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Abstract

McGarveys’s theorem [6] shows that majority aggregation of a profile
of linear orders generates any complete binary relation. Kalai [5] proved
that the same is true for any neutral monotone SWF defined by a strong
simple game where the power of every voter is sufficiently small, which
implies that there are many effective voters. In this paper we study neutral
monotone SWFs with many effective voters with no restriction on voter
power. We give bounds on the minimal number of relations generated by
such SWFs.

1 Introduction

Condorcet’s famous paradox [2] shows that majority aggregation of individual
preferences between at least 3 alternatives represented by linear orders may lead
to an intransitive binary relation. McGarvey [6] extended this result and proved
that any complete binary relation can be generated by majority on a sufficient
number of voters. In McGarvey’s proof at least m2 voters are required in order
to generate all possible binary relations on m alternatives. A counting argument
shows that at least m

log(m) are required and Erdős and Moser [3] showed that
this number of voters suffices.

Arrow’s impossibility theorem [1] shows that any social welfare function
(SWF) generates an intransitive relation for some profile of linear orders. Can
this result be extended in the same way Condorecet’s paradox was extended
by McGarvey? Kalai [4] conjectured that the answer is positive, namely for
any neutral monotone SWF with a sufficient number of effective voters any
complete binary relation can be generated by an appropriate profile of linear
orders. Kalai [5] proves this conjecture for a certain class of SWF. He shows
that a neutral monotone SWF defined by a strong simple game with small
Shapley-Shubik power for every voter generates all binary relations. This results
implies that voting systems in which the power of each voter is small leads to
social indeterminacy – the group preference is a binary relation for which the
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preference on any pair of alternatives is independent of the preference on the
other pairs.

In this paper we refute Kalai’s conjecture for the general case by constructing
a family of SWFs for which there exist binary relations that are not generated
by the family for any number of voters. Nevertheless, we show that the set of
binary relations generated by a neutral monotone SWF is very large. The set
of all binary relations generated by a SWF f is called the image and denoted
Im(f). Define:

Xm = max
n

min{|Im(f)| : f neutral monotone with n effective voters}

this number indicates the degree of social determinacy introduced by a voting
systems with unbounded numbers of effective voters. Our goal is to prove the
following theorem:

Theorem 1.
20.25m2

≤ Xm ≤ 20.468m2

Let us give a brief overview of the proof. There are two main ideas: the first
is to analyze the relations generated by a family of SWFs we call almost dictator
which has many effective voters but nevertheless is quite restrictive. Xm is the
smallest number of relations that can be generated by any SWF with many
effective voters therefore an upper bound on the number of relations generated
by almost dictator passes on to Xm. In section 3 we find both lower (lemma 2)
and upper (lemma 3) bounds for the number of relations generated by almost
dictator. The second idea is to introduce a notion of embedding such that the
image of an embedded SWF is a subset of the image the embedding SWF. In
section 4 we show (corollary 1) that for any SWF with a sufficient number of
voters there is an embedded almost dictator. This implies that the image of
any SWF includes all the relations in the image of almost dictator which shows
that the lower bound of lemma 2 is a lower bound for Xm. As we show, this
lower bound is high, hence the degree of social determinacy in neutral monotone
SWFs with many effective voters is quite low for any power distribution among
voters.

2 Preliminaries

We begin by briefly describing the model we will be using. A strong simple
game G is a tuple ([n],W) where [n] = [1, . . . , n] is a set of voters and W is a
set of coalitions (subsets of [n]) such that ∅ 6∈ W, [n] ∈ W and either S ∈ W
or [n] − S ∈ W for every coalition S ⊂ [n]. The set W designates the winning
coalitions. A game is monotone if S ∈ W and S ⊂ T imply T ∈ W. If S, S′ ∈ W
are two disjoint winning coalitions in a monotone game then S′ ⊂ [n]−S implies
S, [n]−S ∈ W contradicting monotinicity, hence any two winning coalitions have
a nonempty intersection.

