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1 Introduction

Consider the following optimization problem, that was presented by Dynkin
(1969). Two players observe a realization of two real-valued processes (xn)
and (rn). Player 1 can stop whenever xn ≥ 0, and player 2 can stop whenever
xn < 0. At the first stage θ in which one of the players stops, player 2 pays
player 1 the amount rθ, and the process terminates. If no player ever stops,
player 2 does not pay anything.

A strategy of player 1 is a stopping time µ that satisfies {µ = n} ⊆ {xn ≥
0}. A strategy ν of player 2 is defined analogously. The termination stage is
simply θ = min{µ, ν}. For a given pair (µ, ν) of strategies, denote by

γ(µ, ν) = E[1{θ<+∞}rθ]

the expected payoff of player 1.
Dynkin (1969) proved that if supn≥0 |rn| ∈ L1 this problem has a value v;

that is
v = sup

µ
inf
ν

γ(µ, ν) = inf
ν

sup
µ

γ(µ, ν).

He moreover characterized ε-optimal strategies; that is, strategies µ (resp. ν)
that achieve the supremum (resp. the infimum) up to ε.

Neveu (1975) generalized this problem by allowing both players to stop
at every stage, and by introducing 3 real valued processes (r{1},n),(r{2},n) and
(r{1,2},n). The payoff player 2 pays player 1 is defined by

γ(µ, ν) = E[1{µ<ν}r{1},µ + 1{µ>ν}r{2},ν + 1{µ=ν<+∞}r{1,2},µ].

He then proved that this problem has a value, provided (a) supn≥0 max{|r{1},n|,
|r{2},n|, |r{1,2},n|} ∈ L1, and (b) r{1},n = r{1,2},n ≤ r{2},n.

Recently Rosenberg et al (2001) studied games in Neveu’s setup, but
they allowed the players to use randomized stopping times; a strategy is a
[0, 1]-valued process, that dictates the probability by which the player stops
at every stage. They prove that the problem has a value, assuming only
condition (a).

A broad literature provides sufficient conditions for the existence of the
value in continuous time (see, e.g., Bismuth (1979), Alario-Nazaret, Lepeltier
and Marchal (1982), Lepeltier and Maingueneau (1984) , Touzi and Vieille
(2002)). Some authors work in the diffusion case, see e.g. Cvitanić and
Karatzas (1996).
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The non zero-sum problem in discrete time was studied, amongst others,
by Mamer (1987), Morimoto (1986) and Ohtsubo (1987, 1991). In the non
zero-sum case, the processes (r{1},n),(r{2},n) and (r{1,2},n) are R2-valued, and
the expected payoff of player i, i = 1, 2, is

γi(µ, ν) = Eµ,ν [1{µ<ν}r
i
{1},µ + 1{µ>ν}r

i
{2},ν + 1{µ=ν<+∞}r

i
{1,2},µ].

The goal of each player is to maximize his own expected payoff. Given ε > 0,
a pair of stopping times (µ, ν) is an ε-equilibrium if for every pair of stopping
times (µ′, ν ′),

γ1(µ, ν) ≥ γ1(µ′, ν)− ε, and γ2(µ, ν) ≥ γ2(µ, ν ′)− ε.

The above mentioned authors provide various sufficient conditions under
which ε-equilibria exist.

In the present paper we study two player non zero-sum problems in dis-
crete time with randomized stopping times, and we prove the existence of an
ε-equilibrium for every ε > 0, under condition (a). Our technique is based
on a stochastic variation of Ramsey Theorem (Ramsey (1930)), which states
that for every coloring of a complete infinite graph by finitely many colors
there is a complete infinite monochromatic subgraph. This variation serves
as a substitute for a fixed point argument, which is usually used to prove
existence of an equilibrium. It allows us to reduce the problem of existence
of ε-equilibrium in a general stopping game to that of studying properties of
ε-equilibria in a simple class of stochastic games with finite state space.

The paper is arranged as follows. In section 2 we provide the model and
the main result. A sketch of the proof appears in section 3. In section 4 we
present a stochastic variation of Ramsey Theorem. In section 5 we show that
to prove existence of ε-equilibria in a general stopping game, it is sufficient
to consider a restricted class of stopping games. In section 6 we define the
notion of games played on a finite tree, and we study some of their properties.
In section 7 we construct an ε-equilibrium. We end by discussing extensions
to more than two players in section 8.

2 The Model and the Main Result

A two-player non zero-sum stopping game is a 5-tuple Γ = (Ω,A, p,F , R)
where:
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• (Ω,A, p) is a probability space.

• F = (Fn)n≥0 is a filtration over (Ω,A, p).

• R = (Rn)n≥0 is a F -adapted R6-valued process. The coordinates of Rn

are denoted by Ri
Q,n, i = 1, 2, φ 6= Q ⊆ {1, 2}.

A (behavior) strategy for player 1 (resp. player 2) is a [0, 1]-valued F -
adapted process x = (xn)n≥0 (resp. y = (yn)n≥0). The interpretation is that
xn (resp. yn) is the probability by which player 1 (resp. player 2) stops at
stage n.

Let θ be the first stage, possibly infinite, in which at least one of the
players stops, and let φ 6= Q ⊆ {1, 2} be the set of players that stop at stage
θ (provided θ < ∞.) The expected payoff under (x, y) is given by

γi(x, y) = Ex,y[R
i
Q,θ1{θ<∞}], (1)

where the expectation Ex,y is w.r.t the distribution Px,y over plays induced
by (x, y).

Definition 2.1. Let Γ = (Ω,A, p,F , R) be a non zero-sum stopping game,
and let ε > 0. A pair of strategies (x∗, y∗) is an ε-equilibrium if γ1(x, y∗) ≤
γ1(x∗, y∗) + ε and γ2(x∗, y) ≤ γ2(x∗, y∗) + ε, for every x and y.

The main result of the paper is the following.

Theorem 2.2. Let Γ = (Ω,A, p,F , R) be a two-player stopping game such
that supn≥0 ‖Rn‖∞ ∈ L1(p). Then for every ε > 0, the game admits an
ε-equilibrium.

3 Sketch of the Proof

In the present section we provide the main ideas of the proof. Let Γ be a
stopping game. To simplify the presentation, assume that Fn is trivial for
every n, so that the payoff process is deterministic. Assume also that payoffs
are uniformly bounded by 1.

Given ε > 0, fix a finite covering M of the space of payoffs [−1, 1]2 by
sets with diameter smaller than ε.

For every two non negative integers k < l define the periodic game G(k, l)
as the game that starts at stage k, and, if not stopped earlier, restarts at

4



stage l. Formally, G(k, l) is a stopping game in which the terminal payoff at
stage n is equal to the payoff at stage k + (n mod l) in Γ.

This periodic game is a simple stochastic game (see, e.g., Shapley (1953),
or Flesch et al (1996)), and is known to admit an ε-equilibrium in periodic
strategies. Assign to each pair of non negative integers k < l an element
m(k, l) ∈ M which contains a periodic ε-equilibrium payoff of the periodic
game G(k, l).

Thus, we assigned to each k < l a color m(k, l) ∈ M . A consequence of
Ramsey Theorem is that there is an increasing sequence of integers 0 ≤ k1 <
k2 < · · · such that m(k1, k2) = m(kn, kn+1) for every n.

Assume first that k1 = 0. A naive candidate for a 4ε-equilibrium suggests
itself: between stages kn and kn+1, the players follow a periodic ε-equilibrium
in the game G(kn, kn+1) with corresponding payoff in the set m(k1, k2).

So that this strategy pair is indeed 4ε-equilibrium, one has to study prop-
erties of the ε-equilibria in periodic games. The complete solution of this case
appears in Shmaya et al (2002), where it is observed that in each periodic
game G(k, l) there exists a periodic ε-equilibrium that satisfies one of the fol-
lowing conditions. (i) In this ε-equilibrium, no player ever stops. (ii) Under
this ε-equilibrium, both players receive non negative payoff, and termina-
tion occurs in each period with probability at least ε2. (iii) If some player
receives in this ε-equilibrium a negative payoff, then his opponent stops in
each period with probability at least ε2. The fact that at least one of these
conditions hold is sufficient to prove that the concatenation described above
is a 4ε-equilibrium, with corresponding payoff in the convex hull of m(k1, k2).

If k1 > 0, choose an arbitrary m ∈ m(k1, k2). Between stages 0 and k1,
the players follow an equilibrium in the k1-stage game with terminal payoff
m; that is, if no player ever stops before stage k1, the payoff is m. From
stage k1 and on, the players follow the strategy described above. It is easy
to verify that this strategy pair forms a 5ε-equilibrium.

When the payoff process is general, few difficulties appear. First, a pe-
riodic game is defined now by two stopping times µ1 < µ2; µ1 indicates the
initial stage, and µ2 indicates when the game restarts. So that we can an-
alyze this periodic game, we have to reduce the problem to the case where
the σ-algebras Fµ1 ,Fµ1+1, . . . ,Fµ2 are finite. This is done in section 7.

