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Abstract

Auctions are considered with a (non-symmetric) independent-private-value
model of valuations. It shall be demonstrated that a utility equivalence prin-
ciple holds for an agent if and only if she has constant absolute risk aversion.

1 Introduction

Most of the research in Auction Theory focuses on the seller’s perspective. The Op-

timal Auction Theorem (Myerson (1981)), which characterizes auction mechanisms

that maximize the seller’s revenue, and the Revenue Equivalence Principle1, which

provides conditions under which a seller is indifferent between various auctions are

well-known examples. When following Myerson’s proof of the Revenue Equivalence

Principle, it can be seen that it follows from a Utility Equivalence Principle for risk-

neutral agents, and that these two principles are equivalent. That is, the seller is

indifferent between two auction mechanisms if and only if every potential buyer is

∗First version: May 2001. I am grateful to Dov Monderer for his generous help and
encouragement.

1Vickrey (1961), Ortega-Reichert (1968), Holt (1980), Harris and Raviv (1981), Myerson(1981),
Riley and Samuelson (1981).
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indifferent between them. Matthews (1983, 1987) were the first attempts to compare

auction mechanisms from the buyers’ point of view, when the buyers were not risk-

neutral2. Matthews (1987) compared first- and second-price auctions, and showed

relationships between the preferences of agents over these two auction mechanisms

and monotonicity properties of the Arrow-Pratt measure of risk aversion (−u′′(x)
u′(x)

). In

particular, Matthews showed that when an agent has constant absolute risk aversion

(CARA), she is indifferent between first- and second-price auctions. This theorem

was generalized by Monderer and Tennenholtz (2000a) to all k-price auctions. In

this discussion we prove a general utility equivalence principle, that holds for agents

with constant absolute risk aversion. Furthermore, we show that this equivalence

principle holds if and only if the agents have CARA.

We shall consider a seller that wishes to sell a single3 item by an auction mech-

anism to one of n potential buyers. We assume the (non-symmetric) independent-

private-value model of valuations4. Each potential buyer a is characterized by her

utility for money function ua, and by her valuation structure (distribution of types).

The set of possible types of a is an interval [αa, βa]. However, we assume the most

general structure of distribution functions, and in particular our model treats atoms

as well as atomless distributions. The auction mechanism is typically described by

sets of messages, one set for each agent, and by functions (of vector of messages)

that define the probability of winning the object by each agent, and the payment

functions for each agent5. The auction mechanism together with the valuation struc-

ture define a Bayesian game – the auction game.

For a fixed equilibrium profile in this game, let Qa(t), t ∈ [αa, βa] be the proba-

2Maskin and Riley (1984) discussed the revenue of the seller in first-price auctions with risk-
averse agents.

3This work does not deal with mechanisms for selling several items, i.e; combinatorial auction
mechanisms. Krishna and Perry (1998) generalize Myerson’s utility equivalence to such auctions,
keeping the assumption of risk neutrality.

4This assumption is made in all previous works that deal with utility (or revenue) equivalence.
However, there are several issues in auction theory that have been analyzed without the inde-
pendence assumption. The first, and classical, work to remove this assumption was Milgrom and
Weber (1982).

5There are two such payment functions for each agent. One function describes the payment
paid by her, when she wins the item, and the other one gives her payment when she does not win.
This splitting of payments is necessary when dealing with agents that are not risk-neutral.
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bility that agent a wins the object in equilibrium given that her valuation is t, and

let Ua(t) be the expected utility of this agent in equilibrium.

Myerson (1981) showed that for a risk-neutral buyer:

For all auction games A and B and equilibrium profiles in those games, such that

Qa
A(t) = Qa

B(t) for every t ∈ [αa, βa],

Ua
A(t)− Ua

B(t) = Ua
A(s)− Ua

B(s) for every t, s ∈ [αa, βa].

We refer to this result as Myerson’s utility equivalence theorem6, and we show that:

• Myerson’s utility equivalence theorem holds only for risk-neutral buyers.

