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Abstract

A partially de�ned cooperative game is a coalition function form game in
which some of the coalitional worths are not known. An application would
be cost allocation of a joint project among so many players that the deter-
mination of all coalitional worths is prohibitive. This paper generalizes the
concept of the Shapley value for cooperative games to the class of partially
de�ned cooperative games. Several allocation method characterization the-
orems are given utilizing linearity, symmetry, formulation independence,
subsidy freedom, and monotonicity properties. Whether a value exists or
is unique depends crucially on the class of games under consideration.
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1. Introduction

There is a growing literature on the applications of cooperative game theory to
the allocation of costs or bene�ts of a joint endeavor [for example, see Curiel et. al
(1993), Driessen (1994), Skorin-Kapov (1993), and Young (1994) which provides
an extensive review of earlier literature]. This paper is motivated by such applica-
tions when the determination of all coalitional worths is prohibitively expensive.
For example, each coalitional worth may require an extensive engineering or ac-
counting study, and the number of such studies increases exponentially with the
number of players. This latter problem is sometimes alleviated if the game has
a precise underlying structure (e.g., airport landing fees, minimum cost spanning
tree games, assignment games, and network 
ow games). When there is no precise
underlying structure, accountants often use ad hoc methods based upon only a
small number of the coalitional worths. The purpose of this paper is to present
axiomatic rationales for allocation methods when not all coalitional worths are
known.
Letscher (1990) introduced the idea of partially de�ned games. Some of the

results in this paper were �rst reported in Housman (1992). Willson (1993) char-
acterized the reduced Shapley value using the axioms of linearity, symmetry, and
margin monotonicity. Willson's work is in the spirit of Young's (1985) charac-
terization of the Shapley value for cooperative games. In keeping with Shapley's
(1953) original characterization of the Shapley value for cooperative games, we
use the axioms of linearity, symmetry, and subsidy freedom (sometimes called the
null player axiom). We take the viewpoint that a partially de�ned game is an
incomplete representation of an unknown \fully de�ned" game. Often we have
some a priori knowledge about relationships among the coalitional worths (e.g.,
superadditivity), and our allocation method should make use of this knowledge.
So, special care is taken to examine special classes of games in addition to the
class of all games. Similar attention to special classes of games in the context of
classical value theory includes Monderer (1988) showing that every semivalue on
a subspace of games can be extended to a semivalue on all games and Gilboa and
Monderer (1991) showing a variety of characterizations of quasi-values on subsets
of games.
In section 2, we de�ne partially de�ned games, extensions, and the reduced

Shapley value. By way of an example, we show why the reduced Shapley value
may not be an appropriate allocation method. In section 3, we characterize all
linear and symmetric allocation methods as weighted Shapley values. In section 4,
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we characterize all linear and symmetric allocation methods having one of three
di�erent monotonicity properties. In particular, we generalize Willson's (1993)
characterization of the reduced Shapley value as the unique linear, symmetric,
and margin monotone allocation method. In section 5, we characterize all lin-
ear, symmetric, and formulation independent (a property equivalent to the better
known covariant with respect to strategic equivalence) allocation methods. We
also show the general incompatibility of margin monotonicity and formulation
independence, and we argue the intuitive primacy of formulation independence.
In section 6, we characterize all linear, symmetric, and subsidy free (often called
the null player axiom) allocation methods on the classes of zero monotonic, size
monotonic, superadditive, and convex games. We close the paper with a few
concluding remarks.

2. Partially De�ned Games and Allocation Methods

Throughout this paper, we let N = f1; 2; :::; ng be the �xed set of players. A
nonempty subset S of N is called a coalition, and we write jSj for the number of
players in the coalition S. A cooperative game is a real-valued function w de�ned
on the coalitions. The real number w(S) is called the worth of coalition S and
is interpreted as the total bene�t available to the members of the coalition S if
they cooperate with each other in the most e�cient possible manner. In the con-
text of a joint cost allocation problem, w(S) is the cost savings obtained through
cooperation as opposed to each member working alone. A partially de�ned coop-
erative game is a cooperative game in which only some of the coalitional worths
are known. In this paper, whether a coalitional worth is known will depend only
on the number of members in the coalition. Formally, we call M a set of known
coalition sizes if M is a subset of N containing n. A (symmetric) partially de�ned
cooperative game with respect to the set of known coalition sizes M , abbreviated
as an M-game, is a real-valued function w de�ned on coalitions whose sizes are
in M , that is, w (S) is de�ned if and only if jSj 2 M . Note that we assume that
the worths of the grand coalition N is always known (n 2M). Note also that an
N -game is a \fully de�ned" cooperative game.

Example 2.1. Let n = 6 and M = f1; 2; 5; 6g. To conserve space, we will re-
move parentheses and commas in the notation for coalitional worths. For exam-
ple, w(f1; 4; 5g) will be shortened to w(145). De�ne w by w(N) = w(12345) =
w(12346) = w(12356) = w(12456) = w(13456) = 120, w(23456) = 60, w(12) =
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w(13) = w(14) = w(15) = 90, w (16) = 60, w(23) = w(24) = w(25) = w(34) =
w(35) = w(45) = 30, and w(26) = w(36) = w(46) = w(56) = w(1) = w(2) =
w(3) = w(4) = w(5) = w(6) = 0. Note that the worths of coalitions having three
or four members are not known.

Since our viewpoint is that partially de�ned games arise when we have insuf-
�cient resources to determine all coalitional worths, it is important to know what
\fully de�ned" games could underlie a given partially de�ned game. Let 
 be a col-
lection of N -games. An 
-extension of theM -game w is an N -game ŵ 2 
 satisfy-
ing ŵ(S) = w(S) for all jSj 2M . De�ne 
M to be the set ofM -games w that have
an 
-extension ŵ, and whatever word is used to describe an N -game in 
 (e.g.,
convex) will also be used to describe an M -game in 
M . Collections of games of-
ten cited in the literature include convex, superadditive, and zero-montonic games.
The N -game w is convex if w(S)+w(T ) � w(S[T )+w(S\T ) for all coalitions S
and T . The N -game w is superadditive if w(S) +w(T ) � w(S [ T ) for all disjoint
coalitions S and T . TheN -game w is zero-monotonic if w(S)+w(fig) � w(S[fig)
for all coalitions S and players i =2 S.

Example 2.2. Let w be the M -game described in Example 2.1. The M -game w
has no convex extension. Indeed, if ŵ were a convex extension of w, then 180 =
ŵ(12) + ŵ(13)� ŵ(1) � ŵ(123) = ŵ(123) + ŵ (4) + ŵ (5) + ŵ (6) � ŵ(N) = 120,
which is impossible. TheM -game w has a unique superadditive extension de�ned
by

ŵ(S) =

8>>>>>>>><>>>>>>>>:

30, if jSj = 3 and 1 =2 S
90, if jSj = 3 and 1 2 S
30, if jSj = 4, 6 2 S, and 1 =2 S
60, if jSj = 4, 6 =2 S, and 1 =2 S
90, if jSj = 4, 6 2 S, and 1 2 S
120, if jSj = 4, 6 =2 S, and 1 2 S
w(S), if jSj 2M

.

The proof is a straight-forward, but tedious, application of the superadditivity
inequalities. For example, if S = f1; 2; 3; 6g, then 90 = ŵ(12) + ŵ(36) � ŵ(S)
and ŵ(S) � ŵ(N) � ŵ(45) = 90. The N -game w has many zero-monotonic
extensions: ŵ is a zero-monotonic extension of w if and only if the following
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conditions hold:

30 � ŵ(S) � 60, if jSj =2M and 1 =2 S
90 � ŵ(S) � 120, if jSj =2M and 1 2 S
ŵ(R) � ŵ(S), if jRj = 3, jSj = 4, and R � S
ŵ(S) = w(S), if jSj 2M .

The proof is a straight-forward application of the zero-monotonicity inequalities.
In summary, w is zero-monotonic and superadditive but not convex.

Suppose M is a set of known sizes and 
 is a collection of N -games. An
allocation method on M and 
 is a function ' that to every M -game w 2 
M
assigns an allocation x = (x1; x2; :::; xn) 2 Rn satisfying

P
i2N

xi = w(N). We will

usually write 'i(w) for xi. We interpret 'i(w) as the fair share to player i if all the
players cooperate to obtain the total bene�t w(N). Thus an allocation method
provides a method for dividing the total bene�t of cooperation among the players.
Willson (1993) de�nes the reduced Shapley value  on M -games by

 i(w) =
1

n

X
m2M

0BB@�n� 1m� 1

��1 X
jSj=m
i2S

w(S)�
�
n� 1
m

��1 X
jSj=m
i=2S

w(S)

1CCA (2.1)

where
�
a
b

�
= a!

b!(a�b)! is the standard binomial coe�cient. If M = N , then this
formula can be interpreted as the average, over coalition sizes, of the di�erences
between the average worth of coalitions containing the player and the average
worth of coalitions not containing the player. If the di�erences for coalition sizes
not in M are taken to be zero, then this interpretation carries over to general
M . If M = N , the reduced Shapley value is the Shapley (1953) value de�ned on
N -games. In general, the reduced Shapley value agrees with the Shapley value if
all unknown coalitional worths are set equal to some constant (a di�erent constant
may be chosen for each coalition size).
The formula given by Shapley (1953) for the Shapley value de�ned on N -

games involves a weighted average of marginal contributions, � (S � fig ; S;w) =
w (S)�w (S � fig). In order to generalize this approach toM -games, we consider
marginal contributions, � (R;S;w) = w (S)�w (R), for coalitions satisfying R �
S � fig and jRj is the largest number in M that is strictly less than jSj : An
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equivalent formula for the reduced Shapley value is given by

 i(w) =
1

n

X
m2M

�
n� 1
m� 1

��1 X
jSj=m
i2S

�
m� 1
� (m)

��1 X
jRj=�(m)
R�S�fig

(w(S)� w(R)) (2.2)

where � (m) = max f0; r : r 2M and r < mg is the next smaller size for which
coalitional worths are known, and we let w (�) = 0 for notational convenience.
That formulas 2.1 and 2.2 are equivalent follows from comparing coe�cients
for each w (S) in the two formulas. Indeed, suppose S is a coalition satisfy-
ing i 2 S and jSj = s 2 M . Then the coe�cient of w (S) in formula 2.2 is
1
n

�
n�1
s�1
��1�s�1

�(s)

��1�s�1
�(s)

�
= 1

n

�
n�1
s�1
��1

which is the coe�cient of w (S) in formula 2.1.

