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Abstract

Dual reduction, introduced by Myerson, allows to reduce games in a way that selects among correlated equi-
librium distributions. Myerson'’s results are first recalled, then new properties of dual reduction are established.
We show that generic two-player games have a unique sequence of iterative full dual reductions. We compare dual
reduction to other correlated equilibrium refinements. Finally, we review and connect the linear programming
proofs of existence of correlated equilibria.

1 Introduction

The first direct proofs of existence of correlated equilibrium distributions, based on the duality theorems of linear
programming, were developed independently by Hart and Schmeidler [3] and Nau and McCardle [10]. These
proofs are essentially identical, as shown in appendix A. They laid the mathematical foundations of dual reduction
[7]. Dual reduction is a method to reduce finite games into games with fewer strategies in a way that selects
among correlated equilibrium distributions. That is, any correlated equilibrium distribution of the reduced game
induces a correlated equilibrium distribution in the original game. Myerson [7] shows that dual reduction includes
elimination of weakly dominated strategies as a subprocess, and that, by iterative dual reduction, any game is
eventually reduced to a game which has a strict correlated equilibrium distribution with full support. We see dual
reduction as a powerful tool to study correlated equilibrium distributions. The aim of this paper is to investigate
further the properties of dual reduction.

After introducing the basic notations and definitions in section 2, we recall the key-points of the direct proofs
of existence of correlated equilibrium distributions, in section 3, and review the existing results on dual reduction
in section 4. New results are established in sections 5 and 6. They are summed up at the beginning of section 5. In
section 7, we briefly compare dual reduction to another correlated equilibrium refinement introduced by Myerson
[8]: elimination of unacceptable pure strategies. Long proofs are gathered in section 8. Finally, in the appendix, we
review and connect the proofs of existence of correlated equilibria given in [3], [10] and [7].

2 Notations and definitions

2.1 Basic notations

The analysis in this paper is restricted to finite games in strategic forms. The notations are taken from [7]. Let
' ={N,(C))ien, (U;)icn } denote a finite game in strategic fordV: is the nonempty finite set of players; the
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nonempty finite set of pure strategies of playandU; : x;cnC; — R the utility function of playeri.. The set of
(pure) strategy profiles iS' = x;cnC;; the set of strategy profiles for the players other thisrC_; = x;en—;C;.
Pure strategies of playér(strategy profiles; strategy profiles of the players other thare denotea; or d; (c;
c—_;). We may write(c_;, d;) to denote the strategy profile that differs freranly in that itsi—component igl;. For
any finite setS, A(S) denotes the set of probability distributions oerThusA(C;) is the set of mixed strategies
of playeri, which are denoted hy; or 7;.

2.2 Correlated equilibrium distributions and deviation vectors
A correlated strategyf the players inV is is an element oA (C'). Thusu = (u(c)).cc is a correlated strategy if:
u(c) >0 VYeel

o) =1

ceC
A correlated strategy is eorrelated equilibrium distributiofAumann, 1974] if it satisfies the followinimcentive
constraints

> wle)Ui(e) = Ui(c—i,d;)] >0 Vi € N,Ve; € Cy,Vd; € C; 1)
c_;€C_;

The following interpretation and the vocabulary introduced below will be useful for the next sectionscLA{C')
and consider the following extended gaing, based orl": beforel is played, a strategy profile € C'is drawn
at random, with probability:(c), andc; is privately announced to playérthenI is played. The players can thus
condition their strategy iiir on their private signal. A strategy of playgin this extended game isdeviation plan
i.e. a mappingy; : C; — A(C;). Denoting bya;(d;|c;) the probability that player will play d; when announced
c; we have:

az(dl\cl) >0 Ve; € C“le c CZ,V’L eN (2)
Z al(dl\cl) =1 Ve; € C,HV’L eN (3)
d;€C;

A strategy profile is aleviation vectori.e. a vectorae = («;);cn Of deviation plans. Such a deviation vector
is trivial if, for all ¢ in N, «; is the identity mapping. The incentive constraints (1) mean jghiata correlated
equilibrium distribution of” if and only if the trivial deviation vector is a Nash equilibriumIof.

3 Existence of correlated equilibrium distributions

This section is a variation on [3], [10] and [7]. Consider the following two-player, zero-sum auxiliary Gahe
maximizer chooses a correlated strategn A(C); the minimizer chooses a deviation vectorThe payoff is:

g(ma) => ple) > Y aildile)[Ui(e) = Uilei, di)]* (4)
ceC i€EN d; €C;

It is clear from section 2.2 that guarantees 0 if and only jf is a correlated equilibrium distribution @f.
ThusT has a correlated equilibrium distribution if and only if the valuezois nonnegative. The remaining of this
section is devoted to a proof of the following theorem:

1t is clear thatG has a value. Indeed7 is the extension in behavioral strategies of the following two-player, zero-sum game: first the
maximizer privately choosesin C; then a playei in N is selected (with probability /n, wheren is the number of players) ang announced
to the minimizer; the minimizer then chooses a deviatipfrom ¢;. The payoffisin x [U;(c) — Ui(c—i, d;)].



Theorem 3.1 The value of~ is zero. Therefore correlated equilibrium distributions exists.

A deviation plana; : C; — A(C;) induces a Markov chain o@;. This Markov chain maps the distribution
o; € A(C;) to the distributiony; x o; given by:

Q% Uz(dz) = Z ai(di\ci)ai(ci)Vdi S Cl

c; eI

Similarly, if a mediator tries to implement? but player: deviates (unilaterally) according te;, this generates a
new distribution on strategy profiles * p:

ai* plemiydi) = > oq(dile;)pi(e) Vi € Cy,¥e_; € C_;
c;€C;

Definition 3.2 Leta = («;);cn be a deviation vector. A mixed strategy< A(C;) is a;-invariantif a; * o; = o;.
A correlated strategy, € A(C) is a-invariant(a-invarian) if (if for all i € N) a; * p = p.

Note that, by the basic theory of Markov chains, there exists at leasteim@ariant strategy.
LetU;(u) = > .cc k(c)Us(c) denote the average payoff of playéf 1 is implemented. Myerson shows that:

g(p,0) = [Ui(p) — Us(ai * p)] (5)

ieEN

We can now prove theorem 3.1: first note that the minimizer can guarantee 0 by choosing the trivial deviation
vector. Thus we only need to show that the maximizer can defend Ox denote a deviation vector; for each

leto; € A(C;) beag-invariant. The correlated strategy= [ [, 0: is a-invariant; hence, by (S)(c, o) = 0.
Therefore, the maximizer can defend 0.

4 Dual reduction

All results of this section are proved in [7].

