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Abstract

In an attempt to explain a number of appar-
ently universal statistical properties of natu-
ral social and economic networks, many au-
thors have recently proposed a rich family of
probabilistic generative models for social net-
work formation. We have recently introduced
a graph-theoretic representation for classical
mathematical economic models. This pa-
per studies the marriage of these two lines
of inquiry: we examine the network e�ects
that social network models (such as preferen-
tial attachment) introduce into classical eco-
nomic settings. Our �ndings are a mixture
of theoretical results and large-scale simula-
tions that have been made possible only by
algorithmic advances of the last two years.

1 Introduction

In this paper, we report on theory and experiments
in a setting that blends classical economic exchange
models with more recent proposals for how \natu-
ral" social and economic networks form. The glue
that permits this interesting marriage is the recently-
introduced framework of graphical economics .

Within economics, there is a long history of research
on mathematical models for exchange markets, and the
existence and properties of their equilibria. The work
of Arrow and Debreu [1954], who established equilib-
rium existence in a very general commodities exchange
model, was certainly one of the high points of this con-
tinuing line of inquiry. The origins of the �eld go back
at least to Fisher [1891].

While there has been relatively recent interest in net-
work models for interaction in economics, it was only
quite recently that a network or graph-theoretic model
that contains and generalizes the classical Arrow-

Debreu and Fisher models was introduced (Kakade
et al. [2004]). In this model, the edges in a net-
work over individual consumers (for example) repre-
sent those pairs of consumers that can engage in di-
rect trade. As such, the model captures the many
real-world settings that can give rise to limitations on
the trading partners of individuals (regulatory restric-
tions, social connections, embargoes, and so on). In
addition, variations in the price of a good can arise
due to the topology of the network: certain individuals
may be relatively favored or cursed by their position
in the graph.

In a parallel development over the last decade or so,
there has been an explosion of interest in what is
broadly called social network theory | the study of
apparently \universal" properties of natural networks
(such as small diameter, local clustering of edges, and
heavy-tailed distribution of degree), and statistical
generative models that explain such properties. While
there are certainly instances of \economic" properties
or problems being examined in such generative models
(see Jackson [2003] for a good review), the assump-
tions of individual rationality in these works are usu-
ally either non-existent, or quite weak compared to the
Arrow-Debreu or Fisher models.

The introduction of graphical economics permits the
examination of the classical economic exchange models
in the modern light of social network theory, and this
is the topic of this paper. Of central interest are two
broad categories of question:

� To what extent can the combination of classical
economic models and recent generative models for
networks \explain" longstanding economic phe-
nomena? A sample question of this kind is: Does
the preferential attachment model of network for-
mation (Barabasi and Albert [1999]), combined
with the Fisher model of economic equilibrium,
predict the heavy-tailed distribution of wealth
�rst observed by Pareto?



� How do the properties of economic equilibrium
vary with the statistical properties of the network
formation process? For instance, while it is clear
that signi�cant price variation can occur in very
sparse networks, and that there can be no such
variation at equilibrium in the complete graph,
our particular setting lets us carefully study the
transition from signi�cant to no variation as a
function of edge density and other network pa-
rameters.

This paper describes our initial theoretical and experi-
mental investigations into such questions. More specif-
ically, we establish the following results:

� The tails of the wealth distribution at economic
equilibrium in preferential attachment networks
obeys a power law, but one that is di�erent from
the degree distribution. These tails are rapidly
diminished as we increase connectivity in various
ways.

� Price variation can be great in such networks,
scaling as a power of network size, but is rapidly
diminished by less preferential attachment.

Many of our results are based on a powerful new local
approximation method for global equilibrium prices:
we show that in the preferential attachment model,
prices computed from only local regions of a network
yield strikingly good estimates of the global prices. We
exploit this method computationally and theoretically.

2 Economic and Network Models

In this section, we de�ne our economic models, and the
generative model for social networks that we consider.