A voter is influential or effective if his or her vote may have some impact on
the outcome. In a strong simple game G this means that the voter is a pivot
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for at least one coalition, namely S 6∈ W and S ∪ {i} ∈ W for some coalition
S ⊂ [n] − {i}. A coalition S ⊂ [n] is minimal if S ∈ W and S′ 6∈ W for any
S′ ( S. If G is monotone then a coalition is minimal if every voter in the
coalition is a pivot. If S ∈ W then there exists a minimal winning coalition
S′ ⊂ S. Notice that a minimal winning coalition may not be the smallest
winning coalition, indeed in the almost dictator game we introduce in the next
section there is a minimal winning coalition consisting on n− 1 out of n voters
while there are other winning coalitions consisting of two voters.

Let Prp be a distribution on the set of all coalitions such that every voter
independently belongs to a random coalition with probability p. The Banzhaf
Power index of voter j ∈ [n] in G, denoted Ip

j (G), is the probability that j is a
pivot, thus Ip

j (G) = Prp({S ⊂ [n] − {j} : S 6∈ W ∧ S ∪ {j} ∈ W}). Voter j is
called a dummy in G if he or she has no influence on the outcome of G in such
a case Ip

j (G) = 0 for all p. Another common power index is the Shapley-Shubik
power index which also measures the influence of a voter. The relation between
these two indices is given by Owen’s identity [7]

φi(G) =
∫ 1

0

Ip
k(G)dp

A key to the proof of the upper and lower bounds is the analysis of neu-
tral monotone SWFs defined by a family of strong simple games called almost
dictator. For n voters almost dictator is the game ADn = ([n],W) defined by
W = {S∪{1} : ∅ 6= S ⊂ [n]}∪{[n]−{1}}. Thus voter 1 – the ’almost dictator’ –
imposes his choice unless all the other voters are lined up against him. This gives
a monotone game with no dummies. Voter 1 is a pivot unless all the others are
unanimous one way or another hence Ip

1 = 1−pn−1−(1−p)n−1. Any other voters
is a pivot if all the voters apart from 1 agree hence Ip

k = pn−2(1−p)+p(1−p)n−2.
It follows from Owen’s identity that the Shapley-Shubik power indices are given
by:

φ1(G) =
∫ 1

0

Ip
1 (G)dp =

∫ 1

0

[1− pn−1 − (1− p)n−1]dp = 1− 2
n
> 0

φk(G) =
∫ 1

0

Ip
k(G)dp =

∫ 1

0

[pn−2(1− p) + p(1− p)n−2]dp =
2

n(n− 1)
> 0

for k > 1

Let [m] be a set of m > 2 alternatives. Designate the set of all complete
antisymmetric binary relations on [m] by ∆ and the set of all linear orders
Ω ⊂ ∆. In our model a preference is a linear order (we disregard indifference).
An n voter social welfare function (SWF) is a function f : Ωn → ∆ such
that any R = f(R1, . . . , Rn) satisfies independence of irrelevant alternatives
(IIA) : the preference of P on alternatives a, b ∈ [m] depends only on the
individual preferences of each voter between these two alternatives, and the
Pareto condition: if all voters prefer a to b then so does R. It is implied by
these conditions that a function f is a SWF iff there exists a collection of strong

3



simple games {Gab}a,b∈[m] such that aRb iff {j ∈ [n] : aRjb} is a winning
coalition in Gab. In this paper we assume neutrality and monotinicity namely
Gab = G for all a, b ∈ [m], we shall occasionally identify a SWF with the game
defining it.

We say that a set of voters vote in blocks if there is a division of [m] into
blocks such that voters within each block behave identically; voting according
to party lines is an example. Formally, let G = ([n],W) and G′ = ([n′],W ′) be
strong simple games. We say that G embeds G′ by block voting if there exists
a function ϕ : [n] → [n′] such that S ∈ W iff ϕ(S) ∈ W ′ for every S ⊂ [n],
i.e. all the voters in ’block’ ϕ−1(j) vote identically for every j ∈ [n′]. We
denote this relation G′ = G ◦ ϕ−1. If G2 = G1 ◦ ϕ−1 and G3 = G2 ◦ ψ−1

then G3 = G1 ◦ (ϕψ)−1 hence embedding is a transitive relation between strong
simple games. If a game defining a SWF f embeds a game defining another
SWF f ′ by ϕ then we say that f embeds f ′ by ϕ and denote f ′ = f ◦ ϕ−1. It
is easy to see that embedding is also transitive relation on SWFs.