4.1 Definition

The Markov chain or©; induced by partitionsC; into transient states and disjoint minimal absorbingsdter

any minimal absorbing sed#;, there exists a unique;-invariant strategy with support iB;*. Let C; /«; denote the

set of (randomized);-invariant strategies with support in some minimglabsorbing set. It may be shown that the

set ofa;-invariant strategies is the set of random mixture of the strategi€s/in;; that is, the simplexA(C; /«;).
Leta = (a;)ien be a deviation vector. The-reduced gam&/a = {N, (C;/a;)ien, (U;)ien} is the game

obtained from[" by restricting the players te-invariant strategies. That is, the set of players and the payoff

functions are the same thanlinbut, for alli in N, the pure strategy set of playeis nowC; /«;.°

2That is, the mediator draws a strategy profii@ C' with probability ;2(c) and then privately recommendsto players.

3A subsetB; of C; is «;-absorbing ifae(d;|c;) = O forall ¢; in B; and alld; in C; — B;. An a;-absorbing set is minimal if it contains no
propera;-absorbing subset.

4Actually its support is exactlys;.

SStrictly speaking the payoff function of the reduced game is the funatidncedby the original game’s payoff function on the reduced
strategy space.



Before turning to dual reduction and their properties, let us make our vocabulary precisgi let C; (c € C).
The pure strategy; (strategy profile) is eliminatedin the a-reduced gam€/« if o;(c;) = 0 for all o, in C;/«;
(if o(c) = 0forall o in C/a). Thuse; (resp.c) is eliminated if and only if (if and only if for somein N) ¢; is
transient undery;. The strategies; andd; aregrouped togetheif there existss; in C;/«; such thatr;(¢;) and
o;(d;) are positive. Thus;; andd; are grouped together if and only if they are recurrent uademnd belong to the
same minimakby;-absorbing set.

Definition 4.1 A dual vectoris an optimal strategy of the minimizer in the auxiliary game of section 3. Thus a
deviation vector is a dual vector if:

—g(c,a) =Y [Uilaixe) = Ui(e)] = Y Y aildile))[Us(c—sdi) = Ui(e)] >0 VeeC (6)

i€EN €N d, €C;
(The above equalities merely repeat the definition(of «).)

Definition 4.2 Adual reductiorofI" is ana-reduced gamé& /«a wherex is a dual vector. Aliterative dual reduction
of T'is a reduced gamg/a' /a?/.../a™, wherem is a positive integer and, for alt in {1,2, ..., m}, o* is a dual
vector ofl' /ot /a?/.../aF~ 1.

Many examples can be found in [7, section 6]. Henceforth, unless stated otherwdsedual vector.

4.2 Main properties

First, dual reduction generalizes elimination of weakly dominated strategies in the following sense:

Proposition 4.3 Let¢; € C;; assume that there exists € A(C;), 0; # ¢;, such thatlU;(c_;, ;) > U;(c) for all
c_; in C_;. Then there exists a dual vectorsuch that”; /a; = C; — {¢;} andC;/a; = C; for j # i.

Proof. Take fora: ai(di\ci) = O'i(di) for all d; € C;, and(lj(Cj|Cj) =1 Ifj 7é 10r Cj 75 c; m
The main property of dual reduction is that it selects among correlated equilibrium distributiof$letenote

a dual reduction of’; let C/a = x;enC;/a; denote the set of strategy profilesiofa. Let A € A(C/a); the
I'-equivalent correlated strategyis the distribution orC induced byA:

Mey= Y Ao (H Ui(ci)> (7)

0eC/a ieN

Theorem 4.4 If )\ is a correlated equilibrium distribution df /«, then) is a correlated equilibrium distribution of
T.

By induction, theorem 4.4 extends to iterative dual reductions. That is, any correlated equilibrium distribution of
an iterative dual reduction df induces a correlated equilibrium distributionof A side product of the proof of
theorem 4.4 is that, against any strategy of the other players in the reduced game; iglaydifferent between his
strategies within a minimal absorbing set:

Proposition 4.5 Let B; denote a minimady;-absorbing set. Foyj # i, leto; € C;/a; and leto_; = X jen_;0;.
Foranyc;, d; in B;, Ui(0—i,c;) = Ui(0—;, d;).



4.3 Jeopardization and Elementary Games

Let us say that a dual vector is trivial if it is the trivial deviation vector. A game may be reduced if and only if there
exists a nontrivial dual vect®r So we are led to the question: when do nontrivial dual vectors exist ? A first step to
answer this question is to introduce the notions of jeopardization and elementary games:

Definition 4.6 Letc;, d; € C;. The strategy!; jeopardizes; if for all correlated equilibrium distributiong::
> wO)Uile) = Us(e—i,d;)] =0
c_;€C_;

Thatis, in all correlated equilibrium distributions in whichis playedd; is an alternative best response to the con-
ditional probabilities orC_; givenc;. Note that ifc; has zero probability in all correlated equilibrium distributions,
then anyd; in C; jeopardizeg;. Using complementary slackness properties allows to prove that:

Proposition 4.7 The strategyl; jeopardizes:; if and only if there exists a dual vectarsuch that; (d;|¢;) > 0.
Thus, there exists a nontrivial dual vector if and only if some strategy is jeopardized by some other strategy.
Definition 4.8 A correlated equilibrium distribution is strict if
wlie; x C_y) > 0= Z w(e)[Ui(e) = Ui(c—s,d;)] >0  Vie N,Ve; € Cy,Vd; # ¢
c_i€C_;

A game iselementaryf it has a strict correlated equilibrium distribution with full support. Myerson [7] shows that
a game is elementary if and only if there existsing andd; # ¢; such thatl; jeopardizeg;. Thus proposition 4.7
implies:

Corollary 4.9 A game may be reduced if and only if it is not elementary. By iterative dual reduction, any game is
eventually reduced to an elementary game.

4.4 Full dual reduction

Let us say that two dual reductiof¥« andI'/g of the same game are differentdf/a # C/3. A game may

admit different dual reductions (for instance, if several strategies are weakly dominated). A tentative way to re-
store unigueness is to consider only reductions by some special dual vectors, which minimize the number of pure
strategies remaining in the reduced game:

Definition 4.10 A dual vector is full if a(d;|c;) > 0forall i in NV, and all¢;, d; in C; such that; jeopardizes:;.
Full dual vectors always exist [7]. Actually, almost all dual vectors aré full

Definition 4.11 A full dual reductionof I" is an a-reduced gamé&’/« wherec is a full dual vector. Arterative
full dual reductionof depthm of T is a gamel'/a!/a?/.../a™ wherem is a positive integer and, for akt in
{1,2,...,m}, o* is a full dual vector of" /a'! /a?/.../a*~ 1.

All full dual vectorsa define, for alki, the same minimalk;-absorbing sets. Thus in all full dual reductions, the same
strategies are eliminated and the same strategies are grouped together. A game may nonetheless admit different full
dual reductions, because the way these strategies are grouped together may differ quantitatively. We will return to
this point in section 6.

6This is clear from the basic theory of Markov chains. See for instance [4] and references therein.
"The set of dual vectors is a polytope, whose relative interior is non emgiysfot elementary. All dual vectors in the relative interior of
this polytope are full. IfG is elementary, the only dual vector is trivially full.