2.1 The Graphical Linear Fisher Model

We �rst describe the standard Fisher model , which
consists of a set of buyers and a set of goods . We as-
sume that there are gj units of good j in the market,
and that each good j is be sold at some price pj . Each
buyer i has a cash endowment ei, to be used to pur-
chase goods in a manner that maximizes the buyer's
utility. In this paper we make the well-studied assump-
tion that the utility function of each buyer is linear in
the amount of goods consumed (see Gale [1960]), and
leave the more general case to future research. Let
uij � 0 denote the utility derived by i on obtaining
a single unit of good j. If i consumes xij amount of
good j, then the utility i derives is

P
j uijxij .

A set of prices fpjgj and consumption plans fxijgi;j
constitutes an equilibrium if the following two condi-
tions hold:

1. The market clears, i.e. supply equals demand.
More formally, for each j,

P
i xij = gj

2. The consumption plan fxijg is optimal for each
buyer i. By this we mean that the consumption
plan maximizes the linear utility function of i,
subject to the constraint that the total cost of
the goods purchased by i is not more than the
endowment ei.

It turns out that such an equilibrium always exists if
each good j has a buyer which derives nonzero util-
ity for good j | that is, uij > 0 for some i (see
Gale [1960]). Furthermore, the equilibrium prices are
unique.

We now consider the graphical Fisher model , so named
because of the introduction of a graph-theoretic or net-
work structure to exchange. In the basic Fisher model,
we implicitly assumed that all goods were available in
a centralized exchange, and all buyers had equal ac-
cess to these goods. In the graphical Fisher model,
we would like to capture the fact that each good may
have multiple vendors or sellers , and that individual
buyers may have access only to some, but not all, of
these sellers. There are innumerable settings where
such asymmetries arise. Examples include the fact
that consumers generally purchase their groceries from
local markets, that social connections play a major
role in business transactions, and that securities regu-
lations prevent certain pairs of parties from engaging
in stock trades.

Without loss of generality, we assume each that seller j
sells only one of the available goods. (Each good may
have multiple competing sellers.) Let G be a bipar-
tite graph, where buyers and sellers are represented as
vertices, and all edges are between a buyer-seller pair.
The semantics of the graph are as follows: if there is an
edge from buyer i to seller j, then buyer i is permitted
to purchase from seller j. Note that if buyer i is con-
nected to two sellers of the same good, he will always
choose to purchase from the cheaper source, since his
utility is identical for both sellers (they sell the same
good).

The graphical Fisher model is a special case of a more
general and recently introduced framework (Kakade
et al. [2004]). One of the most interesting features of
this model is the fact that at equilibrium, signi�cant
price variations can appear solely due to structural
properties of the underlying network. The current pa-
per is the �rst to examine price variation, wealth dis-
tribution, and other economic metrics in recent statis-
tical models for network generation.

It is easy to see that if G is the complete bipartite
graph between buyers and sellers, and there is a single



seller for each good j, we recover the standard Fisher
model. Alternatively, we can encode a graphical Fisher
economy in the standard model as follows: for each
seller s of good j, introduce the virtual good (j; s).
For buyer i, if uij is the utility for the (original) good
j, then let uij be the utility that i has for (j; s) if
s is a neighbor of i in G; and let the utility for all
other virtual goods be 0. In this manner the utilities
for virtual goods encode both the original utilities and
the structure of G.

Thus, the mere introduction of the graphical Fisher
model is no advance over the classical model. The
novelty of the results described here lies in the exami-
nation of how the structure of G | in particular, the
statistical structure produced by now-standard gener-
ative models from social network theory | inuences
properties of economic equilibrium. We now describe
such a generative model.

2.2 Preferential Attachment Networks

For simplicity, in the sequel we will without loss of
generality consider economies in which the numbers of
buyers and sellers are equal. We will also restrict at-
tention to the case in which all sellers sell the same
good. We note that from a mathematical and com-
putational standpoint, this restriction is rather weak:
when considered in the graphical setting, it already
contains the setting of multiple goods with binary util-
ity values. (See remarks in the last section about
encoding the graphical setting in the classical Fisher
model via the introduction of virtual goods.)

The simplest generative model for the bipartite graph
G might be the random graph, in which each edge be-
tween a buyer i and a seller j is included independently
with probability p. This is simply the bipartite version
of the classical Erdos-Renyi model (Bollobas [2001]).