Suppose R is any other coalition. Then R is a coalition satisfying i =2 R and
jRj = r = � (s) 2 M for some s 2 M . It follows that the coe�cient of w (R) in

formula 2.2 is � 1
n

�
n�1
s�1
��1�s�1

r

��1�n�r�1
s�r�1

�
= � 1

n

�
n�1
r

��1
[after some algebra] which

is the coe�cient of w (R) in formula 2.1.
Given the preceeding discussion, the reduced Shapley value for partially de-

�ned cooperative games seems to be a natural generalization of the Shapley value
for cooperative games. The example challenges this intuition.

Example 2.3. Let w be the M -game described in Example 2.1. The reduced
Shapley value of our example M -game w is  i(w) = (41; 17; 17; 17; 17; 11). Note
that the Shapley value of the unique superadditive extension ŵ is  i(ŵ) = (62; 14;
14; 14; 14; 2). So, the reduced Shapley value may not equal the Shapley value of
its unique extension. In fact, the Shapley value of no zero-monotonic extension
yields the reduced Shapley value for our example! Indeed, suppose ŵ is a zero-
monotonic extension of w. Notice that  i(ŵ) is an increasing function of ŵ(S) if
i 2 S, is a decreasing function of ŵ(S) if i =2 S, and is an increasing function of
ŵ(S)� ŵ(S � fig) if i 2 S. So,  1(ŵ) will be minimized by setting ŵ(S) = 90 if
jSj = 3 and 1 2 S, ŵ(S) = 60 if jSj = 4 and 1 =2 S, and ŵ(S) = ŵ(S � f1g) if
jSj = 4 and 1 2 S. Hence,  1(ŵ)�  1(w) � 5. In summary, the reduced Shapley
value for our example partially de�ned game can be equal to the Shapley value
of a corresponding \fully de�ned" game only if the corresponding game is not
zero-monotonic.

The example shows us that the reduced Shapley value is sometimes an inap-
propriate choice for an allocation method for partially de�ned games if we believe
that our partially de�ned game corresponds to some \fully de�ned" game for
which we only know some of the coalitional worths.
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3. Linear and Symmetric Allocation Methods

In this section, we characterize all linear and symmetric allocation methods on
classes of partially de�ned cooperative games that are convex cones and symmet-
ric. We begin by de�ning our conditions and interpreting them in the context of
allocation problems.
For the remainder of this paper, M is a set of known coalition sizes, 
 is

a collection of N -games, and ' is an allocation method on M and 
. We will
interpret 
 as the possible allocation problems that could arise a priori, and so

M will be interpreted as the possible partially de�ned allocation problems that
could arise a priori. We will interpret 'i (w) as the fair share given to player i
in the partially de�ned allocation problem w. We now de�ne and interpret two
conditions on collections of N -games and allocation methods.
Suppose that v and w are M -games and a and b are real numbers. De�ne the

M -game av+ bw by the formula (av + bw) (S) = av (S)+ bw (S) for all coalitions
S satisfying jSj 2M . The set 
 is a convex cone if av+bw 2 
 whenever v; w 2 

and a; b are positive real numbers. Note that if 
 is a convex cone, then 
M is a
convex cone. The convex cone condition can be interpreted as saying that changing
the currency and combining possible allocation problems should result in other
possible allocation problems. If w is an allocation problem and b is a positive real
number, then bw is really the same allocation problem expressed with a di�erent
currency (e.g., francs instead of dollars). If v and w are allocation problems (e.g.,
municipal waste collection and sewage treatment), then it should make sense to
combine the two allocation problems into the single allocation problem v + w.
Suppose that w is anM -game and � is a permutation of N . If S is a coalition,

then let � (S) be the set f� (i) : i 2 Sg. De�ne the M -game �w by the formula
(�w) (S) = w (��1 (S)) for all coalitions S satisfying jSj 2 M . The set 
 is
symmetric if �w 2 
 whenever w 2 
 and � is a permutation of N . Note
that if 
 is symmetric, then 
M is symmetric. The symmetry condition can be
interpreted as saying that relabeling the players in a possible allocation problem
should result in another possible allocation problem.
Collections of cooperative games that are convex cones and symmetric include

the collections of all games, zero-monotonic games, superadditive games, and
convex games.
An allocation method ' is linear if ' (av + bw) = a' (v) + b' (w) whenever

v; w 2 
M and a; b are positive real numbers. Our interpretation is that the
fair share to a player should not depend on the unit of currency used to state
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the allocation problem nor whether the allocation problem is �rst divided into
separate and additive allocation problems. Note that if 
M is a convex cone, then
av + bw 2 
M making the de�nition meaningful. Linearity is slightly stronger
than Shapley's additivity axiom in which a = b = 1. The additional, relatively
innocuous, proportionality assumption, ' (bw) = b' (w) whenever w 2 
M and b
is a positive real number, made here is necessary to rule out highly discontinuous
allocation methods. The reader could also substitute additivity for linearity in all
that follows if we restrict ourselves to rational rather than real numbers.
an allocation method ' is symmetric if '�(i) (�w) = 'i (w) whenever w 2 
M

and � is a permutation of N . The fair share to a player should not depend on
the label given to represent that player. Note that if 
M is symmetric, then
�w 2 
M making the de�nition meaningful. This is the standard de�nition of
symmetry used in the literature, although sometimes it is called anonymity. Two
players i and j are called substitutes in theM -game w if w (S � fig) = w (S � fjg)
whenever S is a coalition satisfying i; j 2 S and jSj�1 2M . Symmetry implies the
weaker property equal treatment: 'i (w) = 'j (w) whenever i and j are substitutes
in w. In example 2.1, players 2, 3, 4, and 5 are substitutes and so any symmetric
allocation method should assign the same payo�s as did the reduced Shapley
value.
The reduced Shapley value is linear and symmetric on all collections of games

that are convex cones and symmetric. However, there are other such allocation
methods. Suppose b 2 RM satis�es bn = 1. The b-weighted Shapley value  b is
de�ned by

 bi (w) =
1

n

X
m2M

bm

0BB@�n� 1m� 1

��1 X
jSj=m
i2S

w(S)�
�
n� 1
m

��1 X
jSj=m
i=2S

w(S)

1CCA . (3.1)

Note that the weighting is with respect to the size of the coalitions instead of
with respect to the player indices and is therefore distinct from the literature on
linear but nonsymmetric allocation methods for cooperative games (see Kalai and
Samet (1988) and Nowak and Radzik (1995)). The reduced Shapley value is the
special case when bm = 1 for all m 2 M . The �rst theorem is that b-weighted
Shapley values are linear and symmetric and are the only linear and symmetric
allocation methods. This Theorem generalizes Theorems 3.6 and 3.7 of Willson
(1993) because there 
 is taken to be the collection of all N -games.
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Theorem 3.1. Suppose 
M is a convex cone and a symmetric collection of games.
The allocation method ' on 
M is linear and symmetric if and only if ' is a b-
weighted Shapley value.

Proof. The function  b is clearly linear and is symmetric becauseP
jSj=m;�(i)2S �w(S) =

P
jSj=m;i2��1(S)w(�

�1 (S)) =
P

jSj=m;i2S w(S) and similarlyP
jSj=m;�(i)=2S �w(S) =

P
jSj=m;i=2S w(S). That  

b is an allocation method, that is,
yields allocations, follows from the following calculation:X
i2N

 bi (w)� w (N)

= 1
n

X
i2N

X
m2M�fng

bm

0BB@�n�1m�1
��1 X

jSj=m
i2S

w(S)�
�
n�1
m

��1 X
jSj=m
i=2S

w(S)

1CCA

= 1
n

X
m2M�fng

bm

0@�n�1
m�1
��1 X

jSj=m

X
i2S

w(S)�
�
n�1
m

��1 X
jSj=m

X
i=2S

w(S)

1A
= 1

n

X
m2M�fng

bm

��
n�1
m�1
��1

m�
�
n�1
m

��1
(n�m)

� X
jSj=m

w(S)

= 1
n

X
m2M�fng

bm (0)
X
jSj=m

w(S) = 0.

Conversely, suppose ' is linear and symmetric. We need to show that there
exist constants bm; m 2 M , satisfying bn = 1, for which ' (w) =  b (w) for all
w 2 
M .
As a special case, suppose �rst that 
 is the collection of all games. For

each coalition T satisfying jT j 2 M , de�ne the M -game eT by eT (T ) = 1 and
eT (S) = 0 otherwise. Clearly, i and j are substitutes in eT if both i; j 2 T or
both i; j =2 T . By the equal treatment property of ', there are constants aT and
a0T for which 'i

�
eT
�
= aT if i 2 T and 'i

�
eT
�
= a0T if i =2 T . Since '

�
eT
�
is an

allocation, eT (N) =
P

i2N 'i
�
eT
�
= jT j aT + (n� jT j) a0T which implies aN = 1

n

and a0T = � jT j aT= (n� jT j) if T 6= N . Suppose T and T 0 are coalitions satisfying
jT j = jT 0j 2 M , and let � be a permutation of N satisfying � (T ) = T 0. By the
symmetry of ', if i 2 T , then aT 0 = '�(i)

�
eT

0�
= '�(i)

�
�eT

�
= 'i

�
eT
�
= aT .
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Hence, there exist constants cm, m 2 M , satisfying cn =
1
n
and 'i

�
eT
�
= cjT j if

i 2 T and 'i
�
eT
�
= � jT j cjT j= (n� jT j) if i =2 T . Now given any w 2 
M , we

may write w =
P

jT j2M w (T ) eT . By the linearity of ', it follows that

'i (w) =
P

jT j2M
w (T )'i

�
eT
�

=
P
m2M

0B@ P
jT j=m
i2T

w (T )'i
�
eT
�
+
P

jT j=m
i=2T

w (T )'i
�
eT
�1CA

=
P
m2M

0B@ P
jT j=m
i2T

w (T ) cm +
P

jT j=m
i=2T

w (T ) �m
n�mcm

1CA
=
P
m2M

cm

0B@ P
jT j=m
i2T

w (T )� m
n�m

P
jT j=m
i=2T

w (T )

1CA .
Set bm = n

�
n�1
m�1
�
cm, m 2M , to obtain ' (w) =  b (w). In summary, the theorem

holds when 
 is the collection of all N -games.
Now consider the general case in which 
 is a convex cone and symmetric,

but 
 need not contain all games. Again suppose ' is linear and symmetric on

M . Our approach will be to extend the de�nition of ' to allM -games preserving
linearity and symmetry. We will then make use of our special case result.
De�ne Span (
M) to be the set ofM -games spanned by 
M , that is, Span (
M)

is the collection ofM -games
P

i2I aiw
i where ai is a real number and w

i 2 
M for
all i in some �nite set I. Since 
M is symmetric, Span (
M) is symmetric. Indeed,
suppose w 2 Span (
M) and � is a permutation of N . Then w =

P
i2I aiw

i for
some �nite set I and some real number ai and w

i 2 
M for all i 2 I. By symmetry
of 
M , it follows that �w

i 2 
M and �w =
P

i2I ai (�w
i) 2 Span (
M).