5 Other properties of dual reduction

A basic desirable property for a decision-theoretic concept is that it be independent of the specific utility functions
chosen to represent the preferences of the agents. So we begin by showing that dual reduction meets this require-
ment; that is, the ways in which a game may be reduced are unaffected by positive affine transformations of the
utility functions. We then extends theorem 4.4 to other equilibrium concepts, including Nash one’s, and prove its
converse: if a correlated strategyof a reduced game induces a correlated (Nash, etc.) equilibrium distribution in
the original game, then is an equilibrium distribution of the reduced game. We then investigate eliminations of
strategies and equilibria. We show that strategies that are weakly dominated (are never played in correlated equilib-
ria; have positive probability in some strict correlated equilibrium) need not be (are always; cannot be) eliminated
in full dual reductions. Finally we study some specific classes of games. We show that games that are best-response
equivalent to zero-sum games, as well as games with a unique correlated equilibrium distribution are reduced in
games with a single strategy profile by full dual reduction. Symmetric games are shown to have symmetric full dual
reductions (but possibly also asymmetric ones) and geBeti@ games are analysed.

In section 6, we show that, even if only full dual reductions are used, there might still be multiple ways to reduce
a game. This typically happens when some player is indifferent between some of his strategies: a nongeneric event.
We show that generic two-players games have a unique sequence of iterative full dual reductions.

Both in sections 5 and 6, other, minor results are given. The proofs which are neither trivial nor given in the text
are gathered in section 8.

5.1 Independence from the choice of utility functions

Proposition 5.1 Let I and I'” be best response equivalent [11]. Letd; be pure strategies of playerin T’
and ¢}, d; the corresponding strategies of playein I'. The following holds: (i)/; jeopardizes; if and only if

177"

d; jeopardizes; (i) the strategies grouped together (eliminated) in full dual reduction§ @brrespond to the
strategies grouped together (eliminated) in full dual reductionk’of

Proof. (i) is clear from the definitions; (ii) follows immediately from (m

If T"andT” are not only best response equivalent, but rescalings of each other (as defined below), then there is a
canonical, one to one correspondence between dual reductidresmaf dual reductions df’:

Proposition 5.2 For eachi in N, let¢; : R — R denote a positive affine transformation. That is, such that there
exists real numbers; > 0 andb; such thatp;(x) = a;x + b; for all z in R. Let¢(I") denote the rescaling df
obtained by changing the utility functions frdijy to ¢; o U;:

o(I') = {N, (Ci)ien, (¢i o Us)ien)
If T'/« is a dual reduction of’, theng(I'/«) is a dual reduction of(T").

Proposition 5.2 is not trivial because a game and its rescalings need not have the same dual vectors. Indeed, consider
a game such as Matching-Pennies, which is nonelementary and in which all pure strategies are undominated:

Vi € N,V¢; € Ci,Vai S A(Cl),dz 75 ¢ = de_; € C,i,Ui(C) > Ui<cfi70'i)

Let « be a nontrivial dual vector: there exisandc; such thaty; x ¢; # ¢;. Sincec; is not weakly dominated, there
existsc_; such that/; («; x ¢) — U;(c) < 0. Multiplying the payoff of playet by a; > 0 yields a rescaled ganié

such that:
> Uj(aj x ) = Uj(e)] = as[Ui(evi + ¢) = Ui(e)] + Y _[Us( * ¢) — Uj(c)]
JeEN J#i



If a; is high enough, this expression is negative andannot be a dual vector @f'. The key is that different
deviation vectors may induce the same dual reductions:

Lemma 5.3 Leta; («i?) be a (the trivial) deviation plan for player For any0 < e < 1, leta® = ea; + (1 —¢€)aid.
If e is positive therC; /o, = C;/as.

Proof. For any mixed strategy; in A(C;), af x0; — 0; = €(a; x 0 — ;). W

5.2 Extension and converse of theorem 4.4

In this section, we first define three equilibrium concepts introduced in [12] and [13]. We then show that theorem
4.4 extends to Nash equilibrium distributiénsnd to these other equilibrium concepts. We illustrate this by an
example. Finally, we prove a converse of theorem 4.4.

Letu € A(C) andc; € C;. If u(c; x C—;) > 0, let u(.|c;) denote the conditional probability @ri_; givenc;:

ple—ilei) = ple—i, ¢i) /(e x C—;)

Definition 5.4 The correlated strategy € A(C) is an equalizing distribution [13] if

plei x C_y) > 0= Z pc—ilci)Ui(e) = Ui(p) Vi€ N,Ve; € C;, whereUs(u) = ZM(C)Ui(C)

c_;€C_; ceC

That is, in an equalizing distribution, the expected payoff given a pure strategy is independent of this strategy.

Definition 5.5 The correlated strategy € A(C) is anequalizing correlated equilibrium distributidfi2] (hence-
forth equalizing c.e.d.if 1 is both an equalizing and a correlated equilibrium distribufitin

Definition 5.6 The correlated strategy € A(C) is astable matching distributidh [12],[13] if

pilei x C_)pi(di x C_i) > 0= Y [u(c_ile;) — ple—i|di)]Ui(c) =20 Vi€ N,Ve; € C;,Vd; € C;
c_;€C_;
That is,¢; yields a higher expected payoff against the correlated stratedy;) of the players other thanthan
againstu(.|d;).
Proposition 5.7 Let A be a correlated strategy of an iterative dual reductionof I'. If A is anequilibrium distri-
butionof I',. then thel'-equivalent correlated strategy is agquilibrium distributionof I", whereequilibrium distri-

butionmay stand for: Nash equilibrium distribution, equalizing distribution, equalizing c.e.d. or stable matching
distribution.

The following example illustrates proposition 5.7:

Example 5.8
T2 Y2 22
oB 22
z; 2,0 0,2 0,-3 2
v 0.1 1,0 0,0 op, 2/3,2/3 0,—1
! ’ ’ 21 —1,0 1,1

s —3,0 0,0 1,1

8The extension to Nash equilibrium distributions has been independently noted by Myerson

9Sorin [12] uses the expressidistribution equilibrium

10Any Nash equilibrium distribution is an equalizing c.e.d. but the converse is false. See example 5.8.
1150rin [12] uses the expressidnal correlated equilibrium



LetI" denote the game on the left. Consider the deviation vectarch that fori = 1, 2:
ai(zilz;) = 2/3, ai(yilzi) = 1/3; au(wilys) = 1/6, ailyilyi) =5/6; au(zilz) = 1,

and all othera;(d;|c;) are zero. « is a dual vector. The minimak;-absorbing sets areB3; = {z;,y;} and
B} = {z;}. Thea-reduced gamé& /« is the game on the right, where the-invariant strategyo s, is (3; 2; 0).

Consider the distribution onC/« (below, right)!? This is an equalizing c.e.d. bf/ «. Therefore, thé'-equivalent
distribution \ (below, left) is an equalizing c.e.d. bf

1/24 [1/12 | 1/24
1/12 [1/6 | 1/12 A=
1/24 [ 1/12 | 3/8

3/8 ] 1/8
1/8 | 3/8

>~
Il

Theorem 4.4 states that correlated equilibrium distributionB /af induce correlated equilibrium distributions in
I'. We may wonder whether a correlated strateg¥ &, which is not a correlated equilibrium distribution, might
nonetheless induce a correlated equilibrium distribution.imhe answer is negative:

Lemma 5.9 Given any deviation vectar, a distribution\ € A(C) is a-invariant if and only if it isT-equivalent
to a distribution\ € A(C/«). Such aX is then unique.