Second, we have to generalize Ramsey Theorem to this stochastic setup.
This is done in section 4.

Third, we have to study properties of ε-equilibria in these periodic games,
so that a proper concatenation of ε-equilibria in the different periodic games
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would generate a 4ε-equilibrium in the original game. This is done in section
6.

4 A Stochastic Variation of Ramsey Theorem

In the present section we provide a stochastic variation of Ramsey Theorem.
Let (Ω,A, p) be a probability space and F = (Fn)n≥0 a filtration. All stop-
ping times that appear in the sequel are F -adapted. For every set A ⊆ Ω,
Ac = Ω \ A is the complement of A. For every A, B ∈ A, A holds on B if
and only if p(Ac ∩B) = 0.

Definition 4.1. A NT-function is a function that assigns to every integer
n ≥ 0 and every bounded stopping time τ a Fn-measurable r.v. that is
defined over the set {τ > n}. We say that a NT-function f is C-valued, for
some set C, if the r.v. fn,τ is C-valued, for every n ≥ 0 and every τ .

Definition 4.2. A NT-function f is F-consistent if for every n ≥ 0, every
Fn-measurable set F , and every two bounded stopping times τ1, τ2, we have

τ1 = τ2 > n on F implies fn,τ1 = fn,τ2 on F.

When f is a NT-function, and σ < τ are two bounded stopping times,
we denote fσ,τ (ω) = fσ(ω),τ (ω). Thus fσ,τ is a Fσ-measurable r.v.

The main result of this section is the following.

Theorem 4.3. For every finite set C of colors, every C-valued F-consistent
NT-function c, and every ε > 0, there exists a sequence of bounded stopping
times 0 ≤ θ0 < θ1 < θ2 < . . . such that p(cθ0,θ1 = cθ1,θ2 = cθ2,θ3 = . . .) > 1− ε.

Comment: The natural stochastic generalization of Ramsey Theorem
requires the stronger condition p(cθ0,θ1 = cθi,θj

∀0 ≤ i < j) ≥ 1− ε. We do
not know whether this generalization is correct.

The following example shows that a sequence of stopping times θ0 < θ1 <
θ2 < θ3 < . . . such that p(cθ0,θ1 = cθ1,θ2 = . . .) = 1 need not exist even
without the boundedness condition.

Example 4.4. Let Xn be a biased random walk on the integers, X0 =
0 and p(Xn+1 = Xn + 1) = 1 − p(Xn+1 = Xn − 1) = 3/4. Let Fn =
σ(X0, X1, . . . , Xn). For every n ≥ 0 let Rn = ∪1≤k≤n{Xk = −1}; for every
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finite (but not necessarily bounded) stopping time τ define cn,τ = Red on
Rn∩{τ > n} and cn,τ = Blue on Rc

n∩{τ > n}. Since p(∪n≥0Rn) < 1, whereas
for every finite stopping time θ and every B ∈ Fθ p(∪n≥0Rn | B) > 0,
it follows that for every sequence θ0 < θ1 < . . . of finite stopping times
p(cθ0,θ1 = Blue) > 0 whereas p(cθ0,θ1 = cθ1,θ2 = . . . = Blue | cθ0,θ1 = Blue) <
1.

We start by proving a slightly stronger version of Theorem 4.3 when
|C| = 2.

Lemma 4.5. Let C = {Blue, Red}, and let c be a C-valued F-consistent
NT-function. For every ε > 0 there exist N ∈ N, two sets R̄, B̄ ∈ FN , and
a sequence N ≤ τ0 < τ1 < τ2 < . . . of bounded stopping times, such that:

a) R̄ = B̄c.

b) p(cτ0,τ1 = cτ1,τ2 = . . . = Red | R̄) > 1− ε.

c) p(cτk,τl
= Blue ∀k, l | B̄) > 1− ε.

Proof. We claim first that for every n ∈ N one can find two sets Rn, Bn ∈ Fn

and a bounded stopping time σn such that:

1. p(Rn ∪Bn) > 1− 1
2n .

2. {σn > n} on Rn and cn,σn = Red on Rn.

3. For every bounded stopping time τ , cn,τ = Blue on Bn ∩ {τ > n}.

To see this, fix n ∈ N. Call a set F ∈ Fn red if there exists a bounded
stopping time σF such that on F both σF > n and cn,σF

= Red. Observe
that since c is F -consistent, if F, G ∈ Fn are red, then so is F ∪ G. Let
α = supF{p(F ), F ∈ Fn is red}. For every k ≥ 1 let Fk ∈ Fn be a red set
such that p(Fk) > α − 1

k
. Let F∗ = ∪k≥1Fk. Observe that F∗ ∈ Fn and

p(F∗) = α. Moreover, no subset of F c
∗ with positive probability is red. Let

Rn = F2n , let σn be a bounded stopping time such that on Rn σn > n and
cn,σn = Red, and let Bn = F c

∗ . This concludes the proof of the claim.

Let B = {Bn i.o.}, and set R = Bc. Since R,B ∈
∨

nFn, there is
N ∈ N and two sets B̄, R̄ ∈ FN such that (i) R̄ = B̄c, (ii) p(B | B̄) > 1− ε,
and (iii) p(R | R̄) > 1− ε. On R, and therefore also on R ∩R, both Bn and
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(Bn ∪ Rn)c occur only finitely many times. By sufficiently increasing N we
assume w.l.o.g. that p(∩n≥NRn | R ∩ R̄) > 1− ε. In particular,

p(∩n≥NRn | R̄) > 1− 2ε. (2)

Let N = n0 < n1 < n2 < · · · be a sequence of integers such that, for
every k ≥ 0, p(Tk | B ∩ B̄) > 1 − ε

2k+1 , where Tk = ∪nk≤n<ni+k
Bn. Then

p(∩k≥0Tk | B ∩ B̄) > 1− ε, and therefore

p(∩k≥0Tk | B̄) > 1− 2ε. (3)

We now define the sequence (τk)k≥0 inductively, working separately on
R̄ and B̄. Consider first the set R̄. Define τ0 = N . Given τk, define
τk+1 = Σn∈Nσn1{τk=n}∩Rn∩R̄ on R̄∩

⋃
n({τk = n}∩Rn). Since τk and (σn)n≥0

are bounded, τk+1 can be extended to a bounded stopping time on R̄. By
definition cτ0,τ1 = cτ1,τ2 = . . . = Red on R̄ ∩ (∩n≥NRn), and it follows from
(2) that p(cτ0,τ1 = cτ1,τ2 = . . . = Red | R̄) ≥ 1− 2ε.

Consider now the set B̄. Define τ0 = N . Define τk+1(w) = min{nk ≤
n < nk+1, w ∈ Bn} on B̄ ∩ Tk, and τk+1 = nk+1 − 1 on B̄ \ Tk. By (c), for
every k, l ∈ N, cτk,τl

= Blue on B̄ ∩ (∩k≥0Tk), and it follows from (3) that
p(cτk,τl

= Blue ∀k, l | B̄) > 1− 2ε.

Proof of Theorem 4.3

We prove the Theorem by induction on |C|. The case |C| = 2 follows from
Lemma 4.5. Assume we have already proven the lemma whenever |C| = r
and assume |C| = r + 1. Let Red be a color in C.

By considering all colors different from Red as a single color, and applying
Lemma 4.5 there exist N ∈ N, two sets R̄, B̄ ∈ FN , and a sequence of
stopping times N ≤ τ0 < τ1 < . . . such that: (i) R̄ = B̄c, (ii) p(cτ0,τ1 =
cτ1,τ2 = . . . = Red | R̄) > 1−ε/2, and (iii) p(cτk,τl

6= Red ∀k, l | B̄) > 1−ε/2.
We define θi separately on R̄ and B̄.

On R̄, we let θi = τi.
We now restrict ourselves to the space (B̄,AB̄, pB̄) with the filtration

Gn = Fτn ∩ B̄. Let c̃ be the C-valued NT function over G defined by c̃n,β =
cτn,τβ

for every G-adapted stopping time β, where τβ =
∑

n τn1{β=n} is an
F -adapted stopping time. Let c′ be the coloring that is obtained from c̃ by
changing the color Red with another color in C, say Green:

c′n,β =

{
c̃n,β, if c̃n,β 6= Red

Green, if c̃n,β = Red
.
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As c′ is a C \ {Red}-valued G-consistent NT-function, one can apply the
induction hypothesis, and obtain a sequence of G-adapted stopping times
0 ≤ β0 < β1 < β2 < . . . such that

p(c′β0,β1
= c′β1,β2

= . . . | B̄) > 1− ε/2. (4)

By (4) and (iii) it follows that p(c̃β0,β1 = c̃β1,β2 = . . . | B̄) > 1− ε. We define
θi = τβi

on B̄. Thus

p(cθ0,θ1 = cθ1,θ2 = . . . | B̄) > 1− ε. (5)

Combining (ii) and (5) we get p(cθ0,θ1 = cθ1,θ2 = . . .) > 1− ε, as desired.

5 Restricting the Class of Games

In the present section we show that to prove Theorem 2.2 it is sufficient to
consider a restricted class of stopping games.