The image Im(f) is the set of all binary relations generated by profiles of
linear orders. The Pareto principle implies Ω ⊂ Im(f). If f embeds f ′ by ϕ
then for any R = f ′(R1, . . . , Rk) let (Q1, . . . , Qn) be the corresponding block
profile namely Qi = Rj if ϕ(i) = j. By definition R = f(Q1, . . . , Qn) hence
Im(f ′) ⊂ Im(f).

3 Weak Social Determinism

In this section we find lower and upper bounds of the number of relations in
the image of almost dictator. A relation R is weakly determined by a linear
order R0 if for any three alternatives a, b, c ∈ [m] such that aR0bR0c there is
no cycle aRcRbRa. Thus if we think of R0 as determining a clockwise direction
for any triple then we say that a relation is weakly determined if it has no
counterclockwise cycles. Denote by C the set of all weakly determined relations
(where R0 runs over all linear orders). An SWF satisfies weak social determinacy
if its image is a subset of C.

Lemma 1. Im(ADn) ⊂ C and if n >
(
m
2

)
then Im(ADn) = C

proof: Let R be a relation generated by ADn with R0 as the preference of
voter 1. For any three alternatives a, b, c ∈ [m] such that aR0bR0c it follows
from cRb and bRa that all voters apart from 1 prefer b to c and a to b. Since
the voter preferences are transitive it follows that all these voters prefer a to
c hence cRa. Thus no relation with a counterclockwise cycle aRcRbRa can be
generated. This implies that any relation generated with R0 as the preference
of the almost dictator is weakly determined by R0 hence Im(ADn) ⊂ C.

The idea in the second part of the proof is to construct a set of linear orders
that agree with R whenever R disagrees with R0 and agrees with R0 on at least
one pair, for any R weakly determined by R0. For a voter profile with R0 as the
almost dictator preference and the constructed linear orders as the preferences
of the other voters, it follows that all voters line up against the almost dictator
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if he or she disagrees with R and at least one voter joins the almost dictator of
he or she agrees with R, hence the image of this profile is R.

Let R ∈ C be weakly determined by R0. If R disagrees with R0 on all pairs
then R is the inverse of R0 and therefore a linear order which implies that it
belongs to the image of any SWF. Otherwise, for any pair (a′, b′) such that
a′Rb′ and a′R0b

′ there is a partial relation Pa′b′ such that a′Pa′b′b
′, and on

any other pair aPa′b′b if aRb and bR0a and is undefined otherwise. If aPa′b′b,
bPa′b′c and {a′, b′} 6⊂ {a, b, c} then by definition cR0bR0a and aRbRc, if we had
cRa then this would contradict weak determinism thus aRc and consequently
aPa′b′c. This shows that if a1Pa′b′a2 . . . alPa′b′a1 is a cycle then there exists c 6=
a′, b′ such that a′Pa′b′b

′Pa′b′cPa′b′a
′. This implies a′R0cR0b

′R0 and a′Rb′RcRa′

again contradicting weak determinism. Consequently Pa′b′ is transitive and by
Szpilrajn theorem (see for instance [8]) can be extended to a linear order Ra′b′ .

Let (Q1, Q2, . . . , Qn) be a profile of linear orders representing voter prefer-
ences such that Q1 = R0 and for any a, b ∈ [m] on which R and R0 agree there
exists Qj = Rab (for Rab constructed as above). If n >

(
m
2

)
then such a profile

exists. For any c, d ∈ [m], if cRd and dR0c then cQjd for any j 6= 1. If cRd and
cR0d then cQjd for at least one voter in addition to voter 1. By definition of
almost dictator R = ADn(Q1, . . . , Qn) implying R ∈ Im(ADn) 2

The next lemma gives a lower bound on the image of almost dictator, which
is obtained by an explicit construction of linear orders that generate a set of
relations that includes all the possible preferences on a large set of pairs.