We will now extend the de�nition of ' to Span (
M). For each w 2 Span (
M),
there exist a �nite set I and real number ai and wi 2 
M for i 2 I satisfy-
ing w =

P
i2I aiw

i; de�ne �' (w) =
P

i2I ai' (w
i). We must check that �' is

well-de�ned. Suppose w does not have a unique representation as a linear com-
bination of M -games in 
M , that is, suppose I and J are �nite sets, ai is a
real number and wi 2 
M for all i 2 I, bi is a real number and wj 2 
M
for all j 2 J , and w =

P
i2I aiw

i =
P

j2J bjw
j. Rearranging the last equality,

we obtain
P

i2I+ aiw
i +

P
j2J� (�bj)wj =

P
i2I� (�ai)wi +

P
j2J+ bjw

j where
I+ = fi 2 I : ai � 0g, I� = fi 2 I : ai < 0g, J+ = fj 2 J : aj � 0g, and J� =
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fj 2 J : aj < 0g. Both sides of this last equality are positive (zero coe�cients
may be ignored) linear combinations of games in 
M , and so the linearity of ' im-
plies

P
i2I+ ai' (w

i)+
P

j2J� (�bj)' (wj) =
P

i2I� (�ai)' (wi)+
P

j2J+ bj' (w
j).

Rearranging this equality, we obtain
P

i2I ai' (w
i) =

P
j2J bj' (w

j). Hence, the
value of �' (w) does not depend on the representation chosen for w, that is, �'
is well-de�ned. It is now straight-forward to show that �' (w) = ' (w) for all
w 2 
M , that ' is an allocation method implies �' is an allocation method, and
that the linearity and symmetry of ' implies that �' is linear and symmetric.
In order to extend the de�nition of ' to all M -games, we need to consider

the subspace orthogonal to Span (
M). De�ne Orth (
M) to be the collection
of M -games v satisfying

P
jSj2M v (S)w (S) = 0 for all w 2 Span (
M). Since

Orth (
M) is a linear subspace, Orth (
M) is a convex set. The collectionOrth (
M)
is also symmetric. Indeed, suppose v 2 Orth (
M) and � is a permutation of N .
If w 2 Span (
M), then w0 = ��1w 2 Span (
M) andP

jSj2M (�v) (S)w (S) =
P

jSj2M (�v) (S) (�w
0) (S)

=
P

jSj2M v (��1 (S))w0 (��1 (S))

=
P

jRj2M v (R)w0 (R) = 0.

Let �1 and �2 be the projection maps from the vector space of all M -games to
Span (
M) and Orth (
M), respectively. That is, for any M -game w the projec-
tion maps yield the uniqueM -games �1 (w) 2 Span (
M) and �2 (w) 2 Orth (
M)
satisfying w = �1 (w) + �2 (w). We can now de�ne our extension of ' to all M -
games. De�ne '̂ by the formula '̂i (w) = �'i (�1 (w)) +

1
n
(�2 (w)) (N). We now

show that '̂ has the desired properties. First, '̂ is an extension of �'. Indeed, if w 2
Span (
M), then �1 (w) = w and �2 (w) is theM -game with all coalitional worths
zero, and so '̂i (w) = �'i (w) + 0 = 'i (w) since �' is an extension of '. Second, '̂
is an allocation method because

P
i2N '̂i (w) =

P
i2N �'i (�1 (w))+(�2 (w)) (N) =

(�1 (w)) (N) + (�2 (w)) (N) = (�1 (w) + �2 (w)) (N) = w (N). Third, '̂ is linear
because projection maps and compositions of linear maps are linear. Fourth, '̂ is
symmetric. Indeed, suppose w is an M -game and � is a permutation of N . Then

'̂�(i) (�w) = �'�(i) (�1 (�w)) +
1
n
(�2 (�w)) (N)

= �'�(i) (� (�1 (w))) +
1
n
(� (�2 (w))) (N)

= �'i (�1 (w)) +
1
n
(�2 (w)) (N)

= '̂i (w) .

In summary, '̂ is a linear and symmetric allocation method on the collection
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of all M -games which equals ' on 
M . By our earlier work, there exist constants
bm; m 2M , satisfying bn = 1 such that '̂ =  b, and so ' =  b.

When M = N and 
 is the set of all games, Theorem 3.1 characterizes allo-
cation methods satisfying all properties of a value except possibly the null player
axiom. This characterization shows that each such allocation method is deter-
mined linearly by n� 1 constants, one for each coalition size m = 1; 2; : : : ; n� 1.
This is technically similar to the Dubey et al (1981) characterization of semivalues
(methods satisfying all properties of a value except possibly e�ciency which we
take as part of our de�nition of allocation method) that are uniquely de�ned by
a vector of n weights, one for each coalition size m = 1; 2; : : : ; n.
We close this section with a uniqueness of representation theorem for weighted

Shapley values.

Theorem 3.2. Suppose 
M has a nonempty interior. The a-weighted and b-
weighted Shapley values are equal on 
M if and only if a = b.

Proof. Clearly, if a = b, then the a-weighted and b-weighted Shapley values
are equal. Conversely, suppose the a-weighted and b-weighted Shapley values are
equal. For m 2 M , de�ne the set functions vm by vm (S) = 1 if S = f1; 2; :::;mg
and vm (S) = 0 otherwise. Let w be an M -game contained in the nonempty
interior of 
M . Hence, for su�ciently small " > 0, the M -games w + "vm are
contained in 
M for all m 2M . Since  a =  b, it follows that 0 =  a1 (w + "vm)�
 b1 (w + "vm) =  a1 (w)� b1 (w)+"

�
 a1 (v

m)�  b1 (v
m)
�
[since  a and  b are linear]

= "
�
 a1 (v

m)�  b1 (v
m)
�
[since  a =  b on 
M ] = " 1

n

�
n�1
m�1
��1

(am � bm) [by formula
3.1]. Therefore, am = bm for all m 2M .

4. Monotonicity

In this section, we consider three natural monotonicity conditions for an alloca-
tion method on partially de�ned cooperative games, and characterize linear and
symmetric allocation methods satisfying each of these monotonicity conditions.
Suppose M is a set of known sizes. Recall that we de�ned � (m) = maxf0; r :

r 2 M and r < mg to be the next smaller size for which coalitional worths
are known, and we let w (�) = 0 for notational convenience. Given a player i,
two coalitions R and S are i -adjacent if jSj 2 M , i 2 S, jRj = � (jSj), and
R � S � fig. Given an M -game w, a marginal contribution of i is the quantity
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�i (R;S;w) = w (S) � w (R) for some i-adjacent coalitions R and S. Player i is
marginally favored byM -game w over theM -game v if �i (R;S;w) � �i (R;S; v)
for all i-adjacent coalitions R and S. So, a player i is marginally favored by w
over v if player i's marginal contributions in w are at least as great as in v. In
such a circumstance, it is natural to assume that player i receives a higher payo�
in w than v. The next condition formalizes this intuition. The allocation method
' is margin monotone on 
M if 'i (w) � 'i (v) whenever a player i is marginally
favored by an M -game w 2 
M over an M -game v 2 
M .
The next theorem characterizes linear, symmetric, and margin monotone al-

location methods. It is a generalization of Willson's (1993) main theorem in that
he only considers 
M equal to the collections of all M -games. The proof given
here is also much shorter and more transparent.

Theorem 4.1. Suppose 
M is a convex cone, symmetric, and has a nonempty
interior. The allocation method ' is linear, symmetric, and margin monotone on

M if and only if ' is the reduced Shapley value.

Proof. Suppose the allocation method ' is linear, symmetric, and margin
monotone on 
M . Let k be the smallest number in M . For m 2 M � fkg,
de�ne the set functions vm by vm (S) = 1 if jSj = m and 1 2 S, vm (S) = 1 if
jSj = � (m) and 1 =2 S, and vm (S) = 0 otherwise. Let w be anM -game contained
in the nonempty interior of 
M . Hence, for su�ciently small " > 0, the M -games
w+"vm are contained in 
M for allm 2M�fkg. Because vm (T )�vm (S) = 0 for
all 1-adjacent coalitions S and T , it follows that player 1 is marginally favored by w
over w+"vm and by w+"vm over w. Because ' is margin monotone, it follows that
'1 (w) = '1 (w + "vm). Because ' is linear and symmetric, theorem 3.1 implies
' is a b-weighted Shapley value. Hence, 0 =  b1 (w + "vm) �  b1 (w) = " b1 (v

m)
[by linearity of  b] = " 1

n

�
bm � b�(m)

�
[using formula 3.1]. So, bm = b�(m) for all

m 2 M � fkg. Since bn = 1, it follows that bm = 1 for all m 2 M . Therefore, '
is the reduced Shapley value.
Conversely, suppose ' is the reduced Shapley value. By theorem 3.1, ' is

linear and symmetric. By formula 2.2, the reduced Shapley value for player i is
a positive linear combination of player i's marginal contributions. Hence, ' is
margin monotone.

In addition to 
M being a convex cone and symmetric, the theorem assumes
that 
M has a nonempty interior. This condition clearly holds for the collections
of convex, superadditive, zero-monotonic, and all N -games. Weaker conditions
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are possible. For example, the conclusion of the theorem holds, with an almost
identical proof, if 
M is assumed to contain only zero-normalized games and have
a nonempty interior in the space of all zero-normalized N -games. (See the For-
mulation Independence section for de�nitions of these terms.) The next theorem
shows that some condition on 
M is required for an allocation method to be
uniquely characterized by linearity, symmetry, and margin monotonicity.

Theorem 4.2. There exists a convex cone and symmetric 
M and linear, sym-
metric, and margin monotone allocation methods on 
M which are not the reduced
Shapley value.

Proof. Let k 2M satisfy � (k) = 0, that is, k = min fm : m 2Mg. Let 
 be the
set of all N -games w satisfying

P
jSj=k w (S) = 0. Clearly, 
M is a convex cone

and symmetric. Note that 
M does not have a nonempty interior. Let ' =  b

where bm = 1 for all m 2 M � fkg and bk > 1. By theorem 3.1, ' is linear
and symmetric. We now show that ' is margin monotone. Let l 2 M satisfy
� (l) = k. Suppose player i is marginally favored by w 2 
M over v 2 
M . Then
'i (w)� 'i (v) =  bi (w)�  bi (v) =  bi (w � v) [by linearity of  b]

=  i (w � v) + 1
n
(bk � 1)

0BB@�n�1k�1
��1 X

jSj=k
i2S

(w � v) (S)�
�
n�1
k

��1 X
jSj=k
i=2S

(w � v) (S)

1CCA
[by formulas 2.1 and 3.1]

=  i (w � v) + 1
n
(bk � 1)

0BB@�n�1k�1
��1 X

jSj=k
i2S

(w � v) (S) +
�
n�1
k

��1 X
jSj=k
i2S

(w � v) (S)

1CCA
[since v; w 2 
M implies

P
jSj=k (w � v) (S) = 0]

=  i (w � v)+ 1
n
(bk � 1)

��
n�1
k�1
��1

+
�
n�1
k

��1� X
jSj=k
i2S

(w � v) (S) [algebra] � 0 [since

player i is marginally favored by w over v, and  is margin monotone]. Hence,
'i (w) � 'i (v).