Many researchers have sought more realistic models of
social network formation, in order to explain observed
phenomena such as heavy-tailed degree distributions.
We now describe a slight variant of the preferential
attachment model (Mitzenmacher [2003]) for the case
of a bipartite graph. We start with a graph in which
one buyer is connected to one seller. At each time
step, we add one buyer and one seller as follows. With
probability �, the buyer is connected to a seller in the
existing graph uniformly at random; and with proba-
bility 1� �, the buyer is connected to a seller chosen
in proportion to the degree of the seller (preferential
attachment). Simultaneously, a seller is attached in
a symmetric manner: with probability � the seller is
connected to a buyer chosen uniformly at random, and
with probability 1 � � the seller is connected under
preferential attachment.

The parameter � in this model allows us to move be-
tween a pure preferential attachment model (� = 0),
and a model closer to classical random graph theory
(� = 1), in which new parties are connected to ran-
dom extant parties. We note that the latter still does
not exactly produce the Erdos-Renyi model due to the
incremental nature of the network generation: early
buyers and sellers are still more likely to have higher
degree. However, this bias is rather weak, as we shall
see.

Note that the above model always produces trees, since
the degree of a new party is always 1 upon its introduc-
tion to the graph. We thus will also consider a variant
of this model in which at each time step, a new seller is
still attached to exactly one extant buyer, while each
new buyer is connected to � > 1 extant sellers. The
procedure for edge selection is as outlined above, with
the modi�cation that the � new edges of the buyer
are added without replacement | meaning that we
resample so that each buyer gets attached to exactly
� distinct sellers.

The main purpose of the introduction of � is to have a
model capable of generating highly cyclical (non-tree)
networks, while having just a single parameter that
can \tune" the asymmetry between the (number of)
opportunities for buyers and sellers. However, there
are less mathematical motivations as well: it is natural
to imagine that new sellers of the good arise only upon
obtaining their �rst customer, but that new buyers
arrive already aware of several alternative sellers.

In the sequel, we shall refer to the generative model
just described as the bipartite (�; �)-model . We will
use n to denote the number of buyers and the number
of sellers, so the network has 2n vertices.

2.3 An Illustrative Example

As an illustration of the marriage of economic and so-
cial network models we have introduced, Figure 2.3
shows a sample graph generated by the bipartite (� =
0; � = 2)-model with n = 15. Buyers and sellers are
labeled by `B' or `S' respectively, followed by an index
indicating the time step at which they were introduced
to the network. Each seller is labeled with the price
they charge at equilibrium. Note that in this example,
there is non-trivial price variation, with the most for-
tunate sellers charging 2.00 for their unit of the good,
and the least fortunate 0.33. Also note that while there
appears to be a correlation between seller degree and
price, it is far from a deterministic relation, a topic we
shall examine.

The solid edges in the �gure show the exchange sub-
graph | those pairs of buyers and sellers who actually
exchange currency and goods at equilibrium. Note the
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sparseness of this graph compared to the overall graph.
The dotted edges are edges of the network that are
unused at equilibrium because they represent inferior
prices for the buyers, while the dashed edges are edges
of the network that have competitive prices, but are
unused at equilibrium due to the speci�c consumption
plan required for market clearance.

3 Statistics of the Network

In this and the following section we summarize our
theoretical �ndings. We begin with results establish-
ing purely statistical (non-economic) properties of the
bipartite (�; �)-model, and then apply these to estab-
lish economic properties of the model. We note that
while the statistical results are reminiscent of the re-
cent literature (Mitzenmacher [2003]), we need to es-
tablish their dependence on � and �, as well as deal
with the bipartite structure of the graph.

We �rst establish that the degree distribution of the
sellers obeys a power law. (In the sequel, we only ex-
amine properties of the sellers; similar statements hold
for buyers.) Let Y (j; n) denote the degree of the jth

seller (in order of arrival) at time n � j (that is, after n
buyers and n sellers have been added to the network).
The following lemma characterizes the behavior of the
random variable Y (j; n) asymptotically. Let

� = (1� �)�=(1 + �)

Lemma 1 In the bipartite (�; �)-model, Y (j; n) tends
to (1 + ��

� )(n=j)� for suÆciently large n.

Proof: (Sketch) Establishing this lemma rigorously
is beyond the scope of this paper, so we only provide
a non-rigorous argument with respect to the means
yj;n = E[Y (j; n)]. A long version of this paper will
have the complete proof.