We provide a weaker version of utility equivalence. When a buyer is not necessarily

risk-neutral his expected utility function, Ua, is naturally written as the sum of his

expected win and loss utility functions, Ua(t) = Ua
w(t) + Ua

l (t).

We say that this buyer (or rather his utility function Ua) satisfies the weak utility

equivalence principle if:

• There exists a positive function h such that for all auction games A and B

and equilibrium profiles in those games,

for which Qa
A(t) = Qa

B(t) and Ua
l,A(t) = Ua

l,B(t) for every t ∈ [αa, βa],

h(t)(Ua
A(t)− Ua

B(t)) = h(s)(Ua
A(s)− Ua

B(s)) for every t, s ∈ [αa, βa].

We prove that :

• The weak utility equivalence principle holds for an agent if and only if this

agent has CARA.

An important consequence of the utility equivalence principle is:

• If, in addition to the utility equivalence conditions, Ua
A(αa) = Ua

B(αa) then

UA(t) = UB(t) for every t ∈ [αa, βa].

6Note that Myerson’s theorem implies that for every two auction games A and B such that
Qa

A(t) = Qa
B(t) for every t ∈ [αa, βa] and Ua

A(αa) = Ua
B(αa),

Ua
A(t) = Ua

B(t) for every t ∈ [αa, βa].
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Our theorem is particularly useful in dealing with standard auctions (i.e., auc-

tions in which the highest bid wins), in which the loss payment functions are iden-

tically zero, and the equilibrium strategies are increasing. A CARA agent in such

auctions gets the same expected utility from all auctions that give him the same

expected utility at his lowest possible valuation.7

In order to prove the utility equivalence theorem we analyze the equilibrium

structure in auction games. The properties which are obtained have their own sig-

nificance and are proved for the most general utility functions.

We show that for every equilibrium in an auction game, Ua
A is a Liptchitz non-

decreasing function. In addition we state an equation that should be satisfied in

equilibrium (the equilibrium equation). All explicit formulas for the bidding func-

tions in equilibrium may be derived from this equation (see, e.g, Maskin and Riley

(1984) and Monderer and Tennenholtz (2000a)).

All the results obtained in this paper can be generalized to settings with random

numbers of agents, which have been studied in the literature (see, e.g., Monderer

and Tennenholtz (2000b), and McAfee and McMillan (1987)).

2 Preliminaries

This section presents the basic notations and assumptions that will be used to

describe the auction environment throughout this discussion. This environment

includes a single owner (a seller), who wishes to sell an item to one of n ≥ 1 agents

(potential buyers) through an auction mechanism.

2.1 The agents description

The set of agents is denoted by N . We assume N = {1, 2, ..., n}, n ≥ 1.

Every agent a has a von Neumann-Morgenstern utility function for money, ua(x),−∞ <

x < ∞, such that

7Matthews (1983) also provided a utility equivalence principle for CARA agents. He proved that
a CARA buyer is indifferent between any two equilibria of any two auctions, which, in particular,
yield the same expected difference, Ua

w(t)−Ua
l (t) for every type t. However, this theorem is vacuous

for (standard) auctions in which Ua
l is identically zero.
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• ua(0) = 0.

• ua is twice differentiable.

• (ua)′(x) > 0 for every x ∈ R,

where R denotes the set of real numbers. Whenever possible, we will omit the agent

superscript.

In this paper we will mainly deal with agents who have constant absolute risk

aversion (CARA). We refer to such an agent as a CARA agent. The set of all

utility functions of the CARA agents is denoted by CARA. Recall that an agent

has CARA if and only if there exists a constant λ such that u′′(x)
u′(x)

= λ for all x.

Note that, for such an agent, the Arrow-Pratt measure of risk aversion is constant

and it is −λ. If λ = 0 the agent is risk-neutral and the utility function has the form

u(x) = cx for some c > 0. If λ < 0, the agent is risk-averse and u(x) = c(1− eλx),

c > 0. If λ > 0, the agent is risk-seeking and u(x) = c(eλx − 1), c > 0.

