
ONE OBSERVATION BEHIND TWO PUZZLES
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1. Two puzzles on the theme “Which is larger?”

In two famous and popular puzzles a participant is required to compare two
numbers of which she is shown only one. We show that there is one simple principle
behind these puzzles. In particular this principle sheds new light on the paradoxical
nature of the first puzzle.

According to this principle the ranking of several random variables must depend
on at least one of them, except for the trivial case where the ranking is constant.
Thus, in the non-trivial case, there must be at least one variable the observation of
which conveys information about the ranking.

A variant of the first puzzle goes back to the mathematician Littlewood (1986)
who attributed it to the physicist Schrödinger. See Nalebuff (1989),
Brams and Kilgour (1995), and Blackwell (1951) for more detail on the historical
background and for further elaboration on this puzzle. Below is the common version
of the puzzle as first appeared in Kraitchik (1953).

To switch or not to switch? There are two envelopes with
money in them. The sum of money in one of the envelopes is
twice as large as the other sum. Each of the envelopes is equally
likely to hold the larger sum. You are assigned at random one of
the envelopes and may take the money inside. However, before
you open your envelope you are offered the possibility of switch-
ing the envelopes and taking the money inside the other one. It
seems obvious that there is no point in switching: the situation
is completely symmetric with respect to the two envelopes. The
argument for switching is also simple. Suppose you open the en-
velope and find a sum x. Then, in the other envelope the sum is
either 2x or x/2 with equal probabilities. Thus, the expected sum
is (1/2)2x+(1/2)x/2 = 1.25x. This is true for any x, and therefore
you should switch even before opening the envelope. Should you or
should you not switch?

Solutions to this paradox are discussed in numerous articles. The simplest and
most common solution is this. In order to carry out the computation of the expected
value, there must be some probability distribution over the two sums. But no
probability distribution can have the property that for any envelope, and any given
sum x in it, the sum in the other is equally likely to be 2x and (1/2)x.1
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1The standard argument for the non-existence of the required probability distribution relies

on the non-existence of a uniform probability over a countable set. A similar argument can be
made when the support is a continuum, Schuss (2000). We provide here an argument that does
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The next puzzle is due to Cover (1987). The gist of it appeared already in
Blackwell (1951) (see footnote 4 below).

Guessing which is larger. Two different real numbers are each
written on a slip of paper facing down. One of the two slips is
chosen at random and the number on it is shown to you. You have
to guess whether this is the larger or the smaller number. How can
you guarantee that the probability of guessing correctly is more
than half, no matter what the numbers are?

It is somewhat surprising that there is a way to guarantee it. Because it seems
that one cannot learn anything about the order of two numbers by observing one
of them. But unlike the first puzzle this one is not paradoxical. There is indeed a
method, discussed in the last section, guaranteeing that the probability of guessing
correctly is larger than half.

In both puzzles the participant faces the same problem: which is the larger
number. But there is more to it. The solution of the second puzzle explains the
flaw in the first one. It serves as a proof that there is no probability distribution
as the one assumed in the first puzzle. Indeed, had such a distribution existed,
then selecting the two numbers of the second puzzle from this distribution would
have frustrated your ability to guess correctly with probability greater than half.
Because whichever number x you see, the other number is equally likely to be larger
(i.e., 2x) or smaller (i.e., (1/2)x). Thus, the fact that you can make your guess in
such a way that you are more likely to be correct than not to be, shows that there
is no such distribution. We make this statement more precise in the next section.

The proof in the previous paragraph demonstrates a more general impossibility.
It shows that there is no probability distribution over pair of numbers, x1 and x2

such that each is equally likely to be larger, and such that observing any one of them
does not change this equallity. This conclusion is phrased in terms of conditional
probabilities, but it can be rephrased in more elementary terms. What the second
puzzle shows is that there is no probability distribution over pair of numbers, x1

and x2 such that each is equally likely to be larger, and such that the order of the
numbers (as a random variable) is independent of each of the numbers.

