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Abstract
In this paper the following scenario is analyzed from a game-theoretical point of

view. Two departments in a large organization are each seeking to make an appoint-
ment within the same area of expertise, for instance, a computer science specialist.
To avoid duplication it has been decided that the heads of the two departments
should together interview the applicants in turn and make their decisions on one
applicant before interviewing any others. If a candidate is rejected by both depart-
mental heads, the candidate cannot be considered for either post at a later date. If
both heads decide to make an o�er two cases are considered: (a) the departments
are equally attractive so that an applicant has no preference between them (b) one
department can o�er better prospects to applicants who will always choose that de-
partment. The departmental heads know that there are precisely n applicants and
that each applicant has an expertise which is random over a known range. If no
appointment is made to a department from these n applicants, then the department
will su�er from a shortfall of expertise. In the paper it will be shown that that
the games (a) and (b) have very di�erent characteristics. The game (b) is straight-
forward to analyze because it has just one Nash equilibrium. On the other hand,
game (a) has many this game has many Nash equilibria and this raises the question
of equilibrium selection. We will argue that there are comparatively few natural
ones and show that it is reasonable to have several Nash equilibrium solutions as
di�erent dynamics within the �rm can result in di�erent outcomes. Thus, if one de-
partmental head is aggressive and one passive, we might expect a di�erent outcome
to one in which both are of a similar temperament. In the former case we would
not necessarily expect a symmetric outcome even though the scenario does not give
one player an advantage over the other. Thus, although it may be natural to expect
a solution of (a) to be symmetric, we will also investigate non-symmetric solutions.
These non-symmetric equilibria have the advantage that the players have pure ac-
tions whereas, in our symmetric solution, the players are called upon to employ
actions with complicated probabilities.
Key words: Secretary Problem, Nash equilibrium, Stackleberg strategies, Multi-
stage Non-zero Sum Game.
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1 Introduction
The Secretary Problem is a well-known problem in the decision sciences. It can be stated
as follows. An organization wishes to appoint a secretary from n applicants who appear
in random order with all n! permutations equally likely. At any stage the applicants
interviewed up to and including that stage can be ranked in a preference order and,
at each stage, the organization has to decide whether or not to make the candidate an
o�er. If an applicant is made an o�er, it will be accepted but any applicant who is
rejected will not be available for consideration at a later stage. The organization wants to
maximize the probability of choosing the best candidate. There has been a lot of interest
in this problem and variants of it which attempt to make the problem more realistic;
see, for instance Tamaki (1991), who has considered the variation in which there is a
�xed probability (independent of rank) of the applicant accepting an o�er. Other papers
dealing with sequential selection problems include Chun (1992) and Kwan and Yuan
(1988). Less attention has been paid to the game theory aspects of hiring an employee
although Sakaguchi (1985, 1989) is a notable exception. A selection panel usually involves
at least two members so there is the potential for its members to have di�erent interests.
In particular Mazalov, Sakaguchi and Zabelin (2002) have modelled a situation in which
a labor union and management jointly employ a secretary. We will investigate a variant
of their problem.
The main purpose of this paper is to analyze the following scenario. Two departments
in a large organization are each seeking to make an appointment within the same area
of expertise, for instance, a computer science specialist. To avoid duplication it has been
decided that the heads of the two departments should together interview the applicants
in turn and make their decisions on one applicant before interviewing any others. The
organization has a very good reputation for treating its sta� well so it can be assumed
that an applicant who is o�ered an appointment will accept it. If a candidate is rejected
by both departmental heads, the candidate cannot be considered for either post at a later
date. If both heads decide to make an o�er, the candidate will be allowed to choose which
department he or she joins; from past experience it is known that applicants do not have
a preference for one department over the other so each department is equally likely to be
accepted. The departmental heads know that there are precisely n applicants and that
each applicant has an expertise which is random over a known range; the expertise of an
applicant can only be accurately assessed during the interviewing process and it is assumed
that the heads will agree on this value. If no appointment is made to a department from
these n applicants, then the department will su�er from a shortfall of expertise.