Definition 5.1. Let Γ = (Ω,A, p,F , R) be a stopping game and B ∈ A
with p(B) > 0. The game restricted to B is the stopping game ΓB =
(B,AB, pB,FB, R), where AB = {A ∩ B, B ∈ A}, pB(A) = p(A | B) for
every A ∈ AB, and FB,n = {F ∩B, F ∈ Fn} for every n ≥ 0.

The following lemma is standard.

Lemma 5.2. Let (Ω,A) be a measurable space and let B ⊆ Ω. Let AB =
{A∩B, A ∈ A}. Then for every AB-measurable function x on B there exists
a A-measurable function x∗ on Ω such that x∗ = x on B.

Set m = supn≥0 max{|Ri
Q,n|, i = 1, 2, ∅ ⊂ Q ⊆ {1, 2}}). Since m ∈ L1(p),

for every ε > 0 there exists N ∈ N such that

E[m1{m>N}] < ε. (6)

Set B = {m ≤ N}. By Lemma 5.2 and (6), any ε-equilibrium in ΓB can
be extended to a 3ε-equilibrium in Γ. In particular, it is sufficient to consider
games in which the payoff process is uniformly bounded. We further assume
w.l.o.g. that the payoff process is uniformly bounded by 1.

Lemma 5.2 gives us the following.
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Lemma 5.3. Let Γ = (Ω,A, p,F , R) be a stopping game with payoffs bounded
by 1, let B ∈ A such that p(B) > 1− δ, and let ε > 0. Assume that the game
ΓB admits an ε-equilibrium. Then the game Γ admits an ε + 2δ-equilibrium.

Definition 5.4. Let Γ = (Ω,A, p,F , R) be a stopping game, and let τ be a
bounded F -adapted stopping time. The game that starts at τ is defined by
Γτ = (Ω,A, p, F̃ , R̃), where F̃n = Fτ+n and R̃n = Rτ+n for every n ≥ 0.

In particular for every bounded F -adapted stopping time τ , and every
B ∈ A, ΓB,τ is the game restricted to B that starts at τ .

Lemma 5.5. Let Γ = (Ω,A, p,F , R) be a stopping game, τ a bounded F-
adapted stopping time, and ε > 0. Let (B1, . . . , Bk) be a finite Fτ -measurable
partition of Ω. Suppose that the games ΓBi,τ , 1 ≤ i ≤ k, admit ε-equilibria.
Then the game Γ admits an ε-equilibrium.

Proof. Let (xi, yi) be an ε-equilibrium in ΓBi,τ , 1 ≤ i ≤ k. Consider the
strategy profile (x, y) for the game Γτ defined by x = xi and y = yi on Bi.
Then (x, y) is an ε-equilibrium in Γτ .

For i = 1, 2, let γi = Ex,y[R
i
Q,θ1{θ<∞} | Fτ ] be the payoff to player i in Γτ

conditioned on Fτ . By standard tools in dynamic programming, the finite
stage game which, if no player stops before stage τ , terminates at stage τ
with terminal payoff γ = (γ1, γ2), has an equilibrium (x̄, ȳ). Following (x̄, ȳ)
up to stage τ and (x, y) afterwards forms an ε-equilibrium in Γ.

The main result of this section is the following.

Proposition 5.6. Suppose that every stopping game Γ = (Ω,A, p,F , R)
that satisfies A.1-A.6 below admits an ε-equilibrium, for every ε > 0. Then
Theorem 2.2 holds.

A.1: There exists K ∈ N such that for every n ≥ 0, Rn ∈ {0,± 1
K

,± 2
K

, . . . ,±K
K
}6.

A.2: R1 := lim supn→∞ R1
{1},n is constant, and R1

{1},n ≤ R1 for every n ≥ 0.

A.3: R2 := lim supn→∞ R2
{2},n is constant, and R2

{2},n ≤ R2 for every n ≥ 0.

A.4: R1 > 0 or R2 > 0.

A.5: R2
{1},n < R2 whenever R1

{1},n = R1.

A.6: R1
{2},n < R1 whenever R2

{2},n = R2.
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Proof. Assume that every stopping game Γ = (Ω,A, p,F , R) that satisfies
A.1-A.6 admits an ε-equilibrium, for every ε > 0. Let Γ = (Ω,A, p,F , R)
be a stopping game with payoffs uniformly bounded by 1, and let ε > 0. We
prove that Γ admits a Cε-equilibrium for some C > 0 by gradually reducing
Γ to a game that satisfies A.1-A.6

If (x, y) is an ε-equilibrium in some stopping game Γ = (Ω,A, p,F , R),
it is a 3ε-equilibrium in every stopping game Γ′ = (Ω,A, p,F , R′) such that
‖R′

n − Rn‖∞ < ε for every n ≥ 0. By choosing K > 1/ε, one can therefore
assume A.1.

Let R1 = lim sup R1
{1},n. R1 is a

∨
n≥0Fn-measurable r.v. that by A.1 ad-

mits finitely many values. Let N be large enough, and let {B̄t}t∈{0,± 1
K

,± 2
K

,...,±K
K
}

be a FN -measurable partition of Ω such that p(R1 = t | B̄t) > 1−ε.1 By suffi-
ciently increasing N we assume w.l.o.g that, for each t ∈ {0,± 1

K
,± 2

K
, . . . ,±K

K
},

p(
⋂

n≥N{R1
{1},n ≤ t} | {R1 = t} ∩ B̄t) > 1 − ε. Then p(Bt | B̄t) > 1 − 2ε,

where
Bt = B̄t ∩ {R1 = t} ∩

⋂
n≥N

{R1
{1},n ≤ t}.

Let B = ∪tBt. Then
p(B) > 1− 2ε. (7)

Suppose that the games ΓBt,N admit ε-equilibria for t ∈ {0,± 1
K

,± 2
K

, . . . ,±K
K
}.

By Lemma 5.5 the game ΓB admits an ε-equilibrium. By (7) and Lemma 5.3
it follows that Γ admits a 5ε-equilibrium. Therefore it is sufficient to prove
the existence of an ε-equilibrium in the games ΓBt,N , so that one can assume
that A.2 (and analogously A.3) holds

Using similar arguments we can assume that T 2 = lim sup{R2
{1},n | R1

{1},n =

R1} and T 1 = lim sup{R1
{2},n | R2

{2},n = R2} are constant. One can further-

more assume that R2
{1},n ≤ T 2 whenever R1

{1},n = R1, and that R1
{2},n ≤ T 1

whenever R2
{2},n = R2.

We now show that if at least one of A.4-A.6 is not satisfied, the game
admits an ε-equilibrium, for every ε > 0.

If R1 ≤ 0 and R2 ≤ 0 then the strategy pair (x, y) that is defined by
xn = yn = 0 (always continue) is an equilibrium. We can thus assume that
A.4 is satisfied. Assume w.l.o.g. that R1 > 0.

If T 2 ≥ R2 then by A.4 the following strategy (x, y) is an ε-equilibrium:
xn = ε · 1{R1

{1},n
=R1} and yn = 0. If T 1 ≥ R1 and T 2 < R2 then the

1By convention p(φ | φ) = 1.
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following strategy (x, y) is an ε-equilibrium: yn = ε · 1{R2
{2},n

=R2} , xn ={
0 n ≤ N
ε · 1{R1

{1},n
=R1} n > N

}
, where N is large enough so that P0,y(θ < N) >

1− ε, and 0 is the strategy that never stops.
The remaining case is T 2 < R2 and T 1 < R1, so that A.5 and A.6 are

satisfied.

6 Stopping Games on Finite Trees

An important building block in our analysis are stopping games that are
played on a finite tree. In the present section we define these games and
study some of their properties.

6.1 The Model and the Main Result

Definition 6.1. A stopping game on a finite tree (or simply a game on a
tree) is a tuple T = (S, S1, r, (Cs, ps, Rs)s∈S\S1), where

• (S, S1, r, (Cs)s∈S\S1) is a tree; S is a non empty finite set of nodes,
S1 ⊆ S is a finite set of leaves, r ∈ S is the root, and for each s ∈ S\S1,
Cs ⊆ S \ {r} is the set of children of s. We denote by S0 = S \ S1

the set of nodes which are not leaves. For every s ∈ S, depth(s) is the
depth of s - the length of the path that connects the root to s.

For every s ∈ S0,

• ps is a probability distribution over Cs.

• Rs ∈ R6 is the payoff at s. The coordinates of Rs are denoted (Ri
Q,s)i=1,2,φ6=Q⊆{1,2}.

Throughout this section we consider games on trees whose payoffs (Rs)s∈S0

satisfy the following conditions for every i = 1, 2, every ∅ ⊂ Q ⊆ {1, 2}, and
every s ∈ S0, (B.1) Ri

Q,s ∈ {0,± 1
K

, . . . ,±K
K
} for some K ∈ N, (B.2) Ri

{i},s ≤
Ri, where R1, R2 ∈ R, and at least one of them is positive, (B.3) R2

{1},s < R2

whenever R1
{1},s = R1, and (B.4) R1

{2},s < R1 whenever R2
{2},s = R2. Observe

the similarity between these conditions and conditions A.1-A.6.