This principle can be further generalized: the equal likelihood and the restriction
to two numbers are not essential. We show here that it is impossible to have n
random variables, such that observing any of them conveys no information on their
ranking, unless the ranking is constant. In the next section we show how the second
puzzle solves the first, and in the last section we state and proof the generalized
result.

2. The second puzzle solves the first

To switch or not to switch? Let X1 and X2 be two random variables which
describe the sums in the the first and the second envelope correspondingly. The
puzzle stipulates that for any observation x1 of X1,

P (X2 = 2X1|X1 = x1) = P (X2 = (1/2)X1|X1 = x1) = 1/2,

and similarly, for any observation x2 of X2,

not require this distinction. More importantly, it is formulated in general terms of learning from
an observation which seems to lend new insight into this problem.
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P (X1 = 2X2|X2 = x2) = P (X1 = (1/2)X2|X2 = x2) = 1/2.

This implies that for any measurable set of numbers A,

P ([X2 = 2X1] ∩ [X1 ∈ A]) = P ([X2 = (1/2)X1] ∩ [X1 ∈ A])

= (1/2)P (X1 ∈ A),

and
P ([X1 = 2X2] ∩ [X2 ∈ A]) = P ([X1 = (1/2)X2] ∩ [X2 ∈ A])

= (1/2)P (X2 ∈ A).

These conditions are even weaker then the ones stipulated in the puzzle, and do
not require any assumption on conditional probabilities or densities.

Since the event X1 = 2X2 is the event X1 < X2 and similarly the event X1 =
(1/2)X2 is the event X1 > X2 it follows that

P ([X2 < X1] ∩ [X1 ∈ A]) = P ([X2 > X1] ∩ [X1 ∈ A])

= (1/2)P (X1 ∈ A),
(1)

P ([X1 < X2] ∩ [X2 ∈ A]) = P ([X1 > X2] ∩ [X2 ∈ A])

= (1/2)P (X2 ∈ A).
(2)

These two conditions can be summarized as follows. The probability of each of the
events X1 > X2 and X1 < X2 is 1/2 (substitute the real line for A in (1) and (2)),
and these two events are independent of X2 and X2.

Claim 1. It is impossible for a pair of random variables X1 and X2 to satisfy 1
and 2.

We show that this claim follows from the second puzzle.
Guessing which is larger. It is helpful to present this puzzle as a two-person
zero-sum win-lose game. The first player, C, chooses the numbers, while the second,
G, makes the guess after observing the number on one of the slips that was chosen
at random. Player G wins iff she guesses correctly.

The pure strategies of C are pairs (x1, x2) of real, distinct numbers. A mixed
strategy of C is a pair of random variables (X1, X2) such that P (X1 6= X2) = 1.
We restrict G’s pure strategies to threshold strategies. Each t ∈ R represents the
threshold strategy where the player guesses that the observed number x is the larger
if x ≥ t and is the smaller otherwise, independently of which slip she observes.2

Mixed strategies of G are probability distributions over R. We note first,

Claim 2. If G plays an arbitrary threshold strategy t against any pure strategy
(x1, x2) of C, she

• wins with probability 1/2 when either x1, x2 < t or x1, x2 ≥ t,
• wins for sure when either x1 < t ≤ x2 or x2 < t ≤ x1.

2One can think of more general pure strategies in which the guess is any function of the
observed number and the slip that was chosen. But in order to guarantee that the probability of
winning is higher than 1/2, threshold strategies suffice.
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Indeed, in the first two cases G’s guess is the same whether she observes x1 or x2.
Her guess is correct with probability 1/2. In the last two cases G guesses correctly
whether she observes x1 or x2.3 ¤

Consider a mixed strategy Q of player G such that for each a < b, Q((a, b]) > 0.

Claim 3. The strategy Q guarantees that the probability that player G wins is
higher than 1/2 against any pure strategy of C.

