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Abstract. In games with incomplete information, more information to a
player implies a broader strategy set for this player in the normal form game,
hence that more knowledge implies more ability. We prove that, on the other
hand, given two normal form games G and G′ such that players in a subset J
of the set of players possess more strategies in G′ than in G, there exist two
games with incomplete information with normal forms G and G′ such that
players in J are more informed in the second than in the first. More ability
can then be rationalized by more knowledge, and our result thus establishes
the formal equivalence between ability and knowledge.

1. Introduction

“Ability” refers to the possibility of an agent to achieve particular actions.
“Knowledge” refers to the information possessed by the agent. For instance, “run-
ning 100 m in less than 12 sec.” is an ability, whereas “knowing the password re-
quired to log into computer account X” refers to some knowledge. Some skills can
be described either in terms of knowledge, or as abilities, as for instance “prepara-
tion of a particular recipe”, or “piloting a plane”. In fact, the connections between
knowledge and ability are strong, and the aim of this short paper is to clarify these.

Different levels of ability for a player can be represented in normal form games. If
an agent possesses more strategies in game G than in G′, this expresses more ability
for this agent in G than in G′. Knowledge is naturally represented by information
structures. Given two information structures E and E′, a player has more knowledge
in E than in E′ when his information partition is finer in E than in E′.

An information structure together with a payoff specification with incomplete
information define a game with incomplete information, that can be represented in
normal form. It is well known that finer information implies larger strategy sets
in the associated normal form games. Indeed, agents having more knowledge can
use more information in their decision making, which results in more ability. For
instance, when a firm discovers the knowledge of some technology, this results in a
larger production set.

The aim of this paper is to prove the equivalence of ability and knowledge.
Since it is already well known that more knowledge implies more ability, we show a
converse to this proposition, namely that more ability can always be rationalized as
the consequence of more knowledge. More precisely, given two finite normal form
games G and G′, and assuming that players in a subset J of the set of players have
more ability in G′ than in G, we construct two information structures E and E′ and
a payoff specification γ, such that:

• E′ is more informative than E for players in J ,
• The normal form game associated with E and γ is G
• The normal form game associated with E′ and γ is G′

The proof of this result relies on the following logic. Assume that in game G′,
player i possesses a strategy a which is not available in G. We try to explain this
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extra strategy by extra knowledge of player i in games with incomplete information.
To do this, we construct a game in which player i, in order to play strategy a, must
announce a password, which is initially uniformly drawn in the continuum [0, 1]. If
i is informed of the value of the password, i has the possibility to announce the true
value whatever it is, hence to achieve a with probability 1. If i has no information of
the password, the announced value will match the password with zero probability,
hence a is not an available action to i. In this reasoning, the ability to play a
is rationalized as the consequence of the knowledge of the adequate information.
Our proof relies on a continuum space of states of nature (the passwords in our
previous example). We show in section 4.3 that this assumption is essential, where
we provide a counter example when this space is finite or countable.

Our result demonstrates that, without imposing any further structure on the
nature of knowledge of the players, the only predictable effect of an increase in
information to some player is an increase of the strategy set of this player in the
corresponding normal form game.

The equivalence of knowledge and information gives a better understanding of
the question of value of information. It is known at least since Hirshleifer’s [Hir71]
work that the value of information is not always positive in economic situations,
neither for the agent for receiving more information, nor for society as a whole. As
pointed out by Neyman [Ney91], the reason why information can have a negative
value is that other players are aware of this extra information. More information
is always beneficial to the agent if other agents are ignoring of it.

Some classes of games are known to show either social or private positive value
of information. In decision problems (one player games), the value of information
is positive if the agent is a Bayesian and expected utility maximizer. Indeed, more
strategies are always beneficial, as the only choice to be made is the choice of
the utility maximizing strategy. Works by Wakker [Wak88] and Chassagnon and
Vergnaud [CV99] show that value of information can be negative for a non expected
utility maximizer. For more than one player, the logic of socially positive value
of information extends to games of common interests. Bassan, Gossner, Scarsini
and Zamir [BSGZ03] show that the common interest condition is necessary and
sufficient for a property of socially positive value of information to hold. The private
value of information is positive in purely antagonistic zero-sum games, where finer
information, or a larger strategy set, can only be beneficial to the player receiving
it, and harmful for the other player. Gossner and Mertens [GM01] and Lehrer
and Rosenberg [LR03a] study the value of information in these games. For general
games, examples of situations with negative value of information can be found
e.g. in [BSZ97] or in [KTZ90]. Lehrer and Rosenberg [LR03b] study the maps from
partitional information structures to values of games that arise as values of games
with incomplete information.