Proposition 5.10 Let o denote a dual vector. Let denote arm-invariant distribution onC' and \ the correspond-
ing distribution onC'/a.. Then) is anequilibrium distributionof I if and only if \ is anequilibrium distributionof
T'/«, whereequilibrium distributionmay stand for: Nash equilibrium distribution, correlated equilibrium distribu-
tion, equalizing distribution, equalizing c.e.d. or stable matching distribution.

5.3 Elimination of strategies and equilibria
A first result is a converse of proposition 4.3:

Proposition 5.11 Let¢; € C;; assume that there exists a dual vectosuch thate; ¢ C;/a; andC;/o; = C; for
all jin N — 4. Then there exists; # ¢; in A(C;) such thatU;(c_;,0;) > U;(c) forall c_; in C_;.

Proof. Leto; = «; * ¢;. For allj # i, all strategies:; in C; areq;-invariant. Thus (6) yield$/;(c_;, ;) >

Ui(c) Ve—; € C_;. Furthermore:; ¢ C;/a; hencec; cannot bey;-invariant ands; # ¢; m

Thus, only if a strategy is dominated does there exists a dual reduction that simply consists in eliminating this
strategy. Note that if a strategy is weakly dominated it is eliminated in some dual reductions (proposition 4.3), but
not necessarily in full dual reductions:

Example 5.12
T2 Y2
r 1,1 1,0
yv1 1,0 0,0

In the above gamey is a correlated equilibrium distribution if and onlygf is not played inu. Thatis,u(z1,y2) =
u(y1,y2) = 0. Thereforey, jeopardizesr;, and reciprocally. Thus, in all full dual reductions; andy; must be
grouped together henag is not eliminated.

12We represent correlated strategies in tables. For instaviees, , z2) = 1/8.



This raises the following questions: except strictly dominated strategies, are there other classes of strategies that are
always eliminated in full dual reductions ? A partial answer is the following:

Proposition 5.13 (i) Let ¢ € C. Assume that has probability zero in all correlated equilibrium distributions. In
full dual reductions: is eliminated; hence there existin N such that, in all full dual reductions;; is eliminated.
(i) Leti € N,¢; € C;. Assume that; has marginal probability zero in all correlated equilibrium distributions.
Theng; is eliminated in all full dual reductions.

Proof. First note that (i) implies (ii). Indeed, let; € C;/a; ando_; € (C/a)—;. If u(c) = 0 for all correlated
equilibrium distributiong: and allc_; in C_; then, by (i),0(¢) = o;(¢;)o_;(c—;) = 0 forall c_; € C_; implying
o;(c;) = 0. Point (i) is proved in section &

Let I'* denote the game obtained frdmby deleting all pure strategies that have marginal probability zero in all
correlated equilibrium distributions. Proposition 5.13 suggestdtladl™ have the same full dual reductions, but
this is not so:

Example 5.14
T2 Y2
zr L1201 T 1@1 0y21
y1 0,1 1,0 Penw

LetT" denote the left game. Théti is the game on the right. Ii* any mixed strategy profile is a Nash equilibrium.
In T, a mixed strategy profile is a Nash equilibrium if and only &, (y;1) = 0 andoa(y2) < 1/2. In any full dual
reduction ofl" or I'* there is a single strategy profile. 4f is a Nash equilibrium of® (I'*) then there exists a full
dual vectora of T" (I'*) such thatC'/a = o (C*/a = o) if and only ifo(y2) ando(x5) are positive. Thus the set of
full dual reductions of" is strictly included in the set of full dual reductionsIcf.

We now shift our attention to elimination of equilibria. Since dual reduction includes elimination of dominated
strategies as a subprocess, it is clear that dual reduction may eliminate Nash equilibria. Nash equilibria may also
be eliminated as strategies are grouped together (see for instance [7, fig. 7]). We show in section 7 that completely
mixed, hence perfect Nash equilibria may be eliminated in full dual reductions. In contrast:

Proposition 5.15 Strict correlated equilibrium distributions cannot be eliminated, not even in an iterative dual
reduction.

Proof. If u is a strict correlated equilibrium distribution, a strategy that has positive marginal probability in
cannot be jeopardized by another strategy. Thus, in any dual red@igtioof T" all the strategies used jnmust be
available. Furthermore, as the player’s options are more limité&tf inthan inT, 1 is a fortiori a strict correlated
equilibrium distribution ofl". Inductively, in any iterative dual reductidtya!/.../a™ of T, all strategies used in

are available ang is still a strict correlated equilibrium distributiom

The proof shows that a pure strategy that has positive marginal probability in some strict correlated equilibrium
distribution can never be eliminated nor grouped with other strategies.

5.4 Some classes of games
5.4.1 Games with a unique correlated equilibrium distribution

If I has a unique Nash equilibrium then any iterative dual reduction Bfhas a unique Nash equilibrium, which
inducess in T'; but the strategy space need not be reducibte twounterexamples are [5, p.204] and [10, example
4]. In contrast,



Proposition 5.16 Assume thal has a unique correlated equilibrium distributian Theno is a Nash equilibrium
distribution, hence it may be seen as a mixed strategy profild’,Lbe the reduced game in which the only strategy
profile iso and the payoff for playeris U;(c). Any full (resp. elementary iterative) dual reductiornois equal to
T.. In particular, " has a unigue full dual reduction.

5.4.2 Zero-sum games

Claim 5.17 Any iterative dual reduction of a zero-sum game is a zero-sum game with the same value.

Proof. Conservation of the zero-sum property is immediate. Conservation of the value comes from theorem 4.4
and the fact that in a two-player zero-sum game, any correlated equilibrium payoff equals the value of thee game

Proposition 5.18 LetI" denote a two-player zero-sum game ana deviation vector. (i) If for alk = 1,2 and
for all ¢; in C;, a; * ¢; is an optimal strategy of player thenca is a dual vector; (i) If furthermoreq; * ¢; is the
same optimal strategy; for all ¢; in C;, thenC;/a; = o; (iii) in any elementary iterative reduction @fthere is a
unique strategy profile, which is a product of optimal strategieB.of

Proposition 5.19 If T" is best response equivalent to a two-player zero-sum game then: (i) feiany, any (pure)
strategyc; which has positive marginal probability under some correlated equilibrium distribution jeopardizes all
other strategies of playei; (ii) in all full dual reductions ofT" all the strategies of player that have positive
probability in some correlated equilibrium distribution are grouped together and his other strategies are eliminated
hence (iii) there is a unique strategy proftte (iv) This strategy profile corresponds to a product of optimal strategies

in the underlying zero-sum game.