Although the problem is a simply stated and natural one, we will see that it is not at
all straightforward to analyze it using the methods of game theory. As stated earlier, the
competitive hiring of secretaries has already been analyzed in the literature but we shall
see that our analysis di�ers markedly from that in previous papers. Because these papers
have concentrated on the situation in which one secretary has to be hired, the players
are essentially playing the same game at each stage; from one stage to the next the only
essential di�erence is that the number of applicants decreases by one. However, in our
scenario, this is not true; as soon as the decision to appoint is made, the problem becomes a
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decision problem rather than a game. Thus our problem is a bridge between the classical
sequential selection problems and the game theoretic ones. A similarity between our
paper and previous ones is that, if there are a comparatively large number of applicants,
the interviewers can hold out for an applicant of comparatively high quality when the
interviewing process is in its early stages; this is because there is a high probability that a
good, or two good, applicants can be found from the remaining ones. A further similarity
is that arguments of a backward induction nature are used. However a major di�erence
is that our problem gives rise to many Nash equilibria and this raises the question of
equilibrium selection. We will argue that there are comparatively few natural ones in the
sense that they could be explained and justi�ed to non-mathematical personnel. We will
also argue that it is reasonable to have several Nash equilibrium solutions as di�erent
dynamics within the �rm can result in di�erent outcomes. Thus, if one departmental
head is aggressive and one passive, we might expect a di�erent outcome to one in which
both are of a similar temperament. In the former case we would not necessarily expect
a symmetric outcome even though the scenario does not give one player an advantage
over the other. Thus, although it may be natural to expect a solution to be symmetric,
we will also investigate non-symmetric solutions These non-symmetric equilibria have the
advantage that the players have pure actions whereas, in our symmetric solution, the
players are called upon to employ actions with complicated probabilities.

Before analyzing the above scenario, we will consider the modi�cation in which one
department has better prospects than the other; these prospects could take several forms
such as being able to o�er a higher salary, better training or faster promotion than the
other. In this case it can be assumed that, if a candidate is accepted by both departmen-
tal heads, then the applicant will choose the one with the better prospects. Generally
speaking the analysis of this problem follows the pattern of previous papers and provides
a good lead in to the main problem.

2 Preliminary Notions
By choosing the units appropriately we can suppose that each applicant has an expertise
drawn at random from the interval [0, 1] and that the shortfall in expertise of a department
not employing an applicant is c. We can think of the situation as a multi-stage game with
the r-th stage being one in which rejection of the current applicant would leave r − 1
applicants available for interview. However we will adopt a naive approach and not use
the general theory of such games. Consider �rst the decision problem in which a player

knows that there are r applicants remaining and the other player has �lled the post in
his department. We will denote the expectation of the player in this case by ur. Clearly,
if r = 1, the player will accept the applicant and ur = 1/2. Further, when there are
r − 1 applicants available if the current one is rejected, he will accept the applicant he is
interviewing if the applicant has expertise x where x ≥ ur−1 and reject otherwise. Thus

ur =

∫ ur−1

0

ur−1 dx +

∫ 1

ur−1

x dx = u2
r−1 + (1− u2

r−1)/2 = (1 + u2
r−1)/2. (2.1)
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The recurrence relation ur = (1+u2
r−1)/2 is known in the literature as Moser's relation

(see, for example, Petrosjan and Zenkevich (1996)).

3 The Dominant Firm Problem
Suppose one department is dominant so that an applicant will always choose it in pref-
erence to the other. We will assume the dominant department is represented by player
1.

The one applicant game is trivial because player 1 will always accept and receive an
expectation of 1/2 so that player 2 will always get −c.

Now consider the n ≥ 2 applicant game and the stage where an applicant is being
interviewed and there will be r − 1 applicants available if the current one is rejected by
both players. If one player accepts and the other player rejects, or both players accept,
the current applicant, the players clearly know what their expectations are. However, if
both reject, it is not so clear that the players know what their expectations are because
these expectations depend on actions in subsequent stages. Indeed, in the other scenario
we consider, this is in fact the case and assumptions have to be made for an analysis of it
to be undertaken. Thus let us assume that the players do know what their expectations
are if they both reject the current applicant, say vr−1 and wr−1, for player 1 and player 2
respectively. The situation can then be represented by a bimatrix given by

Mr(x) =

( Accept Reject
Accept (x, ur−1) (x, ur−1)
Reject (ur−1, x) (vr−1, wr−1)

)
.

