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Abstract

We study private-value auctions with a large number of bidders. We first calcu-
late asymptotic approximations of the equilibrium bids and the seller’s revenue in
first-price auctions, regardless of whether the bidders are symmetric or asymmetric,
risk-neutral or risk averse. We then show that with n bidders, the effects of risk
aversion and of asymmetry on the equilibrium bids and on the seller’s revenue are
only O(1/n?). Furthermore, it is demonstrated that first-price auctions with asym-
metric bidders or with risk averse bidders are O(1/n?) revenue equivalent to large
classes of standard auctions.

Keywords: Large auctions, asymmetric auctions, risk-averse bidders, asymp-

totic methods, revenue equivalence, collusion

*School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel, fibich@math.tau.ac.il

tDepartment of Industrial Engineering and Management, Faculty of Engineering Sciences, Ben-Gurion

University, P.O. Box 653, Beer-Sheva 84105, Israel, ariehg@bgumail.bgu.ac.il
'Department of Economics, Ben-Gurion University, P.O. Box 653, Beer-Sheva 84105, Israel, an-

ersela@bgumail.bgu.ac.il



1 Introduction

Many auctions, particularly those which have recently began to appear on the internet,
have a large number of bidders. The standard approach to study large auctions has
been to consider their limit as the number of bidders n approaches infinity.!. Using this
approach, it has been shown for quite general conditions that as n goes to infinity, the bid
approaches the true value, the seller’s expected revenue approaches the maximal possible
value, and the auction becomes efficient.? Most of the studies that adopted this approach,
however, do not provide the rate of convergence to the limit, i.e., a bound on the difference
between the limiting value and the value at a finite n. Therefore, it is not clear how large
n should be (5, 10, 100?) in order for the auction to be considered “large” (i.e., in order
for the limiting results obtained for n = oo to be applicable). Such rate of convergence
results were obtained by Satterthwaite and Williams (1989), who showed that the rate
of convergence of the bid to the true value in a double auction is O(1/m), where m
is the number of traders on each side of the market, and by Rustichini, Satterthwaite
and Williams (1994), who showed that the rate of convergence of the bid to the true
value in a k-double auction is O(1/m) and the corresponding inefficiency is O(1/m?).
In this study we go a step further and calculate explicitly the leading-order deviation of

the equilibrium bids and the revenue at a finite n from their limiting values, regardless

1This is the approach, for example, in Wilson (1976), Pesendorfer and Swinkels (1997), Kremer (1999),

Swinkels (1999)
2See, for example, Swinkels (2001) and Bali and Jackson (2001).



of whether bidders are symmetric or asymmetric, risk-neutral or risk-averse.> * We do
this by employing asymptotic and perturbation analysis tools. These powerful Applied
Mathematics techniques have been used with great success in the exact sciences over the
last several hundred years to analyze complex mathematical models, but have not been
applied to auction theory as well as to most branches of Economics.?

Since the pioneering work of Vickrey (1961) who established the revenue equivalence of
the classical private-value auctions (first-price, second-price, English, Dutch), a consider-
able research effort has been devoted to revenue ranking of different auction mechanisms.
Vickrey’s result was generalized twenty years later by the Revenue Equivalence Theorem
(Riley and Samuelson (1981) and Myerson (1981)) according to which the seller’s revenue
is the same for a wide class of private-value auctions with symmetric and risk-neutral bid-
ders. However, private value auctions are, in general, not revenue equivalent when bidders
are asymmetric (Marshall et al. (1994), Maskin (2000)) or risk-averse (Maskin and Riley
(1984), Matthews (1987)). As we mentioned, previous studies showed that under quite
general conditions, auctions become revenue equivalent as n approaches infinity. In this

work we prove a stronger result, namely, that independently of whether bidders are sym-

3Since the leading-order deviation is O(1/n), our asymptotic results are O(1/n?) accurate. Therefore,

they become valid at much smaller values of n than the limiting results, which are only O(1/n) accurate.

4Caserta and de Vries (2002) used extreme value theory to calculate the leading order correction to
the seller’s revenue in large auctions. Since the bidders in their model are symmetric and risk-neutral,

they were able to utilize the explicit formula for the revenue.

®In previous studies 3d perturbation analysis to analyze auctions with weakly asymmetric bidders
(Fibich and Gavious (2003), Fibich, Gavious and Sela, (2003)) and with weakly risk-averse bidders (Fibich,

Gavious and Sela, (2002)).



metric or asymmetric, risk-neutral or risk-averse, noncooperating or acting collusively, for
large classes of standard auctions the O(1/n) deviation of the revenue in a large auction
from the limiting revenue is also independent of the auction mechanism. In other words,
the revenue difference among large auctions is at most O(1/n?). This result implies that
revenue ranking of large auctions is probably more of academic interest than of practical
value.