Consider the strategy (x1, x2) of C such that x1 < x2. If x1 < t ≤ x2, which
happens with probability Q((x1, x2]), then G wins for sure. In all other cases G’s
chance of winning is half. Thus her chances of winning are 1/2+Q((x1, x2]) > 1/2.
The case x2 < x1 is similar. ¤

The proof above, that G can guarantee that the probability of winning is higher
than 1/2, is due to Cover (1987). We point out that this result, viewed in the
context of the zero-sum game, can be used to establish a proof of Claim 1.

Proof of Claim 1: We show that if C is using a mixed strategy (X1, X2) that
satisfies (1) and (2), then player G cannot guarantee that the probability she wins
is higher than 1/2, in contradiction to Claim 3.

The probability that G guesses correctly using the threshold strategy t is

Prob(G observes X1)
(
P ([X1 > X2] ∩ [X1 ≥ t]) + P ([X1 < X2] ∩ [X1 < t])

)

+Prob(G observes X2)
(
P ([X2 > X1] ∩ [X2 ≥ t]) + P ([X2 < X1] ∩ [X2 < t])

)
.

Since G observes each of X1 and X2 with probability 1/2, and by conditions (1)
and (2), this probability is

1
2
(1
2
P (X1 ≥ t) +

1
2
P (X1 < t)

)

+
1
2
(1
2
P (X2 ≥ t) +

1
2
P (X2 < t)

)
=

1
2
.

Thus, the mixed strategy (X1, X2) guarantees player C that the probability she
wins is 1/2 against any pure threshold strategy of G, and hence also against Q,
which is a contradiction to Claim 3. ¤

3. Ranking by one observation

The following proposition generalizes Claim 1. Let X = (X1, . . . , Xn) be a vector
of n real-valued random variables on some sample space. Denote by W the set of
weak orders over {1, . . . , n}.4 The ranking of X is a random variable r(X) with
values in W. For W ∈W, r(X) = W whenever for all i, j ∈ {1, . . . , n}, Xi ≥ Xj if
and only if iWj.

Proposition 1. For any vector of random variables X = (X1, . . . , Xn), if for each
i, Xi, and r(X) are independent then r(X) is constant almost surely.

3Blackwell (1951), in Example 1, introduces a special case of this puzzle. He uses a similar
threshold estimate to improve upon the constant estimates, which guarantee that the probability
of a correct guess is 1/2 only.

4A weak order is a transitive and complete binary relation. Completeness here implies
reflexivity.
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Claim 1 is a special case of this proposition. It deals with two random variables
and assumes that r(X) takes two values each with probability 1/2: one on the event
X1 > X2, the other on X1 < X2. Thus, r(X) is not constant a.s. and therefore it
is impossible, by Proposition 1, that both variables are independent on r(X), i.e.,
on the events X1 > X2 and X1 < X2.

We prove a result which is stronger than Proposition 1, and give an upper bound
on the number of variables that can be independent of r(X). We associate with X
a graph G = (V,E) with set of vertices V = {1, . . . , n}. A pair (i, j) is an edges in
E iff r(Xi, Xj) is not constant almost surely. A vertex cover for G is a set C ⊆ V ,
such that each edge in E has at least one end in C. A minimal vertex cover is one
with minimal number of nodes. We denote this number by m(X).

Proposition 2. For any vector of random variables X = (X1, . . . , Xn) at most
n−m(X) of these variables are independent of r(X).

This proposition implies the previous one. Indeed, if for each i, Xi and r(X) are
independent then m(X) = 0. Thus, E = ∅. Therefore, for each i 6= j, r(Xi, Xj) is
constant a.s., which means that r(X) is constant a.s..

Note, that if r(Xi, Xj) is not constant a.s. for any pair i 6= j, then G is a complete
graph, m(X) = n− 1, and thus there can be at most one of the n variables which
is independent on r(X).
Proof of Proposition 2. We first prove the proposition for n = 2. In this case
we need to show that if r(X) is not constant a.s., then at least one of the variables
depends on r(X).