We now show by induction that vr = ur for all r. The result holds for r = 1 so suppose it
holds for r = k. Thus, at the k+1-stage player 1 gets x if he accepts the current applicant
and uk if he doesn't which leads to expression for ur in (2.1) and the result is established.
Not surprisingly the dominant player can behave as though he has no rival. Player 2 will
accept a candidate with expertise at least wr−1 so, when wk ≥ 0, his expectation wk+1 is
given by

wk+1 =

∫ 1

uk

uk dx +

∫ uk

wk

x dx +

∫ wk

0

wk dx = uk − u2
k/2 + w2

k/2

and, when wk < 0, by
wk+1 = uk − u2

k/2.

It is easy to see that the latter case arises only when k = 1. This re�ects the fact that player
2 can ensure a non-negative expectation by always accepting the �nal two applicants. The
following table shows that, even when there are 14 applicants, the dominant player does

4



considerably better.
Stage Dominant NotDominant

1 0.5 0
2 0.625 0.375
3 0.6953 0.5
4 0.7417 0.5786
5 0.7750 0.6340
6 0.8004 0.6757
7 0.8203 0.7084
8 0.8364 0.7347
9 0.8498 0.7565
10 0.8611 0.7749
11 0.8707 0.7906
12 0.8791 0.8042
13 0.8864 0.8160
14 0.8929 0.8265

4 The One and Two Applicant Games with No Candi-
date Preference

We now investigate the scenario described in Section 1 in which an applicant is indi�erent
between the two departments. The case when there is only one applicant presents no
di�culties because both players will want to appoint as they will not want a shortfall of
expertise in their department. Thus there is a unique Nash equilibrium and the expected
payo� for each player is (1/2− c)/2 = (1− 2c)/4.

The position is very di�erent when there are two applicants. The game is now a
two-stage one rather than single shot and what is meant by a Nash equilibrium has to be
considered. We will take a naive view and assume the players will play a Nash equilibrium
when interviewing an individual applicant. In essence we are restricting attention to
subgame perfect Nash equilibria. When the �rst applicant is interviewed, each player
knows that he can expect 1/2 if he rejects and the other player accepts and (1 − 2c)/4
if both reject. Hence both players will accept an applicant with expertise x ≥ 1/2 and
reject an applicant with expertise x < (1 − 2c)/4. For x ∈ [(1 − 2c)/4, 1/2], each player
would prefer the other player to accept the applicant so that he could reject and obtain
an expectation of 1/2 at the second stage. We can represent the situation at the �rst
stage by a game bimatrix M2(x) given by

M2(x) =

( Accept Reject
Accept ((x + 1/2)/2, (x + 1/2)/2) (x, 1/2)
Reject (1/2, x) ((1− 2c)/4, (1− 2c)/4)

)

Note that, for x ≥ 1/2 Accept dominates Reject for both players whereas for x ≤
(1 − 2c)/4, Reject dominates Accept for both players. For x ∈ [max{0, (1 − 2c)/4}, 1/2]
there are two pure Nash equilibria, namely (Accept, Reject) and (Reject, Accept) and
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one mixed in which each player accepts an applicant with expertise x with probability
(4x − 1 + 2c)/(2x + 2c). The payo� vector for the mixed strategy pair is given by (v, v)
where

v =
4cx + 2c + 6x− 1

8(x + c)
=

2c + 3

4
− (2c + 1)2

8(x + c)
. (3.1)

Thus v is an increasing function of x in [(1− 2c)/4, 1/2] for �xed c ∈ [0, 1/2].

Of course neither of the pure Nash equilibria are symmetric and this could be seen
as a drawback because the scenario does not present any di�erences between the players.
However we should not dismiss these equilibria out of hand as they could arise from
di�erent dynamics in the organization. For instance, if one departmental head is somewhat
aggressive and the other more easy-going, it is quite likely that the more aggressive head
would state what he was going to do; in essence the aggressive head assumes the role of
a Stackleberg leader. The mixed Nash equilibrium has the advantage that each player
adopts the same strategy so that it can be argued that it is fairer than either of the pure
equilibria but it has the drawback that the players use complicated probabilities to decide
their actions.