Player i is coalitionally favored by M -game w over the M -game v if w (S) �
v (S) for all coalitions S containing i and w (S) � v (S) for all coalitions S not
containing i. So, a player i is coalitionally favored by w over v if coalitions
containing i are better o� in w and coalitions not containing i are worse o� in
w. In such a circumstance, it is natural to assume that player i receives a higher
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payo� in w than v. The allocation method ' is coalition monotone on 
M if
'i (w) � 'i (v) whenever a player i is coalitionally favored by anM -game w 2 
M
over an M -game v 2 
M . Note that if player i is coalitionally favored by w over
v, then player i is marginally favored by w over v. So, coalition monotonicity is a
weaker condition than margin monotonicity.

Theorem 4.3. Suppose 
M is a convex cone, symmetric, and has a nonempty
interior. The allocation method ' is linear, symmetric, and coalition monotone
on 
M if and only if ' is a b-weighted Shapley value for which bm � 0 for all
m 2M .

Proof. Suppose the allocation method ' is linear, symmetric, and coalition
monotone on 
M . For m 2 M , de�ne the set functions vm by vm (S) = 1 if
S = f1; 2; :::;mg and vm (S) = 0 otherwise. Let w be an M -game contained in
the nonempty interior of 
M . Hence, for su�ciently small " > 0, the M -games
w + "vm are contained in 
M for all m 2 M . Clearly, player 1 is coalitionally
favored by w + "vm over w. Because ' is coalition monotone, it follows that
'1 (w + "vm) � '1 (w). Because ' is linear and symmetric, theorem 3.1 implies '
is a b-weighted Shapley value. Hence, 0 �  b1 (w + "vm) �  b1 (w) = " b1 (v

m) [by

linearity of  b] = " 1
n

�
n�1
m�1
��1

bm [using formula 3.1]. So, bm � 0 for all m 2M .
Conversely, suppose ' is a b-weighted Shapley value for which bm � 0 for

all m 2 M . By theorem 3.1, ' is linear and symmetric. Suppose player i and
M -games w; v 2 
M satisfy w (S) � v (S) for all coalitions S containing i and
w (S) � v (S) for all coalitions S not containing i. Since in formula 3.1, the
coe�cients of w (S) are nonnegative when S contains i and nonpositive when S
does not contain i, it follows that 'i (w) � 'i (v). Hence, ' is coalition monotone.

Player i is favored over player j in the M -game w if w (S [ fig) � w (S [ fjg)
for all coalitions S satisfying i; j =2 S and jSj+1 2M . So, player i is favored over
player j if substituting i for j can only increase the worth of any coalition. In such
a circumstance, it is natural to assume that player i receives a higher payo� than
player j. The allocation method ' is player monotone on 
M if 'i (w) � 'j (w)
whenever a player i is favored over a player j in an M -game w 2 
M . Player
monotonicity involves comparisons between players in a single game while margin
and coalition monotonicity involve comparisons between games for a single player.
It is somewhat remarkable that player and coalition monotonicity characterize the
same class of allocation methods.

15



Theorem 4.4. Suppose 
M is a convex cone, symmetric, and has a nonempty
interior. The allocation method ' is linear, symmetric, and player monotone on

M if and only if ' is a b-weighted Shapley value for which bm � 0 for all m 2M .

Proof. Suppose the allocation method ' is linear, symmetric, and player monotone
on 
M . Let w

0 be an M -game contained in the nonempty interior of 
M . Since

M is symmetric, �w0 is contained in the interior of 
M for all permutations �
of N . Since 
M is a convex cone, w =

P
� �w

0, where the summation is over
all permutations � of N , is contained in the interior of 
M . Note also that all
pairs of players are substitutes in w; hence, 'i (w) =

1
n
w (N) for all i 2 N .

For m 2 M , de�ne the set functions vm by vm (S) = 1 if S = f1; 2; :::;mg and
vm (S) = 0 otherwise. Since w is contained in the interior of 
M , there exists
a su�ciently small " > 0 for which the M -games w + "vm are contained in 
M
for all m 2 M . Clearly, player 1 is favored over player n in w + "vm. Because
' is player monotone, it follows that '1 (w + "vm) � 'n (w + "vm). Because '
is linear and symmetric, theorem 3.1 implies ' is a b-weighted Shapley value.
Hence, 0 �  b1 (w + "vm)� bn (w + "vm) =  b1 (w)� bn (w)+ " b1 (vm)� " bn (vm)
[by linearity of  b] = " b1 (v

m) � " bn (v
m) [since 1 and n are substitutes in w]

= " 1
n

��
n�1
m�1
��1

+
�
n�1
m

��1�
bm [using formula 3.1]. So, bm � 0 for all m 2M .

Conversely, suppose ' is a b-weighted Shapley value for which bm � 0 for all
m 2M . By theorem 3.1, ' is linear and symmetric. Using formula 3.1, we obtain
that  bi (w)�  bj (w) =

1

n

 �
n� 1
m� 1

��1
+

�
n� 1
m

��1! X
m2M

bm

0BBBB@
X
jSj=m
i2S
j =2S

w (S)�
X
jSj=m
i=2S
j2S

w (S)

1CCCCA .
If player i is favored over player j in theM -game w 2 
M , then the last bracketed
term in the above expression for  bi (w)�  bj (w) is nonnegative. Since the bm are
also nonnegative, it follows that  bi (w)� bj (w) � 0. Hence, ' is player monotone.

5. Formulation Independence

Consider the following joint cost allocation problem. Suppose each player must
make use of some shared resource, and the most economical method of obtaining
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a su�cient amount of the shared resource for each player in a coalition S results
in a cost of c (S). If all players cooperate, what is a fair way to allocate the total
cost c (N)? There are at least two reasonable ways to make use of a cooperative
game allocation method ' to solve this joint cost allocation problem. First, de�ne
the worth of coalition S to be the negative of its cost, w1 (S) = �c (S), and then
allocate the total cost via the negative of the allocation method: �'i (w1) would
be the cost allocated to player i. Second, de�ne the worth of coalition S to be the
savings resulting via cooperation, w2 (S) =

P
i2S c (fig)� c (S), and then allocate

the total savings via the allocation method: c (fig) � 'i (w
2) would be the cost

allocated to player i. It would be desirable for the cost allocation not to depend
upon the solution approach used, that is, �'i (w1) = c (fig)� 'i (w

2). Our next
condition ensures this.
The zero-normalization of the M -game w is the M -game �w de�ned by the

formula �w (S) = w (S) �
P

i2S w (fig). an allocation method ' is formulation
independent on the collection 
M if 'i (w) = 'i ( �w) + w (fig) for all w 2 
M
and i 2 M . Note that the equality of this de�nition is equivalent to the last
equality of the previous paragraph if we set w = �c. Young (1994) calls formu-
lation independence, \invariance in direct costs." Formulation independence and
proportionality (' (aw) = a' (w) for all positive real numbers a and M -games w,
which is implied by linearity) is equivalent to another property often cited in the
literature: covariance with respect to strategic equivalence ('i (v) = a'i (w) + bi
for all players i 2 N , positive real numbers a, real numbers bi, and M -games v
and w satisfying v (S) = aw (S)+

P
j2S bj for all coalitions S � N). The following

theorem characterizes linear, symmetric, and formulation independent allocation
methods.

Theorem 5.1. Suppose the set of known coalition sizes M contains 1. Suppose
the collection of M -games 
M is a convex cone, is symmetric, and contains its
zero normalizations. The allocation method ' on 
M is linear, symmetric, and
formulation independent if and only if ' is a b-weighted Shapley value satisfyingP

m2M bm = n.

Proof. We begin by determining a relationship between the b-weighted Shapley
values of an M -game and its zero-normalization:

 bi (w)�  bi ( �w)
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= 1
n

X
m2M

bm

0BB@�n�1m�1
��1 X

jSj=m
i2S

(w (S)� �w(S))�
�
n�1
m

��1 X
jSj=m
i=2S

(w (S)� �w(S))

1CCA
[using formula 3.1]

= 1
n

X
m2M

bm

0BB@�n�1m�1
��1 X

jSj=m
i2S

 X
j2S

w (fjg)
!
�
�
n�1
m

��1 X
jSj=m
i=2S

 X
j2S

w (fjg)
!1CCA

[using the de�nition of zero-normalization]

= 1
n

X
j2N

w (fjg) + 1
n

X
m2M�fng

bm

0@w (fig) + �n�1
m�1
��1�n�2

m�2
� X
j2N�fig

w (fjg)

�
�
n�1
m

��1�n�2
m�1
� X
j2N�fig

w (fjg)

1A
[separating out the m = n term of the outside summation and reversing the
double summations over coalitions and players]

= 1
n

X
j2N

w (fjg) + 1
n

X
m2M�fng

bm

0@w (fig)� 1
n�1

X
j2N�fig

w (fjg)

1A
= 1

n
w (fig)

X
m2M

bm +
1
n

0@1� 1
n�1

X
m2M�fng

bm

1A X
j2N�fig

w (fjg)

= w (fig) + 1
n

 X
m2M

bm � n

!0@w (fig)� 1
n�1

X
j2N�fig

w (fjg)

1A.
Thus,  bi (w) =  bi ( �w) + w (i) if and only if X

m2M
bm � n

!0@(n� 1)w (fig)� X
j2N�fig

w (fjg)

1A = 0.
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Suppose ' =  b where
P

m2M bm = n. By theorem 3.1, ' is linear and
symmetric. By the result of the previous paragraph, 'bi (w) = 'bi ( �w)+w (fig) for
all M -games w, and so ' is formulation independent.
Conversely, suppose ' is an allocation method on 
M which is linear, symmet-

ric, and formulation independent. By theorem 3.1, ' =  b for some b satisfying
bn = 1. We need to show that b can be chosen so that

P
m2M bm = n. We �rst

consider the case when w 2 
M implies w (1) = w (2) = ::: = w (n). In this case,
the expression b1 multiplies in equation 3.1 always equals zero. So, changing b1
does not change  b. Hence, we can choose b1 = n�

P
m2M�f1g bm.

We now consider the case when there is a w 2 
M and i; j =2 N satisfying
w (fig) 6= w (fjg). Without loss of generality, we can assume that i is chosen
so that w (fig) � w (fjg) for all j 2 N and w (fig) > w (fjg) for some j 2 N .
Since ' is formulation independent, the result of the proof's �rst paragraph yields�P

m2M bm � n
�
a = 0 where a > 0. Hence,

P
m2M bm = n.