Proof. & must be equivalent to a Nash equilibriumIaf This allows to prove (iv). Point (iii) follows from (ii) and
proposition 5.13; (i) follows from (i) and (i) is proved in [14]m

If T is zero-sum with value, then the payoffs in any full dual reduction Bfmust be(v, —v). In contrast, ifl’
is only best response equivalent to a zero sum game, then the payoffs in a full dual reduttiorapidepend on
the full dual reduction:

Example 5.20
T2 Y2 Z2 T2 Y2 Z2
z; 0,0 0,0 0,0 z; 1,1 0,1 0,1
y1 0,0 1,-1 -—-1,1 v1 1,0 1,-1 -—-1,1
z 0,0 —-1,1 1,—-1 z 1,0 —-1,1 1,—-1

LetT (I'") denote the game on the left (righ).is zero-sum and” is best response equivalentio The proof of
proposition 5.2 shows thdt andI” have the same dual vectors. FoK ¢ < 1, letof denote the optimal strategy
of playeri such that:of(z;) = e andof(y;) = of(z;) = (1 — €)/2. Leta" denote the deviation vector such that:
a1 kx1 = @1 kY1 = a1 k21 = of andag x X9 = g kY2 = a2 * 29 = o4. By proposition 5.18 is a dual vector of
I, henceof”. If 0 < e < 1and0 < n < 1, ais full, the reduced strategy spacg&/a" is the singletor{c$, o4 )
and the associated payoff(s, ¢).

5.4.3 Symmetric Games

In section 8 we recall the definition of a symmetric game and prove the following:
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Proposition 5.21 LetI" be a symmetric game. There exists a full dual veatsuch thaf”/« is symmetric.

Example 5.8 shows that a nonsymmetric game may also have symmetric full dual reductions, even if all strate-
gies are undominated. The following example shows that a symmetric game may have nonsymmetric full dual
reductions:

Example 5.22
T2 Y2
ry 1,1 0,1
y1 1,0 0,0

In the above symmetric gami& any deviation vector is a dual vector. In any full dual reduction, the reduced
strategy space is a singleton. For aby ¢ < 1,0 < n < 1, there exists a full dual reduction in which the payoff
is (e,m). If € # n, this full dual reduction is nonsymmetric.

5.4.4 Generic2 x 2 games

Proposition 5.23 LetI" be a2 x 2 game such that a player is never indifferent between two different strategy
profiles. Thatis, foralk, ¢’ in C'and alli = 1,2: ¢ # ¢ = U;(c) # U;(¢'). Then eithet is elementary of" has
a unique correlated equilibrium distribution (in which case proposition 5.16 apply).

Proof. Straightforward computations. The first case corresponds to games with three Nash equilibria: two pure and
one completely mixed; the second case to games with either a dominating strategy or a unique, completely mixed
Nash equilibrium.m

6 The issue of uniqueness

As shown by example 5.22, a game may have several full dual reductions. This ambiguity arises naturally when a
player is indifferent between some of his strategies:

Proposition 6.1 Assume that playeris indifferent between; andd;, i.e. U;(¢) = U;(c—;,d;) forall c_; in C_;.
Then (i) for any0 < e < 1 there exists a dual reduction that simply consists in groupingndd; in the strategy

o; such thato;(¢;) = eando;(d;) = 1 — ¢; (ii) if ¢; is not eliminated in full dual reductions, then there exists an
infinity of full dual reductions.

Proof. To prove (i) take as dual vector. «;(c;|c;) = a;i(c;i|d;) = €, a;(d;|e;) = a;(d;]d;) = 1 — e and all the
othera;(d;|c;) as in the trivial deviation vector. (i) is proved in sectiorm8

A similar difficulty may arise if a player is indifferent between a pure and a mixed strategy (example 5.20) or if a
playerbecomendifferent between some of his strategies, after strategies of some other player have been eliminated
(example 5.14). These are non-generic phenomena. We prove in this section that, for any positiveninteger

player games generically have a unique iterative full dual reduction of deptie first show that there are severe
restrictions on the ways strategies may be grouped together in dual reductions:

Notation: for alli in N, let B; C C; and letB = X;enB;. Thenl's = (N, (B;)ien, (U;)ien) denote the game
obtained fronT" by reducing playet’s pure strategy set tB;, for all i in V.

Proposition 6.2 Let « be a dual vector. For eachin N, let B; C C; denote a minimaty;-absorbing set and
B = x,cnB;. Letop, denote the unique;-invariant strategy of playei with supportinB; andog = (0B, )icN-
We haveis g is a completely mixed Nash equilibriumIog.
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Proof. First, the support obp_, is exactly B; soop is completely mixed. Second, letz_, = xjen_i0B;.
Againstop_,, playeri is indifferent between the strategies of the minimal absorbingBsgproposition 4.5).
Therefore, if playet is restricted to the strategies Bf, o, is a best response tq;_, =

Assume now that is full. If Tz has a unique completely mixed Nash equilibrium, then for any full dual vettor
the ;-invariant strategy with support iB; must besg,. So proposition 6.2 has the following corollary:

Corollary 6.3 If for any productB = x;cnB; of subsetsB; of C;, I'g has at most one completely mixed Nash
equilibrium, then there exists a unique full dual reduction.

In the remaining of this sectiom, is a two-player, bimatrix game. To show that, generically, two-player games have
a unique sequence of iterative full dual reductions, we need to introduce some suitable notions of genericity:

Definition 6.4 T is generidf for all Nash equilibriac the supports of; andc, have same cardin&l. I is locally
generic if it is generic and if any game obtained frorby deleting some pure strategies is generic.

Definition 6.5 T is 2-generic if for any subsd®; of C; and for any disjoint subset8, and B}, of Cs: if o ando’
are respectively completely mixed Nash equilibrid'gf « 5, andT's, » g, theno, # o7. Thatis, the same mixed
strategy cannot be a completely mixed Nash equilibrium strategy of plageth onB; x B, and onB; x Bj.
The notion of 1-genericity is defined similarly. A bimatrix game-generic if it is both 1-generic and 2-generic.

A bimatrix game in which players 1 and 2 have respectiyeindq pure strategies is given by twox ¢ payoff
matrices, thus it may be viewed as a poinRitf x RP?. It may be shown that the setpk ¢ bimatrix games which
are both locally generic ang-generic contains an open, dense subsé®f x RPY. The two next propositions
follow from proposition 6.2:

Proposition 6.6 A locally generic bimatrix game has a unique full dual reduction.

Proof. Locally generic bimatrix games check the conditions of coroltaym

Proposition 6.7 If I is both locally generic and-generic, there are only three possibilities:
1 T'is elementary
2 In all dual reductions of, some strategies are eliminated, but no strategies are grouped together.
3 In any full dual reduction of' the reduced strategy spac& « is a singleton.
As an immediate corollary of proposition 6.7 and definitions 6.4 and 6.5 we get:

Corollary 6.8 If I" is both locally generic ané-generic then any dual reduction bfis both locally generic and
x-generic.

As an immediate corollary of proposition 6.6 and corollary 6.8 we get:

Theorem 6.9 If T is both locally generic ané-generic, then for any positive integet, I' has a unique iterative
full dual reduction of deptimn.