Blackwell [Bla51], [Bla53] shows that a statistical experiment yields a better
payoff than another in every decision problem if and only if it is more informative.
Gossner [Gos00] characterizes information structures that induce more correlated
equilibrium distributions than others in every game. This order between informa-
tion structures is compatible with the social value of information in all games.

Our result allows to view the value of more information as the value of a larger
strategy set. Of course, such a value cannot be positive in general. For instance,
by deleting the “defect” strategy for both players in the prisoner’s dilemma, one
transforms a game with defection as unique Nash equilibrium into a game with
cooperation as unique Nash outcome. Hence, more strategies for both players is
harmful for them both. In other words, committing not to use some information
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is formally equivalent to committing not to use certain strategies, and such a com-
mitment may have positive effects. We introduce the comparison concepts between
normal form games in section 2, and between information structures in section
3. We establish the connexion between the two in section 4, and briefly discuss
applications to the value of information in section 5.

2. Normal form games

An arbitrary set I of players is fixed. If (Xi)i is a family of sets, X and X−i denote
ΠiXi and Πj 6=iXj respectively. For a family of maps αi : Xi → Yi, α : X → Y is
defined by α(x) = (αi(xi))i.

A game in normal form G = ((Si), g) is given by a strategy space Si for each
player i and by a payoff function g : S → RI . A game G = ((Si)i, g) is a finite game
in mixed strategies when each Si is the space of probabilities over a finite (pure)
actions space Ai, and when g is multilinear on S. Strategies si, s

′
i ∈ Si are payoff

equivalent in G whenever for every s−i ∈ S−i, g(si, s−i) = g(s′i, s−i).

2.1. Equivalent games. We now define equivalence between games.

Definition 1. Given two games G and G′ in normal form, G is equivalent to G′,
and we note G ∼ G′, when there exists a family of mappings ψ = (ψi)i, ψi : Si → S′i
such that:

(1) g = g′ ◦ ψ,
(2) Every element of S′i is payoff equivalent to an element of Imψi

Proposition 1. ∼ is an equivalence relation.

Proof. The relation ∼ is clearly reflexive since the identity from G to itself does the
job. We prove ∼ is symmetric. Assume G ∼ G′, and let ψ be the corresponding
family of mappings. For s′i ∈ S′i, select t′i ∈ Imψi payoff equivalent to s′i and select
ψ′i(s

′
i) ∈ ψ−1(t′i). Then, for every s′ ∈ S′, g(ψ′(s′)) = g′(ψ(ψ′(s′))) = g′(s′) so

g ◦ ψ′ = g′. Now, for si ∈ Si let ti = ψ′i(ψi(si)) ∈ Imψ′i. Then, ψi(ti) = ψi(si) and

g(ti, s−i) = g′(ψi(si), ψ−i(s−i)) = g(si, s−i)

so that si and ti are payoff-equivalent. To prove that ∼ is transitive, assume G ∼ G′

and G′ ∼ G′′, and ψ = (ψi)i from G to G′ and ψ′ = (ψ′i)i from G′ to G′′ be the
corresponding mappings. It is immediate that ψ′′ = (ψ′′i )i with ψ′′i = ψ′i ◦ ψi from
G to G′′ verifies the requested properties. ¤

The notion of equivalence between games is closely related to that of reduced
normal forms, indeed we have:

Proposition 2. Any game G is equivalent to its reduced normal form.