A stopping game on a finite tree starts at the root and is played in stages.
Given the current node s ∈ S0, and the sequence of nodes that were already

12



visited, both players decide, simultaneously and independently, whether to
stop or to continue. Let Q be the set of players that decide to stop. If Q 6= φ,
the play terminates, and the terminal payoff to player i is Ri

Q,s. If Q = φ, a
new node s′ in Cs is chosen according to ps. The process now repeats itself,
with s′ being the current node. If s′ ∈ S1 the new current node is the root
r. Thus, players cannot stop at leaves.

The game on the tree is essentially played in rounds. The round starts at
the root, and ends once it reaches a leaf. The collection (ps)s∈S0 of probability
distributions induces a probability distribution over the set of leaves S1, or,
equivalently, over the set of branches that connect the root to the leaves. For
each set D ⊆ S0, we denote by pD the probability that the chosen branch
passes through D. For each s ∈ S we denote by Fs the event that the chosen
branch passes through s.

Definition 6.2. Let T = (S, S1, r, (Cs, ps, Rs)s∈S0) and T ′ = (S ′, S ′1, r
′, (C ′

s, p
′
s, R

′
s)s∈S′0

)
be two games on trees. T ′ is a subgame of T if (i) S ′ ⊆ S, (ii) r′ = r, and
(iii) for every s ∈ S ′0, C ′

s = Cs, p′s = ps and R′
s = Rs.

In words, T ′ is a subgame of T if one removes all the descendents (in
the strict sense) of several nodes from the tree (S, S1, r, (Cs)s∈S0), and keep
all other parameters fixed. Observe that this notion is different than the
standard definition of a subgame in game theory.

Let T = (S, S1, r, (Cs, ps, Rs)s∈S0) be a game on a tree. For each subset
D ⊆ S0 we denote by TD the subgame of T generated by trimming T from
D downward. Thus, all strict descendents of nodes in D are removed.

For every subgame T ′ of T , and every subgame T ′′ of T ′, let pT ′′,T ′ = pS′′1 \S′1
be the probability that the chosen branch in T passes through a leaf of T ′′

strictly before it passes through a leaf of T ′.2

Consider the first round of the game. Let t be the stopping stage. If no
termination occurred in the first round t = ∞. If t < ∞ let s be the node
(of depth t) in which termination occurred, and let Q be the set of players
that stop at stage t. The r.v. ri = Ri

Q,s1{t<∞} is the payoff to player i in the
first round.

A stationary strategy of player 1 (resp. player 2) is a function x : S0 →
[0, 1] (resp. y : S0 → [0, 1]): x(s) is the probability that player 1 stops at s.
Denote by Px,y the distribution over plays induced by (x, y), and by Ex,y the
corresponding expectation operator.

2Here, S′
1 (resp. S′′

1 ) is the set of leaves of T ′ (resp. T ′′).
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For every pair of stationary strategies (x, y) we denote by π(x, y) =
Px,y(t < ∞) the probability that under (x, y) the game terminates in the
first round of the game; that is, the probability that the root is visited only
once along the play. We denote by ρi(x, y) = Ex,y[r

i], i = 1, 2, the expected
payoff of player i in a single round. Finally, we set γi(x, y) = ρi(x, y)/π(x, y).3

This is the expected payoff under (x, y). In particular,

π(x, y) · γi(x, y) = ρi(x, y). (8)

When we want to emphasize the dependency of these variables on the
game T , we will write π(x, y; T ), ρi(x, y; T ) and γi(x, y; T ).

Observe that for every pair of stationary strategies (x, y)

π(x, 0) + π(0, y) ≥ π(x, y), (9)

where 0 is the strategy that never stop; that is, 0(s) = 0 for every s.

Definition 6.3. A pair of stationary strategies (x, y) is an ε-equilibrium of
the game T if, for each pair of strategies (x′, y′), γ1(x′, y) ≤ γ1(x, y) + ε and
γ2(x, y′) ≤ γ2(x, y) + ε.

Comment: A stopping game on a finite tree T is equivalent to a recursive
absorbing game, where each round of the game T corresponds to a single stage
of the recursive absorbing game. A recursive absorbing game is a stochastic
game with a single non absorbing state, in which the payoff in non absorbing
states is 0. Flesch et al (1996) proved that every recursive absorbing game
admits an ε-equilibrium in stationary strategies. This result also follows from
the analysis of Vrieze and Thuijsman (1989). However, there is no bound on
the per-round probability of termination under this ε-equilibrium, and we
need to bound this quantity.

The main result of this section is the following.

Proposition 6.4. For every stopping game on a finite tree T , every ε > 0
sufficiently small, and every a1, a2, b1, b2 that satisfy Ri − ε ≤ ai < bi for
i ∈ {1, 2}, there exist a set D ⊆ S0 of nodes and a strategy pair (x, y) in T
such that:

3By convention, 0
0 = 0.
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1. In every subgame T ′ of TD there are no ε-equilibria in T ′ with corre-
sponding payoffs in [a1, b1]× [a2, b2].

2. Either D = φ (so that TD = T ), or the following three conditions hold:

(a) a1 − ε ≤ γ1(x, y) and a2 − ε ≤ γ2(x, y).

(b) For every pair (x′, y′) of strategies, γ1(x′, y) ≤ b1+7ε and γ2(x, y′) ≤
b2 + 7ε.

(c) π(x, y) ≥ ε2 × pD.

Observe that 2(a) and 2(b) imply that if bi − ai ≤ ε then (x, y) is a 9ε-
equilibrium in T with corresponding payoffs in [a1−ε, b1+7ε]×[a2−ε, b2+7ε].

6.2 Union of Strategies

Given n stationary strategies x1, x2, . . . , xn, we define their union x by x(s) =
1−Π1≤k≤n(1− xk(s)). The probability that the union strategy continues at
each node is the probability that all of its components continue. We denote
x = x1+̇x2+̇ . . . +̇xn. Given n pairs of stationary strategies αk = (xk, yk),
1 ≤ k ≤ n, we denote by α1+̇ . . . +̇αn the stationary strategy pair (x, y) that
is defined by x = x1+̇ . . . +̇xn, y = y1+̇ . . . +̇yn.

Consider now n copies of the game that are played simultaneously, such
that the choice of a new node is the same across the copies; that is, all copies
that have not terminated at stage t are at the same node. Nevertheless, the
lotteries made by the players concerning the decision whether to stop or not
are independent. Let αk = (xk, yk), 1 ≤ k ≤ n, be the stationary strategy
pair used in copy k and let α = α1+̇ . . . +̇αn.

We consider the first round of the game. Let tk be the stopping stage
in copy k, let sk be the node in which termination occurred, let Qk be the
set of players that stop at stage tk and let ri

k = Ri
Qk,sk

1{tk<∞}. Then πk =
π(xk, yk) = P(tk < ∞) and ρi

k = ρi(xk, yk) = E[ri
k].

Let t,r,ρ,π be the analog quantities w.r.t. α: t = min{tk, 1 ≤ k ≤ n},
ri = Ri

Q,s1{t<∞}, where s = sk for which tk is minimal, and Q =
⋃

k|sk=s Qk.

Then ρi = ρi(x, y) = E[ri] and π = π(x, y) = P(t < ∞).
Let γk = γ(xk, yk) be the expected payoff under αk = (xk, yk), and γ =

γ(x, y) be the corresponding quantity under α.
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The following lemma follows from the independence of the plays given
the branch.

Lemma 6.5. Let s ∈ S0 be a node of depth j. Then, for every 1 ≤ k, l ≤ n,
l 6= k, the event {tk ≤ j} and the random variable tk1{tk≤j} are independent
of tl given Fs.

Lemma 6.6. Let N =
∑n

k=1 1{tk<∞} be the number of copies that terminate
in the first round. Then

1.
∑n

k=1 πk − E[N1{N≥2}] ≤ π ≤
∑n

k=1 πk, and

2.
∑n

k=1 ρi
k − E[(N + 1)1{N≥2}] ≤ ρi ≤

∑n
k=1 ρi

k + E[(N + 1)1{N≥2}] for
each player i ∈ {1, 2}.

Proof. Observe that

N −N1{N≥2} = 1{N=1} ≤ 1{N≥1} ≤ N =
n∑

k=1

1{tk<∞}.

The first result follows by taking expectations.
For the second result, note that

n∑
k=1

ri
k − (N + 1)1{N≥2} ≤ ri ≤

n∑
k=1

ri
k + (N + 1)1{N≥2}. (10)

Indeed, on {N ≤ 1} (10) holds with equality, and on {N ≥ 2} the left hand
side is at most −1, whereas the right hand side is at least +1. The result
follows by taking expectations.