13Any game which is nondegenerate in the sense of [15, def. 2.6 and thm 2.10] is generic in this sense
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7 Dual reduction and elimination of unacceptable pure strategies

Dual reduction and elimination of unacceptable pure strategies [8] both generalize elimination of dominated strate-
gies. Furthermore, there are similarities in the ways these concepts are défidethparing dual reduction and
elimination of unacceptable pure strategies is thus quite natural. In this section we show by means of example that
none of these refinement concepts is more stringent than the'dther.

Lemma 7.1 If there exists a correlated equilibrium distribution with full support then all pure strategies are ac-
ceptable and predominant.

Lemma 7.1 implies that the class of games in which all pure strategies are acceptable is strictly larger than the class
of elementary games. This is not only due to the fact that in a game in which all strategy profiles are coherent, as in
Matching-Pennies, dual reduction can still group strategies together. Indeed, consider the following game:

Example 7.2
€2 2 22
1 0,0 0,0 0,0
y1 0,0 1,1 -1,-1
z 0,0 —1,-1 1,1

In this game, playing each strategy with equal probability is a completely mixed Nash equilibrium. Thus all strate-
gies are acceptable and predominant. Howeverandz, are eliminated in any full dual reduction, and in any
nontrivial dual reduction at least one of andzx, is eliminated (to prove this, note that (i) by proposition 4:3,
must be either eliminated or grouped with other strategies in all full dual reductiong; &iiid z; must be invariant
under any dual vector because they have positive probability in some strict correlated equilibrium distribution).
This example shows that dual reduction may eliminate acceptable and even predominant pure strategies. It also
shows that dual reduction can eliminate completely mixed, hence perfect Nash equilibria. Since any perfect Nash
equilibrium is a perfect direct correlated equilibrium [2], it shows that dual reduction may eliminate perfect direct
correlated equilibrium distributions.
The next example shows that there may be unacceptable pure strategies that no dual reduction eliminates: let
denote the following three person game, where player 1 chooses the mataixy; ), player 2 the row, and player
3 the column.

Example 7.3 (taken from [8])

I Y1
rzs 2,1,1 0,2,0 0,2,0 z2 1,3,3 1,3,3 1,3,3
¥2 0,0,2 0,3,0 0,0,3 ¥y 1,3,3 1,3,3 1,3,3
z 0,0,2 0,0,3 0,3,0 z 1,3,3 1,3,3 1,3,3

Myerson [8] shows that the only acceptable strategies for plaiger;, for all i in {1, 2, 3}. However,y; cannot be
eliminated by one-shot dual reduction. Indeed, sinee (y1,y2,ys) is a Nash equilibrium and that all unilateral
deviations fronr by playerl are strictly detrimental for himy; must be invariant under any dual vector.

n particular, theaggregate incentive valuef c for the set of playersV, Vv (c, @), defined in [8, p.141, (3.3)], is exactly the paygf, o)
defined in section 3.

15For definitions and properties of acceptable (predominant) pure strategies, acceptable (predominant) correlated equilibria and codomination
systems, see [8], [9] or [2].
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Note thaty; may be eliminated byterative dual reduction. Actually, to prove that, 22, y3, 23 andy; are
unacceptable, Myerson uses the codomination sy&t€nu?) wherea! anda? are the deviation vectors such that:

o (2ilys) = o (] z:) = 1 Vi € {2,3}, af (i) =1,

and all other¥ (d;|c;) are as in the corresponding trivial deviation vectors. Itis easy to check st dual vector

of I' anda? a dual vector of"/at. The only strategy profile remaining IVa! /a? is the strict Nash equilibrium
(z1,x2,x3), thusy; has been eliminated. Whether some unacceptable (or non predominant) pure strategies cannot
be eliminated by any iterative dual reduction is still an open problem.

8 Proofs

In the proofs we may write c.e.d. for correlated equilibrium distribution.

Proof of proposition 5.2: Let « be a dual vector of. Leta, = min;cx a; and, for each in N, lete; = ag/a;.
Let ¢(«) denote the deviation vector whogé component isx, defined in lemma 5.3. Let andg, denote the
payoff functions in the auxiliary games associated respectivdlyand(I"). We have:

gs(c, p(a)) = ag x g(c,a) >0 VeeC

Thus¢(«) is a dual vector ofp(I"). Furthermore lemma 5.3 impliegi(T') /¢(a) = ¢(T'/a). Thusé(T'/«) is a
dual reduction ofp(T"). The result still holds if we allow the constariisto depend or:_;. Indeed, if the payoff
functions(Uy )¢ v in the rescaled gamg&(T") are of the slightly more general forrb:’ (¢) = a; x U;(c) + bi(c_;)
with a; > 0 andb; : C_; — R, then the same proof shows that for any dual veat@f I, ¢(I'/«) is a dual
reduction ofp ().

Proof of proposition 5.7 Notations and preliminary remarks: lstc A(C/a) and leth € A(C) beT-equivalent
to \. Lete;,d; € C; check\(¢; x C_;)A(d; x C_;) > 0. There exist minimak;-absorbing set#®; and B, such
thatc; belongs toB; andd; to B,. Leto,, (04,) be thea;-invariant strategy with support iB; (B;). Necessarily,
Ao, x(C/a)_;) andA(og, x (C/a)_;) are positive. Note that: (fy;(\) = U;(X) and (i) A(.|¢;) is the conditional
probability induced or_; by A(.|o,). Thatis, if, for allj in N — 4, ¢; is aj-recurrent, then:

Ae—ilei) = Moe_,|oe,) H o, (cj) whereo._, = Xjen_ioc;
JEN—i
Otherwise \(c_;|¢;) = 0. The proofs are now easy:

Nash equilibrium it follows from (7) that if A is an independent distribution, then so\is This and theorem 4.4
imply that if X is both an independent and a correlated equilibrium distribution, i.e. a Nash equilibrium distribution,
then so is\.

Equalizing distributions and equalizing c.e.tdlsing (i) and (ii) we get:

Yo Moo Uilo—i0e) =UsN) = > Meile)Ui(e) = Ui()

UfiE(C/Oé)fi c_;€C_;

Thus if A is an equalizing distribution, then soisiThis and theorem 4.4 imply that ¥ is an both an equalizing
and a correlated equilibrium distribution, then sad.is
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Stable matching distributiongJsing (ii) we get:

> Mosiloe) = Moiloa)Ui(o—i,06,) 2 0= Y [Mcile:) = Meildi)|Ui(e) = 0
o_,€(C/a)—; c_;€C_;

Thus if \ is a stable matching distribution, then so\is

Proof of lemma 5.9 let A € A(C). We only need to show that & is a-invariant then it isl'-equivalent to

a correlated strategy df/a. Indeed, the converse is clear by linearity of— «a; * A. Furthermore, letting
C/a; = C;/a; x C_y, itis enough to show that iX is a;-invariant then there exists € A(C/«;) such that (i)\

is T-equivalent toX and (ii) if X is a;-invariant, then so is\. Indeed, as the number of players is finite, a simple

induction then proves the property. So let us assumel = A:

Qi ¥ X(C_i,cy‘,) = Z Oéi(Ci|di)X(C_i,di) = X(C_q;, Ci) Ve; € Ci,Vc_i eC_;
d;eC;

This means that, forall_; in C_;, the vectofA(c_;, ¢i)le;ec; 1S a-invariant. Therefore: @(c;xC_;) = 0if ¢; is
a;-transient and (b) for any minimal;-absorbing seB;, [\(c_i, ¢;)]c,e B, iS proportional tdo g, (¢;)]c,e 5, Where
o g, Is the uniquey;-invariant strategy with support iB,;. More precisely, letting\(c_;,op,) = > Ae—i, ¢),
we have:

c;€B;
X(c,i,ci) = )\(C,Z‘,O'Bi) X op; (Cl) Ve; € B;,Ve_; € C_;

A defines an element df (C'/a;) and the above equality means thas I'-equivalent to\. Finally it is straightfor-

ward to check that ik is o;-invariant, then so is. This completes the proof.