Proof. The family (ψi)i that maps any strategy si to its equivalence class verifies
the condition of definition 1. ¤

Example 1. G and G′ are two finite games in mixed strategies given by the payoff
matrices:

l m r
t 1, 0 5, 2 3, 1
b 5, 0 3, 6 4, 3

G

L R
T 1, 0 5, 2

M 5, 0 3, 6
B 3, 0 4, 4

G′
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Define ψ1 and ψ2 on pure strategies by ψ1(t) = T , ψ1(b) = M , ψ2(l) = L,
ψ2(m) = R, ψ2(r) = 1

2L + 1
2R, and extend them linearly to the mixed strategy

spaces. Then, g = g′ ◦ ψ, and to see that every strategy in G′ is payoff equivalent
to a strategy in the image of ψ, note that B is payoff equivalent to 1

2T + 1
2M .

2.2. Restrictions of a games. Deleting elements of the strategy space for player
i transforms a game G into a game G′ in which allows less strategic choices for
player i. This idea for any subset of the set of players is captured by the definition
of a restriction below.

Definition 2. G is a restriction for players in J of G′, and we note G ⊆J G′,
when there exists a family of mappings ϕ = (ϕi)i, ϕi : Si → S′i such that:

• g = g′ ◦ ϕ,
• For i 6∈ J , every element of S′i is payoff equivalent to an element of Imϕi.

Example 2. Consider the finite games in mixed strategies G and G′ given by the
payoff matrices:

l R
t 1,−1 −1, 1
b 0, 0 0, 0

G

L R
T 1,−1 −1, 1
B −1, 1 1,−1

G’
Define ϕ1 and ϕ2 on pure strategies by ϕ(t) = T , ϕ(b) = 1

2T + 1
2B, ϕ(l) = L,

ϕ(r) = R and extend them linearly to the mixed strategy spaces. Then, ϕ, verifies
the properties of the definition with J = {1}, and so G ⊆{1} G′. In fact, G is a
version of G′ in which player 1 is restricted to play mixed strategies that put weight
no more than 1

2 on B.

2.3. Restrictions and equivalences. The aim of this section is to address the
following question: Assume that G is a restriction (for any subset J of the players,
or more generally for J = I) of G′, and that G′ is a restriction of G. Can we
infer that G and G′ are equivalent? Answering this question is not necessary for
establishing the formal equivalence of Ability and Knowledge, but we think it may
help understanding the concepts of equivalences and restrictions.

We first provide a counter-example to this conjecture for general games.

Example 3. We consider a version of an “iron arm” fight in which player’s
strengths may vary. There are 2 players, 1 and 2. In G, player i’s chooses some
energy put in the fight, ai ∈ [0, 1]. The payoff to player i is 1 is ai > a3−i (i wins
the fight), 0 if ai = a3−i (draw), and −1 is ai < a3−i (i loses the fight). The game
G′ is the same as G except that player 1’s strategy set is [0, 2]. The game G′′ is
the same as G except that both player’s strategy sets are [0, 2]. Considering the
maps ψi : ai 7→ 2ai from [0, 1] to [0, 2] show that G and G′′ are equivalent. By the
definition of the games, G ⊆{1} G′ and G′ ⊆{2} G′′, hence G ⊆{1,2} G′ ⊆{1,2} G.
But G and G′ are not equivalent: indeed, player 1 has a strategy that guarantees a
win in G′, but not in G.

The previous counter example relies on infinite pure strategy spaces. We now
state a positive answer for finite games in mixed strategies.

Theorem 1. Assume that G and G′ are finite games in mixed strategies such that
G ⊆I G′ and G′ ⊆I G, then G ∼ G′.

We start with two lemmata.

Lemma 1. If G ∼ G′ ⊆J G′′ or G ⊆J G′ ∼ G′′ then G ⊆J G′′.
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Proof. It is immediate to check that the composition of an inclusion map and an
equivalence map is an inclusion map. ¤

Lemma 2. If G is finite game with no equivalent pair of pure strategies and φ =
(φi)i a family of maps such that g ◦ φ = g, then each φi is a permutation of Ai.