So far we have looked at the situation where the players are actually confronted with
the applicant's expertise but, from a game point of view, the strategies should be an-
nounced before the interview takes place; in other words we should be providing a func-
tion s : [0, 1] → [0, 1] for each player where s(x) represents the probability of accepting an
applicant with expertise x. However this means that, unless restrictions are imposed, the
set of Nash equilibria becomes unmanageable. Given any subset S of I = [(1−2c)/4, 1/2]
suppose player 1 accepts x ∈ S ∩ I and rejects x ∈ I \ S while player 2 accepts x ∈ I \ S
and rejects x ∈ S ∩ I; neither player bene�ts from unilaterally deviating so this strategy
pair is a Nash equilibrium. Clearly most such Nash equilibria are unsatisfactory. From
the purely mathematical standpoint, one would not be able to calculate an expectation for
our problem for non-measurable S. However most measurable S would have undesirable
properties from the modelling viewpoint. If a player accepts an applicant with expertise x,
then it would appear unreasonable to expect the player to reject an applicant of expertise
greater than x; indeed, in many countries, in doing so, an organization might �nd itself
in con�ict with the law. If the condition is imposed that acceptance of an applicant with
expertise x implies acceptance of every applicant with expertise greater than x,, there are
just two pure Nash equilibria for the players; one player accepts the �rst applicant if and
only if the applicant has expertise at least 1/2 and the other player accepts if and only
if the applicant has expertise at least (1 − 2c)/4. Note that, with these Nash equilibria,
both applicants will be accepted if c ≥ 1/2 but that, for c < 1/2, there is a probability
that only one applicant will be accepted.

We now calculate the expectations for the pure Nash equilibrium in which player 1
accepts an applicant if and only if his expertise x is at least 1/2 and player 2 accepts if
and only if x ≥ (1− 2c)/4. Assuming c ≤ 1/2, for player 1 we have
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v2 =

∫ (1−2c)/4

0

(1− 2c)/4 dx +

∫ 1/2

(1−2c)/4

1/2 dx +

∫ 1

1/2

(x + 1/2)/2 dx

= 1
2 + c2

4 .

For player 2 we have

w2 =

∫ (1−2c)/4

0

(1− 2c)/4 dx +

∫ 1/2

(1−2c)/4

x dx +

∫ 1

1/2

(x + 1/2)/2 dx

=
(1− 2c)2

32 + 7
16 = 15

32 − c
8 + c2

8 .

Clearly, for c ≥ 1/2, the integrals and therefore the expectations are the same as for
c = 1/2. Thus they are independent of c and v2 = 9/16 and w2 = 7/16.

It is interesting to note that, as a function of c, v2 is increasing whereas w2 is decreasing
so the Stackleberg leader gains more the larger the value of c. As the leader expects more
than the follower when c = 0, the most unfair value of c is 1/2. Furthermore as c goes from
0 to 1/2, the leader gains more than the follower loses because the leader's expectation
rises from 1/2 to 9/16 while the follower's expectation declines from 15/32 to 7/16. In a
sense, the situation can be regarded as a game of Chicken. For x ≤ 1/2, the leader rejects
the applicant and dares the follower to also reject the applicant. The larger the value of
c, the more pressure there is on the follower to accept. We shall see in the next section
that a similar position arises in the general game but that the e�ects become insigni�cant
when there are still a large number of applicants remaining.

So far we have looked at the situation from the heads of department viewpoint but
their interests do not necessarily coincide with that of the organization as a whole. If we
think of the organization's interest as the totality of expertise employed, this interest is
e�ectively the sum of the expectations of the two players. Thus it would clearly be better
for the organization if both applicants are accepted. We have seen that both applicants are
accepted if c ≥ 1/2 so there is no con�ict of interest in this case. Whether the interests
of the organization are represented by an increasing function of c as c ranges over the
interval [0,1/2] is not so intuitively obvious. We have seen that, as c goes from 0 to 1/2,
the Stackleberg leader gains more than the follower loses over the interval so, as a whole,
the function increases. However, the smaller the value of c, the more likely it is that the
�rst applicant will be rejected and the penalty c brought into operation. The interest of
the organization E is given by

E = v2 + w2 = 1 +
(1− 2c)(3− 6c− 4)

32
= 1− (1− 2c)(1 + 6c)

32

which is a convex quadratic with a minimum at c = 1/6 giving E = 23/24 at the minimum.
Thus the worst value of c for the organization is 1/6. Further the most unfair value of c,
namely 1/2, is actually the best value for the organization.