The total number of edges after time n is (1 + �)n.
From time n to n + 1, each of the � additional
edges is attached to seller j with probability (1 �
�)yj;n=((1 + �)n) + �=n. By linearity of expectation,
we can sum over the � edges without worrying about
the negative dependence arising from sampling with-
out replacement, which implies

yj;n+1 = yj;n

�
1 +

(1� �)�

(1 + �)n

�
+ �

�

n

In the forthcoming version, we solve this formula ex-
actly, but here we treat the system as the di�erential
equation (as in Mitzenmacher [2003])

dyj;n
dn

=
�yj;n + ��

n

where
dyj;n
dn is used for yj;n+1 � yj;n. Solving this with

the boundary condition yj;j = 1 leads to the result.

We may now translate this result into a power law for
the distribution of seller degrees.

Theorem 2 In the bipartite (�; �)-model, for x =
o(n1=�), the proportion of sellers at time n whose de-
gree exceeds x is �(x�1=�).

Proof: (Sketch) Fix n, and consider the proportion
of sellers whose degree exceeds some value x. That
is, consider the j that solves yj;n = x. Hence, j =
�(nx�1=�). Dividing by n provides the proportion of
sellers, which is the desired result. In the long version,
we show that the approximation of only considering
means is suÆcient.

For the simplest case of � = 0 and � = 1, the tail
of this cumulative degree distribution is just �(x�2).
More generally, as � approaches 1 (towards unbiased
selection, and away from preferential attachment), the
exponent blows up, and the tails of the distribution be-
come lighter. At � = 1, we actually have exponential
rather than power law decay.

4 Economics of the Network

We next present a rather intuitive \monotonicity"
lemma, which states that if the supply of goods in
a classical Fisher economy is decreased, or the cash
endowments are increased, then the equilibrium prices
do not decrease. We will then apply this lemma in the
graphical Fisher model, along with the results of the



previous section, to obtain the distribution of seller
wealth.

Lemma 3 (Monotonicity) Let E and E0 be two
Fisher economies with the same number of buyers and
sellers and identical linear utility functions. If for all
goods j and buyers i, we have g0j � gj and e0j � ej
(where the primes denote quantities for economy E0),
then the equilibrium prices satisfy p0j � pj for all j.

Proof: To prove this, we use properties of a re-
cent algorithm for computing equilibria in the linear
Fisher model (see Devanur et al. [2002]), which we now
describe. De�ne the \bang per buck" for buyer i con-
suming good j at price ~pj as uij=~pj . Clearly, it is only
optimal for buyer i to purchases those goods which
have maximal bang per buck.

The algorithm is an iterative scheme in which prices
f ~pjg are increased at every iteration, until an equi-
librium is reached. Importantly, the algorithm can be
initialized to any prices which obey the following prop-
erty, which is referred to as the \Invariant" in Devanur
et al. [2002]1. We say that the Invariant holds at prices
f ~pjg if the buyers have enough money to purchase all
the goods in the market, while only purchasing goods
which maximize their bang per buck (though the buy-
ers may have left over money after this purchase). Es-
sentially, the Invariant holds at some prices if the buy-
ers can clear the market while purchasing optimally at
these prices.

Let us now use this algorithm to compute the equilib-
rium prices in economy E0. It suÆces to show that we
can initialize this algorithm to the equilibrium prices of
E, fpjg, since the algorithm only increases the prices.
To show that such an initialization is sound, we only
need to show that the prices fpjg satisfy the Invariant
in E0.

To show this, �rst note that since these prices are an
equilibrium in E, then the buyers can use their money
endowments of fejg to clear an amount of goods fgjg,
while only purchasing goods which maximize their
bang per buck. Hence, by assumption, the buyers in
E0 can use larger money endowments of fe0jg to clear
a smaller amount of goods fg0jg, while only purchasing
goods which maximize their bang per buck (since the
utility functions in E and E0 are identical).