The paper is organized as follows. In Section 2 we calculate asymptotic approxima-
tions to the equilibrium bids and to the seller’s revenue in large symmetric first-price
auctions, and show that regardless of whether the bidders are risk-neutral or risk-averse
the equilibrium bids have differences and generate differences in the seller’s revenue of only
O(1/n?). Then we show that all large k price auctions (k = 1,2,...) with risk-averse or
risk-neutral bidders are O(1/n?) revenue equivalent. In Section 3 we calculate approxima-
tions to the equilibrium bids in large asymmetric first-price auctions. As was pointed out
by Swinkels (2001), while in large asymmetric auctions “players’ values may come from
very different distributions, their environments, and thus their optimal behavior with any
given valuation, may be very similar”. Since the environment (competition) that players
i and j face differs by one out of n — 1 players (i is facing j but not i and vice versa), one
could expect the resulting asymmetry among the bids to be O(1/n). However, our results
show that in a first price auction with n asymmetric bidders, the asymmetry among the

equilibrium bids is only O(1/n?). Similarly, one could expect that the revenue differences

6Tn fact, in all the numerical examples that we have tested, we found that for auctions with only six

bidders the revenue difference between first- and second-price auctions is in the fourth or fifth digit.



among large asymmetric auctions would be O(1/n). However, we show that large auctions
with asymmetric bidders are O(1/n?) revenue equivalent. Section 4 concludes, and the
Appendix contains proofs omitted from the main body of the paper.

An important question is how large n should be for our asymptotic results to be
valid. Since our expansions have an O(1/n?) accuracy, roughly speaking, they have a 1%
accuracy for 10 bidders. As the numerical examples in this study show, however, our
asymptotic results are already quite accurate even for values as low as n = 6. The issue
of how small can n be for our asymptotic results to be valid can probably be resolved
theoretically by using the same methods to calculate explicitly the next O(1/n?) term in

the asymptotic expansion, but this is beyond the scope of the present study.

2 Symmetric large auctions

Consider a large number (n > 1) of bidders who are competing for a single object. The
bidders are symmetric such that the valuation v; of bidder ¢ for the object is independently
distributed according to a common distribution function F'(v) on the interval [0,1]. We
denote by f = F’ the corresponding density function. We assume that F' is twice contin-

uously differentiable and that f A0 in [0, 1].



2.1 Symmetric large auctions with risk-neutral bidders

Assume that the bidders are risk-neutral and they compete for a single object in a first-

price auction. In this symmetric setup, the equilibrium bid is

Jy F" Yz) da

b(v) = v — =T (1)

and the seller’s expected revenue is

1
R :/ b(v) dF"(v). (2)

0
It is well known that as the number of players increases, the equilibrium bid b approaches
the player’s value v and the seller’s expected revenue R approaches one, i.e., lim,,_,, b(v) =
v and lim, .., R = 1. Our goal is to achieve a more precise characterization of the
asymptotic behavior for large n, i.e., to calculate explicitly the leading-order deviation

from these limiting values for a large finite n. To do that, we need the following Lemma:

Lemma 1 Let F(v) be a monotonically increasing function. Then, for a sufficiently

large n,

/OU FY(2) do = %F;(S;) +0 (%) . (3)

Proof. See Appendix A.

Substitution of (3) in (1) provides the equilibrium bids in large first-price auctions:

Proposition 1 In a symmetric first-price auction with n risk-neutral bidders, the equi-

librium bid for a sufficiently large n is

mmzv—%?8;+o<%>. (4)




Substituting v = 1 in eq. (4) shows that the maximal bid b = b(1) is given by

b:1—%i+o<1>. (5)

n?
Expression (4) for the equilibrium bid leads to an asymptotic characterization of the

seller’s expected revenue:

Proposition 2 In a symmetric first-price auction with n risk-neutral bidders, the seller’s

expected revenue for a sufficiently large n is

Proof. Using (2) and (4) we obtain

RIF) = b(1) —/0 V(o) P (v) do = 1 — %f(lv) 10 <i> —/0 1+ O(1/m)]F"(v) do.

n2

Therefore, by (3), the result follows.

By the Revenue Equivalence Theorem (Riley and Samuelson(1981) and Myerson (1981)),
the result of Proposition 2 for symmetric large first-price auctions can be generalized as

follows.”

Theorem 1 Consider any auction mechanism with n bidders that satisfies the following

conditions:

1. All players are risk neutral.

"The result of Theorem 1 is equivalent to the main result (Proposition 6) of Caserta and de Vries

(2002), which was derived using extreme value theory.



2. Player i’s valuation is private information to v and is drawn independently by a
continuously differentiable distribution function F(v) from a support [0,1] which is

common to all players.
3. The object is allocated to the player with the highest valuation.

4. Any player with valuation 0 expects zero surplus.

Then, the seller’s expected revenue for a sufficiently large n is given by (6).

Thus, with O(1/n?) accuracy, the revenue in symmetric auctions depends only on the

value of the density function f at the maximal value.

2.2 Symmetric large auctions with risk-averse bidders

Assume now that the bidders are risk-averse, that is, each bidder’s utility is given by
the function U(v — b), which is twice continuously differentiable, normalized such that
U(0) = 0, monotonically increasing (U’ > 0), and concave (U” < 0).%

In this setup there is no explicit formula for the equilibrium bids and for the revenue in
first-price auctions. Recently, Fibich, Gavious and Sela (2002) obtained explicit approxi-
mations of the equilibrium bids for the case of weak risk aversion, by using perturbation
methods to expand the solution in the small risk-aversion parameter. Here we take a

different approach, where we utilize the existence of the large parameter n (number of

8In fact, the results of this section hold with no restriction on U", i.e., they hold for both risk-averse

and risk-loving bidders.



players) to expand the solution in the small parameter 1/n. Unlike Fibich, Gavious and

Sela (2002), we do not assume that risk aversion is weak.

Proposition 3 In a symmetric first-price auction with n risk-averse bidders, the equi-

librium bid for a sufficiently large n is given by (4), and the seller’s expected revenue is

given by (6).

Proof. See Appendix D.