Proof of proposition 5.10 we prove proposition 5.10 for correlated equilibrium distributions. The other proofs are
similar. Assume thah is not a c.e.d.. Then there exisin N ando;, 7; in C;/«; such that; has positive proba-
bility under X but 7; is a strictly better response thanto A(.|o;). If ¢; € C; belong to the support of;, player

i is indifferent betweemr; ando; against\(.|o;) (proposition 4.5), hence; is a strictly better response thanto
A(.|o). Finally, A(c; x C_;) > 0 and)(.|c;) is T-equivalent to\(.|o;). Thereforer; is a strictly better response
thanc; to A(.|c;) hence\ is not a c.e.d.

Proof of proposition 5.13, point (i) first recall that the same strategies and strategy profiles are eliminated in all
full dual reductions. So we only need to prove that the results hold for some full dual reduction. Step 1. Assume
thatu(c) = 0 for all c.e.d. . of T'. Then it follows from [10, page 432 and Proposition 2] that there exists a dual
vectora such thaty(c, o) < 0. Sinceg(d, ) < 0 for all d in C, this implies that ifc has positive probability in
some correlated strategytheng(u, o) < 0. Step 2: we may assumefull (otherwise, replacex by some strictly
convex combination ofv and some full dual vector). i belongs toC'/«, thene is a-invariant thusgg(c, o) = 0

by (5). Hence: cannot have positive probability in. Since this holds for alb- in C/«, ¢ has been eliminated in

the full dual reductiol”/«. Finally, ¢; must have been eliminated for sormeotherwisec would not have been
eliminated.

Proof of proposition 5.16 consider first an elementary iterative dual reductigrof I". Sincel’. is elementaryl’,
has a strict c.e.d. with full suppostt. Sincel’ has a unique c.e.dl}. has a unique c.e.d. too, thu$ is actually

a Nash, hence a strict Nash equilibrium. Sois pure. Buts® has full support. Se© is the only strategy profile.
Finally, o¢ must bel'-equivalent tas, hencel’, =T,

Consider now a full dual reduction/« of T'. By proposition 5.13, the strategies that do not participate are
eliminated inl"'/«. For eachi in N, the strategies of playérthat participate t@; jeopardize each other and thus
must be grouped in a single mixed strategy. Finally, the unique strategy profilécomust be equivalent te,
hencel'/a =T,.
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Proof of proposition 5.18 Proof of (i): letc € C. By optimality of oy * ¢1, Ui (g * ¢1,¢2) > v, wherev is the

value of the game. Similarly/>(c1, as*ca) > —v. SinceU; (c)+Uz(c) =0, ,_; 5[Ui(c—s, aixc;) —Ui(c)] > 0.

That is,g(c, ) > 0. Since this holds for alt in C, « is a dual vector. ’

Proof of (ii): assume that there exists € A(C;) such thaty; x ¢; = o; for all ¢; in C;. Then the onlyy;-invariant
strategy iss;. ThereforeC;/a; = {o;}.

Proof of (iii): The above implies that any two-player zero-sum game whose set of strategy profiles is not a singleton
can be further reduced. Together with claim 5.17, this implies that in any elementary iterative dual reduction of
I, there is a unique strategy profile. This strategy profile induces a Nash equilibriimTiherefore it must be
(equivalent to) a product of optimal strategied of

Definition of symmetric games and proof of proposition 5.21letI" be a game in which all players have the same
numberm of pure strategies. Let ;, denote the:*" strategy of playei. ThusC; = {¢i1,.,Ci,m}. Foralliin N,

let k; be an integer i{1,...,m. Let (¢; x,)ien denote the profile of strategy in which, for allplayeri plays his

kth strategyI is asymmetric gamé for all permutations of the set of players,

Ui((¢jkys)ien) = Up@iy((¢jk;)jen)

This means that if, for alf, playeri plays as playep(i) used to play, then the payoff of playéiin the new
configuration is the payoff of playex(<) in the old configuration. We now prove the proposition:

Step 1: let us say that a deviation vectoof a symmetric game is symmetricdf;(c; i |ci k) = a;(¢jr|c)k)
foralli,7in N and allk, &’ in {1,2,..,m}. Itis clear that ifl" is a symmetric game anda symmetric dual vector,
thenT'/« is @ symmetric game. So it is enough to show that there exists a symmetric full dual vector.

Step 2: let denote a deviation vector. For all permutatignsf the set of players, let” denote the deviation
vector such that:

ai(i) (Cp(i),k’|cp(i),k) = ai(ciyk/|ci,k) Vie N

Let @ denote the symmetrized deviation vector given by:

2"

n!

a =

wheren is the number of players and the summation is taken over all permutatioiithe set of players.
Itis easy to check that is symmetric and that i is a dual vector then so are all thé, hence so ig. Furthermore
if «;(d;|c;) is positive then so isy;(d;|c;) (since in the summation defining, o? = a whenp is the identity
permutation). Thus ifv is a full dual vector them is a symmetric full dual vector.
Proof of proposition 6.1, point (ii): Assume that; is not eliminated in full dual reductions and letbe a full
dual vector. Fop < \ < 1, define the dual vectar* by: o (c;|c;) = Aay(ciles), o (dile;) = ai(dile;) + (1 —
A (cile;) and all otheraj»(dj ;) as ina. Sincea is full anda anda? are positive in the same components, is
full too. Therefore, there exists an}-invariant strategy;* such that (c;) > 0. We claim that if\’ # ), o* is not
a?’—invariant (proof below). This implies that ¥ # ), o* anda?’ induce different full dual reductions. Therefore
there exists an infinity of different full dual reductions. Finally, to prove the claim, note thati aix—invariant,
thenY", o, b (cile)o(es) = [1 — o (csles)]o(ci). Butif N # A:

Yoo ad(aleoe) = D aleleo}e) = [1 - a}eile)o (ei) # [1— o (cilen)lo (ei)-

e, €C;—c; e, €Ci—c;

Proof of proposition 6.7: assume thal' is not elementary and let be a nontrivial dual vector. Assume that some
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strategies of player 1 (for instance) are grouped together. That is, there exists a mipateorbing seB; with

at least two elements. L&, and B/, be minimalas-absorbing sets. Letp, denote thex;-invariant strategy
with support inB;. Definesp, andop, similarly. By proposition 6.2¢, is a Nash equilibrium strategy both
of I'p, xp, and ongleé. Sincel is x-generic, this impliesB, = Bj. Therefore, there is a unique minimal
ap-absorbing setB,. That is,Cs/as is a singleton. Moreover, sindéis locally generic,B; and B, have same
cardinal. ThusB; has at least two elements. Therefore, by the above reasoning, the strategy set of pidyer

is also a singleton and we are done.