6.3 Heavy and Light Nodes

Definition 6.7. Let σ = (x, y) be a pair of stationary strategies and let
δ > 0. A node s ∈ S0 is δ-heavy with respect to σ if Pσ(t < ∞ | Fs) ≥ δ;
that is the probability of termination in the first round given that the chosen
branch passes through s is at least δ. The node s is δ-light w.r.t. σ if
Pσ(t < ∞ | Fs) < δ.

For a fixed δ, we denote by Hδ(σ) the set of δ-heavy nodes w.r.t. σ. Two
simple implications of this definition are the following.
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Fact 1 Hδ(α1) ⊆ Hδ(α1+̇α2).

Fact 2 Hδ1(σ) ⊆ Hδ2(σ) whenever δ1 ≥ δ2.

Lemma 6.8. Let ε > 0 be sufficiently small, and let (x, y) be a stationary
ε-equilibrium such that Ri − ε ≤ γi(x, y), i = 1, 2. Then Hε(x, y) 6= φ. In
particular, by Fact 2, Hε2(x, y) 6= φ.

Comment: The proof hinges on the assumption that R2
{1},s < R2 whenever

R1
{1},s = R1. As a counter example when this condition does not hold, take

a game in which (a) Ri
Q,s = 1 for every i, Q and s, and (b) R1 = R2 = 1.

Then any stationary strategy pair which stops with positive probability is a
0-equilibrium.

Proof. Assume w.l.o.g that π(x, 0) ≥ π(0, y). Let r be the probability that,
under (x, 0) termination occurs at a node s in which R1

{1},s < R1. Since
payoffs are discrete,

ρ1(x, 0) ≤ π(x, 0) · ((1− r)R1 + r(R1 − 1

K
)) = π(x, 0) · (R1 − r

K
). (11)

Assume to the contrary that Hε(x, y) = φ. Then, in particular, Hε(0, y) = φ.
It follows that the sequence {(0, y), (x, 0)} is ε-orthogonal. By Lemma 6.14,
(8), (11) and sinc (x, y) is an ε-equilibrium,

(π(0, y) + π(x, 0)) · γ1(x, y)

≤ ρ1(0, y) + ρ1(x, 0) + 6ε(π(0, y) + π(x, 0))

≤ π(0, y) · γ1(0, y) + π(x, 0) · (R1 − r

K
) + 6ε(π(0, y) + π(x, 0))

≤ π(0, y) · (γ1(x, y) + ε) + π(x, 0) · (R1 − r

K
) + 6ε(π(0, y) + π(x, 0)).

It follows that

π(x, 0) · γ1(x, y) ≤ π(x, 0)(R1 − r

K
) + 7ε · π(0, y) + 6ε · π(x, 0).

Since R1 − ε ≤ γ1(x, y),

π(x, 0) · (R1 − ε) ≤ π(x, 0)(R1 − r

K
) + 7ε · π(0, y) + 6ε · π(x, 0),
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which implies
π(x, 0)r ≤ 7εK · (π(0, y) + π(x, 0)). (12)

Since payoffs are discrete and bounded by 1, since R2
{1},s < R2 whenever

R1
{1},s = R1, and by (12),

ρ2(x, 0) ≤ π(x, 0)

(
(1− r)(R2 − 1

K
) + r · 1

)
= π(x, 0)

(
(R2 − 1

K
) + r(1−R2 +

1

K
)

)
(13)

≤ π(x, 0)(R2 − 1

K
+ 3r)

≤ π(x, 0) · (R2 − 1

K
) + 21εK(π(0, y) + π(x, 0)).

By Lemma 6.14, since ρ2(0, y) ≤ π(0, y) ·R2, (13), and since π(x, 0) ≥ π(0, y)

(π(0, y) + π(x, 0))γ2(x, y) ≤
≤ ρ2(0, y) + ρ2(x, 0) + 6ε(π(0, y) + π(x, 0))

≤ π(0, y) ·R2 + π(x, 0) · (R2 − 1

K
) + (6ε + 21εK) · (π(0, y) + π(x, 0))

= (π(0, y) + π(x, 0)) · (R2 + 6ε + 21εK)− π(x, 0) · 1

K

≤ (π(0, y) + π(x, 0)) · (R2 + 6ε + 21εK − 1

2K
).

(14)

Since ε is sufficiently small, and Ri − ε ≤ γi(x, y), it follows from A.4 that
γi(x, y) > 0 for i = 1 or i = 2. In particular, it follows that π(x, y) > 0, so
that by (9) π(x, 0) + π(0, y) ≥ π(x, y) > 0. It follows that, for sufficiently
small ε (e.g. ε < 1

2K(7+21K)
),

γ2(x, y) ≤ R2 + 6ε + 21εK − 1

2K
≤ R2 − ε,

a contradiction.

6.4 Orthogonal Strategies

Definition 6.9. Let δ > 0. A sequence (α1, α2, . . . , αn) of stationary strategy
pairs is δ-orthogonal if αk+1(s) = (0, 0) for every 1 ≤ k ≤ n−1 and every node
s ∈ Hδ(α1+̇ . . . +̇αk); that is αk+1 continues on δ-heavy nodes of α1+̇ . . . +̇αk.
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Lemma 6.10. Let δ > 0, let (α1, . . . , αn) be a δ-orthogonal sequence of
stationary strategy pairs, let k ∈ {1, . . . , n}, and let s ∈ S be a node of depth
j. Then

P({j ≤ tk < ∞} ∩ (∪l<k{tl < ∞}) | Fs) ≤ δ ·P(j ≤ tk < ∞ | Fs). (15)

Proof. Fix k ∈ {1, . . . , n}. We prove the lemma by induction on the nodes
of T , starting from the leaves and climbing up to the root.

Let s ∈ S1 be a leaf of T . Since s is a leaf, P(j ≤ tk < ∞) = 0 and (15)
is satisfied trivially.

Assume now that s ∈ S0. Then:

P({j ≤ tk < ∞} ∩ (∪l<k{tl < ∞}) | Fs) = P({tk = j} ∩ (∪l<k{tl < ∞}) | Fs) +∑
s′∈Cs

ps[s
′] ·P({j + 1 ≤ tk < ∞} ∩ (∪l<k{tl < ∞}) | Fs′). (16)

By the induction hypothesis, for every child s′ ∈ Cs,

P({j + 1 ≤ tk < ∞} ∩ (∪l<k{tl < ∞}) | Fs′) ≤ δ ·P(j + 1 ≤ tk < ∞ | Fs′).
(17)

By Lemma 6.5 {tk = j} and ∪l<k{tl < ∞} are independent given Fs. There-
fore

P({tk = j} ∩ (∪l<k{tl < ∞}) | Fs) = P(tk = j | Fs) ·P(∪l<k{tl < ∞} | Fs).

If s is δ-light w.r.t α1+̇ . . . +̇αk−1 then P(∪l<k{tl < ∞} | Fs) < δ while if s is
δ-heavy then P(tk = j | Fs) = 0 according to the definition of orthogonality.
In particular,

P({tk = j} ∩ (∪l<k{tl < ∞}) | Fs) ≤ δ ·P(tk = j | Fs). (18)

Eqs. (16),(17) and (18) yield

P({j ≤ tk < ∞} ∩ (∪l<k{tl < ∞}))
≤ δ ·P(tk = j | Fs) + δ ·

∑
s′∈Cs

ps[s
′] ·P(j + 1 ≤ tk < ∞ | Fs′)

= δ ·P(j ≤ tk < ∞ | Fs),

as desired.
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Applying Lemma 6.10 to the root we get:

Corollary 6.11. Let δ > 0, and let (α1, . . . , αn) be a δ-orthogonal sequence
of stationary strategy pairs. For every k ∈ {1, . . . , n},

P({tk < ∞} ∩ (∪l<k{tl < ∞})) ≤ δ ·P({tk < ∞}) = δπk.

Lemma 6.12. Let δ > 0, let (α1, . . . , αn) be a δ-orthogonal sequence of sta-
tionary strategy pairs, and let N =

∑n
k=1 1{tk<∞}. Then E[(N + 1)1{N≥2}] ≤

3δ(π1 + π2 + . . . + πn).

Proof. Observe that N + 1 ≤ 3(N − 1) on {N ≥ 2}, and (N − 1)1{N≥2} =∑n
k=1 1{tk<∞}∩(∪l<k{tl<∞}). Therefore

E[(N+1)1{N≥2}] ≤ 3E[(N−1)1{N≥2}] = 3
n∑

k=1

P({tk < ∞}∩(∪l<k{tl < ∞})).

The result follows by Corollary 6.11.

From Lemma 6.6 and Lemma 6.12 we get the following.

Corollary 6.13. Let δ > 0, and let (α1, . . . αn) be a δ-orthogonal sequence
of strategy pairs. Denote α = α1+̇ . . . +̇αn. Then for i = 1, 2

1. (1− 3δ)
∑n

k=1 πk ≤ π ≤
∑n

k=1 πk.

2.
∑n

k=1 ρi
k − 3δ

∑n
k=1 πk ≤ ρi ≤

∑n
k=1 ρi

k + 3δ
∑n

k=1 πk.