Comparison with Propositions 1 and 2 shows that the differences in the equilibrium
bids and in the seller’s revenue between the case of risk-neutral and risk-averse bidders
are O(1/n?). In other words, risk aversion has only an O(1/n?) effect on the equilibrium
bids and on the revenues in symmetric large first-price auctions.

Propositions 3 can be generalized to any k-price auction:’

Proposition 4 In a k-price auction (k = 1,2,3,...) with n risk-averse bidders, the

equilibrium bid for a sufficiently large n s

b(v) :v+%?((z)) +0 <%> (7)

and the seller’s expected revenue is given by (6).

Proof. See Appendix E.

In a k-price auction the bidder with the highest bid wins the auction and pays the k-th highest bid.

For more details on k-price auctions, see Monderer and Tennenholtz (2000).



We recall that in the risk-neutral case the equilibrium bids in k-price auctions are given

by (Wolfstetter, 1995)

k—2 F(v)
n—k+1f(v)

b(v) =v+

Comparison with equation (7) shows that in large symmetric k-price auctions, risk aversion
only has an O(1/n?) effect on the equilibrium bids. Similarly, comparison of Proposition 4
with Theorem 1 shows that risk aversion only has an O(1/n?) effect on revenues in large
symmetric k-price auctions. This implies, in particular, that all large symmetric k-price

auctions, with risk-neutral or with risk-averse bidders, are O(1/n?) revenue equivalent.

3 Asymmetric large auctions

3.1 First-price auctions

Consider a large number (n > 1) of risk-neutral bidders who are competing for a single
object in a first-price auction. The bidders are asymmetric such that the valuation of
bidder ¢ for the object v; is independently distributed according to a distribution function
F;(v) on the common interval [0,1]. We denote by f; = F! the corresponding density
functions.

Let b; = b;(v;) be the equilibrium bid function of bidder i. Since the equilibrium bids
are strictly monotonic (Maskin and Riley (2000)), we can define the inverse bid functions

as v; = v;(b;). The equations for the inverse bid functions are (Lebrun (1999), Fibich and

10



Gavious (2003))

o Fi(vi(b) 1 1 1 . .
W“*‘ﬁ@w»[<n—1, WAM—M) (w@—wJ’ =Loon @)

Jj=1

The initial conditions for the system (8) are given by
v;(b=0) =0, i=1,...,n. 9)

The equilibrium bids also satisfy the condition that all bidders with the highest valuation

v = 1 place the same (unknown) maximal bid, denoted by b. Hence,
vi(b) =1, t=1,...,n. (10)

In this asymmetric setup there are no explicit solutions of the equilibrium bids. Re-
cently, Fibich and Gavious (2003) obtained explicit approximations of the solutions of
eqs. (8)—(10) for the case of weak asymmetry by using perturbation methods to expand
the solution in the small asymmetry parameter. In this study we take a different approach
and utilize the existence of the large parameter n to explicitly calculate an asymptotic
approximation of the equilibrium bids. Unlike Fibich and Gavious (2003), we do not
assume that the asymmetry among the players is weak.

Since lim,,_, «, b;(v) = v, we can look for equilibrium bids of the form
b(v) = v+ ~ui(0) + O(=), =1
i\ V) =V —U;\V — ), t=1,...,N.
n n?
Substitution in (8)—(10) leads to the following result:

Proposition 5 In an asymmetric first-price auction with n bidders, the equilibrium bids

for a sufficiently large n are

Mm:v—%mm+0€9, i=1,....n (1)

11



where

u(v) = ————. 12
(1) = —— (12)
— Fj(v)

7=1

Proof. See Appendix B.

Note that u is the harmonic average of {F;(v)/fi(v)}?_,. Clearly, in the symmetric
case, (11)-(12) reduces to (4).

A-priori, one could expect that the differences among the players’ equilibrium bids in
large asymmetric first-price auctions would be O(1/n). However, since u; turns out to be
independent of 7, we conclude that the differences among the players’ equilibrium bids in
large asymmetric first-price auctions are only O(1/n?). Moreover, the equilibrium bids
in an asymmetric first-price auction can be approximated, with O(1/n?) accuracy, with

those of a symmetric auction as follows:

Corollary 1 The equilibrium bids in large asymmetric first-price auctions are O(1/n?)
equivalent to those in symmetric first-price auctions with the same number of players
whose (symmetric) distribution function Fyym is the geometric average of the asymmetric

distribution functions, i.e., Fym = ([Tj—; F3)"™.
Proof. This follows from Proposition 5, since u(v) is the same in both cases.
Substituting v = 1 in Proposition 5 gives:

Corollary 2 In an asymmetric large first-price auction with n players, the mazimal equi-

librium bid for a sufficiently large n is

- - 1
b= ba.pprox +0 <_> )

n2

12



where

_ 1 1
bapprox = 1= —u(1),  u(1) = ST (13)

Note that u(1) is the harmonic average of {1/f;(1)}7_, . In the symmetric case u(1) =
1/f(1), and Corollary 2 reduces to eq. (5).
We can also use Proposition 5 to calculate an asymptotic approximation of the seller’s

expected revenue in asymmetric first-price auctions:

Proposition 6 In an asymmetric large first-price auction with n bidders, the seller’s

expected revenue for a sufficiently large n is
R™[F Fl=1-2u(l)+0 (= 14
[17--'7 n]_ _ﬁu()+ ﬁ ) ( )
where u(1) is given by (13).

Proof. See Appendix C.