Proof. Proof : Let M be the Ai × A−i matrix with elements in RI defined by
mai,a−i = g(ai, a−i). Let S and T be the transition matrices over Ai and A−i

respectively given by sai,bi
= φ(ai)(bi) and ta−i,b−i

= φ(a−i)(b−i). The relation
g ◦ φ = g rewrites M = SM tT . Let k ∈ N be such that both Sk and T k are
transitions of aperiodic Markov chains, and let S∞ and T∞ denote the limits of the
sequences (Snk)n and (Tnk)n. We deduce from the above that M = S∞M tT∞. If
S∞ had two equal rows, then so would M , and player i would have two equivalent
pure strategies. Hence all rows of S∞ are distinct, which implies that S∞ and Sk

are the identity matrix and that S is a permutation matrix. ¤

Proof of theorem 1. From proposition 2 and lemma 1, it suffices to prove the the-
orem when G and G′ are reduced normal forms. Let ϕ and ϕ′ be the maps from
G to G′ and from G′ to G as in definition 2, and let φ = ϕ′ ◦ ϕ. Then g = g ◦ φ,
and by lemma 2 each φi is a permutation. For a′i ∈ A′i, let ai = φ−1

i (ϕ′i(a
′
i)), and

ã′i = ϕi(ai). Then ϕ′i(ã
′
i) = ϕ′i(ai), and for all a′−i ∈ A′−i,

g′(a′i, a
′
−i) = g(ϕ′i(a

′
i), ϕ

′
−i(a

′
−i)) = g(ϕ′i(ã

′
i), ϕ

′
−i(a

′
−i)) = g′(ã′i, a

′
−i)

Hence, a′i ∈ A′i is equivalent to ã′i = ϕi(ai), which implies a′i = ϕi(ai) since G′ is a
reduced normal form. Furthermore, a′i = ϕi(ai) implies ai = φ−1

i (ϕ′i(ai)), so that
ai ∈ Ai such that a′i = ϕi(ai) is unique. Each map ϕ′i is thus one-to-one from Ai

to A′i, and the inverse map is φ−1
i ◦ ϕ′i.

Let now s′i =
∑

a′i
λa′ia

′
i, and consider si =

∑
a′i

λa′iϕ
−1
i (a′i). Then

g′(ϕi(si), a′−i) = g′(ϕi(si), ϕ−i ◦ ϕ−1
−i (a

′
−i))

= g(si, ϕ
−1
−i (a

′
−i))

=
∑

a′i
λa′ig(ϕ−1

i (a′i), ϕ
−1
−i (a

′
−i))

=
∑

a′i
λa′ig

′(a′i, a
′
−i)

= g′(s′i, a
′
−i)

Hence, any s′i is equivalent to an element of the image of ϕi, so that ϕ verifies the
conditions of definition 1. G and G′ are then equivalent. ¤

3. Knowledge: Comparison of information structures

3.1. Description of information. K is a measurable space of states of nature.
An information structure is given by E = (Ω, E , P, (Ei)i, κ), where (Ω, E , P ) is a
probability space of states of the world, Ei is a sub σ-algebra of E that describes
the information of player i, and κ is a E-measurable application to K that describes
the state of the nature.

Definition 3. We say that E is less informative for players in J than E′, and we
note E ⊆J E′ when E can be obtained from E by replacing the σ-algebras E ′j by sub
σ-algebras Ej for j ∈ J .

Example 4. Choose Ω = K = {k1, k2} endowed with the discrete σ-algebra and
the uniform probability, and κ is the identity. Set E ′1 = E1 = E2 = {∅, Ω}, and
E ′2 the discrete σ-algebra. Then, player 1 is never informed of k, whereas player 2
knows k in E′ but not in E. We have E ⊆{2} E′.
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3.2. Games of incomplete information. For a given space of states of nature
K, a payoff specification is given by measurable spaces Xi and by a measurable
and bounded from above or below1 map γ : ΠiXi ×K → RI .

An information structure E and a payoff specification γ on the same space K de-
fine a normal form game G(E, γ) in which a strategy for player i is a measurable map
from Ei to Xi and payoffs are given by the relation gE,γ(f) = EP γ((fi)(ω), κ(ω)).

