or not. The question is how the maxmin detection probability is related to 
K and D. This is a generalization of classical statistical problem of testing 
whether a sample is drawn from a particular distribution. The quantum version of 
the problem is relevant for quantum cryptography, where an eavesdropper wants to 
interfere with a signal transmission but have to minimize the probability of 
detection. 
 
This setup provides an interesting application of the usual game-theoretic 
methods to situations with very peculiar strategy spaces. In some of the games, 
it is natural to model the choice variable of each player as a quantum state, 
that is, as a linear operator of a Hilbert space. In others, each player can 
choose an operation on a given quantum state, that is, an operator that acts on 
the Hilbert space operators. Building a sufficiently general theory of quantum 
games seems to be an interesting task. 



 
In this theory we would want to have explicit solutions to games and theorems 
like the following: 
"Theorem": If the set of players' strategies in a two-player zero-sum quantum 
game is convex, then minmax and maxmin solutions of the game exist and are 
equal. 
 
Another interesting topic arises in quantum games with shared quantum 
entanglement. Entanglement is a uniquely quantum concept that allows two remote 
particles exhibit correlated behavior. Recall that the concept of the Nash 
equilibrium is based on players choosing a randomized strategy independently of 
each other. The correlated equilibrium gives the players an additional 
opportunity for interaction so that the players can observe an outcome of a 
joint random variable. In the quantum setting each player can have an access to 
a part of an entangled quantum state. Consequently, measurements on this state 
are correlated even if the two players cannot communicate between themselves. 
This begs for comparison with classical situation. 
 
Finally, a completely undeveloped topic is whether quantum computer can be used 
for solving classical combinatorial games. Quantum algorithms were proved to be 
very effective in some situations where classical algorithms failed: for example 
for factoring large numbers and for searching in a large database. It is an open 
question whether these methods can be useful for analysis of classical 
combinatorial games like chess. 
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