The following example shows that the results of our asymptotic analysis are valid even

for a relatively small number of asymmetric bidders (e.g., six players).'?

10Tn other numerical experiments we also observed that the predictions of our asymptotic analysis are
valid already for n = 6 (see, e.g., Section 3.3). This, of course, does not constitute a proof that our results
are always valid for such small values of n. However, there are numerous examples in asymptotic analysis
where results which are formally derived for n — oo, become in fact valid already for n not much larger
than one. Therefore, it is reasonable to expect that, generically, the asymptotic results already become

valid for n less than 10.

13



Example 1 Consider a large first-price auction where bidders are equally split to n/2
bidders with a distribution function Fy(v) = v'/? and n/2 bidders with a distribution

function Fy(v) = v

In this case, an application of Proposition 5 yields

2 4

ulv) = fi/Fi + faf Fy "5

V.

Hence, the equilibrium bids are b;(v) ~ b(v) = v — (4/5)v/n. To compare these approxi-

mations with the exact bids, we solve numerically the following system of equations

v (b) = Uf/(g) {z(nl_ 1) (vf(b;f b vz(b;b— bﬂ ’
vy(b) = U2§b) {z(nl_ 1) (vl(b;b— b vzib;f bﬂ ’

subject to (9,10). The exact and approximate equilibrium bids are shown in Figure 1 for

n = 2, 4, and 6 bidders. Since the asymmetry among the distribution functions is not
small, in the case of two players the equilibrium bids are clearly asymmetric. However,
the asymmetry in the equilibrium bids vanishes quickly as n increases. Indeed, already
for six bidders the equilibrium bids are nearly indistinguishable from each other, as well
as from the asymptotic approximation.

We can also use Corollary 2 to obtain an asymptotic approximation for the maximal bid.
Since u(1) = %, the approximate maximal bid is given by bapprox = 1 —u(1)/n =1—4/5n.
In Table 1 we compare the exact maximal bid b with its asymptotic approximation Bappmx.
This comparison shows that the accuracy of the asymptotic approximation is good when

n is relatively small or not very large. For example, for n = 6 bidders, the accuracy is 2%.

14
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Figure 1: Exact (solid) and approximate (dots) equilibrium bids for 2,4, and 6 bidders.

In order to see whether the 1/n* convergence rate of the asymptotic approximation for
the equilibrium bids is already valid at these small values of n, we plot in Figure 2 the
approximation error b — Bappmx as a function of n on a loglog scale. The slope of the best-
fitting least-square line going through these points is —2.05. Clearly, if the approximation
error would have been exactly a constant/n?, the resulting loglog curve would have been
a straight line with slope —2. Thus, we conclude that the 1/n? convergence rate is already
reached at these small values of n.

Finally, from Proposition 6, the seller’s expected revenue R'** can be approximated with

1-— %u(l) =1- %. Comparison of the exact value'’ with its asymptotic approximation

HThe exact value of R'' was calculated numerically. See Fibich and Gavious (2003) for details on the

15
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Figure 2: Difference between the approximate and exact equilibrium bids as a function

of n (*), plotted on a loglog scale. Slope of best fitting line (solid) is —2.05.

number exact approximate

of bidders | maximal bid | maximal bid

(n) (b) (bapprox)
2 0.47 0.60
4 0.77 0.80
6 0.85 0.87

Table 1: Exact and approximate values of the maximal bid in a first-price auction.

(Table 2) shows that the approximation error is 2% for n = 6 players, and that the

approximation error also scales as a constant/n* already at these small values of n.

3.2 Second-price auctions

Consider a large number (n > 1) of asymmetric bidders with distribution functions

Fy, ..., F, who are competing for a single object in a second-price auction.

numerical method.

16



number exact | approximate
of bidders | revenue revenue
() | (R | (1 2m)
2 0.3117 0.2000
4 0.6369 0.6000
6 0.7518 0.7333

Table 2: Exact and approximate values of the seller’s expected revenue in a first-price

auction.

In a second price auction with either symmetric or asymmetric bidders, the equilibrium
bid functions are b(v) = v. The seller’s expected revenue is given by (see, e.g., Fibich and

Gavious (2003))

R?nd[Fl,...,Fn]:1—/0 HFi(U)dv—Z/O (1 B@) [[F@)de. (15)

[,
S

Expansion of R?" in 1/n leads to the following result:

Proposition 7 In an asymmetric large second-price auction with n bidders, the seller’s

expected revenue for a sufficiently large n is

where u(1) is given by (13).

Proof. See Appendix F.

17



Cantillon (2003) showed that the revenue in asymmetric second-price auctions is al-
ways smaller than in a symmetric second-price auctions with the same number of players
whose (symmetric) distribution function Fyy,, is the geometric average of the asymmetric
distribution functions, i.e., Fym = ([Tj—; F;)"/". Since u(1) is the same in both cases,

Proposition 7 shows that the revenue difference between the two is only O(1/n?).

Example 2 We consider a large asymmetric second-price auction with the same distri-

bution functions as in Example 1.

Since u(1) = 4/5 (see Example 1), the asymptotic approximation (16) yields

n2

8 1
Ran -1 C) ] 1
on + < ) (17)

By (15), the exact value of the seller’s expected revenue is given by

n—1 n/2 n/2

R =1 — — .
1241 12n-1 12m+05

Expanding this in 1/n gives

8 104
R — 1 — .
5n + 125n2 o

which is in agreement with (17).