The following is a useful characterization of CARA.

Lemma 1 u ∈ CARA if and only if there exists Γ ∈ R such that

u(a + b) = u(a) + u(b) + Γu(a)u(b) ∀a, b. (2.1)

Proof: If u ∈ CARA, then (2.1) is satisfied by Γ = λ/u′(0).

Suppose there exists Γ such that (2.1) is satisfied. Differentiating both sides of

(2.1) with respect to a yields:

u′(a + b) = u′(a)[1 + Γu(b)] ∀b.

Differentiating both sides again according to a yields:

u′′(a + b) = u′′(a)[1 + Γu(b)] ∀b.

By dividing the two equations (note that (u)′(x) > 0 for every x ∈ R) we get that

u′′(x)/u′(x) is constant. Hence, u ∈ CARA.

We will use the following equality derived from the proof of Lemma 1:

u′(a) = u′(0)[1 + Γu(a)] ∀a. (2.2)

We proceed to discuss the agents’ valuations. We use the (non-symmetric) independent-

private-value model. In this model, every agent a ∈ N knows her own valuation
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(type, willingness to pay), ta ∈ T a, where T a = [αa, βa], 0 ≤ αa ≤ βa. This val-

uation is a realization of a random variable Z̃a which takes values in T a and has

a distribution function F a 8. Let F (t) =
∏n

a=1 F a(ta) be the common distribution

function on T = ×n
a=1T

a. The triplet (N, T, F ) is called a valuation structure.

2.2 The auction mechanism

The auction mechanism comprises sets of messages, one for each agent, as well as

rules that determine the winner and the payments.

An agent a ∈ N has a message set Ma that contains a message ea that is called

a null message. Such a message is never actually sent, but if a does not send any

actual message, the seller relates to it as if a sent ea.

Let M = ×a∈NMa be the set of vectors of messages, and let e ∈ M be the vector

of null messages. We assume that

• Ma \ {ea} is a subset of some Euclidean space for every a ∈ N .9

Note that Ma is a metric space with the natural metric of Euclidean spaces, and

with agreement that the distance between ea and a real message m is 1. Hence, Ma

and M have a natural Borel structure.

A subset Ba of Ma is bounded if Ba \ {ea} is bounded.

The rest of the auction mechanism is defined by three functions

τ : M → [0, 1]n, x : M → <n, y : M → <n.

If the agents send the vector of messages m ∈ M , the seller conducts a lottery to

determine the winner. The probability that a is the winner is τa(m). The seller

may keep the item to himself. Hence,

∑
a∈N

τa(m) ≤ 1 and τa(m) ≥ 0, ∀a ∈ N, ∀m ∈ M.

8That is, F a(ta) = Prob(z̃a ≤ ta). Our model covers both a continuous and a discrete distri-
bution of types.

9We do not exclude finite sets of messages.
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xa(m) is the amount of money that agent a has to pay if she gets the object and,

ya(m) is the amount of money that agent a has to pay if she does not get the object.

We assume that

• τ, x, y are Borel measurable, and x and y are bounded on bounded subsets of

M .

Naturally a non-participating agent neither wins nor pays. Hence, we assume

• τa(m) = xa(m) = ya(m) = 0, whenever ma = ea.

Every auction mechanism C = C(N, M, τ, x, y), alongside a valuation structure

I = (N, T, F ), defines a Bayesian game, A = A(C, I), which we call an auction

game.

A strategy10 of agent a is a bounded Borel measurable function ba : T a → Ma.

For a ∈ N we denote T−a = ×i∈N,i6=aT
i. For t ∈ T we denote by t−a the projection

of t on T−a.

Let b = (ba)a∈N be a fixed strategy profile in the auction game A. Consider a fixed

agent a ∈ N .

Let Qa
A(ma|ta) and Ua

A(ma|ta) be the probability that a is the winner and the ex-

pected utility of a respectively, when a sends the message ma, given that her type

is ta and all the other players use their strategies in b.