Example 5. Take up the information structures E and E′ of example 4, and let
X1 = {T,B}, X2 = {L,R}, and γ be given by the two payoff matrices:

L R
T 0, 0 1, 2
B 2, 0 0, 2

k = 1

L R
T 0, 1 1, 0
B 2, 1 0, 0

k = 2
In GE,γ the only strategies for i ∈ {1, 2} are the constant ones in Xi, and the

payoff matrix of this game is:
L R

T 0, 1
2 1, 1

B 2, 1
2 0, 1

GE,γ

In GE′,γ the strategies for player 1 are the constant strategies, and player 2 has
4 strategies. For instance LR is the strategy of player 2 that plays L if k = k1 and
R if k = k2. The payoff matrix of this game is

LL LR RL RR
T 0, 1

2
1
2 , 0 1

2 , 3
2 1, 1

B 2, 1
2 1, 0 1, 1

2 0, 1

GE′,γ

4. Relations between knowledge and ability

4.1. More knowledge implies more ability. We recall the well known fact that
more knowledge implies more ability.

Theorem 2. E ⊆J E′ implies GE,γ ⊆J GE′,γ .

Proof. Let Σi and Σ′i be the sets of measurable maps from (Ω, Ei) and (Ω, E ′i)
respectively to Xi. It is straightforward that the family of inclusion maps ψi from
Σi to Σ′i verifies the conditions of definition 2. ¤
Example 6. It is seen in the previous example that GE,γ ⊆J GE′,γ .

4.2. Question about a converse theorem. Given K, and two games in mixed
strategies such that G ⊆J G′, we address the existence of E, E′, and γ, such that

• GE,γ ∼ G;
• GE′,γ ∼ G′;
• E ⊆J E′.

4.3. A counter example if K is finite or countable. Let G and G′ be the
one-player finite games in mixed strategies:

B 0

G

T 1
B 0

G′

1These assumptions are to ensure that expected payoffs are well defined.
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Proposition 3. Consider the above games G and G′, and assume K is finite or
countable. There does not exist E, E′, and γ, such that

• GE,γ ∼ G;
• GE′,γ ∼ G′;
• E ⊆{1} E′.

Proof. We go by contradiction, and assume wlog. that (Ω, E ′) is K with the discrete
σ-algebra, E = {∅,K} and P (k) > 0 for all k. From the equivalence between G′

and GE′,γ , we deduce that min(xk)k

∑
P (k)g(xk, k) is well defined and has value 0.

Hence, for each k ∈ K let xk that minimizes g(xk, k). For every x ∈ X:
∑

k
P (k)g(x, k) ≥

∑
k
P (k)g(xk, k)

with strict inequality if there exists k such that g(x, k) > g(xk, k). By equivalence
of G and GE,γ ,

∑
k P (k)g(x, k) = 0 for every x. Hence, for every x, k g(x, k) =

g(xk, k). Then
∑

P (k)g(x′k, k) is independent of (x′k)k, so that the payoff function
of G′ must be identically 0. A contradiction. ¤

4.4. A positive result.

Theorem 3. Given two finite games in mixed strategies such that G ⊆J G′, there
exists K, E, E′, and γ, such that:

(1) GE,γ ∼ G;
(2) GE′,γ ∼ G′;
(3) E ⊆J E′.

Proof. We construct the information structures and the payoff specification, and
later verify the equivalences of games.

The information structures Let (Mi,Mi,mi) for i ∈ I and (Kj ,Kj , βj) for
j ∈ J be independent copies of [0, 1] endowed with the Borel sets and the Lebesgue
measure. Let (Ω, E , P ) be the product of these spaces Mi and Kj . The space K is
the product of the Kj ’s, and κ is the projection from Ω to K.

For every i ∈ I, Ei is generated by Mi on Ω. For j ∈ J , E ′j is generated by Mi

and Ki. For j 6∈ J E ′j = Ej . It is thus verified that E ⊆J E′.
Game and payoff specification Assume wlog. the Ai’s and A′i’s are disjoint.

For i ∈ I, let Xi = (Ai∪A′i)×K. We define an outcome function from X×K → X.
Let x = (xi)i∈I = ((ai)i∈I , (bi)i∈J) and k = (kj)j . For i 6∈ J , oi(x, k) = ai. For
j ∈ J , select a0

j ∈ Aj , and let

oj(x, k) =

{
aj if aj ∈ Ai or bj = kj

a0
j otherwise

This defines o = (oi)i : X ×K → X. We now define ϕ̃ : X → S′ by its coordinates
(ϕ̃i)i. If ai ∈ A′i, ϕ̃i(ai) is the unit mass at ai. It ai ∈ Ai, ϕ̃i(ai) = ϕ(ai). The
(measurable) payoff function with incomplete information is γ = g′ ◦ ϕ̃ ◦ o.