Formulation independence and margin monotonicity are largely incompatible
properties as shown by the following theorem.

Theorem 5.2. Suppose the set of known coalition sizes M contains 1. Suppose
the collection of games 
M is a convex cone, is symmetric, contains its zero normal-
izations, and has a nonempty interior. The reduced Shapley value is formulation
independent on 
M if and only if M = N .

Proof. By theorem 3.1, the reduced Shapley value is linear and symmetric. So,
theorem 5.1 implies that the reduced Shapley value is formulation independent if
and only if it equals a b-weighted Shapley value satisfying

P
m2M bm = n. Since


M has a nonempty interior, theorem 3.2 implies that the reduced Shapley value
is a b-weighted Shapley value if and only if bm = 1 for all m 2M . Therefore, the
reduced Shapley value is formulation independent if and only if n =

P
m2M 1 =

jM j which is true if and only if M = N .

The preceeding two theorems suggest that the reduced Shapley value need not
be the best value to use in many circumstances. A possible alternative is the
normalized Shapley value � =  b where bm = 1 for all m 2 M � f1g and b1 =
n �

P
m2M�f1g bm. By theorem 5.1, the normalized Shapley value is formulation

independent, and so � i (w) = w (fig) + � i ( �w) = w (fig) +  i ( �w) [since b1 does
not a�ect  b ( �w) because �w (fig) = 0 for all i 2 N ], that is, � i (w) allocates to
player i the player's individual worth and the player's reduced Shapley value in the
zero-normalized game. Of course, by theorem 4.1, the normalized Shapley value
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must not be margin monotone. The following example illustrates the di�erences
between the formulation independent normalized Shapley value and the margin
monotone reduced Shapley value.

Example 5.3. Suppose M = f1; ng. The reduced Shapley value is given by the
formula  i (w) =

1
n�1w (fig) +

1
n

�
w (N)� 1

n�1
P

j2N w (fjg)
�
. The normalized

Shapley value is given by the formula � i (w) = w (fig)+ 1
n

�
w (N)�

P
j2N w (fjg)

�
.

An interpretation of the normalized Shapley value formula is that each player is
�rst allocated his or her individual worth, and then the remaining bene�ts due
to cooperation are divided evenly. Let the M -game w be de�ned by w (N) = 2
and w (fig) = 1 for all j 2 N . Clearly, all pairs of players are substitutes, and so
 1 (w) = � 1 (w) =

2
n
. Let the M -game v be de�ned by v (N) = v (f1g) = 1 and

v (fjg) = 0 for all j 2 N � f1g. Player 1 is marginally favored by both w over
v and v over w. Since the reduced Shapley value is margin monotone, it follows
that  1 (v) =  1 (w) =

2
n
. Since the normalized Shapley value is formulation

independent, � 1 (v) = v (fig) + � i (�v) = 1. One interpretation of v is that player
1 generates all of the potential bene�ts of cooperation, and so player 1 should
be allocated the entire amount of bene�ts. It is also di�cult to interpret the
two games as being equivalent from player 1's perspective. These interpretations
support the normalized over the reduced Shapley value.

The results of this section suggest that the reduced Shapley value should not
be used as a value for partially de�ned games because it is not formulation in-
dependent and margin monotonicity is not intuitively appealing when worths of
singleton coalitions are changed. Although the normalized Shapley value has been
suggested as an alternative, there are many other linear, symmetric, and formula-
tion independent allocation methods according to theorem 5.1. Finally, it should
be noted that the reduced and normalized Shapley values are identical whenever
1 =2M , M = N , or 
 contains only zero normalized games.

6. Subsidy Freedom

Player i is null in the N -game w if w(S) = w (S � fig) for all coalitions S con-
taining i. We are again using the convention that w (�) = 0. Player i is null in the
M -game w with respect to 
 if i is null in every 
-extension of w. An allocation
method ' is subsidy free if 'i (w) = 0 whenever w 2 
M and i is a null player.
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The subsidy freedom property has also been called the null player axioms. An
interpretation of subsidy freedom is that zero is the fair share for a player that
contributes zero worth to any coalition joined. In the literature, subsidy free has
also been called the null player axiom. Shapley's (1953) e�ciency axiom, called
the carrier axiom in the subsequent literature, is logically equivalent to subsidy
freedom, given our de�nition of an allocation. In Example 5.3, M = f1; ng and
v de�ned by v (N) = v (f1g) = 1 and v (fjg) = 0 for all j 2 N � f1g, players
2; 3; :::; n are null with respect to zero-monotonic games, but  1 (v) 6= 0. Hence,
the reduced Shapley value need not be subsidy free.
Notice that subsidy freedom is the �rst condition we have stated which cru-

cially depends on the underlying space 
 of N -games rather than the space

M of M -games. For example, subsidy freedom will not impose any restric-
tions on our choice of an allocation method if 
 contains no N -game with a
null player. This occurs when 
 is the collection of strictly superadditive games
fw : w (S [ T ) > w (S) + w (T ) for all disjoint coalitions S and Tg. So, subsidy
freedom is useful as a restrictive condition only if 
 contains games with null play-
ers. Furthermore, 
 cannot be \too large": if 
 is the collection of all N -games
and M 6= N , then no M -game w 2 
M has a null player even though many N -
games have null players. So, our �rst goal is to develop appropriate conditions on

 in order to generalize Shapley's characterization theorem for linear, symmetric,
and subsidy free allocation methods on N -games to characterization results on
M -games.
The unanimity game uR on the unanimity coalition R is de�ned by uR (S) = 1

if R � S and uR (S) = 0 otherwise. We will write uR;M instead of uR when
we wish to make it clear that a unanimity game is an M -game, and so de�ned
only on coalitions S satisfying jSj 2 M . Unanimity games play a crucial role
in Shapley's (1953) characterization of the Shapley value on cooperative games
because symmetry and subsidy freedom uniquely determine the allocation for a
unanimity game: players not in the unanimity coalition must be null and so are
allocated zero by subsidy freedom, and the players in the unanimity coaltion are
substitutes and so are allocated equal amounts by symmetry. Since the unanimity
games form a basis for the space of all games, linearity can then be used to extend
the de�nition of the allocation method to all games. Unfortunately, the alloca-
tion for a partially de�ned unanimity game may not be determined uniquely by
symmetry and subsidy freedom because players outside of the unanimity coalition
need not be null. Proposition 6.1 shows that the crucial issue, under a broad set
of circumstances, is whether the unanimity M -game has a unique 
-extension.
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Recall that the N -game w is zero-monotonic if w(S) + w(fig) � w(S [ fig)
for all coalitions S and players i =2 S. In a possible allocation problem, adding a
player to an already formed coalition should not be detrimental because one way
for the expanded coalition to \cooperate" is for the original coalition and new
player to continue to act separately. Note that w is zero-monotonic if and only if
its zero normalization �w is monotone, that is, �w (S) � �w (T ) for all coalitions S
and T satisfying S � T .

Proposition 6.1. If the unanimity M -game uR;M has the unique 
-extension
uR;N , then each player i 2 N � R is null in uR;M . Conversely, if each player
i 2 N � R is null in the unanimity M -game uR;M , M contains 1, and 
 contains
only zero-monotonic games, then uR;M has the unique 
-extension uR;N .

Proof. Clearly, each player i 2 N � R is null in uR;N . Since uR;N is the unique

-extension of uR;M , each player i 2 N �R is null in uR;M .
Conversely, suppose each player i 2 N �R is null in uR;M , M contains 1, and


 contains only zero-monotonic games. Suppose û is an 
-extension of uR;M . We
will show that û = uR;N . Suppose S is a coalition, and consider the following three
cases. First, suppose R � S. Let fi1; i2; :::; ikg = N � S: Since (N � S) \ R = �,
the players in N � S are null. Hence, û (S) = û (S [ fi1g) = û (S [ fi1; i2g)
= ::: = û (N) = uR;M (N) = 1. Second, suppose jSj > jRj and R * S. Then k =
jSj�jRj > 0, and there exist i1; i2; :::; ik; ik+1 2 S�R. Since i1; i2; :::; ik are null, it
follows that û (S) = û (S � fi1g) = û (S � fi1; i2g) = ::: = û (S � fi1; i2; :::; ikg) =
uR;M (S � fi1; i2; :::; ikg) = 0 [since jS � fi1; i2; :::; ikgj = jRj 2 M , and ik+1 2
S �R implies that S � fi1; i2; :::; ikg 6= R]. Third, suppose jSj < jRj. Then there
exist a player i 2 S and a coalition T 6= R satisfying jT j = jRj and S � T .
Since 
 contains only zero-monotonic games, û must be zero-monotonic. Hence,
0 = uR;M (fig) = û (fig) � û (S) � û (T ) = uR;M (T ) = 0, and so û (S) = 0.
Thus, uR;M has the unique 
-extension uR;N .

The theorem suggests the following condition would be useful for characterizing
allocation methods satisfying subsidy freedom. The collection of M -games 
M is
unanimity proper if uR;M 2 
M and has the unique 
-extension uR;N for each
coalition R satisfying jRj 2M � fng.
Theorem 6.2. Suppose the collection of M -games 
M is a convex cone, sym-
metric, and unanimity proper. If a linear, symmetric, and subsidy free alloca-
tion method exists on 
M , then it is the b-weighted Shapley value satisfying
br =

�
n
r

�
�
P
m2M
m>r

�
m�1
r�1
�
bm for all r 2M .
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Proof. By theorem 3.1, ' is a b-weighted Shapley value (satisfying bn = 1). Note
that the formula in the statement of the theorem also yields bn = 1. Suppose now
that r 2 M � fng, and R is a coalition satisfying jRj = r. By Proposition 6.1,
each player i 2 N � R is null in the unanimity game uR;M . Since ' is subsidy
free, 'i

�
uR;M

�
= 0 for all i 2 N �R. Using formula 3.1, we obtain 0 =  bi

�
uR;M

�
= 1

n

P
m2M

bm
�
n�1
m�1
��1 jfS : jSj = m; i 2 S;R � Sgj

� 1
n

P
m2M

bm
�
n�1
m

��1 jfS : jSj = m; i =2 S;R � Sgj

= � 1
n
br
�
n�1
r

��1
+ 1

n

P
m2M
r<m<n

bm

��
n�1
m�1
��1�n�r�1

m�r�1
�
�
�
n�1
m

��1�n�r�1
m�r

��
+ 1

n
bn.