More precisely,

Qa
A(ma|ta) = ET−a

{
τa(ma, b−a)

}
and

Ua
A(ma|ta) = ET−a

{
ua

(
ta − xa(ma, b−a)

)
τa(ma, b−a) + ua

(
−ya(ma, b−a)

) [
1− τa(ma, b−a)

]}
,

where b−a is the vector (bj(tj), j 6= a) .

Recall that b is an equilibrium strategy profile if for every agent a,

Ua
A(ba(ta)|ta) ≥ Ua

A(ma|ta)
10In this paper we deal with pure strategies. However, a simple application of the revelation

principle yields that for a discrete distribution of types (i.e., when there are potential problems
with the existence of equilibrium), our result can be extended to a setting with mixed strategies.
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for every ta ∈ T a and ma ∈ Ma.

The expected utility function Ua
A is decomposed to an expected utility-when-win

function Ua
A,w and an expected utility-when-loss function Ua

A,l, where

Ua
A,w(ma|ta) = ET−a

{
ua

(
ta − xa(ma, b−a)

)
τa(ma, b−a)

}
and

Ua
A,l(m

a|ta) = ET−a

{
ua

(
−ya(ma, b−a)

) [
1− τa(ma, b−a)

]}
.

When b is a fixed equilibrium strategy profile in A, we denote Ua
A(ba(ta))|ta) by U(t),

and Qa
A(ba(ta)|ta) by Q(t).

3 Myerson’s utility equivalence theorem

Myerson (1981) proved that a risk-neutral agent is indifferent up to a constant

between any two auction mechanisms which have the same probability-of-winning

function, Q. We will prove that such a result holds only for risk-neutral agents.

Theorem (Myerson 1981) Let a be a fixed risk-neutral agent. Let T a = [αa, βa].

Then the following holds: let A and B be two auction games in which the set of

types of a is T a, and let b and d be fixed equilibrium profiles in A and B respectively.

If

Qa
A(t) = Qa

B(t) for Borel almost every t ∈ T a,

then

Ua
A(t)− Ua

B(t) = Ua
A(s)− Ua

B(s), (3.1)

for every t, s ∈ T a.

We proceed to show that Myerson’s equivalence principle holds only for risk-neutral

agents.

Theorem 1 Let a be an agent with utility function u, and let T a = [αa, βa], αa < βa.

If the the following condition holds, a is risk-neutral:

Let A and B be two auction games, in which the set of types of a is T a, and let

b and d be fixed equilibrium profiles in A and B respectively. If

Qa
A(t) = Qa

B(t) for Borel almost every t ∈ T a,

then (3.1) holds.
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Proof: We will consider auctions in which the set of agents is N = {a}. Let z be

a real number. Let k be a positive integer satisfying

u(−z) + (k − 1)u(1) ≥ 0. (3.2)

Consider the following direct auction mechanisms in which the probability to win

and the payments do not depend on the vector of messages. In particular, let Az,k

be such a mechanism when 1
k

is the probability to win and the payment-when-win

is z and when-lose is -1. That is, for every m ∈ Ma \ {ea},
τa(m) = 1

k
, xa(m) = z, and ya(m) = −1.

Since the probability to win and the payments do not depend on the the mes-

sages and (3.2) holds, then Az,k generates a truth telling auction game. Moreover,

Qa
Az,k

(ta) = 1
k

for every ta ∈ T a.

In addition, note that (3.2) is satisfied for z = 0. Hence, the auction game A0,k has

the same properties as Az,k. Hence, Az,k and A0,k satisfy Qa
Az,k

= Qa
A0,k

.

Therefore, by (3.1),

u(t− z)− u(t) = u(s− z)− u(s), for all t, s ∈ T a. (3.3)

Recall that (3.3) holds for every real number, z, and differentiate (3.3) with respect

to z to get: u′(t−z) = u′(s−z) for every t, s ∈ [αa, βa], and for every −∞ < z < ∞.

Hence u′ is a constant function. Therefore u(x) = cx, c > 0, for every x.