This lemma immediately implies a scheme in which we
can �nd upper and lower bounds on the equilibrium
prices using only local computations. First, note that
any subset V 0 of buyers and sellers de�nes a natural
induced economy , where the induced graph G0 consists

1Devanur et al. [2002] choose a particular initialization,
but it is clear that the algorithm is sound for any choice of
initial prices which obey the Invariant.

of all edges between buyers and sellers in V 0 that are
also in G. We say that G0 has a buyer (respectively,
seller) frontier if on every (simple) path in G from a
node in V 0 to a node outside of V 0, the last node in V 0

on this path is a buyer (respectively, seller).

Corollary 4 (Frontier Bounds) If V 0 has a subgraph
G0 with a seller (or buyer) frontier, then the equilib-
rium price of any good j in the induced economy on
V 0 is a lower bound (or, respectively, an upper bound)
on the equilibrium price of j in G.

Proof: Let us prove the lower bound for the seller
frontier case. Consider setting the cash ei of all buyers
i not in G0 to 0. By the previous lemma, the equilib-
rium prices in this modi�ed economy E0 is a lower
bound on the equilibrium prices for the economy with
graph G. Note that all sellers in G0 have no demand
from any buyers outside of G0, and, by de�nition of
G0, all buyers in G0 purchase goods only from sellers
in G0. So the equilibrium prices in the induced econ-
omy on G0 are identical to their respective prices in
E0. A symmetrical argument proves the upper bound
case.

This corollary has both statistical implications and
computational implications. We now investigate the
statistical implications in the (�; �)-model, and exam-
ine the computational ones in Section 5.

Corollary 4 implies a simple wealth upper bound: the
wealth of any seller j is bounded by its degree d. (By
the wealth of a seller, we mean the price at which that
seller sells their good. This terminology is justi�ed by
the fact that at equilibrium, this is exactly the income
the seller receives after selling their one unit of good,
since the market clears.) Although the same upper
bound can be seen from �rst principles, it is instruc-
tive to apply Corollary 4. Let G0 be the immediate
neighborhood of j (which is j and its d buyers); then
the equilibrium price in G0 is just d, since all d buy-
ers are forced to buy from seller j. This provides an
upper bound since G0 has a buyer frontier. Since the
degree distribution obeys a power law in the bipartite
(�; �)-model, we have an upper bound on the cumula-
tive wealth distribution.

Corollary 5 In the bipartite (�; �)-model, for w =
o(n1=�), the proportion of sellers with wealth greater
than w is O(w�1=�).

We do not yet have such a closed-form lower bound on
the cumulative wealth distribution. However, as we
shall see in Section 5, the wealth distributions seen in
large simulation results do indeed show power-law be-
havior. Interestingly, this occurs despite the fact that
degree is a poor predictor of individual seller wealth.



Another quantity of interest is what we might call price
or wealth variation | the ratio of the wealth of the
richest seller to the poorest seller. The following the-
orem addresses this.

Theorem 6 In the bipartite (�; �)-model, if �(�2 +
1) < 1, then the ratio of the maximum price to the

minimum price at time n is 
(n
2��(�2+1)

1+� ).

For the simplest case in which � = 0 and � = 1, this
lower bound is just 
(n).

Proof: (Sketch) Using Lemma 3, it straightforward
to show the following two bounds on the maximum and
minimum price. Consider the �rst � sellers (in order of
time) and let m be the number of buyers that are only
connected to these � sellers. Hence, the total wealth
of these sellers must be m, so one of the �rst � sellers
must have a price that is m=�, which is a lower bound
on the maximum price. Similarly, an upper bound on
the minimum price is provided by the price the �rst
buyer obtains for his purchases, pb. Equivalently, we
use a lower bound 1=pb, which is the amount of goods
this buyer purchases. This lower bound is provided
by those sellers which are only connected to the �rst
buyer.

Let us now bound the total wealth of the �rst � sellers.
The degrees of these sellers at time n=2 are all �(n�),
so when a buyer arrives at a time between n=2 and n,
the probability of one of this buyer's connections links
to exactly the �rst � sellers is �(n��1). Hence, the
probability that all of this buyer's connections link to
exactly the �rst � sellers is �(n��(��1)). Summing over
the n=2 buyers shows that the total number of such
buyers is, with high probability, �(n1+��(��1)). Delet-
ing from this list those buyers who are later linked by
some seller removes a constant fraction of these (shown
in the long version). Hence, the �rst � sellers have at
least 
(x��(1��)) total wealth, which implies that the
richest seller must have at least this wealth (treating
� is a constant).