Rearranging and simplifying this equality, we obtain

br =
P
m2M
r<m<n

bm
�
n�1
r

� ��
n�1
m�1
��1�n�r�1

m�r�1
�
�
�
n�1
m

��1�n�r�1
m�r

��
+
�
n�1
r

�
bn

=
��
n
r

�
�
�
n�1
r�1
��
bn �

P
m2M
r<m<n

�
m�1
r�1
�
bm =

�
n
r

�
�
P
m2M
m>r

�
m�1
r�1
�
bm:

We can now reprove Shapley's (1953) theorem as a corollary.

Corollary 6.3. Suppose the collection ofN -games 
 is a convex cone, symmetric,
and contains the unanimity games. The unique linear, symmetric, and subsidy
free allocation method on 
 = 
N is the Shapley value.

Proof. Clearly, 
 is unanimity proper. By theorem 6.2, if the allocation method
' is linear, symmetric, and subsidy free on 
M , then ' is the b-weighted Shapley

value satisfying br =
�
n
r

�
�

nP
m=r+1

�
m�1
r�1
�
bm for all r 2 N . We now prove, by

induction, that br = 1 for all r 2 N . Clearly, bn = 1. If br+1 = br+2 = ::: = bn = 1,

then br =
�
n
r

�
�

nP
m=r+1

�
m�1
r�1
�
=
�
n
r

�
�

nP
m=r+1

��
m
r

�
�
�
m�1
r

��
[by Pascal's Triangle

equality] =
�
r
r

�
[since the sum is telescoping] = 1. Thus, br = 1 for all r 2 N .

Finally, it is clear from formula 2.2 that when M = N , the Shapley value is
subsidy free.
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The allocation method described by theorem 6.2 is the normalized Shapley
value if and only if M = fk; k + 1; :::; ng or M = f1; k; k + 1; :::; ng for some
integer k satisfying 2 � k � n. The allocation method described by theorem 6.2
is the reduced Shapley value if and only if M = N � f1g or M = N . The proofs
of these two remarks is similar to the induction part of the proof of Corollary 6.3.
While the allocation method described by theorem 6.2 is linear and symmet-

ric, it is important to emphasize that theorem 6.2 does not state whether the
allocation method it describes is actually subsidy free. Depending on the circum-
stances, either the allocation method described by theorem 6.2 will be the unique
linear, symmetric and subsidy free allocation method, or there will exist no linear,
symmetric, and subsidy free allocation method. Of course, if 
M is not unanimity
proper, then there can be linear, symmetric, and subsidy free allocation methods
not described by theorem 6.2. Describing some of the possibilities is the primary
goal of this section.
Before we procede to the main characterization results of this section, we state

and prove two useful lemmas. Given the importance of the unanimity proper
condition, the �rst lemma states some su�cient conditions for unanimityM -games
to have unique 
-extensions. The second lemma shows that subsidy freedom is
usually a stronger condition than formulation independence.

Lemma 6.4. Suppose the set of known coalition sizesM contains 1, the coalition
R satis�es jRj 2M�fng, and the collection of N -games 
 contains the unanimity
game uR;N . The unanimity M -game uR;M has the unique 
-extension uR;N if any
of the following conditions hold: (1) jRj = 1 and 
 contains only zero-monotonic
games; (2) n � 1 2 M and 
 contains only zero-monotonic games; and (3) 

contains only convex games.

Proof. By supposition, uR;N is an 
-extension of the unanimity M -game uR;M .
Suppose û is an 
-extension of uR;M . For each condition, we will show that
û = uR;N

Suppose condition (1) holds. Then the zero normalization v = uR;M satis�es
v (S) = 0 for all coalitions S satisfying jSj 2M . If v̂ is a zero-monotonic extension
of v and S is a coalition containing a player i, then 0 = v (fig) = v̂ (fig) � v̂ (S) �
v̂ (N) = v (N) = 0 which implies v̂ (S) = 0. Now v̂ must be the zero normalization
of û which implies that û = uR;N .
Suppose condition (2) holds. If R � S, then by zero-monotonicity 1 =

uR;M (R) = û (R) � û (S) � û (N) = uR;M (N) = 1 which implies that û (S) = 1.
Given condition (1), we may assume jRj > 1. If R 6 �S, then there exist players
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i 2 S and j 2 R � S. By zero-monotonicity and jN � fjgj 2 M , it follows that
0 = uR;M (fig) = û (fig) � û (S) � û (N � fjg) = uR;M (N � fjg) = 0 which
implies that û (S) = 0. Hence, û = uR;N .
Suppose condition (3) holds. Given condition (1), we may assume jRj > 1.

Suppose S is a coalition, and consider the following three cases. First, suppose
jSj < r. Then there exist a player i 2 S and a coalition T 6 =R satisfying S � T
and jT j = r. Hence, 0 = uR;M (fig) = û (fig) � û (S) � û (T ) = uR;M (T ) = 0,
and so û (S) = 0. Second, suppose R � S. Hence, 1 = uR;M (R) = û (R) �
û (S) � û (N) = uR;M (N) = 1, and so û (S) = 1. Third, suppose jSj > r and
R 6 �S. Choose i 2 S. Let T = (N � S) [ R. Since jS \ T j < r, the �rst case
implies û (S \ T ) = 0. Since R � T , the second case implies û (T ) = 1. Hence,
0 = uR;M (fig) = û (fig) � û (S) � û (S [ T ) + û (S \ T )� û (T ) = û (N) + 0� 1
= uR;M (N)� 1 = 0, and so û (S) = 0. Taking the three cases together, we obtain
that û = uR;N .

Lemma 6.5. Suppose M is a set of known sizes containing 1. Suppose the col-
lection of games 
 is a convex cone, contains its zero normalizations, contains
the singleton unanimity games, and contains only zero-monotonic games. If the
allocation method ' is linear and subsidy free, then ' is formulation independent.

Proof. Suppose w 2 
M . Then w = �w +
P

j2N w (fjg)ufjg;M . Since 
 contains
its zero normalizations and the singleton unanimity games, �w 2 
M and ufjg;M 2

M for all j 2 N . Since ' is linear, ' (w) = ' ( �w)+

P
j2N w (fjg)'

�
ufjg;M

�
. Since


 contains only zero-monotonic games, condition (1) of Lemma 6.4 implies that
ufjg;N is the unique 
-extension of ufjg;M . Clearly, each k 2 N�fjg is null in ufjg;N
and so in ufjg;M . Since ' is subsidy free, 'k

�
ufjg;M

�
= 0 for all k 2 N�fjg. Since

' is an allocation method, 'j
�
ufjg;M

�
= ufjg;M (N) �

P
k2N�fjg 'k

�
ufjg;M

�
= 1.

Hence, 'i (w) = 'i ( �w) +
P

j2N w (fjg)'i
�
ufjg;M

�
= 'i ( �w) + w (fig). Thus, ' is

formulation independent.

We now turn to characterization theorems for linear, symmetric, and subsidy
free allocation methods on four special classes of cooperative games. We start
with the largest class of games, zero monotonic, and work our way to the smallest
class of games, convex. The next theorem provides a complete characterization for
zero monotonic games. Notice that when 
 is the class of zero monotonic games,

M is unanimity proper if and only if n� 1 2M . The statement and proof of the
theorem do not notice whether 
M is unanimity proper.
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Theorem 6.6. Suppose the set of known coalition sizes M contains 1, and 

is the collection of zero-monotonic games. If M = f1; k; k + 1; :::; l; ng where
1 � k � l � n, then the unique linear, symmetric and subsidy free allocation
method on 
M is the normalized Shapley value. Otherwise, there is no linear,
symmetric, and subsidy free allocation method on 
M .

Proof. Suppose ' is a linear, symmetric, and subsidy free allocation method
on 
M . We �rst show that if ' exists, then ' must be the normalized Shapley
value. By Lemma 6.5 and Theorem 5.1, ' is a b-weighted Shapley value where
b satis�es

P
m2M bm = n. Now for m 2 M � f1; ng, de�ne the M -game vm by

vm (S) = 1 if jSj > m, vm (S) = 1 if jSj = m and 1 =2 S, and vm (S) = 0
otherwise. Suppose v̂ is a zero-monotonic extension of vm. Given any coalition
S, there is a player i 2 S, and so fig � S � N . Since v̂ is zero-monotonic,
0 = vm (fig) � v̂ (S) � vm (N) = 1. If jSj < m, then by adding some players,
including player 1, to S, we can construct a coalition T satisfying S[f1g � T and
jT j = m. So, 0 � v̂ (S) � vm (T ) = 0 which implies v̂ (S) = 0. If jSj > m, then by
removing some players, including player 1, from S, we can construct a coalition
R satisfying R � S�f1g and jRj = m. So, 1 � v̂ (S) � vm (R) = 1 which implies
v̂ (S) = 1. Thus, v̂ is uniquely determined to be v̂ (S) = 1 if jSj > m, v̂ (S) = 1 if
jSj = m and 1 =2 S, and v̂ (S) = 0 otherwise. Clearly, v̂ is zero-monotonic, and so
vm 2 
M . Player 1 is null in v̂ and so is null in vm. Since ' =  b is subsidy free,
0 =  b1 (v

m) = 1
n
(1� bm) [by formula 3.1]. Hence, bm = 1 for all m 2M � f1; ng.

Since we already have that bn = 1 and
P

m2M bm = n, it follows that ' is the
normalized Shapley value.
Suppose now that M = f1; k; k + 1; :::; l; ng where 1 � k � l � n. By theorem

3.1, the normalized Shapley value is linear and symmetric. We now show that
the normalized Shapley value � is subsidy free. Suppose player i is null in w 2

M . We must show that � i (w) = 0. Note that for zero-monotonic M -games,
player i is null in w implies player i is null in the zero normalization �w. Since
� is formulation independent, � i (w) = 0 if � i ( �w) = 0: Hence, we may assume
that w is zero-normalized. Consider the N -game ŵ de�ned by ŵ (S) = w (N) if
n � jSj > l, ŵ (S) = w (S) if l � jSj � k, and ŵ (S) = 0 if k > jSj � 1. Since
w 2 
M , it follows that ŵ is a zero-monotonic extension of w. Since player i
is null in w, player i is null in ŵ. We now consider the marginal contributions
w (S) � w (R) where i 2 S, jSj 2 M , R � S � fig, and jRj = � (jSj). If jSj = 1,
then w (S) = w (fig) = 0 [since w is zero-normalized] = w (�) = w (R). If
jSj = k > 1, then w (S) = ŵ (S) = ŵ (S � fig) [since i is null in ŵ] = 0 = w (R).
If jSj 2 fk + 1; k + 2; :::; lg, then w (S) = ŵ (S) = ŵ (S � fig) [since i is null in ŵ]
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= w (S � fig) = w (R). If jSj = n > l, then w (S) = ŵ (N) = ŵ (N � fig) [since
i is null in ŵ] = w (N). Thus, the marginal contributions all equal zero. Since
� (w) =  (w) when w is zero-normalized, formula 2.2 implies that � i (w) = 0.
Therefore, the normalized Shapley value � is subsidy free.
Suppose now that M 6= f1; k; k + 1; :::; l; ng for all integers k and l satisfying