Lemma 2. If n > m then 20.25m2 ≤ |Im(ADn)| ≤ |C|

proof: Let A,B be a division of [m] (A∪B = [m] and A∩B = ∅) and let R0

be a linear order such that aR0b for every a ∈ A and b ∈ B. Let R be a relation
that agrees with R0 on any pair of alternatives that are both in A or both in
B. We prove that such an R can be generated by almost dictator by showing
that for any a ∈ A there exists a linear order Ra that agrees with R on any pair
(a, b) for b ∈ B and disagrees with R0 on any pair (a′, b) for a′ ∈ A − {a} and
b ∈ B. For a profile with R0 as the preference of the almost dictator and Ra as
preferences of the other voters, it follows that on all pairs (a, b) a ∈ A and b ∈ B
all voters oppose the almost dictator if he or she disagrees with R, and at least
one voter j 6= 1 agrees with R0 otherwise. The relation Ra is constructed by
dividing [m] into four blocks and rearranging the block order while preserving
the order of R0 within the blocks.

If |B| ≤ 1 then R is a linear order thus R ∈ Im(ADn). If |B| ≥ 2 then
for every a ∈ A let Ba = {b ∈ B : bRa} and let Ra be a linear order that
agrees with R0 on the blocks Ba, B − Ba and A − {a} and orders the blocks
by [Ba, a, B −Ba, A− {a}], in other words Ra prefers a to every alternative in
Ba, prefers every alternative in B − Ba to a and prefers every alternative in
A − {a} to every alternative in B − Ba. Let R1 be a linear order that prefers
every alternative in A to every alternative in B and agrees with R0 on A and
B. Let (Q1, . . . , Qn) be a profile of n > m ≥ |A|+ 2 voters such that Q1 = R0,
Q2 = R1 and for every a ∈ A there exists at least one j such that Qj = Ra. If
a, b are both in A or both in B then voters 1 and 2 agree with R0. If a ∈ A then
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Ra = Qj for some j. If aRb then voters 1 and j agree with R and all voters
apart from 1 agree with R otherwise. Again by definition R = ADn(Q1, . . . Qn).

There exist |A| · |B| pairs of alternatives on which R may agree or disagree
with R0 therefore |Im(ADn)| ≥ 2|A||B| and the best bound we get this way is
2

m2
4 2

Lemma 3. |C| ≤ 20.468m2

proof: We apply a probabilistic argument to find an upper bound on the
set C. The idea is to upper bound the number of relations by upper bounding
the probability of a corresponding event. We begin with upper bounding the
number of relations that are weakly determined by to a linear order R0. We
do this by bounding the probability that a uniformly random relation induces
no counterclockwise cycles on a large set of edge disjoint triangles (triples of
alternatives that do not intersect on more than one alternative). Clearly this
event contains the event that a random relation is weakly determined. The
disjointness of the triangles implies that the event that a triangle is a counter-
clockwise cycle is independent of the relation induced on any one of the other
triangles thus we can easily compute the event that no triangle is induced a
counterclockwise cycle.

Let Pr be the uniform distribution on the set of all binary relations. The
probability that a triangle a, b, c ∈ [m] is not a counterclockwise cycle relative to
R0 is 7

8 . The probability of the event that there are no counterclockwise cycles
is bounded by the probability that on a set of edge disjoint triangles no triangle
is induced a counterclockwise cycle. Due to disjointness the latter probability
is ( 7

8 )K where K is the size of a set of edge disjoint triangles. Consequently the
best bound we can hope to obtain this way would be for a maximal set of edge
disjoint triangles.

A maximal set of edge disjoint triangles on m vertices is a Steiner triple
system. It is not too difficult to show that such a set can consist of at most
K = m(m−1)

6 triangles. It is a well known theorem in combinatorial design that
a Steiner triple system of this size exists for m = 1, 3 mod 6 (see van Lint [9]
for more on combinatorial design), this implies the existence of a set of edge
disjoint triangles of size m2

6 − θ(m)1 for all m.
It follows that the probability of a relation having a counterclockwise cycle

is bounded by ( 7
8 )

m2
6 −θ(m). Consequently the number of relations without these

cycles is bounded by

(
7
8
)

m2
6 −θ(m)2

m(m−1)
2 = 2(

log2
7
8

3 +1) m2
2 −θ(m)

There are m! = 2θ(mlog(m)) choices for the order R0 hence for large m

|C| ≤ 2(
log2

7
8

3 +1)m2+θ(mlog(m))−θ(m) < 20.468m2
� 2

m(m−1)
2

2

1We replace a function ϕ(m) with θ(m) when there exist constants c, c′ ∈ R+ such that
cm ≤ ϕ(m) ≤ c′m for m large.
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The lemma shows that not all relations can be generated by SWFs in the almost
dictator family. Since almost dictator defines a SWF it follows that this bound
passes on to Xm.