Lemma 6.14. Let δ > 0, and let (α1, . . . αn) be a δ-orthogonal sequence of
stationary strategy pairs. Denote α = α1+̇ . . . +̇αn. Then for i = 1, 2

n∑
k=1

ρi
k − 6δ

n∑
k=1

πk ≤ γi ·
n∑

k=1

πk ≤
n∑

k=1

ρi
k + 6δ

n∑
k=1

πk.

Proof. By Corollary 6.13 and (8)

n∑
k=1

ρi
k − 3δ

n∑
k=1

πk ≤ ρi = γi · π ≤

{
γi ·
∑n

k=1 πk, if γi > 0

γi(1− 3δ)
∑n

k=1 πk, if − 1 ≤ γi ≤ 0
.

In both case, the right-hand side is bounded by γi ·
∑n

k=1 πk + 3δ
∑n

k=1 πk,
so that

n∑
k=1

ρi
k − 6δ

n∑
k=1

πk ≤ γi ·
n∑

k=1

πk.

The proof of the right-hand side inequality is similar.
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From Lemma 6.14 and (8) we get:

Corollary 6.15. Let δ > 0, and let (α1, . . . αn) be a δ-orthogonal sequence
of stationary strategy pairs. Denote α = α1+̇ . . . +̇αn. Let −1 ≤ u, v ≤ 1.

1. If u ≤ γi
k for each k ∈ {1, . . . , n}, then u− 6δ ≤ γi.

2. If γi
k ≤ v for each k ∈ {1, . . . , n}, then γi ≤ v + 6δ.

6.5 Strong Orthogonality

In the present section we define a stronger notion of orthogonality and study
its properties.

Definition 6.16. Let δ > 0. A sequence (α1, α2, . . . , αn) of stationary strat-
egy pairs is δ-strongly orthogonal if, for every k ∈ {1, . . . , n − 1} and every
node s ∈ Hδ(α1+̇ . . . +̇αk), αk+1(s

′) = (0, 0) for s′ = s and for every descen-
dent s′ of s; that is αk+1 continues from s onwards.

The following lemma suggests a way to construct ε-orthogonal sequences
of strategy pairs from a single ε2-strongly orthogonal sequence.

Lemma 6.17. Let ε > 0 and let y1, y2, . . . , yn be stationary strategies of
player 2 such that the sequence ((0, y1), . . . , (0, yn)) is ε2-strongly orthogonal.
Let x̄ be any pure stationary strategy of player 1 that does not stop twice on
the same branch; that is, if x̄(s) = 1 then x̄(s′) = 0 for every descendant s′ of
s. Define strategies (x̄k)

n
k=1 of player 1 in the following way: for each s ∈ S

such that x̄(s) = 1 let x̄k(s) = 1, where k ≤ n is the greatest index for which
s /∈ Hε((0, y1)+̇ . . . +̇(0, yk−1)). Define x̄k(s) = 0 otherwise.
Let ᾱk = (x̄k, yk). Then the sequence (ᾱ1, . . . , ᾱn) is ε-orthogonal.

Proof. By the definition of (x̄k)1≤k≤n and Fact 1, we get, for every l ∈
{1, . . . , n− 1}

If x̄l(s) = 1 then s ∈ Hε((0, y1)+̇ . . . +̇(0, yl)).

If x̄l+1(s) = 1 then s /∈ Hε((0, y1)+̇ . . . +̇(0, yl)).
(19)

Let l ∈ {1, . . . , n − 1}, and let s ∈ S be ε-heavy with respect to σ̄l =
ᾱ1+̇ . . . +̇ᾱl. We prove that x̄l+1(s) = yl+1(s) = 0.

We first prove that x̄l+1(s) = 0. Since s is ε-heavy w.r.t. σ̄l = ᾱ1+̇ . . . +̇ᾱl,
Pσ̄l

(t < ∞ | Fs) ≥ ε. Assume to the contrary that x̄l+1(s) = 1. By (19)
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s is ε-light w.r.t. (0, y1)+̇ . . . +̇(0, yl), and therefore P(0,y1)+̇...+̇(0,yl)
(t < ∞ |

Fs) < ε. It follows that P(x̄1,0)+̇...+̇(x̄l,0)(t < ∞ | Fs) > 0, a contradiction to
the assumption that x̄ does not stop twice on the same branch.

We proceed to prove that yl+1(s) = 0. Assume first that there exists an
ancestor s′ of s such that x̄1(s

′) + . . . + x̄l(s
′) = 1. By (19) and Fact 1 s′ ∈

Hε((0, y1)+̇ . . . +̇(0, yl)). Since ((0, y1), . . . , (0, yn)) is ε-strongly orthogonal,
yl+1(s) = 0.

We assume now that x̄1(s
′) + . . . + x̄l(s

′) = 0 for every ancestor s′ of
s. Let D̃ be the (possibly empty) set of s’s descendants d that are ε-heavy
w.r.t. (0, y1)+̇ . . . +̇(0, yl), and let D be the set that is obtained by removing
from D̃ all nodes that have strict ancestor in D̃. By the definition of D,
P(0,y1)+̇...+̇(0,yl)

(t < ∞ | Fd) ≥ ε for every d ∈ D. Let Y = ∪d∈DFd. Since this
is a mutually disjoint union, it follows that if Y 6= φ then

P(0,y1)+̇...+̇(0,yl)
(t < ∞ | Y ) ≥ ε ≥ ε ·Pσ̄l

(t < ∞ | Y ).

By (19) and the definition of (x̄k)1≤k≤n it follows that

P(0,y1)+̇...+̇(0,yl)
(t < ∞ | Y c∩Fs) = Pσ̄l

(t < ∞ | Y c∩Fs) ≥ ε·Pσ̄l
(t < ∞ | Y c∩Fs).

Combining the last two inequalities, and observing that Y ⊆ Fs, we get

P(0,y1)+̇...+̇(0,yl)
(t < ∞ | Fs) ≥ ε ·Pσ̄l

(t < ∞ | Fs) ≥ ε2.

Thus s is ε2-heavy with respect to (0, y1)+̇ . . . +̇(0, yl) and, as the sequence
((0, y1), . . . , (0, yn)) is ε2-orthogonal, yl+1(s) = 0.

Lemma 6.18. Let ε > 0 be sufficiently small and let a1, b1, a2, b2 satisfy
ai < bi for i ∈ {1, 2}. Let (α1, . . . , αn) be an ε2-strongly orthogonal sequence
of stationary strategy pairs such that αk is an ε-equilibrium for each k =
1, . . . , n. Assume that for each k γk ∈ [a1, b1]× [a2, b2], where γk is the payoff
that corresponds to αk. Let α = α1+̇ . . . +̇αn = (x, y). Then

a) ai − ε ≤ γi(x, y).

b) For each pair (x′, y′) of stationary strategies, γ1(x′, y) ≤ b1 + 7ε and
γ2(x, y′) ≤ b2 + 7ε.

Proof. Denote αk = (xk, yk). We prove the result only for player 1.
We first prove (a). Since a1 ≤ γ1

k(xk, yk) for each 1 ≤ k ≤ n, it follows
from Corollary 6.15, and since ε is sufficiently small, that a1− ε ≤ a1−6ε2 ≤
γ1(x, y).
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We now prove (b). Let x̄ be a stationary strategy that maximizes player
1’s payoff against y: γ1(x̄, y) = maxx′γ

1(x′, y). Fixing y, the game reduces
to a Markov decision process, hence such an x̄ exists. Moreover, there exists
such a strategy x̄ that is pure (that is, x̄(s) ∈ {0, 1} for every s) and stops at
most once in every branch. Observe that since the sequence (α1, . . . , αn) is
ε2-strongly orthogonal, so is the sequence ((0, y1), . . . , (0, yn)). Let x̄1, . . . , x̄k

be the strategies defined in Lemma 6.17 w.r.t. x̄ and y1, . . . , yn. Then x̄ =
x̄1+̇ . . . +̇x̄n, and (ᾱ1, . . . , ᾱn) is ε-orthogonal, where ᾱk = (x̄k, yk).

For each k, (xk, yk) is an ε-equilibrium, and therefore γ1(x̄k, yk) ≤ b1 + ε.
By Corollary 6.15 and the definition of x̄, for every x′ one has γ1(x′, y) ≤
γ1(x̄, y) ≤ b1 + ε + 6ε = b1 + 7ε.

6.6 Proof of Proposition 6.4

We now prove Proposition 6.4. Consider the following recursive procedure:

1. Initialization: Start with the game T̃ = T , the strategy pair σ0 = (0, 0)
(always continue) and k = 0.

2. If there exists a stationary ε-equilibrium in a subgame T ′ of T̃ with
corresponding payoff in [a1, b1]× [a2, b2]:

(a) Set k = k + 1 and let αk = (xk, yk) be any such ε-equilibrium.
Extend xk and yk to strategies on T by setting xk(s) = yk(s) = 0
for every node s ∈ S0 \ T ′.

(b) Set σk = σk−1+̇αk.

(c) Let Hk = Hε2(σk) be the set of ε2-heavy nodes of σk (by Fact 1
Hk−1 ⊆ Hk.) Set T̃ = THk

.