Using similar arguments as in the proof of Lemma 1,

one can show the �rst buyer has degree �(n
1��
1+� ). A

similar argument to above shows that the 1=pb, which
is the number of sellers only connected to this buyer,

is 
(n
1��
1+� ). Combining the previous bounds leads to

the result.

This proof can be generalized to obtain bounds on ra-
tio of the wealth contained among the top x percent of
sellers versus the poorest x percent of buyers (which
is more of a relevant quantity in large economies).

5 Experimental Findings

We now present a number of experimental �ndings.
Our equilibrium computations are done using the al-
gorithm of Devanur et al. [2002] (or via the applica-
tion of this algorithm to local subgraphs), which is
described in the proof of Lemma 3. We note that it
was only the recent development of this algorithm and
related ones that made possible the simulations de-
scribed here (involving hundreds of buyers and sellers
in highly cyclical graphs). However, even the speed
of this algorithm limits our experiments to networks
with n = 250 if we wish to run repeated trials to re-
duce variance. Many of our results suggest that the
local approximation schemes discussed below in Sec-
tion 5.2 may be far more e�ective.

All simulations were performed on networks generated
according to the bipartite (�; �)-model.

5.1 Wealth and Degree Distributions

The leftmost panel of Figure 2 shows empirical cu-
mulative wealth and degree distributions on a loglog
scale, averaged over 25 networks drawn according to
the bipartite (� = 0:4; � = 1)-model with n = 250.
The cumulative degree distribution is shown as a dot-
ted line, where the y-axis represents the fraction of the
sellers with degree greater than or equal to d, and the
degree d is plotted on the x-axis. Similarly, the solid
curve plots the fraction of sellers with wealth greater
than some value w, where the wealth w is shown on
the x-axis. The thin sold line has our theoretically pre-
dicted slope of �1

� = �3:33, which shows that degree
distribution is quite consistent with our expectations,
at least in the tails.

Let us examine some of the properties of this plot.
Clearly, the cumulative degree distribution is at until
the degree is 1, since all sellers have a degree that is
at least 1. In contrast, the cumulative wealth distri-
bution quickly drops below 1, since a seller's wealth
is not lower bounded by 1. (For instance, if a seller's
potential buyers have many choices, then the seller's
wealth could be driven arbitrarily close to 0.)

Perhaps the most interesting �nding is that the tail
of the wealth distribution looks linear, i.e. it also ex-
hibits power law behavior. Our theory provided an
upper bound, which is precisely the cumulative degree
distribution. We do not yet have a formal lower bound.
This plot (and other experiments we have done) fur-
ther con�rm the robustness of the power law behavior
in the tail, for � < 1 and � = 1.

As discussed in the Introduction, Pareto's original ob-
servation was that the wealth distribution in societies
obey a power law, which has been born out in many
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Figure 2: See text for descriptions.

studies on western economies. Since Pareto's original
observation, there have been too many explanations
of this phenomena to recount here. However, to our
knowledge, all of these explanations are more dynamic
in nature | a macroscopic dynamical system of wealth
exchange leads to a power law tail, but without cap-
turing the microscopic properties of individual ratio-
nality. Here we have power law wealth distribution
arising from the combination of certain natural statis-
tical properties of the network (generated by prefer-
ential attachment), and classical theories of economic
equilibrium.

At this point it would be natural to conjecture that the
wealth of a seller is essentially determined by its de-
gree. We shall shortly see that the picture is more com-
plicated, and that while degree is a rather poor predic-
tor of individual seller wealth, more complex (but still
local) properties are extremely accurate predictors.

5.2 Bounds via Local Computations

Recall that Corollary 5 suggests a scheme by which
we can do only local computations to approximate the
global equilibrium price for any seller. More precisely,
for some seller j, consider the subgraph which contains
all nodes that within distance k of j. In our bipartite
setting, for k odd, this subgraph has a buyer frontier,
and for k even, this subgraph has a seller frontier, since
we start from a seller. Hence, the equilibrium compu-
tation on the odd k (respectively, even k) subgraph
will provide an upper (respectively, lower) bound.