4 An Embedding Theorem

In this section we show that any SWF defined by a game with n > k2k2+1 voters
embeds an almost dictator with k voters, hence the lower bound on the number
of relations generated by almost dictator applies to Xm as well.

Lemma 4. For a strong simple game with n > 3 effective voters there exists a
minimal winning coalition with more than two voters.

proof: If a singleton is a winning coalition then the game is dictatorial and
there is only one effective voter. Suppose every minimal coalition in W is a
two voter coalition and let T = {a1, a2} ∈ W be such a coalition. Any two
effective voters b1 6= b2 belong to minimal winning coalitions that intersect T .
If {a1, b1} ∈ W and {a2, b2} ∈ W then we have two disjoint winning coalitions
which contradicts simplicity. Consequently all effective voters belong to a mini-
mal winning coalition that intersects T on the same voter thus w.l.g {a1, b} ∈ W
for any effective voter b.

Since any singleton is a loosing coalition [n]−{a1} ∈ W and [n]−{a1, b} 6∈ W
for any effective voter b. It follows that any minimal winning coalition which is a
subset of [n]−{a1} must include all effective voters. Since there are more than
three effective voters this minimal coalition must have more than two voters
contradicting the initial assumption 2

Theorem 2. A strong simple game with n > k2k2+1 effective voters has a
minimal winning coalition with more than k voters.

proof: Let G = ([n],W) be a strong simple game and assume any minimal
winning coalition has at most k voters. Let T0 be a minimal winning coalition
of maximal cardinality, lemma 4 implies 2 < |T0| ≤ k. Any minimal winning
coalition S 6= T0 must intersect T0 hence induces a partition of T0. Associate the
voters in S − T0 to this partition. Since every effective voter belongs to at least
one minimal winning coalition the pigeonhole principle implies that there exists
a winning coalition S that induces a partition T ′

0 = T0 ∩ S and T ′′
0 = T0 − T ′

0

with at least k2k2+1−k
2k associated effective voters.

For a partition (T ′
0, T

′′
0 ) as above let n1 = n−|T0|+2 and take ϕ0 : [n] → [n1]

such that ϕ−1
0 (1) = T ′

0, ϕ
−1
0 (2) = T ′′

0 and |ϕ−1
0 (j)| = 1 for j ∈ [n1] − {1, 2}.

Then we define a new embedded game G1 = G◦ϕ−1
0 = ([n1],W1). If l ∈ [n]−T0

is an effective voter associated with the partition (T ′
0, T

′′
0 ) then there exists a

minimal winning coalition such that S∩T0 = T ′
0. Thus S ∈ W but S−{l} 6∈ W

so by definition of embedding ϕ(S) ∈ W1 and ϕ(S)−{ϕ(l)} 6∈ W1. This implies
that the image of a G-effective voter associated with the partition is G1-effective
hence there are at least k2k2+1−k

2k effective voters in G1.
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Suppose there exists a minimal winning coalition S ⊂ [n1] in G1 with more
than k voters. Minimality implies that S − {j} 6∈ W1 for every j ∈ S, hence by
definition of embedded game ϕ−1(S) ∈ W but ϕ−1(S−{j}) 6∈ W. Consequently
any minimal winning coalition S′ ⊂ [n] such that S′ ⊂ ϕ−1(S) must intersect
ϕ−1(j) for every j ∈ S. Since inverses are disjoint it follows that |S′| > k
contrary to the assumption on G. If S is a minimal winning coalition with
more than two voters then |S ∩ {1, 2}| = 1 since {1, 2} ∈ W1. If 2 ∈ S then
for j ∈ S − {2} we know ([n] − S) ∪ {j} ∈ W1 and therefore there exists a
minimal winning coalition S′ ⊂ ([n] − S) ∪ {j}, from [n] − S 6∈ W1 follows
that 1, j ∈ S′. This shows that for every effective voter j 6= 1, 2 there exists
a minimal coalition that includes 1 and j. If every minimal winning coalition
that includes 1 is a two voter coalition then the set of all effective voters apart
from 1 is a minimal winning coalition with more than k voters which as we have
seen is a contradiction. Thus G1 is a strong simple game with k2k2+1−k

2k effective
voters such that any minimal winning coalition is bounded by k, with a minimal
winning coalition T1 such that 1 ∈ T1 and |T1| > 2 and a ’special’ voter a1 = 2
such that {1, a1} ∈ W1.