3.3 Asymptotic revenue equivalence

A comparison of the seller’s expected revenue in an asymmetric first-price auction (14)

and in an asymmetric second-price auction (16) shows that these auctions are O(1/n?)

18



revenue equivalent. In the following we show that this asymptotic revenue equivalence

can be generalized to a wide class of asymmetric auctions.'?

Theorem 2 Consider any auction mechanism that satisfies the following assumptions:

1. All n players are risk neutral.

2. Player i’s valuation is private information to v and is drawn independently by a
continuously differentiable distribution function F;(v) from a support [0, 1] which is

common to all players.

3. The object is allocated to the player with the highest bid.'?

4. Any player with valuation 0 expects zero surplus.

5. In equilibrium, any player with valuation 1 has the same mazimal bid.

Then, the seller’s expected revenue for a sufficiently n is given by

where u(1) is given by (13).

12Fibich, Gavious and Sela (2003) showed that weakly-asymmetric auctions are asymptotically revenue
equivalent, by expanding the revenue in the small asymmetry parameter. Unlike that study, here we do

not assume that the asymmetry among players is weak.

13In the symmetric case, assumption 3 is equivalent to the assumption that in equilibrium the object
is allocated to the player with the highest valuation. This equivalence, however, does not hold in the

asymmetric case since asymmetric auctions are not necessarily efficient.

19



Proof. See Appendix G.

Notice that in the case of symmetric auctions, Theorem 2 reduces to Theorem 1.

In order to get a feeling for the level of revenue equivalence when the number of players
is not really large, in Table 3 we compare the expected revenue in asymmetric first-price
and second-price auction for 6 bidders with various distributions. Since in all cases the
differences between R'' and R are only in the fourth or fifth digit, this suggests (again)
that the results of the asymptotic analysis are already valid for n ~ 6. In fact, these results
suggest that, for all practical purposes, first-price and second-price auction with n > 6

bidders are revenue equivalent.

distributions R'st R2nd R'st — R2nd

F\=Fy,=F=F, =v! Fy=F;,=v"/% | 0.877782 | 0.877778 | 0.000004

F\=F=F=v F,=F=F; =v"/? | 0.84487 | 0.84483 0.00004

Fy\=Fy=F; =1 F,=F;=F; =v"? | 0.751773 | 0.751697 0.00008

F,=v',i=1,...,6 0.900224 | 0.900143 | 0.000081

Table 3: Expected revenue R'[F}, ..., Fs] and R?™[Fy, ..., Fg).

3.4 Collusion in large auctions

Our results for asymmetric auctions can be applied to analyze the effect of collusion in
large auctions. Consider a large symmetric first-price auction with n > 1 bidders, where

the value of the object for each bidder is independently drawn according to a distribution

20



F(v) defined on the interval [0,1]. Assume that m bidders compete as single players,
whereas the rest k, K = n — m bidders set up a coalition and act as a single bidder whose
value is the maximum over the values of the bidders participating in the coalition. As
such, the coalition’s value is distributed according to F*(v) over the support [0, 1].
When the coalition is small, i.e., K = O(1) and n > k, we can apply Proposition 5 to
calculate the equilibrium bids. Since there are effectively m players with the distribution
function F' and a single player with the distribution function F*, the equilibrium bids,

both for the individual bidders and for the coalition, are

(o) = v — 1 m+1F(v)+O<(172>:U_lF(v)_i_O(l).

m+1m+k f(v) m+1) n f(v) n?

Note that the O(1/n) correction term turns out to be independent of the coalition size k.

In addition, by Proposition 6, the expected revenue is

fr-1-2 L vo(L).

We have thus shown that collusion of players in large first-price auctions has a negligible
effect on the equilibrium bids as well as on the seller’s revenue. In particular, the coalition
size is almost meaningless. Furthermore, by Theorem (2) we can conclude that in all large

auctions, collusion has a negligible effect on revenue.

4 Concluding remarks

Fibich, Gavious and Sela (2003) showed that for weakly-asymmetric auction, if € is the
small asymmetry parameter, all standard auctions are O(¢®) revenue equivalent. Hence,

21



the revenue difference among weakly-asymmetric auctions is negligible. In this study we
do not assume that the asymmetry is weak, yet we find that the revenue difference among
large asymmetric auctions is also negligible. Together, these two studies suggest that in
most cases asymmetry among bidders valuations plays a minor role in revenue ranking
of auctions. A similar conclusion, however, cannot be applied to risk-aversion. Indeed,
Fibich, Gavious and Sela (2002) showed that for symmetric auction with weakly-risk
averse bidders, if € is a small risk-aversion parameter, risk aversion has an O(e) effect on
the equilibrium bids, and then the revenue difference among auctions is O(e). Therefore,
risk-aversion can play an important role in revenue ranking of small auctions, but not in
large ones.