1 � k � l � n. Then there exist k; l 2 M satisfying 1 < k < l � 1 < n � 1 and
k < m < l implies m =2M . De�ne the M -game w by

w (S) =

8>>>>>>>>>><>>>>>>>>>>:

2, if jSj > l and jSj 2M
2, if jSj = l and 1 =2 S
2, if jSj = l, 1 2 S, and n 2 S
1, if jSj = l, 1 2 S, and n =2 S
2, if jSj = k, 1 =2 S, and n 2 S
1, if jSj = k, 1 =2 S, and n =2 S
0, if jSj = k and 1 2 S
0, if jSj < k and jSj 2M

Suppose ŵ is a zero-monotonic extension of w. If l < jSj < n, then players can be
removed from S to construct a coalition R � S�f1g satisfying jRj = l. Since ŵ is
a zero monotonic extension of w, it follows that 2 = ŵ (R) � ŵ (S) � ŵ (N) = 2.
If k < jSj < l and n 2 S, then players can be removed from S to construct a
coalition R � S � f1g satisfying jRj = k and n 2 R, and players can be added to
S to construct a coalition T satisfying jT j = l and S[f1; ng � T . Since ŵ is zero-
monotone and an extension of w, it follows that 2 = ŵ (R) � ŵ (S) � ŵ (T ) = 2. If
k < jSj < l and n =2 S, then players can be removed from S to construct a coalition
R � S � f1; ng satisfying jRj = k, and players can be added to S to construct a
coalition T � S [ f1g satisfying jT j = l and n =2 T . Since ŵ is a zero monotonic
extension of w, it follows that 1 = ŵ (R) � ŵ (S) � ŵ (T ) = 1. If jSj < k, choose
a player i 2 S and a coalition T satisfying S [ f1g � T and jT j = k. Since ŵ is a
zero monotonic extension of w, it follows that 0 = ŵ (fig) � ŵ (S) � ŵ (T ) = 0 .
Thus, ŵ is uniquely de�ned by

ŵ (S) =

8>>>><>>>>:
2, if jSj > l
2, if k < jSj < l and n 2 S
1, if k < jSj < l and n =2 S
0, if jSj < k
w (S) , if jSj 2M

Clearly, ŵ is zero-monotone, so w 2 
M . Clearly, player 1 is null in ŵ and so
in w. Since ' is subsidy free, 0 = '1 (w) = � 1 (w) [by �rst paragraph of proof]
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=  1 (w) [since w (fig) = 0 for all i 2 N ] = 2
n
+ 1

n

�
n�1
l�1
��1 �

2
�
n�2
l�2
�
+
�
n�2
l�1
��
�

1
n

�
n�1
l

��1
2
�
n�1
l

�
� 1

n

�
n�1
k

��1 �
2
�
n�2
k�1
�
+
�
n�2
k

��
[using formula 2.1] = l�1�k

n(n�1) [by straight-

forward but tedious algebra] 6= 0. This contradiction (0 6= 0) implies that there is
no linear, symmetric, and subsidy free allocation method on 
M .

We now consider a class of games in which the size of the coalition is at least
as important as the composition of the coalition in determining its worth. The
N -game w is size monotonic if its zero normalization �w satis�es �w (R) � �w (S) for
all coalitions R and S satisfying jRj < jSj. Note that uR;N is size monotonic only
if jRj 2 fn� 1; ng, and so the class of size monotonic M -games is not unanimity
proper unless M = fn� 1; ng. Yet, we obtain the best possible result: existence
of a unique linear, symmetric, and subsidy free allocation method for all possible
M containing 1.

Theorem 6.7. Suppose the set of known coalition sizes M contains 1, and 
 is
the collection of size monotonic games. The unique linear, symmetric and subsidy
free allocation method on 
M is the reduced Shapley value.

Proof. Suppose ' is a linear, symmetric, and subsidy free on 
M . By Theorem
3.1, ' is a b-weighted Shapley value. Now for m 2 M � fng, de�ne the M -game
vm by vm (S) = 1 if jSj > m, vm (S) = 1 if jSj = m and 1 =2 S, and vm (S) = 0
otherwise. It is easily seen that vm has a unique size monotonic extension, and
player 1 is null in the extension and vm. Since ' =  b is subsidy free, 0 =
 b1 (v

m) = 1
n
(1� bm) [by formula 3.1]. Hence, bm = 1 for all m 2M � fng. Since

we already have that bn = 1, it follows that ' is the reduced Shapley value.
By Theorem 3.1, the reduced Shapley value  is linear and symmetric. We

now show that  is subsidy free. Suppose player i is null in w 2 
M . Let cm =
max fw (R) : jRj = mg for all m 2 M . Recall � (s) = max f0;m 2M : m < sg.
Consider the N -game ŵ de�ned by ŵ (S) = w (S) if jSj 2 M , and ŵ (S) = c�(jSj)
if jSj =2 M . Clearly, ŵ is a size monotonic extension of w. Since player i is
null in w, player i must be null in ŵ. Suppose R and S are coalitions satisfying
i 2 S, jSj 2 M , R � S � fig, and jRj = � (jSj). If jRj = jSj � 1, then w (S) =
ŵ (S) = ŵ (S � fig) = ŵ (R) = w (R). If jRj < jSj � 1, then w (S) = ŵ (S) =
ŵ (S � fig) = c�(jSj) = ŵ (R [ fig) = ŵ (R) = w (R). In either case, the marginal
w (S) � w (R) = 0. Now by formula 2.2, it follows that  i (w) = 0. Thus,  is
subsidy free.

For an unspeci�ed cost allocation problem, the most reasonable class of games
to consider are the superadditive ones. Recall that w is superadditive if w (R) +
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w (S) � w (R [ S) for all disjoint coalitions R and S. One way for disjoint coali-
tions to \cooperate" would be for each to work independently, and so the savings
obtained by the union of the two disjoint coalitions should be at least the sum
of the savings each coalition obtains separately. The next theorem characterizes
the linear, symmetric, and subsidy free allocation methods for unanimity proper
classes of superadditive games.

Theorem 6.8. Suppose the set of known coalition sizes M contains 1 and n� 1,
and 
 is the collection of superadditive games. If M = f1; l; l + 1; :::; ng where
2 � l � n � 1, then the unique linear, symmetric and subsidy free allocation
method on 
M is the normalized Shapley value. Otherwise, there is no linear,
symmetric, and subsidy free allocation method on 
M .

Proof. Suppose M contains 1 and n � 1. Let k and l satisfy 1 � k, k + 2 �
l � n � 1, k 2 M , k < m < l implies m =2 M , and l � m � n implies m 2 M .
Suppose ' is a linear, symmetric, and subsidy free allocation method on 
M . By
condition (2) of Lemma 6.4 and Theorem 6.2, ' is a b-weighted Shapley value
where b satis�es br =

�
n
r

�
�
P
m2M
m>r

�
m�1
r�1
�
bm for all r 2 M . By the same argument

as used in the proof of corollary 6.3, it follows that bn = bn�1 = ::: = bl = 1 and
bk =

�
l�1
k

�
. If k = 1, then ' is the normalized Shapley value, and we must show

that ' = � is subsidy free. If k > 1, then we must show that ' is not subsidy
free, which we will do in two cases: k � n

2
and n

2
> k > 1.

Suppose k = 1. We will show that ' = � is subsidy free. Suppose player i
is null in w 2 
M . We must show that � i (w) = 0. Note that for superadditive
M -games, player i is null in w implies player i is null in the zero normalization
�w. Since � is formulation independent, � i (w) = 0 if � i ( �w) = 0: Hence, we may
assume that w is zero normalized. Consider the N -game ŵ de�ned by ŵ (S) =
w (S) if jSj � l, and ŵ (S) = 0 if jSj < l. Clearly, ŵ is a superadditive extension
of w, and so player i is null in ŵ. Hence, w (S) = w (S � fig) for all S satisfying
jSj > l, and w (S) = ŵ (S � fig) = 0 if jSj = l and i 2 S. Now using formula 3.1
with the bm as de�ned above, we obtain � i (w) = 0. Thus, � is subsidy free.
Suppose k � n

2
. We now show that ' is not subsidy free. De�ne the M -game

v by v (S) = 1 if jSj = l; l+ 1; :::; n, v (S) = 1 if jSj = k and n =2 S, and v (S) = 0
otherwise. Suppose v̂ is a superadditive extension of v. If jSj < k, then there is a
coalition T satisfying S[fng � T and jT j = k. Because v̂ is superadditive and zero
normalized, it follows that 0 =

P
i2S v̂ (fig) � v̂ (S) = v̂ (S) +

P
i2T�S v̂ (fig) �

v̂ (T ) = 0, and so v̂ (S) = 0. If jSj > k, then there is a coalition R satisfying
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R � S � fng and jRj = k. Because v̂ is superadditive and zero normalized,
it follows that 1 = v̂ (R) +

P
i2S�R v̂ (fig) � v̂ (S) = v̂ (S) +

P
i2N�S v̂ (fig) �

v̂ (N) = 1, and so v̂ (S) = 1. It is easy to see that v̂ is superadditive, and so v
has a unique superadditive extension. Player n is null in v̂, and so player n is
null in v. Nonetheless, using formula 3.1 with the bm as de�ned above, we obtain
'n (v) =

1
n

�
1�

�
l�1
k

��
6= 0 [since l � 1 > k]. Hence, ' is not subsidy free.

Suppose n
2
> k > 1. We will show that ' = � is not subsidy free. De�ne

the M -game v by v (S) = 1 if jS \ f1; 2; :::; 2k � 1gj � k, and v (S) = 0 other-
wise. Suppose v̂ is a superadditive extension of v. If jS \ f1; 2; :::; 2k � 1gj � k,
then there is a coalition R satisfying R � S \ f1; 2; :::; 2k � 1g and jRj = k.
Because v̂ is superadditive and zero normalized, it follows that 1 = v̂ (R) +P

i2S�R v̂ (fig) � v̂ (S) = v̂ (S) +
P

i2N�S v̂ (fig) � v̂ (N) = 1, and so v̂ (S) = 1.
If jS \ f1; 2; :::; 2k � 1gj < k, then j(N � S) \ f1; 2; :::; 2k � 1gj � k which im-
plies v̂ (N � S) = 1 by previous work. Because v̂ is superadditive and zero nor-
malized, it follows that 0 = v̂ (N) � v̂ (N � S) � v̂ (S) �

P
i2S v̂ (fig) = 0,

and so v̂ (S) = 0. It is easy to see that v̂ is superadditive, and so v has a
unique superadditive extension. Player n is null in v̂, and so player n is null
in v. Nonetheless, using formula 3.1 with the bm as de�ned above, we obtain

'n (v) =
1
n

��
n�1
l�1
��1

q �
�
l�1
k

��
n�1
k

��1�2k�1
k

��
where q is the number of coalitions of

size l containing player n and at least k players from f1; 2; :::; 2k � 1g. After some
algebra, we obtain 'n (v) =

1
n

�
n�1
l�1
��1 �

q �
�
2k�1
k

��
n�1�k
l�1�k

��
. Now

�
2k�1
k

��
n�1�k
l�1�k

�
is

the number of ways of �rst coloring k players from f1; 2; :::; 2k � 1g blue and then
coloring player n and l� k� 1 of the other n� k players red. Each such coloring
(by combining the blue and red colored players) results in a coalition of size l
containing player n and at least k players from f1; 2; :::; 2k � 1g. Because there
are more distinct colorings than there are resulting coalitions,

�
2k�1
k

��
n�1�k
l�1�k

�
> q,

and so 'n (v) < 0. Hence, ' is not subsidy free.