There is also a mixed Nash equilibrium for the players. Let p(x) = (1− 2x)/(2x + 2c)
then p(x) is the probability that a player will reject x ∈ [(1− 2c)/4, 1/2] so, using (3.1),
the payo� Q for each player in the symmetric Nash equilibrium is given by
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Q =

∫ 1

1/2

(x + 1/2)

2
dx +

∫ 1/2

(1−2c)/4

(2c + 3

4
− (2c + 1)2

8(x + c)

)
dx

+

∫ (1−2c)/4

0

1− 2c

4
dx

= 5
16 +

(2c + 3)(2c + 1)
16 − (2c + 1)2 ln 2

8 +
(1− 2c)2

16

= 9 + 4c + 8c2

16 − (2c + 1)2 ln 2
8

Note that this is also a convex quadratic with a minimum in (0, 1/2).

Intuition tells us that a player in the role of Stackleberg leader in a pure Nash equilib-
rium does better than a player in the symmetric Nash equilibrium because his position is
essentially unchanged if the �rst applicant has expertise outside of [(1 − 2c)/4, 1/2] and
he does better if the applicant has expertise within that range because he is guaranteed
1/2 as the Stackleberg leader. To check this, consider, for c ≤ 1/2,

D1 = v2 −Q = 1
2 + c2

4 − 9 + 4c + 8c2

16 +
(2c + 1)2 ln 2

8
= 2 ln 2− 1

16 (1 + 2c)2 > 0

However it is not clear intuitively whether a player in the role of Stackleberg follower does
better or worse than a player in the symmetric Nash equilibrium. To see whether he does
so, for c ≤ 1/2 we consider

D2 = w2 −Q = 15
32 − c

8 − 9 + 4c + 8c2

16 +
(2c + 1)2 ln 2

8

=
4 ln (2)− 3

32 (1 + 2c2) < 0.

Note that
v2 + w2

2
−Q =

8 ln (2)− 5

64
(1 + 2c)2 > 0. (4.1)

When c ≥ 1/2, we have

Q =
11 + 4c

16
+

(1 + 2c)2

8
ln

2c

1 + 2c

and
D1 = 9/16−Q > 0 D2 = 7/16−Q < 0

so we have the same properties as the case c = 1/2. Thus a player in the symmetric game
does better than a Stackleberg follower in a pure Nash equilibrium whatever the value of
c.

From (4.1) the sum of the expectations for a pure Nash equilibrium is greater than twice
that for the symmetric one. This accords with intuition in that x ∈ ((1 − 2c)/4, 1/2) is
always accepted by the pure strategy pair but only with a probability less than 1 by the
symmetric strategy pair so there is a positive probability that such values will lead to a
shortfall of expertise in one of the departments when the symmetric strategy pair is used.
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The players' actions for x not in the range are the same for both strategy pairs. Thus
the players would have better expectations by choosing one of the pure Nash equilibria
at random than using the symmetric Nash equilibrium. From a practical standpoint
randomizing the role of Stackleberg leader seems a more attractive option than using the
symmetric Nash equilibrium. It is a lot easier to understand and to put into practice; a
simple toss of a coin rather than a complicated randomization if x ∈ (1− 2c)/4, 1/2].

5 The General Game with No Candidate Preference
We saw in the last section that the two applicant game presented di�culties so we must
expect similar ones to occur in the general game. However, when there are three or more
applicants, further complications arise. In the two applicant game, the players know
their expectations if both players reject the �rst applicant but, when there are three
applicants and both reject the �rst applicant, their expectations will depend on which
Nash equilibrium is adopted at the second stage. We will assume that there is some
kind of consistency in the actions of the players at the various stages and investigate a
number of scenarios to see how the payo�s di�er and how they are a�ected by the value
of c.. In the two applicant case, we have suggested that, it might bene�t the players
to agree to randomize who takes the role of Stackleberg leader so we will consider the
situation in which, at each stage, the players agree to randomize who takes that role.
By doing this the players create a symmetric situation where, at each stage, the players
have the same expectation if both players reject the current applicant. It is therefore very
di�erent from the situation in which the players agree to take it in turns to assume the
role of Stackleberg leader; in this case, at any given stage, the players will in general have
di�erent expectations. If there is no agreement to randomize concerning who takes the
role of Stacklberg leader, it seems natural to assume that a player who adopts the role
of a Stackleberg leader for one stage would take that role at every stage; we investigate
how unfair this is on the Stackleberg follower. Similarly, if a symmetric (mixed) strategy
is used at one stage then one might expect it to be used at every stage. Intuitively we
would expect that, when the number of applicants is large, there would not be very much
di�erence in the expectations of the players from any of these scenarios.