If we try to generalize the results of this research, we can identify several unifying
themes: 1) Auctions with a large number of bidders are considerably simpler to analyze
than auctions with a small number of bidders, since the effects of various “complications”
such as asymmetry, risk-aversion, or collusion are negligible. 2) The leading-order de-
viation of the revenue from the limiting value depends only on the value of the density
function(s) at the maximal value. 3) Auctions with as few as six bidders can be consid-
ered as large auctions. Naturally, further research is required to test the validity of these

general statements for cases which are not considered in this study.
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A Proof of Lemma 1

In the following we calculate an asymptotic expansion of the integral fov F™(z)dx us-
ing integration by parts (for an introduction to asymptotic calculation of integrals using

integration by parts, see, e.g., Murray (1984)).

v v 1 1 F"tl(v) 1 v f'(x)
F”xdx:/ F"(z)f(x dz = + /F"fox dx.
[, Frtaras = [ @l s = s T [ @@
A similar integration by parts shows that [ F"*!(z)f(x) J{;((‘?) dz = O(1/n). Therefore,
v 1 Fn+1(v) 1
F"(z)dx = — ).
R TR O
B Proof of Proposition 5
Since lim,,, v;(b) = b, the equilibrium bids for n > 1 can be expanded as
1 1 1 .
v; (D) :b+ﬁui(b)+ﬁwi(b)+0($), i=1,...,n. (19)

Substitution of (19) in (8) gives

14+0 <l> = (20)

n

E(b+%ui(b)+n—12wi(b))[ n z”: 1 n

filb+ fui(®) + wi(b) |n— 1 uy(b) + fw;(b) —wi(b) + 2wi(b)

A-priori, to leading order the left-hand-side is equal to 1 whereas the right-hand-side is
O(n). Therefore, we first impose the condition that to leading order of the right side is

also equal to 1. This implies that




or

1 1 1 ~ n—1
O TA R

Thus, u;(b) = U(b)+O(1/n) for all i. Since the O(1/n) difference among {u;}™, translates

into O(1/n?) difference among {v;}"_,, we can set

i.e., absorb the O(1/n) difference among the {u;}?, into the {w;}! , terms.

Substituting u;(b) = u(b) and equating the O(1) terms gives

CEL) | no 1 " N
. 2 u(b) + Lw;(b)  w(b) + Luw;(b) +0(1/n), i=1,...,n.

i) _ 1 w(d) 1 Z":wj(b)+0(1/n), i=1,...,n  (21)

F;(b) n-1u u? n—lj: u?
Summing (21) over i gives
n fz(b) n2 n2
i O(1
;Fz(b) (n—1)u Zw n—1u22:: (n—1)u IUQZw] -

Hence,

lz 2 ——i—O(l/n)

i
We thus proved that the inverse equilibrium bids are given by (19), where u is defined
n (12). To invert this relation, we substitute in the identity v; = v;(b;(v;)) the relations
bi(v) = v+ (1/n)B;i(v) + O(1/n?) and v;(b) = b+ (1/n)u(b) + O(1/n?), to get that
B;(v) = B(v) = —u(v).
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C Proof of Proposition 6

The seller’s expected revenue in asymmetric first-price auctions can be written as (see,

e.g., Fibich and Gavious (2003))

RSF,...,F,]=b— /ObﬁFj(vj(b)) db.

In Corollary 2 we showed that b = 1 — u(1)/n + O(1/n?). In addition,

b n b n 1/n
| 5w a= [ oo H(b)z(HFj(vj(b») .

Therefore, by Lemma 1,

/bﬁFj(”j(b)) =1y H:Ij(lé()b) o (%) |

It is easy to verify that H(b) =1 and H'(b) = 2 > i1 fi(1). Summarizing the above gives

/obﬁFf(“f(”” = zg-gllfju) r0(5) = ﬁ +0(55)

Jj=1

Therefore, the result follows.

D Proof of Proposition 3

The method of this proof is similar to that of Proposition 5. The inverse equilibrium bids
satisty

1 F(v(b) U'(v(b)

_b)
n—1f(v(b)) Ulv(b) —b

3

Since limy, o v(b) = b, we can look for a solution of the form

v'(b) = (22)




Substitution in (22) gives

1+ ofs)
L F()+ (v/(n=1)f(b) +0n™*) U'(0) + (v/(n—1)U"(0) + O(n~?)
n—1f()+ (vi/(n = 1)f'(b) + O(n=2)  U(0) + (vr/(n —1)U'(0) + O(n~?)

Since U(0) = 0 and U’(0) > 0, the balance of the leading order terms gives

|_F®) U0)
f(b)  vU(0)

Therefore, v1(b) = F(b)/f(b) and the inverse equilibrium bids are given by

LD (L
v(b)—b+n_1f(b)+0<n2>.

Inverting this relation (see end of Appendix B) shows that the equilibrium bids are given
by (4). The calculation of the expected revenue is identical to the one in the proof of

Proposition 2.

E Proof of Proposition 4

The case k = 1 was proved in Proposition 3. When k£ = 2 the result follows since b(v) = v.
Therefore, we only need to prove for £ > 3. In that case, the equilibrium strategies in

k-price auctions are the solutions of (see Monderer and Tennenholtz (2000))

/OU U = b(&)) F" () (F (v) — F(t))" 7 f(t) dt = 0. (23)
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Defining m =n — k and t = v — s, we can rewrite eq. (23) as

0 = [ U b)) - F0) ) d (21)
= [ e Ou - b (F () - FO) ) d

= ) [ WY (b - ) (B () - Flo - 9)" (o s)ds.
0

Since the maximum of In(F (v — s)) is attained at s = 0, we can calculate an asymptotic
approximation of this integral using Laplace method (see, e.g., Murray (1984)). To do
that, we make the change of variables z(s) = [In F'(v) — In F/(v — s)] and expand all the
terms in the last integral in a Taylor series in s near s = 0.