The only general result for superadditive games when 1 2 M but n � 1 =2 M
known to the author is that if a linear, symmetric, and subsidy free allocation
method exists, then it is unique. The proof uses the same games and arguments
as in the last two cases of the proof of Theorem 6.8. Sometimes the de�ned
allocation method is subsidy free, and other times it is not. Although a general
result is not yet available, it is useful to consider one example.

Example 6.9. Let the set of known coalition sizes M = f1; 2; 5g, and 
 be the
collection of superadditive games. Then the unique linear, symmetric and subsidy
free allocation method on 
M is the b-weighted Shapley value satisfying b5 = 1
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and b1 = b2 = 2. The somewhat tedious proof is left to the reader. Notice that
this allocation method is neither the reduced or normalized Shapley value.

For our last characterization, we consider the class of convex games. The N -
game w is convex if w (R) + w (S) � w (R [ S) + w (R \ S) for all coalitions R
and S. It can be shown that w is convex if and only if w (R) � w (R� fig) �
w (S)� w (S � fig) for all coalitions R � S. Hence, convex games are useful for
modeling situations in which there are increasing returns to scale. Unfortunately,
linear, symmetric, and subsidy free allocation methods do not exist for useful
cases.

Theorem 6.10. Suppose the set of known coalition sizes M contains 1, and 
 is
the collection of convex games. If M = f1; ng or M = N , then the unique linear,
symmetric, and subsidy free allocation method on 
M is the normalized Shap-
ley value. Otherwise, there is no linear, symmetric, and subsidy free allocation
method on 
M .

Proof. The conclusion for when M = N follows from Corollary 6.3. Suppose
M = f1; ng and ' is a linear, symmetric, and subsidy free allocation method
on 
M . By condition (3) of Lemma 6.4 and Theorem 6.2, ' is the normalized

Shapley value: 'i (w) = w (fig) + 1
n

�
w (N)�

P
j2N w (fjg)

�
. By Theorem 3.1,

the normalized Shapley value is linear and symmetric. We now show that it is
subsidy free. Suppose player i is null in w. De�ne ŵ by ŵ (S) =

P
j2S w (fjg) for

all S 6= N . Clearly, ŵ is a convex extension of w, and so player i is null in ŵ. Hence,
w (fig) = ŵ (fig) = 0 and w (N) = ŵ (N) = ŵ (N � fig) =

P
j2N�fig ŵ (fjg) =P

j2N ŵ (fjg) =
P

j2N w (fjg). Substitution of these results back into the formula
for ' yields 'i (w) = 0.
For the remainder of the proof, suppose M 6= f1; ng and M 6= N . We will

show that there is no linear, symmetric, and subsidy free allocation method on

M . On the contrary, suppose ' is a linear, symmetric, and subsidy free allocation
method on 
M . We will derive a contradiction by de�ning anM -game w in which
player n is null but 'n (w) 6= 0.
By condition (3) of Lemma 6.4 and Theorem 6.2, ' is the b-weighted Shapley

value satisfying br =
�
n
r

�
�
P
m2M
m>r

�
m�1
r�1
�
bm for all r 2 M . In particular, if k � 1

and k + 1; k + 2; :::; n 2 M , then by the same argument used in the proof of
Corollary 6.3, it follows that 1 = bn = bn�1 = ::: = bk+1. So, ' (w) =  (w) if
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w (S) = 0 for all S satisfying jSj 2 M and jSj � k. Alternatively, if k 2 M and
k + 1; k + 2; :::; n� 1 =2M , then bn = 1 and bk =

�
n
k

�
�
�
n�1
k�1
�
=
�
n�1
k

�
.

Consider the special case n � 1 2 M . Since M 6= N , there exists an inte-
ger k satisfying 1 < k < n � 1, k =2 M , and k < m � n implies m 2 M .
De�ne the M -game w by w (S) = 1 if f1; 2; :::; kg � S, and w (S) = 0 other-
wise. Suppose ŵ is a convex extension of w, and S is any coalition. We will
show what ŵ (S) must be. Choose i 2 S. Then 0 = w (fig) = ŵ (fig) �
ŵ (S) � ŵ (N) = w (N) = 1 which implies 0 � ŵ (S) � 1. If jSj < k,
then by adding players to S, we can construct a coalition T satisfying S � T ,
jT j = k + 1, and f1; 2; :::; kg * T ; hence, ŵ (S) � ŵ (T ) = w (T ) = 0, and so
ŵ (S) = 0. Now ŵ (f1; 2; :::; kg) � ŵ (f1; 2; :::; k; k + 1g)+ ŵ (f1; 2; :::; k; k + 2g)�
ŵ (f1; 2; :::; k + 2g) = w (f1; 2; :::; k; k + 1g) + w (f1; 2; :::; k; k + 2g)�
w (f1; 2; :::; k + 2g) = 1+1� 1 = 1, and so ŵ (f1; 2; :::; kg) = 1. Finally, if jSj = k
and S 6= f1; 2; :::; kg, then ŵ (S) � ŵ (N)+ŵ (S \ f1; 2; :::; kg)�ŵ ((N � S) [ f1; 2; :::; kg) =
1 + 0 � 1 = 0, and so ŵ (S) = 0. Therefore, ŵ must be the unanimity game
on f1; 2; :::; kg. Clearly, player n is null in ŵ and so in w. Since ' is sub-
sidy free, 'n (w) = 0. By a result in the previous paragraph, 0 = 'n (w) =
 n (w) =  n

�
uR;M � v

�
[where R = f1; 2; :::; kg and v is de�ned by v (R) = 1

and v (S) = 0 otherwise] =  n
�
uR;N � v

�
[since

�
uR;N � v

�
(S) = 0 if jSj =2 M ]

=  n
�
uR;N

�
�  n (v) [since  is linear] = 0 � 1

n

�
n�1
k

��1
[since n is null in uR;N

and using formula 2.1] 6= 0. This contradiction implies that there is no linear,
symmetric, and subsidy free allocation method.
Consider the remaining special case n�1 =2M . SinceM 6= f1; ng, there exists

an integer k 2M such that 2 � k � n� 2 and k < m < n implies m =2M . De�ne
the M -game w by

w (S) =

8>><>>:
n� k, if S = N
1, if jSj = k and n =2 S
0, if jSj = k and n 2 S
0, if jSj < k and jSj 2M

Suppose ŵ is a convex extension of w, and S is any coalition. We will show what
ŵ (S) must be by considering two cases. First, suppose jSj < k. Choose a player
i 2 S and a coalition T satisfying S [ fng � T and jT j = k. Hence, 0 = w (fig)
= ŵ (fig) � ŵ (S) � ŵ (T ) = w (T ) = 0, and so ŵ (S) = 0. Second, suppose
jSj > k. Choose a player i 6= n and coalition R satisfying i 2 R � S � fng and
jRj = k. So, ŵ (R) = w (R) = 1, and ŵ ((S � fig) \R) = ŵ (R� fig) = 0 since
jR� figj < k. Since ŵ is convex, ŵ (S) = ŵ ((S � fig) [R) � ŵ (S � fig)+
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ŵ (R)� ŵ ((S � fig) \R) = ŵ (S � fig)+1. Repeating this argument l = jSj�k
times, we obtain ŵ (S) � ŵ (R) + l where jRj = k and n 2 R if and only if n 2 S.
Hence, ŵ (S) � 1 + l = jSj � k + 1 if n =2 S, and ŵ (S) � 0 + l = jSj � k if
n 2 S. Applying this argument to S = N , we obtain that ŵ (N) � jN j � k.
Since ŵ (N) = w (N) = n � k, it follows that all the nonstrict inequalities must
be equalities. Thus, ŵ (S) = jSj � k + 1 if n =2 S, and ŵ (S) = jSj � k if n 2 S.
Combining the results of the two cases, we obtain

ŵ (S) =

8<:
jSj � k + 1, if jSj � k and n =2 S
jSj � k, if jSj � k and n 2 S
0, if jSj < k

Clearly, player n is null in ŵ and so in w. Since ' is subsidy free, 'n (w) = 0.
By a result in the second paragraph of the proof, 'n (w) =  bn (w) where bn = 1

and bk =
�
n�1
k

�
. Hence, 0 = n�k

n
� 1

n

�
n�1
k

��
n�1
k

��1 jfS : jSj = k and n =2 Sgj =
n�k
n
� 1

n

�
n�1
k

�
� n�k

n
� n�1

n
= �k�1

n
< 0. This contradiction implies that there is

no linear, symmetric, and subsidy free allocation method.

7. Conclusion

The practioner must exercise caution in choosing an allocation method for par-
tially de�ned cooperative games. The axioms of linearity, symmetry, and subsidy
freedom, which uniquely determine the Shapley value on fully de�ned cooperative
games, characterize di�erent allocation methods (sometimes nonuniquely) or no
allocation method depending upon the class of partially de�ned cooperative games
under consideration. The axioms of symmetry and margin monotonicity, which
uniquely determine the Shapley value again on fully de�ned cooperative games,
characterize an allocation method that usually does not satisfy subsidy freedom.
The most positive results suggest the use of the normalized Shapley value for
zero monotonic or superadditive games and to determine coalitional worths of the
singletons and a block of the largest coalitions.
In the example examined in Section 2, we found that no zero monotonic or

superadditive extension had a Shapley value equal to the reduced (or normalized)
Shapley value. Notice that no linear, symmetric, and subsidy free allocation
method exists for the example's set of known coalition sizes. Conversely, for all
classes of partially de�ned cooperative games for which we have found a unique
linear, symmetric, and subsidy free allocation method, extensions always exist for
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which the Shapley value allocates the same way as the characterized allocation
method. Whether this relationship holds in general is an open question. The
nonexistence of linear, symmetric, and subsidy free allocation methods for certain
classes of games suggests that the linearity condition is too strong.
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