Verification of (2) To any strategy fi : (Ω, E ′i) → Xi we associate the prob-
ability ψ′i(fi) induced by P , fi, oi and ϕ̃i on A′i. A profile f = (fi)i of strategies
induces with P , o and ϕ̃ the product measure ψ′(f) on A′ that has marginals ψ′i(fi)
on A′i. Hence the corresponding payoff is

gγ,E′(f) = Eψ′(f)g
′ = g′((ψ′i(fi))i)

which is point (1) of definition 1 for G′. For point (2) of this definition applied
to G′, for every s′i ∈ S′i, let ai(ω) be a Mi-measurable random variable with
values in A′i and law s′i. Set bi(ω) = ki, and fi = (ai, bi) (E ′i measurable). Then
oi(ai(ω), bi(ω)) = ai(ω), and ψ′i(fi) = s′i. So, Imψ′i = S′i.

Verification of (1) We now define ψi(fi) ∈ Si for Ei-measurable fi.
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For i 6∈ J select for each s′i ∈ S′i an element ϕ−1
i (s′i) such that s′i is payoff

equivalent to ϕi(ϕ−1
i (s′i)) in G′. Let then ψi(fi) = ϕ−1

i (ψ′i(fi)).
For i ∈ J , note that fi being Ei measurable implies oi(fi(ω)) ∈ Ai P almost

surely. Let then ψi(fi) ∈ Si be the image of P by fi and o. Then ϕi(ψi(fi)) =
ψ′i(fi).

We deduce,

g(ψ(f)) = g′(ϕ(ψ(f))) = g′(ψ′(f)) = gγ,E′(f) = gγ,E(f)

where the first equality comes from g = g′ ◦ φ, the second from the equivalences in
G′ of ϕi(ψi(f)) with ψ′i(fi) for all i, next from the equivalences of G′ and Gγ,E′ , and
the last one from gγ,E′ = gγ,E on the domain of gγ,E. Hence point (1) of definition
1 for G′.

For point (2) of this definition, for every si ∈ Si, let ai(ω) be a Mi-measurable
random variable with values in Ai and law si. Set bi(ω) = 0 constant, and let fi Ei

measurable be given by fi = (ai, bi). Then oi(ai(ω), bi(ω)) = ai(ω), and ψi(fi) = si.
So, Imψi = Si. ¤

Remark that the constructed information structures E and E′ depend on J , but
not on the games G and G′. Note also that the payoff specification γ has the same
image as g′. In particular, γ is zero-sum game whenever g′ is, and a group of players
have common interests in γ whenever they do in g′. This leads us the the following
statement that strengthens theorem 3.

Theorem 4. For every subset J of players, there exist information structures E ⊆J

E′ such that for any two finite games in mixed strategies G ⊆J G′, there exists a
payoff specification γ that verifies:

(1) GE,γ ∼ G;
(2) GE′,γ ∼ G′;
(3) Imγ = Img′.

5. On the value of information

More information is beneficial in one player games, socially beneficial in games
with common interest, and privately beneficial for the player receiving it in zero-
sum games. These results can be seen as a consequence that a broader strategy
set is beneficial in these classes of games. On the other hand, many situations are
known in which more information to some player may hurt this player, or the group
of players. Theorem 3 can be used to construct such games with negative value of
information.

Example 7. Consider the games G and G′ given by the payoff matrices:
L

T 3, 3
M 2, 0

G

l r
t 3, 3 0, 4
b 2, 0 1, 1

G′

Both games are dominance solvable, with (3, 3) as unique Nash payoff in G, and
(1, 1) as unique Nash payoff in G′. Since G is a restriction for player 2 of G′, G is
equivalent to some GE,γ , and G′ to some GE,γ , with E ⊆{2} E′. We are then facing
a situation where the value of information is negative, since the better information
of player 2 in E′ has a negative effect on the Nash payoff for both players.

Along the same lines, it is possible to construct examples in which the value of
more information for player 1 is for instance positive for player 2, but negative for
player 1.
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