Assume Gj is a game on voter set [nj ] with at least k
2jk [2k2+1 − 2jk + 1]

effective voters such that any minimal winning coalition has less than k voters
with a minimal winning coalition Tj such that 1 ∈ Tj and |Tj | > 2 and with
special voters a1, . . . , aj such that {1, al} ∈ Wj for any l = 1, . . . , j. As before
there is a partition T ′

j and T ′′
j with k

2(j+1)k [2k2+1 − 2(j+1)k + 1] associated Gj-
effective voters, we choose the sets so that 1 ∈ T ′

j . Let nj+1 = nj − |Tj |+ 2 and
take ϕj : [nj ] → [nj+1] such that ϕ−1

j (1) = T ′
j , ϕ

−1
j (2) = T ′′

j and |ϕ−1
j (l)| = 1

for l ∈ [nj ] − {1, 2}. We define for this partition the game Gj+1 = Gj ◦ ϕ−1
j =

([nj+1],Wj+1).
As before the image of any Gj-effective voter associated with the partition is

Gj+1-effective hence Gj+1 has at least k
2(j+1)k [2k2+1−2(j+1)k+1] effective voters.

If S is a minimal winning coalition with more than k voters then S−{l} 6∈ Wj+1

for every l ∈ S so ϕ−1
j (S) ∈ Wj but ϕ−1

j (S − {l}) ∈ Wj therefore any minimal
coalition S′ ⊂ ϕ−1

j (S) must intersect ϕ−1
j (l) implying |S| > k which contradicts

the assumption on Gj . If l is effective there exists a minimal winning coalition
that includes voters 1 and l, if every such coalition is a two voter coalition
then the set of all effective voters is a minimal winning coalition with more
than k voters again producing a contradiction. This shows that there exists
a minimal winning coalition Tj+1 with more than two voters and 1 ∈ Tj+1.
Finally, {1, al} ∈ Wj for any special voter therefore ϕ({1, al}) = {1, ϕ(al)} ∈
Wj+1 l = 1, . . . , j thus the image of every Gj-special voter is Gj+1-special.
Since Tj is minimal with more than two voters a1, . . . , aj 6∈ Tj and consequently
ϕ(a1), . . . , ϕ(aj) 6= 2. By defintion {1, 2} ∈ Wj+1 therefore 2, ϕ(a1), . . . , ϕ(aj)
are j + 1 special voters in Gj+1.

Repeated use of this construction gives a sequence of games G1, . . . , Gk. Let
ϕ = ϕk ◦ ϕk−1 ◦ . . . ◦ ϕ1 : [n] → [nk]; ϕ defines an embedding of Gk in G. Let
a1, . . . , ak be the special voters of Gk, thus {1, al} ∈ Wk for every l = 1, . . . , k
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therefore by definition of embedding ϕ−1({1, al}) = ϕ−1(1) ∪ ϕ−1(al) ∈ W.
Since Gk is not dictatorial [n] − ϕ−1(1) ∈ W. Thus any minimal winning
coalition S ⊂ [n] − ϕ−1(1) must intersect each one of ϕ−1(a1), . . . , ϕ−1(ak)
implying |S| > k contrary to the assumption on G 2

Corollary 1. A game with k2k2+1 effective voters or more embeds ADk+1

proof: It follows from the theorem that for any game with n > 2k2+1 there
exists a minimal winning coalition S with more than k voters. Minimality
implies that ([n] − S) ∪ {j} is a winning coalition for every j ∈ S therefore G
embeds ADk+1 with the block [n]−S as the almost dictator and the k singletons
of voters in S2

Corollary 2. If a SWF f is defined by a game with more than m2m2+1 effective
voters then 20.25m2 ≤ |Im(f)|.

proof: This is an immediate conclusion of corollary 1 and lemma 2.
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