(d) Start stage 2 all over.

3. If, for all subgames T ′ of T̃ , there are no ε-equilibria in T ′ with cor-
responding payoff in [a1, b1] × [a2, b2], set n = k, x = x1+̇ . . . +̇xn,
y = y1+̇ . . . +̇yn, and D = Hn.

The idea is to keep adding strongly orthogonal ε-equilibria as long as we
can. The procedure continues until there is no ε-equilibrium in any subgame
of T̃ with payoffs in [a1, b1]×[a2, b2]. The termination of the procedure follows
from Lemma 6.8.
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The first part of Proposition 6.4 is an immediate consequence of the
termination of the procedure. We now prove that σn = (x, y) satisfies the
requirements of the second part. Since D = Hn is the set of ε2-heavy nodes of
(x, y), claim 2c in Proposition 6.4 follows. For every 1 ≤ k ≤ n, γi(xk, yk) ≥
Ri−ε, so that (xk, yk) is an ε-equilibrium in T . Thus ((x1, y1), . . . , (xn, yn)) is
an ε2-strongly orthogonal sequence of stationary ε-equilibria. The remaining
claims of Proposition 6.4 follow from Lemma 6.18.

6.7 Equilibria with Low Payoff

In Proposition 6.4 we consider ε-equilibria with corresponding payoffs (u1, u2)
such that ui ≥ Ri− ε. We now deal with the case in which one of the players
(w.l.o.g. player 1) gets low payoff.

Lemma 6.19. Let ε > 0, and let (x, y) be a stationary ε
2
-equilibrium in T

such that γ1(x, y) ≤ R1−ε. Then π(0, y) ≥ ε
4
·r1, where r1 = p(∪{Fs, R

1
{1},s =

R1}) is the probability that, if both players never stop, the game visits a node
s with R1

{1},s = R1 in the first round.

Proof. Consider the following strategy z of player 1: zs =

{
1, if R1

{1},s = R1

0, otherwise
.

By the definition of z, and since payoffs are bounded by 1,

ρ1(z, y) = Ez,y[R
1
Q,s1{t<∞}]

= Ez,y[R
1
Q,s1{t<∞,Q={1}}] + Ez,y[R

1
Q,s1{t<∞,2∈Q}]

= R1 ·Pz,y(t < ∞, Q = {1}) + Ez,y[R
1
Q,s1{t<∞,2∈Q}]

≥ R1 ·Pz,y(t < ∞, Q = {1})−Pz,y(t < ∞, 2 ∈ Q).

(20)

Since (x, y) is an ε
2
-equilibrium, it follows that

γ1(z, y) ≤ γ1(x, y) +
ε

2
≤ R1 − ε

2
. (21)

Since π(z, y) = Pz,y(t < ∞, Q = {1}) + Pz,y(t < ∞, 2 ∈ Q), and by (21), (8)
and (20) we get:

(Pz,y(t < ∞, Q = {1}) + Pz,y(t < ∞, 2 ∈ Q)) ·R1 − π(z, y) · ε

2
=

= π(z, y) · (R1 − ε

2
) ≥ π(z, y) · γ1(z, y) = ρ1(z, y)

≥ R1 ·Pz,y(t < ∞, Q = {1})−Pz,y(t < ∞, 2 ∈ Q).
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In particular,

ε

2
π(z, y) ≤ (1 + R1) ·Pz,y(t < ∞, 2 ∈ Q) ≤ 2 ·Pz,y(t < ∞, 2 ∈ Q).

As π(z, 0) ≤ π(z, y) and Pz,y(t < ∞, 2 ∈ Q) ≤ π(0, y) one has

π(0, y) ≥ Pz,y(t < ∞, 2 ∈ Q) ≥ ε

4
π(z, y) ≥ ε

4
π(z, 0) =

ε

4
· r1,

as desired.

7 Constructing an ε-equilibrium

In the present section we use all the tools we have developed so far to con-
struct an ε-equilibrium. In section 7.1 we define a procedure that attaches
for every finite tree T a color. In section 7.2 we explain the main ideas of
the construction. We then proceed with the formal proof.

We fix throughout a stopping game that satisfies conditions A.1-A.6 in
Proposition 5.6. In particular, the constants R1 and R2 are fixed. We also
fix ε > 0 sufficiently small.

7.1 Coloring a Finite Tree

Definition 7.1. Let a1 < b1 and a2 < b2. A rectangle [a1, b1]× [a2, b2] is bad
if R1 − ε ≤ a1 and R2 − ε ≤ a2. It is good if b1 ≤ R1 − ε or b2 ≤ R2 − ε.

Let M be a finite covering of [−1, 1]2 with (not necessarily disjoint) rect-
angles [a1, b1] × [a2, b2] such that b1 − a1 < ε and b2 − a2 < ε, all of which
are either good or bad. Thus, for every u ∈ [−1, 1]2 there is a rectangle
m ∈ M such that u ∈ m. We denote by H = {h1, h2, . . . , hJ} the set of bad
rectangles in M , and by G = {g1, g2, . . . , gV } the set of good rectangles in
M .

Set C = G ∪ {ξ}. This set is composed of the set G of good rectangles
together with another symbol ξ. For every game on a tree T consider the
following procedure which attaches an element c ∈ C to T :

• Set T (0) = T .
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• For 1 ≤ j ≤ J apply Proposition 6.4 to T (j−1) and hj = [aj,1, bj,1] ×
[aj,2, bj,2], to obtain a subgame T (j) of T (j−1) and strategies (x

(j)
T , y

(j)
T )

in T such that4

1. No strict subgame of T (j) has an ε-equilibrium with corresponding
payoffs in hj.

2. Either T (j) = T (j−1) or the following three conditions hold.

(a) aj,i − ε ≤ γi(x
(j)
T , y

(j)
T ) for i ∈ {1, 2}.

(b) For every pair (x′, y′), γ1(x′, y
(j)
T ) ≤ bj,1 +7ε and γ2(x

(j)
T , y′) ≤

bj,2 + 7ε.

(c) π(x
(j)
T , y

(j)
T ) ≥ ε2 · pT (j),T (j−1) , where pT (j),T (j−1) is defined in

section 6.1.

• If T (J) is trivial (that is, the only node is the root,) set c(T ) = ξ. Other-
wise choose a stationary ε

2
-equilibrium (x(0), y(0)) of T (J). By construc-

tion, the corresponding ε
2
-equilibrium payoff lies in a good rectangle

g ∈ G. Set c(T ) = g.

7.2 The Main Idea of the Construction

Before formally constructing a Kε-equilibrium strategy pair for some fixed
K > 0, we explain the basic idea of the construction.

Assume for simplicity that all the σ-algebras Fn are finite. In this case,
every n ≥ 0, every ω ∈ Ω and every stopping time τ such that τ(ω) > n
define naturally a game Γn,τ (ω) on a tree; the root is the atom F of Fn that
contains ω, the nodes are all atoms F ′ ∈ ∪m≥nFm that satisfy5 (i) F ′ ⊆ F ,
and (ii) if F ′ ∈ Fm then τ ≥ m on F ′. All atoms F ′ where there is an
equality in (ii) are leaves.

In section 7.1 we attached to each such triplet an element from a finite
set C - a color. By Theorem 4.3, there is a sequence of bounded stopping
times 0 ≤ τ0 ≤ τ1 ≤ · · · such that p(cτ0,τ1 = cτj ,τj+1

∀j > 0) ≥ 1− ε.
Fix for a moment l ≥ 0. In section 7.1 we constructed for each one of

the finitely many trees T = Γτl(ω),τl+1
(ω) and each j = 0, . . . , J a subtree

4(x(j)
T , y

(j)
T ) as given by Proposition 6.4 are strategies in T (j−1). We extend them to

strategies in T by letting them continue from the leaves of T (j−1) downward.
5In this union, a set F which is an atom of several Fm’s is counted several times. Thus,

the union is actually a union of pairs {(m,F ), F is an atom of Fm}.
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T (j) and a pair of stationary strategies (x
(j)
l , y

(j)
l ). The leaves of the subtrees

define naturally a stopping time τ
(j)
l . Thus, we obtain a sequence of stopping

times τl ≤ τ
(J)
l ≤ τ

(J−1)
l ≤ . . . ≤ τ

(1)
l ≤ τ

(0)
l = τl+1. Let (x

(j)
l , y

(j)
l )J

j=0 be the
collection of strategy pairs that was generated during the coloring procedure.

For 1 ≤ j ≤ J , let Ij = {τ (j)
l < τ

(j−1)
l i.o.}. Set G = (∪jIj)

c. Then, on G,

τ
(J)
l < τl+1 only finitely many times. In particular, there is L ≥ 0 sufficiently

large such that p
(
τ

(J)
l < τl+1 for some l ≥ L | G

)
< ε. Assume w.l.o.g. that

L = 0. Set Gv = G ∩ {τ (J)
l = τl+1 ∀l} ∩ {cτl,τl+1

= gv ∀l ≥ 0}, for every
v = 1, . . . , V .