Assuming players 1 and 2 believe their expectations are respectively vr−1 and wr−1 if
they both reject the applicant interviewed at stage r, the r-stage matrix is

Mr(x) =

( Accept Reject
Accept ((x + ur−1)/2, (x + ur−1)/2) (x, ur−1)
Reject (ur−1, x) (vr−1, wr−1)

)

The result of the following lemma enables us to carry out a similar analysis to that of
the two applicant case.

Lemma. For all r, ur ≥ max{vr, wr}.
Proof. For any strategy pair in a two-person non-zero sum game, the expectations in a
Nash equilibrium are non-decreasing functions of the elements in the matrix. Because
u1 = 1/2 ≥ (1− 2c)/4, the result follows by induction.
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If player 1 assumes the role of Stackleberg leader and Player 2 that of Stackleberg
follower the respective expectations are

vr =

∫ 1

ur−1

(x + ur−1)/2 dx +

∫ ur−1

wr−1

ur−1 dx +

∫ wr−1

0

vr−1 dx

=
(1 + ur−1)

2

4 − wr−1(ur−1 − vr−1)

and
wr =

∫ 1

ur−1

(x + ur−1)/2 dx +

∫ ur−1

wr−1

x dx +

∫ wr−1

0

wr−1 dx

=
1− u2

r−1 + 2ur−1 + 2w2
r−1

4 .

We now consider the case in which the players use the symmetric Nash equilibrium at
each stage. At stage r the players will have a common expectation which will be denoted
by qr. The probability of a player accepting x ∈ [qr−1, ur−1] at stage r is given by 2(x −
vr−1)/(x + ur−1 − 2vr−1) and the corresponding payo� is

2ur−1 − qr−1 − 2(ur−1 − qr−1)
2

x + ur−1 − 2qr−1

Hence the expectation of the symmetric Nash equilibrium is

qr =

∫ 1

ur−1

x + ur−1

2
dx

+

∫ ur−1

qr−1

(2ur−1 − qr−1 − 2(ur−1 − qr−1)
2

x + ur−1 − 2qr−1

) dx

+

∫ qr−1

0

qr−1 dx =
(1 + ur−1)

2

4
+ (ur−1 − qr−1)(ur−1 − 2qr−1) + 2(ur−1 − qr−1)

2 ln 2.

When c = 0, the values are

Stage U value Leader Follower Sum/2 Symmetric
1 0.5 0.25 0.25 0.25 0.25
2 0.625 0.5 0.4688 0.4844 0.4759
3 0.6953 0.6016 0.5747 0.5881 0.5806
4 0.7417 0.6646 0.6419 0.6533 0.6468
5 0.7750 0.7089 0.6894 0.6991 0.6935
6 0.8004 0.7421 0.7250 0.7335 0.7286
7 0.8203 0.7681 0.7528 0.7605 0.7561
8 0.8364 0.7891 0.7753 0.7822 0.7782
9 0.8498 0.8064 0.7939 0.8001 0.7965
10 0.8611 0.8210 0.8095 0.8152 0.8119
11 0.8707 0.8335 0.8228 0.8281 0.8250
12 0.8791 0.8442 0.8343 0.8393 0.8364
13 0.8864 0.8537 0.8444 0.8490 0.8463
14 0.8929 0.8620 0.8533 0.8576 0.8551
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When c = 1/2, the values are

Stage U value Leader Follower Sum/2 Symmetric
1 0.5 0 0 0 0
2 0.625 0.5625 0.4375 0.5 0.4659
3 0.6953 0.6328 0.5605 0.5967 0.5763
4 0.7417 0.6835 0.6339 0.6587 0.6444
5 0.7750 0.7215 0.6842 0.7028 0.6921
6 0.8004 0.7511 0.7214 0.7362 0.7276
7 0.8203 0.7748 0.7503 0.7625 0.7553
8 0.8364 0.7942 0.7734 0.7838 0.7777
9 0.8498 0.8104 0.7924 0.8014 0.7961
10 0.8611 0.8243 0.8083 0.8163 0.8116
11 0.8707 0.8362 0.8218 0.8290 0.8248
12 0.8791 0.8465 0.8335 0.8400 0.8362
13 0.8864 0.8558 0.8437 0.8497 0.8462
14 0.8929 0.8636 0.8527 0.8582 0.8550