A slight modification in the proof of Theorem 1 shows that this theorem holds

also for a fixed set of agents. That is, given a set of agents, if an agent is indifferent

up to a constant between any two auctions which have the same probability-to-win

function, then she must be a risk-neutral agent.

4 The utility equivalence theorem

We introduce a generalized utility equivalence theorem which holds if and only if

the agent is a CARA agent.

To prove this, we present important properties of the expected utility and probability-

to-win in-equilibrium functions. Although those properties will be used for CARA

agents only, we state and prove the results for an agent with an arbitrary attitude

to risk.
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Lemma 2 Let A be an auction game, b be a fixed equilibrium profile in A and let a

be a fixed agent with utility function u.

Then Ua
A is a Liptchitz non-decreasing function.

Moreover for Borel almost every t in [αa, βa],

[Ua
A(t)]′ = ET−a

{[
u

(
t− xa(ba(t), b−a)

)]′
τa(ba(t), b−a)

}
. (4.1)

Proof: Consider an auction game A.

First we prove that Ua(.) is a non-decreasing function.

Let s, t be in T a. The difference between the expected utility given t and the

expected utility given s is,

Ua(s)− Ua(t) =

ET−a

{
u

(
s− xa(ba(s), b−a)

)
τa(ba(s), b−a) + u

(
−ya(ba(s), b−a)

) [
1− τa(ba(s), b−a)

]}
−

ET−a

{
u

(
t− xa(ba(t), b−a)

)
τa(ba(t), b−a) + u

(
−ya(ba(t), b−a)

) [
1− τa(ba(t), b−a)

]}
.

(4.2)

Given s, to bid ba(s) is at least as good as ba(t).

Therefore, by plugging in (4.2) ba(t) instead of ba(s) we get:

Ua(s)− Ua(t) ≥
ET−a

{(
u(s− xa(ba(t), b−a)

)
τa(ba(t), b−a) + u

(
−ya(ba(t), b−a)

) [
1− τa(ba(t), b−a)

]}
−

ET−a

{(
u(t− xa(ba(t), b−a)

)
τa(ba(t), b−a) + u

(
−ya(ba(t), b−a)

) [
1− τa(ba(t), b−a)

]}
.

That is,

Ua(s)−Ua(t) ≥ ET−a

{[
u

(
s− xa(ba(t), b−a)

)
− u

(
t− xa(ba(t), b−a)

)]
τa(ba(t), b−a)

}
.

(4.3)

For every s > t, we get Ua(s)− Ua(t) ≥ 0 and therefore Ua is non-decreasing.

We show that Ua is a Liptchitz function. Given t, to bid ba(t) is at least as good as

ba(s). Therefore, by plugging in (4.2) ba(s) instead of ba(t) we get, analogously to

the way we got (4.3):

Ua(s)−Ua(t) ≤ ET−a

{[
u

(
s− xa(ba(s), b−a)

)
− u

(
t− xa(ba(s), b−a)

)]
τa(ba(s), b−a)

}
.

(4.4)

As u itself is a Liptchitz function on bounded intervals, and Qa is bounded, there

exists a constant C > 0 such that,

Ua(s)− Ua(t) ≤ C(s− t),
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and hence

|Ua(s)− Ua(t)| ≤ C|s− t|, for all s, t ∈ T a.

We proceed to prove (4.1). As Ua is a Liptchitz function U ′(t) exists Borel almost

everywhere in T a. Let U ′(t) exist at t, αa < t < βa.

Let s > t, by (4.3)

Ua(s)− Ua(t)

s− t
≥ ET−a {[u (s− xa(ba(t), b−a))− u (t− xa(ba(t), b−a))] τa(ba(t), b−a)}

s− t
.

(4.5)

The limit of the left-hand side of (4.5) when s → t is U ′(t).

On the other hand by the Lebesqe Converges Theorem the right-hand side of (4.5)

converges to ET−a {u′ (t− xa(ba(t), b−a)) τa(ba(t), b−a)} . That is,

U ′(t) ≥ ET−a

{
u′

(
t− xa(ba(t), b−a)

)
τa(ba(t), b−a)

}
.