Let D = {x | x1 = x2} be the diagonal of R2, A = {x | x1 < x2} the set
above the diagonal and B = {x | x1 > x2} the set below it. Denote by P be the
probability distribution on R2 induced by X.

Suppose that r(X) is not constant a.s.. Hence, at least two of the sets A,D and
B have positive probability. Assume that P (B) > 0 and P (A∪D) > 0, and denote
C = A∪D (if P (B) = 0 then P (A) > 0 and P (B∪D) > 0 and the proof is similar).
Suppose, now, that Xi and r(X) are independent for i = 1, 2.

Fix a point a ∈ R and let H1(= Ha
1 ) and H2(= Ha

2 ) be two halves of the plane,
H1 = {x | x1 ≥ a} and H2 = {x | x2 ≥ a}. Note that B ∩H1 can be written as the
disjoint union (B ∩H2)∪ (H1 \H2). Thus P (H1 \H2) = P (B ∩H1)− P (B ∩H2).
By the independence assumption

P (H1 \H2) = P (B)P (H1)− P (B)P (H2).

Analogously,
P (H2 \H1) = P (C)P (H2)− P (C)P (H1).

Multiplying the first equality by P (C), the second by P (B) and adding them yields,
P (C)P (H1 \ H2) + P (B)P (H2 \ H1) = 0. As P (C) and P (B) are positive, this
implies that P (H1 \H2) = P (H2 \H1) = 0. Thus, the set ∪a(Ha

1 \Ha
2 )∪ (Ha

2 \Ha
1 )

where a ranges over all rational numbers has probability zero.5 But this set is just
A ∪B, contrary to our assumption that P (A ∪B) > 0.

Assume now that n > 2. Note that the algebra of events generated by r(Xi, Xj),
for i 6= j, is contained in the algebra generated by r(X). For each edge (i, j) ∈ E,
r(Xi, Xj) is not constant a.s., and hence, as we have shown, at least one of the

5This is the only place in the proof that requires countable additivity of the probability on the
sample space.
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variables Xi and Xj must depend on r(Xi, Xj), and therefore also on r(X). Thus,
the indices of the random variables that depend on r(X) form a vertex cover, and
hence there are at least m(X) such variables. ¤

Nothing is assumed in Proposition 2 about the expectations of the variables. If
we assume that the differences Xi −Xj have finite means, then a different proof is
possible that makes use of the following lemma.

Lemma 1. Let Y be a random variable with a finite mean. If Y and sgn(Y ) are
uncorrelated then sgn(Y ) is constant almost surely.

Proof. Let p = P (Y > 0) and q = P (Y < 0). The claim that sgn(Y ) is constant
a.s. is equivalent to saying that either p = 1 or q = 1 or p = q = 0. Thus, it is
enough to show that if p < 1 and q < 1 then p = q = 0.

Suppose that p < 1 and q < 1. Then, |p − q| < 1. Consider the function
s(Y ) = sgn(Y )− (p− q). Obviously, E(s(Y )) = 0. As s(Y ) and Y are uncorrelated
it follows that E(s(Y )Y ) = E(s(Y ))E(Y ) = 0. Note that if Y > 0 then s(Y ) > 0,
and if Y < 0 then s(Y ) < 0. Thus the product s(Y )Y vanishes only when Y = 0,
and is positive otherwise. Since the expectation of the product is zero, it must be
the case that Y = 0 a.s., that is p = q = 0 as was required to show. ¤

This lemma implies Proposition 2 in the case that each of the difference Xi−Xj

has a finite mean. As we showed above, it is enough to prove the proposition for
n = 2. Let Y = X1 − X2. Then, r(X1, X2) and sgn(Y ) partition the sample
space into the same three events. Thus if Xi is independent of r(X1, X2) it is
independent of sgn(Y ) and thus uncorrelated with it. Since the covariance is linear
in each argument it follows that Y and sgn(Y ) are also uncorrelated. Thus, by
Lemma 1 r(X1, X2) is constant a.s.
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