This provides an heuristic in which one can exam-
ine the equilibrium properties of small regions of the
graph, without having to do expensive global equilib-
rium computations. The e�ectiveness of this heuristic
will of course depend on how fast the upper and lower
bounds tighten. In general, it is possible to create spe-
ci�c graphs in which these bounds are arbitrarily poor
until k is large enough to encompass the entire graph.
As we shall see, the performance of this heuristic is
dramatically better in the bipartite (�; �)-model.

The center panel in Figure 2 shows how rapidly the
local equilibrium computations converge to the true
global equilibrium prices as a function of k. On the
x-axis is the value of k, and the y-axis shows the
average di�erence (across all sellers) between the lo-
cally computed and global equilibrium prices on a
log scale. Each line was created using di�erent sized
graphs (from n = 250 to n = 50, in increments of
50), and each line averages over 5 graphs. In these
experiments, graphs were generated by the bipartite
(� = 0; � = 1) model.

The linear nature of these plots establishes the fact
that the error of the local approximations is decaying
exponentially with increased k | indeed, by examin-
ing only neighborhoods of 3 steps from a seller in an
economy of hundreds, we are already able to compute
approximations to global equilibrium prices with er-
rors in the second decimal place. The approximation
k = 1 corresponds exactly to using seller degree as
a proxy for price, and we can see that this performs
rather poorly.

The right panel in Figure 2 shows a di�erent view of
the same data, and demonstrates how the average er-
ror scales with n, for each �xed value of k. It appears
that for each value of k, the quality of approximation
obtained is either independent of n, or has an imper-
ceptibly mild dependence at the values of n for which
we can compute global equilibria.

It turns out that k = 5 typically returned the exact
equilibrium, even when n = 250. Furthermore, the
diameter for n = 250 was often about 17, so the local
graph is often considerably smaller than the global.
Computationally, we found that the time required to
do all 250 local computations for k = 3 was about 60%
less than the global computation, and would result in
presumably greater savings at much larger values of n.

5.3 Parameter Dependencies

We conclude with a brief examination of how wealth
distribution and price variation depend on the param-
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Figure 3: See text for descriptions.

eters of the bipartite (�; �)-model.

The left panel of Figure 3 again shows cumulative
wealth and degree distributions, as in Figure 2 . This
time the values � = 0 and � = 2 were used, and we
see that the wealth distribution now deviates signif-
icantly from the degree distribution. Informally, we
�nd that as � increases, the tail of the wealth distri-
bution deviates more sharply from the power law tail
of the cumulative degree distribution. Lower bounds
would help in establishing if the behavior is actually a
power law behavior for � > 1.

We now turn to experimentally probing the lower
bounds provided in Theorem 6. The center panel of
Figure 3 shows the maximum to minimum wealth as
function of n (averaged over 25 trials) on a loglog scale.
Each line is for a �xed value of �, and the values of �
range form 1 to 4 (� = 0).

Recall from theorem 6, our lower bound on the ratio is


(n
2

1+� ) (using � = 0). We conjecture that this lower
bound is tight. If this is so, then the slopes of lines
(in the loglog plot) should be 2

1+� , which would be
(1; 0:67; 0:5; 0:4). The estimated slopes are somewhat
close: (1:02; 0:71; 0:57; 0:53).

The overall message is that for small values of �, price
variation increases rapidly (both theoretically and ex-
perimentally) with the economy size n in preferential
attachment.

The right panel of Figure 3 is a scatter plot of � vs.
the maximum to minimum wealth in a graph (where
n = 250) . Here, each point represents the maximum
to minimum price ratio in a speci�c network generated
by our model. The circles are for economies generated
with � = 1 and the x's are for economies generated
with � = 3. Here we see that in general, increasing
� dramatically decreases price/wealth variation (note
that the price ratio is plotted on a log scale). This jus-
ti�es the intuition that as � is increased, more \eco-
nomic equality" is introduced in the form of less prefer-
ential bias in the formation of new edges. The approx-

imately linear relationship suggests that the decrease
in variation is exponential in �. Furthermore, the data
for � = 1 shows much larger variation, suggesting that
a larger value of � also has the e�ect of equalizing
buyer opportunities and therefore prices.
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