Similarly, by (4.4) we get:

U ′(t) ≤ ET−a

{
u′

(
t− xa(ba(t), b−a)

)
τ(ba(t), b−a)

}
.

Therefore

U ′(t) = ET−a

{
u′

(
t− xa(ba(t), b−a)

)
τa(ba(t), b−a)

}
.

In order to prove the utility equivalence, Myerson (1981) proved that for a risk-

neutral agent, for every t ∈ [αa, βa],

Ua
A(t) =

∫ t

z=αa
u′(0)Qa

A(z)dz + Ua
A(αa).

We generalize this to CARA agents.

Explicitly, we show that the expected utility depends also on the expected utility-

when-lose, Ua
A,l(.) function. Therefore, the difference between what you may pay

if you win and what if you lose affects the expected utility. Recall that for a risk-

neutral agent, we get the same result as Myerson (1981) since Ua
A,l(.) multiple by

Γ = 0.

Lemma 3 Let A be an auction game, b be a fixed equilibrium profile in A, and let

a be a fixed CARA agent with utility function u.

Then

Ua
A(t) = u′(0)

∫ t

z=αa
eu′(0)Γ(t−z)[Qa

A(z)− ΓUa
A,l(z)]dz + Ua

A(αa)eu′(0)Γ(t−αa). (4.6)
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Proof: Recall that U is a Liptchitz function, and let t ∈ T a, such that U ′(t) exists.

By (4.1),

U ′(t) = ET−a

{
u′

(
t− xa(ba(t), b−a)

)
τa(ba(t), b−a)

}
.

Moreover, for any CARA agent, by (2.2), u′(a) = u′(0)[1 + Γu(a)].

Therefore

U ′(t) = u′(0)[ET−a

{
τa(ba(t), b−a)

}
+ ΓET−a

{
u

(
t− xa(ba(t), b−a)

)
τa(ba(t), b−a)

}
].

Hence,

U ′(t) = u′(0)[Qa(t) + Γ(Ua(t)− Ua
l (t))]. (4.7)

Multiplying both sides of (4.7) by e−u′(0)Γt and rewriting, yields

(Ua(t)e−u′(0)Γt)′ = u′(0)e−u′(0)Γt(Qa(t)− ΓUa
l (t)).

As Ua(t) is a Liptchitz function, Ua(t)e−u′(0)Γt is absolutely continuous in T a, and

it is the integral of its derivative.

Therefore,

Ua(t) = u′(0)eu′(0)Γt
∫ t

z=α
e−u′(0)Γz(Qa(z)− ΓUa

l (z))dz + Ua(α)eu′(0)Γ(t−α).

Note that, Ua(.) depends only on u,Qa , Ua
l (.) and Ua(α).

The following theorem generalizes Myerson utility equivalence theorem to CARA

agents:

Theorem 2 Let a be a CARA agent with the utility function u, and let T a =

[αa, βa]. Then there exists a positive function h(t), t ∈ T a such that the following

holds: let A and B be two auction games, in which the set of types of a is T a, and

let b and d be fixed equilibrium profiles in A and B respectively. If

Qa
A(t) = Qa

B(t) for Borel almost every t ∈ T a, (4.8)

and

Ua
A,l(t) = Ua

B,l(t) for Borel almost every t ∈ T a, (4.9)

then

h(t) (Ua
A(t)− Ua

B(t)) = h(s) (Ua
A(s)− Ua

B(s)) , (4.10)
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for every t, s ∈ T a.

Moreover, when u(x) = c(1 − eλx), λ < 0, or u(x) = c(eλx − 1), λ > 0, one can

choose h(t) = eλ(α−t) for every t ∈ T a.

In addition, if a is risk-neutral, then (4.8) without (4.9) implies (4.10) with h(t) = 1

for every t ∈ T a.

Proof: Let A and B be two auction games.