Expansion of z(s) near s = 0 gives x = sf(v)/F(v) + O(s*). Therefore,

dx F(v) dx

= = [(0)/F(v) + O(s), Szxf(v)JrO(s)’ = T ()

[1+0(x)]

Let us expand the solution b(v) in a power series in m, i.e.,

Therefore, near s = 0,

b(v — s) = bo(v) — sBh(v) + %bl(v) - %sb’l(v) +O(2) 40 <%> |

In addition,
(F(v) = F(v =) = (sf(v) + O(s*) 7> = s" 2 f* 2 (0) [1 + O(s)],

and
f(v—s)=f(v)+O(s).
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Substitution all the above in (24) gives

0 = /0 {e—mva [U - <b0(v) — sb(v) + blrf;’) - Sb;IT(L“) +O(s2) +0 <%>>] x

3 FE3(0) (14 O(s)] [F(0) + O(s )1}ds

N /Ooo{emU[v—<b0(v) ?((Z))b(w bl(v)—%%bg(vw()(ﬁn()(#))]><

0 1+ 0] [0) + 0] 7 1+ 0(0)
= F"2(v) /Ooo {e’m {U(v —bo(v)) + U' (v — by(v)) <x?((;})) by(v) — bl;;}) + %?((Z)) bi(v))

+O(?) +0 <%>] #7314+ O(a)] } da.

We recall that for p integer, fooo e~ ™ xP dx = p!/mPT. Therefore, balancing the leading

O(m~*=2)) terms gives

o0

Ulv — bo(v)) F*2(v) / e k3 dy = 0,

0
Since U(z) = 0 only at z = 0, this implies that by(v) = v. Using this and U’(0)

eq. (25) reduces to

0= /0 ) {em <x§:((;))) ~ bio) + %%bg @)) [0 + O(a*2)] } da

Therefore, balance of the next-order O(m~*~Y) terms gives

F > 1 o
(U) / e—ma:xk—Z dr — _bl (U) / e—ma:xk—ii dr = 07
fw) Jo m 0

or
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Therefore,

Hence, we proved (7).

The seller’s expected revenue in a k-price auction is given by

1
Rk:/ b(’l})dFk(U),
0
where b(v) is the equilibrium bid in the & price auction and Fj(v) is the distribution

of the k-th valuation in order (i.e., k-order statistic of the bidders private valuations).

Substituting the asymptotic expansion for the equilibrium bids gives

Ry = /01 [v+z:z%] dF,(v) +O(%).

Since the asymptotic expansion for the equilibrium bid is independent of the utility func-
tion U until order O(-5) and since dFy(v) = O(1), the revenue in the risk-averse case is
the same as in the risk-neutral case, with O(#) accuracy. By Theorem 1, the latter is

given by (6).

F Proof of Proposition 7

From (15) it follows that

1 n n
R2nd[F17"'7Fn]:1_/ HE(U)dU_ZIM
0 =1 i=1

where
1/(n—1)
1 n
I = / (- F@)H \(0)dv,  H=|[[F
0

j=1
J#i

29



Calculations similar to those in Appendix C show that

/Olf[p( )dv_m+o<;>.

=1

Similarly, since H/(0) = H/'(0) = 0, two integration by parts give that

we— [ () = sermr 0 ()

Since

it follows that
and

Therefore, we obtain that
2 1
B[R, F] =1 <+ 0 <_> |
(1)

which concludes the proof.

G Proof of Theorem 2

Let F;(v), Si(v) and P;(v) be the expected payment, the expected surplus, and the prob-

ability of winning for bidder ¢ with type v at equilibrium, respectively. Therefore,

S; =vP(v) — E;(v) .
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It is well known (see, e.g., Krishna (2002)) that

From (26),(27) it follows that

Ei(v) = vP](v) .

)

Let R; be the expected payments of player ¢ averaged across her types. Then,

R, — / Ey(v)F!(v) dv = Ei(v)F,

— B() - / o P! (0)Fy(v) do .

Since S;(v) = 0 (Condition 4) we have from (28) that E;(7) = [

R~ [CoP0)0- R o= - [ RO - F@) o

v

The seller’s expected revenue is thus given by

o ;Ri - —;/ja(v)[vu — F(o)] dv .

Since in equilibrium

J#

P(w) = P () > maxt; ) = [L5070:0) = 50 [T 07 050,
y l

we have
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(28)

" vP!(v) dv. Hence,
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In order to approximate R for large n, we use an asymptotic method known as Laplace

method for integrals (see, e.g., Murray (1984)). We first define
n 1/n
Gi(v) = (H Fj(bjl(bz'(v))) o 4i(v) = Gi(v),
j=1
and observe that G;(1) = 1 (Assumption 5). Then, we have
~ [ 1 - Fi(v) — vfi(v)
- _ nlnG;(v) | i i dv —

_ _Zf;/olenlncms). <1—ﬂ(1—26955)fi(1_5)> ds,

where the last equality is obtained by the change of variables s = 1 — v. Defining u;(s) =

—InG;(1 — s), we have that

ds

Hence,

— du, _ du; 1 gi(1—15)Y) ,
o g() +s (220) yogz o) {l_sgi(l) (Gi(l _s)>s:0+0(5 )]

B g% [1 - “igstn @((11__?));:0 i O(“?)} |

In addition,

1-Fi(1—s)—(1-s)fi(1—s) 2 / 2
F;(1—3s) = —fi(1) = s(f;f (1) = fi(1) = 2fi(1)) + O(s%)
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Summarizing the above gives that

o= [ e (as s - g -2n0) x

ﬁ {1 - “igftl) <cg;ii((11__?) ) 0] + O(U?)} du;