Proof of lemma 7.1: for conciseness, we refer to [8], [9] or [2] for the definitions and the notations used below.
Assume that there exists a c.eidwith full support. By [8, theorem 2], if; is acceptable, then any pure strategy
is acceptable, hence any pure strategy is predominant. Thus, it is enough to shpvisthateptable. The trick
is that, becausg has full support, it is possible to find trembles that will mimigkso that whoever the players
trembling, a nontrembling player always faces the same conditional probabilities given his signalghan in

More precisely, assume that there exists sernerrelated strategy such that:

VS C C,Ves € Cg,Ye € C,v¥(c,es) = K(S,e)u(c—s,es) (8)

where K is a positive constant that depends only$@and one (but not onc_g). That is, given any coalitiors

of trembling players, any vecter of trembles assigned t§, and any strategy profile the probability inv© that
(c—s,es) will be played as a result of the players being recommengéuk players of” — S not trembling, and

the players of5 trembling toeg, is proportional to the probability dt— s, es) in p. The total probability in/© that

S (and onlyS) trembles andc-—s, es) is played is then)_, . v((c-s,ds), es) = K'(S, €)u(c—s, es), where
K'is a positive constant which only depends$ande. It follows that, ifi ¢ .S andc; € C;, the expected strategy

of the other players i€, givenc; and given thatS trembles, is the same that the expected strategy of the other
players inu givenc;. A fortiori, the expected strategy wf given (only)c; is the same that the expected strategy in
1 givenc;, to whiche; is a best response. Thus, is ane-equilibrium.

It remains to show that it is possible to find a sequence-cdrrelated strategy checking (8) and such that
v¢(c, D) tends tau(c) ase goes to zero. Such a sequence may be build by taking foiirml”’ and for some suitable
positive normalization constant:

ve(c,0) = A x p(c)

and, inductively, if the cardinal o C C ism + 1:
€
v(c,eq) = 1—_€Am X u(cs,es)
with

A, = min min min v(d, er)
deC TeS:Cardl'=mereCr

A The linear programming proofs of existence of correlated equilibria
In this appendix, we review and connect the proofs of existence of correlated equilibria given in [3], [10] and [7].

A.1 Hart & Schmeidler’s proof

Consider the following two-player, zero-sum, auxiliary gafhgs: the maximizer chooses a strategy profile-
(c1,..,¢n) € C; the minimizer chooses a playein N and a couple of strategy?, d;) in C; x C;. The payoff
is Us;(c) — Ui(d;, ;) if ¢, = ¢; and0 otherwise. In mixed strategies the maximizer chooses a correlated strategy
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u € A(C) and the minimizer a probability distributionon triples(i, ¢;, d;) € N x C; x C;; the expected payoff

is then:
gns (1) = > u(e) Y Y vlis e, di)[Ui(e) = Ui(ei, di)] )

ceC €N d; €C;

As in the auxiliary gamé& of section 3,4 guarantees O if and only ji is a correlated equilibrium distribution of

the original game. Thus, to prove the existence of correlated equilibrium distributions, it is enough to show that the
value of G s is nonnegative. To do so, Hart and Schmeidler could have used the existence of invariant distributions
for finite Markov chains®

Lemma A.1 Let M be am x m stochastic matrix (i.e. nonnegative with columns summing to unity); there exists
a probability vectorr = (z;),=1,...m such thatMz = z.

Instead, they used the following lemma:

Lemma A.2 (Hart&Schmeidler) Let (a;x)1<;k<m D€ nonnegative numbers. There exists a probability vector
x = (z;);=1,....m Such that, for any vectat = (u;),=1,... m,

m m

> 0s Y el =) =0
Jj=1 k=1

Proposition A.3 Lemmae A.1 and A.2 are equivalent

Proof. (i) in lemma A.2, one may assunEj a;, = 1 (indeed, one may increase arbitrarily the coefficients

to ensure that each row sums to some positive constant and then divide all the coefficients by this constant to
normalize); (ii) by linearity the property holds if and only if it holds for all basis vectors (i.e. with one component
equal to 1 and all the others zero); (iii) This is equivalen¥ioz;a;; = z; (= 3_; ajix;) for all ; that is,ATox =
where AT denote then x m square matrix whosg, j) entry isa;;. (iv) Thus lemma A.2 boils down to lemma

A.1 applied toM = AT Reciprocally, lemma A.1 is a special case of lemma &.2

Incidentally, Hart&Schmeidler prove their lemma using the Minimax theorem; so proposition A.3 yields a game-
theoretic proof of the existence of invariant distributions for finite Markov ch&ins.

A.2 Other proofs

Nau and McCardle’s proof is very similar. They also introduce (implicitly) the payoff matri¥ gf. A strategy
profile ¢ is said jointly coherent ifi(c, «) = 0 for all dual vectorsy. Nau and McCardle show through lemma A.1,

and essentially as in section 3, that there exists a jointly coherent strategy profile. Finally, they prove through a
variant of Farkas lemma that a strategy profile is jointly coherent if and only if it has positive probability in some
correlated equilibrium distributiol Thus correlated equilibrium distributions exists.

16_et \ be a positive constant. KX is small enough, any strategy of the minimizerGncan be emulated itz 5, up to the scaling factor
A, by letting: v (4, ¢;, d;) = Aa;(di|e;)/n if d; # ¢;. Conversely, any strategy of the minimizer inG iy s can be emulated it by letting
ai(dile;) = v(i, ¢, dy) if ¢; # d;; it follows that the value o5 is nonnegative if and only if the value 6f ;7 g is nonnegative. Thus the proof
of section 3 must go through.

17| owe this remark to B. Von Stengel, who first showed me a proof of lemma A.1 based on linear duality. Such a proof can also be found in
[6, ex. 9, p.41]

18|n the framework of section 3, this corresponds to the following result: in a finite, two-player zero-sum game, a pure strategy is a best-
response to all optimal strategies of the other player if and only if it has positive probability in some optimal strategy. This follows from the
strong complementarity property of linear programs

18



Myerson’s proofs is essentially the proof of section 3. The only difference is that instead of introducing an
auxiliary zero-sum game, Myerson introduces an auxiliary linear programm and then uses linear duality. Deviation
vectors appear as vectors of dual variables, hence the terms dual vector and dual reduction. Myerson’s linear
programm corresponds to the maximisation programm of the maximizer in the auxiliary game of section 3.
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