By Lemma 3:

Ua
A(t) = u′(0)

∫ t

z=αa
eu′(0)Γ(t−z)[Qa

A(z)− ΓUa
A,l(z)]dz + Ua

A(αa)eu′(0)Γ(t−αa).

And

Ua
B(t) = u′(0)

∫ t

z=αa
eu′(0)Γ(t−z)[Qa

B(z)− ΓUa
B,l(z)]dz + Ua

B(αa)eu′(0)Γ(t−αa).

Therefore, if Qa
A(t) = Qa

B(t) and Ua
A,l(t) = Ua

B,l(t) for Borel almost every t, then

UA(t)− UB(t) = eu′(0)Γ(t−α)(Ua
A(α)− Ua

B(α)) for every t ∈ T a.

Therefore, for h(t) = eu′(0)Γ(α−t) = eλ(α−t), t ∈ T a,

h(t) (UA(t)− UB(t)) = h(s) (UA(s)− UB(s)) for every t, s ∈ T a.

Finally note that if a is risk-neutral, Γ = 0, and therefore h(t) = 1 and the right

side of (4.6) depends on Q and U(αa) only.

The proof of the following corollary follows easily from Theorem 2, and therefore it

is omitted.

Corollary 1 Let a be a fixed CARA agent with the utility function u. Let A and

B be two auction games with the same set of types for a, and let b and d be fixed

equilibrium profiles in A and B respectively. Assume that Qa
A(t) = Qa

B(t), Ua
A,l(t) =

Ua
B,l(t) for Borel almost every t ∈ T a , and Ua

A(αa) = Ua
B(αa).

Then

Ua
A(ta) = Ua

B(ta) for every ta ∈ T a. (4.11)

Corollary 1 enables us to characterize utility-equivalent auctions for a CARA agent.

In particular, all symmetric (standard) auctions in which the highest bid wins, losers
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do not pay and equilibrium bid function is necessarily increasing are equivalent for

the participant. One class of such standard auctions are k-price auctions, k ≥ 1 (

if a symmetric equilibrium is assumed). That is, a CARA agent is indifferent to all

k-price auctions with the same number of participants. For this class it is possible

to show more: A CARA agent is indifferent to all k-price auctions with the same

number of participants, and with the same constant entree fee, provided that the

distribution of types is atomless.

We proceed to prove a converse to Theorem 2.

Theorem 3 Let a be a fixed agent with the utility function u and a set of types T a

such that αa < βa. Assume there exists a positive function h(ta), ta ∈ T a such that

the following holds: for every two auction games A and B, in which the set of types

of a is T a, and for all equilibrium profiles b and d in A and B respectively such that

Qa
A(.) = Qa

B(.) and Ua
A,l(.) = Ua

B,l(.),

h(ta) (Ua
A(ta)− Ua

B(ta)) = h(sa) (UA(sa)− UB(sa)) for every t, s ∈ T a. (4.12)

Then a is a CARA agent.

Proof: We consider the auctions A = Az,k and B = A0,k defined in the proof of

Theorem 1. Recall that Qa
Az,k

(.) = Qa
A0,k

(.) = 1
k
, Ua

Az,k,l(.) = Ua
A0,k,l(.) = [1− 1

k
]u(1),

UAz,k
(t) = 1

k
u(t− z) + [1− 1

k
]u(1) and UA0,k

(t) = 1
k
u(t) + [1− 1

k
]u(1).

By (4.12),

h(t) ((u(t− z)− u(t)) = h(s) (u(s− z)− u(s)) (4.13)

for every s, t ∈ T a = [αa, βa], and −∞ < z < ∞. Twice differentiating both sides

of (4.13) with respect to z yields

h(t)u′(t− z) = h(s)u′(s− z)

and

h(t)u′′(t− z) = h(s)u′′(s− z).

Therefore, u′′

u′
is a constant function, and therefore u ∈ CARA.

A slight modification in the proof of Theorem 3, as in Theorem 1, shows that this

theorem holds also for a fixed set of agents.
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