These tables demonstrate that the general case follows a similar pattern to that of
the two applicant case. The Stackleberg leader bene�ts from a higher value of c whereas
the follower bene�ts from a lower value of c. However, by the time there are fourteen
applicants, the value of c makes very little di�erence to either of the expectations. The
tables also show that, for fourteen applicants, the expectations of the players are very
close to each other. Thus aggression manifested by taking the role of Stackleberg leader
is of little bene�t when there are a comparatively large number of applicants.

When c = 1/6, the values are

Stage U value Leader Follower Sum/2 Symmetric
1 0.5 0.1667 0.1667 0.1667 0.1667
2 0.625 0.5069 0.4514 0.4792 0.4640
3 0.6953 0.6069 0.5667 0.5868 0.5754
4 0.7417 0.6684 0.6374 0.6529 0.6440
5 0.7750 0.7117 0.6864 0.6991 0.6918
6 0.8004 0.7442 0.7230 0.7376 0.7274
7 0.8203 0.7697 0.7514 0.7605 0.7552
8 0.8364 0.7904 0.7742 0.7823 0.7776
9 0.8498 0.8075 0.7930 0.8002 0.7960
10 0.8611 0.8219 0.8088 0.8153 0.8115
11 0.8707 0.8342 0.8223 0.8282 0.8247
12 0.8791 0.8449 0.8339 0.8394 0.8362
13 0.8864 0.8542 0.8440 0.8491 0.8461
14 0.8929 0.86250 0.8530 0.8577 0.8549

This table con�rms the analysis of Section 4 that, when there are just two applicants
the organization can expect less expertise for c = 1/6 than for c = 0. We will have further
comments on this table in the next section.
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Now consider the case in which, at each stage, the players randomize for who should
play the role of leader, then vr−1 = wr−1 in the above matrix and the expectation v∗r is

v∗r =
1 + 2ur−1 + v∗r−1(3v

∗
r−1 − 2ur−1)

4
.

Stage U value c = 0 value c = 1/2
1 0.25 0
2 0.4844 0.5
3 0.5938 0.6240
4 0.6599 0.6780
5 0.7057 0.7177
6 0.7397 0.7483
7 0.7662 0.7727
8 0.7876 0.7927
9 0.8052 0.8091
10 0.8200 0.8232
11 0.8326 0.8352
12 0.8435 0.8457
13 0.8530 0.8549
14 0.8614 0.8630

6 Discussion of the Results
The tables in the previous section suggest some interesting conclusions. Perhaps the most
illuminating is that it appears that, whatever the value of c in [0,1/2], the players have
a better expectation by randomizing who should adopt the role of Stackleberg leader at
each stage other than the �rst than by using any of the other Nash equilibria considered.
In particular, for the two �fair �solutions in the sense that they give the same expectation
to each player at each stage, the simpler method which can be implemented by a simple
toss of a fair coin at each stage appears preferable to the one in which a complicated
randomization is necessary at each stage. Furthermore the simple fair method is best
from the organization's standpoint in that a higher level of expertise is appointed than in
any of the others, certainly in the cases when c = 0 and c = 1/2 and there are more than
two applicants. There is a striking di�erence between the symmetric Nash equilibrium
and the others. In the former the expectation for a given stage is higher when c = 0 than
it is when c = 1/2 whereas, for the others, the expectation is higher when c = 1/2 than
when c = 0.

In Section 4 we saw that, when there are just two applicants, the average expectation
of the players has a minimum w.r.t c in (0, 1/2) for both the symmetric and the pure Nash
equilibrium. The tables for c = 0 and c = 1/6 illustrate a di�erence between these Nash
equilibria in the general case. The symmetric Nash equilibrium has a lower expectation
for c = 1/6 than for c = 0 for all but the one applicant case whereas the pure Nash
equilibrium has this property for only a small number of applicants.
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