Since u; is a dummy variable, we can rename u; = u. Therefore,

= a
F+ o [ - —2nw) - 20 (2020 o)
= i%/ﬂwe”“du—l—
S ot L = i 2500 - B (=) ] [T e
ﬂ:O(n’Z)

1 < fi(1)

B- YR (30)
L U Ty apy s B (80) .
Y 2 [(f ) = £ =2:0) + 15 <Gi(v>>]+0( )
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We now calculate g;(1). Since G;(1) =1

s() = MG =5 (Zln Wﬁ(bi(v))])

Therefore,

Substituting the above in (30) yields

n

R=14 Y ot 07 - 20 - 2ra)+ A0S (29 |vo (L),

=1 7

Let us expand b;(v) = v+ O(1/n). Inverting this relation gives
b; 1(b) = v;(b) = b+ O(1/n).
Hence, substituting b;(v) = v+ O(1/n) in b; ' (b) = b+ O(1/n) gives

bt (bi(v)) = v+ O(1/n),
Fj(b5' (b:(v))) = Fj(v) + O(1/n),
G; = f[ v) +O(1/n)]"",

InG; = — Zln[ —i—Ol/n]: ZlnF )+ O(1/n),
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and

Therefore,

and

2\ " 1 /
L) —mey, =1y nw
v=1

(InG;) 2 0 +O(1/n)
L) LGB
(InG)" =2 — Fi(v)  nig FH) +oa/m)

n

j=1

Substitution of the last two relations in (31) gives (18).

35



References

1]

[5]

(6]

9]

[10]

Bali V. and Jackson, M. (2001): “Asymptotic Revenue Equivalence in Auctions,”

Journal of Economic Theory, 106, 161-176.

Cantillon, E. (2003), ”The Effect of Bidders Asymmetries on Expected Revenue in

Auctions”, mimeo, available at http://www.people.hbs.edu/ecantillon

Caserta, S. and de Vries, C. (2002): “Auctions with Numerous Bidders,” mimeo.

Fibich, G. and Gavious, A. (2003): “Asymmetric First-Price Auctions - A Perturba-

tion Approach,” Mathematics of Operations Research 28: 836-852.

Fibich, G., Gavious, A. and Sela, A. (2003): “Revenue Equivalence in Asymmetric

Auctions,” forthcoming in Journal of Economic Theory.

Fibich, G., Gavious A. and Sela A. (2002): “All-pay auctions with risk-averse buyers,”

working paper. Available electronically at www.math.tau.ac.il/~ fibich

Kremer, I. (1999): “Information Aggregation in Common Value Auctions,” mimeo.

Krishna, V. (2002): Auction Theory, Academic Press.

Lebrun, B. (1999), “First Price Auctions and the Asymmetric N Bidder Case”, In-

ternational Economic Review, 40, 125-142.

Marshall, R. C., Meurer, M. J., Richard, J.-F. and Stromquist, W. (1994): “Numer-
ical Analysis of Asymmetric First Price Auctions,” Games and Economic Behavior,
7, 193-220.

36



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Maskin, E., Riley, J. G. (1984): “Optimal Auctions with Risk Averse Buyers,” Econo-

metrica, 6, 1473-1518.

Maskin, E. S. and Riley, J. G. (2000): “Equilibrium in Sealed High Bid Auctions,”

Review of Economic Studies, 67, 439-454.

Maskin, E. S. and Riley, J. G. (2000): “Asymmetric auctions,” Review of Economic

Studies, 67, 413-438.

Matthews, S. (1987): “Comparing auctions for risk averse buyers: a buyer’s point of

view,” Econometrica, 55, 636-646.

Murray, J. D. (1984): Asymptotic Analysis, Springer-Verlag, New York.

Myerson, R. B. (1981): “Optimal Auction Design,” Mathematics of Operations Re-

search, 6, 58-73.

Monderer, D. and Tennenholtz, M. (2000): “K-Price Auctions,” Games and Eco-

nomic Behavior, 31, 220-244.

Pesendorfer, W. and Swinkels, J. M. (1997): “The Loser’s Curse and Information

Aggregation in Common Value Auctions,” Econometrica, 65, 1247-1282.

Riley, J. G. and Samuelson, W. F. (1981): “Optimal Auctions,” American Economic

Review, 71, 381-392.

37



[20]

[21]

[22]

23]

[24]

[25]

[26]

Rustichini, A., Satterthwaite, M.A. and Williams, S.R. (1994): “Convergence to
Efficiency in a Simple Market with Incomplete Information, ” FEconometrica, 62,

1041-1063.

Satterthwaite, M.A. and Williams, S.R. (1989): “The Rate of Convergence to Effi-
ciency in the Buyer’s Bid Double Auction as the Market Becomes Large, ” Review

of Economic Studies, 56, 477-498.

Swinkels, J. M. (1999): “Asymptotic Efficiency for Discriminatory Private Value

Auctions,” Review of Fconomic Studies 66, 509-528.

Swinkels, J. M. (2001): “Efficiency of Large Private Value Auctions,” Econometrica,

69, 37-68.

Vickrey, W. (1961): “Counterspeculation, Auctions, and Competitive Sealed Ten-

ders,” Journal of Finance, 16, 8-37.

Wilson, R. (1976): “A Bidding Model of Perfect Competition,” Review of Economic

Studies, 44, 511-518.

Wolfstetter, E. (1995): “Third- and Higher-Price Auctions,” mimeo.

38