Modulo punishment strategies, on Ij, the Kε-equilibrium strategy pair

coincides with the concatenation of the strategy pairs (x
(j)
l , y

(j)
l ). It yields

payoff in the rectangle hj. The condition {τ (j)
l < τ

(j−1)
l i.o.} ensures that

under the concatenation the game will eventually terminate with probability
1. On Gv, the Kε-equilibrium strategy pair coincides with the concatenation
of the strategy pairs (x

(0)
l , y

(0)
l ).

When the filtration is general, one needs to approximate the Fn’s by finite
sub-σ-algebras. This fact introduces some technical difficulties, but do not
alter the general idea.

Adding a threat of punishment might be necessary as the following ex-
ample shows.

Example 7.2. Consider a game with deterministic payoffs: R{1},n = (−1, 2),
R{2},n = (−2, 1), and R{1,2},n = (0,−3). We first argue that all ε-equilibrium
payoffs are close to (−1, 2).

Given a strategy x of player 1, player 2 can always wait until the prob-
ability of termination under x is exhausted, and then stop. Therefore, in
any ε-equilibrium, the probability of termination is at least 1 − ε, and the
corresponding payoff is close to the convex hull of (−1, 2) and (−2, 1). Since
player 1 can always guarantee −1 by stopping at the first stage, the claim
follows.

However, in every ε-equilibrium (x, y), we must have P0,y(θ < ∞) ≥ 1/2,
otherwise player 1 receives more than −1 by never stopping.

Thus, an ε-equilibrium will have the following structure, for some integer
N . Player 1 stops with probability at least 1 − ε before stage N , and with
probability at most ε after that stage; player 2 stops with probability at
most ε before stage N , and with probability at least 1/2 after that stage.
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The strategy of player 2 serves as a threat of punishment: if player 1 does
not stop before stage N , he will be punished in subsequent stages.

7.3 Notations

Denote δn = ε2/2n+2 for each n ≥ 0. Set ∆n =
∑

k≥n δk = ε2/2n+1, so that∑
n≥0 ∆n = ε2.

For every i ≥ 0 and every n ∈ N we choose once and for all a partition Bn
i

of the n− 1-dimensional simplex ∆(n) = {x ∈ Rn |
∑n

j=1 xj = 1, xj ≥ 0 ∀j}
such that the diameter of each element in Bn

i is less than δi in the norm ‖·‖1.
We furthermore choose once and for all for each B ∈ Bn

i an element qB ∈ B.

Definition 7.3. Let F = (Fn,Fn+1, . . . ,FM) be a sequence of σ-algebras.
A F-strategy x for player 1 is a collection x = (xi)

M
i=n, where for each i, xi

is a Fi-measurable [0, 1]-valued r.v. F -strategies y of player 2 are defined
analogously.

Given a pair (x, y) of F -strategies and a F -adapted stopping time τ > n,
we denote by π(x, y;F , n, τ) the conditional probability under (x, y) that
the game that start at stage n ends before τ , and by ρ(x, y;F , n, τ) the

corresponding expected payoff. We define γ(x, y;F , n, τ) = ρ(x,y;F ,n,τ)
π(x,y;F ,n,τ)

. These
are Fn-measurable r.v.s.

In the sequel, the sequence (Fn,Fn+1, . . . ,FM) in Definition 7.3 will either
coincide with the filtration of the game, or be a sequence of finite sub-σ-
algebras that, in some sense, approximate the filtration.

7.4 Close Games

Let T be a stopping game on a finite tree with payoffs bounded by 1. Re-
call that S0 is the set of nodes which are not leaves, and (ps)s∈S0 are the
probability distributions over children.

Let T̃ be a game that coincides with T , except for the probability distri-
butions over children (p̃s)s∈S0 which satisfy

‖ps − p̃s‖1 ≤ ηdepth(s),

where (ηj)j≥0 is a sequence of positive reals. Observe that the set of strategies

of the two players in T and in T̃ coincide.
Under these notations we have the following estimates.
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Lemma 7.4. For every pair of stationary strategies (x, y) in Γ(T ) (or,

equivalently, in Γ(T̃ )) (a) |π(x, y; T ) − π(x, y; T̃ )| ≤
∑

j≥0 ηj, and (b) for

i = 1, 2, |ρi(x, y; T ) − ρi(x, y; T̃ )| ≤
∑

j≥0 ηj, (c) for every subtree T ′ of T

|pT ′,T − pT̃ ′,T̃ | ≤
∑

j≥0 ηj, where T̃ ′ is the subtree in T̃ that corresponds to

T ′, and (d) |r1(T )− r1(T̃ )| <
∑

j≥0 ηj where r1(T ) is the quantity defined in
Lemma 6.19.

Corollary 7.5. Set η∗ =
∑

j≥0 ηj, and let ε > 0. Let x be a strategy for

player 1. Then for every strategy z of player 2 such that π(x, z; T̃ ) > η∗/ε

we have γ2(x, z; T̃ ) ≤ γ2(x, z; T ) + 2ε.

Proof. By Lemma 7.4(a,b)

γ2(x, z; T̃ ) =
ρ2(x, z; T̃ )

π(x, z; T̃ )
≤ ρ2(x, z; T ) + η∗

π(x, z; T̃ )
=

π(x, z; T )γ2(x, z; T ) + η∗

π(x, z; T̃ )

≤ π(x, z; T̃ )γ2(x, z; T ) + 2η∗

π(x, z; T̃ )
≤ γ2(x, z; T ) + 2ε. (22)

7.5 From Games on Trees to Stopping Games

In this section we provide several constructions that relate a stopping game
to games on trees.

Let G = (Gn)n≥0 be a sequence of finite σ-algebras of A such that for
every n ≥ 0 (i) Gn ⊆ Fn, and (ii) Rn is Gn-measurable. Let τ be a G-adapted
stopping time. Assume that moreover for every n ≥ 0 and every atom F ∈ Gn

we are given a probability distribution qF over the atoms of Gn+1 which are
subsets of F . One can define naturally for every ω ∈ Ω and every n < τ(ω)
a game on a tree T (n, τ, ω) as follows.

• The root is the atom F of Gn that contains ω.

• The nodes are all atoms F ′ ∈ ∪m≥nGm such that (a) F ′ ⊆ F , and (b)
if F ′ ∈ Gm, then τ ≥ m on F ′.

• The leaves are all atoms F ′ ∈ ∪m≥nGm where there is equality in (b).
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• Payoff is given by (Rm)n≤m≤τ (recall that Rn is Gn-measurable for every
n).

• Transition from any node F ′ is given by qF ′ .

Every G-strategy x induces naturally a strategy in T (n, τ, ω): take into
account the behavior of x only at nodes which are not leaves.

Let σ < τ be two bounded G-adapted stopping times. Then Gσ is a
finite σ-algebra, and the set {T (σ(ω), τ, ω), ω ∈ Ω} is finite. Assume that
for every T in this set we are given a subgame T ′. That is, we are given a
Gσ-measurable function T ′ such that for every ω ∈ Ω, T ′(ω) is a subgame
of T (σ(ω), τ, ω). The leaves of all the subgames define naturally a stopping
time ν in the following way.

ν(ω) = m ⇔ The leaf of T ′(ω) that contains ω is an atom of Gm.

Let 0 = τ0 < τ1 < · · · be an increasing sequence of bounded stopping
times. Assume that for every l ≥ 0 and every ω ∈ Ω we are given a strategy
x(l, ω) in the game on a tree T (τl(ω), τl+1, ω), and that the function ω 7→
x(l, ω) is Gτl

-measurable.
One can define naturally a strategy x in the stopping game Γ by concate-

nating the strategies (x(l, ·))l≥0.
Conversely, every G-measurable strategy x in the stopping game Γ induces

a strategy x(l, ω) in the game T (τl(ω), τl+1, ω), for every l ≥ 0 and every
ω ∈ Ω.

7.6 Representative Approximations

Throughout this subsection we fix two integers 0 ≤ n < M , and an increasing
sequence G = (Gn, . . . ,GM) of finite partitions of Ω, such that for each i =
n, . . . , M , (i) Gi ⊆ Fi, and (ii) Ri is Gi-measurable.

Definition 7.6. We say that G δ-approximates F on n, . . . , M if for every
i = n, . . . , M − 1,

∑
G′∈Gi+1

|P(G′ | Fi)−P(G′ | Gi)| ≤ δi a.e.

Alternatively, G δ-approximates F , if for every i = n, . . . , M−1 and every
Gi+1-measurable function h such that |h| ≤ 1, |E(h|Fi)− E(h|Gi)| ≤ δi.

Two simple yet important properties of δ-approximating games are the
following.
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Lemma 7.7. Assume that the sequence G δ-approximates F , and let τ be a
G adapted stopping time. Let (x, y) be a pair of G-strategies. Then

1. |π(x, y;G, n, τ)− π(x, y;F , n, τ)| ≤
∑

j≥n δj = ∆n a.e.

2. |ρi(x, y;G, n, τ)− ρi(x, y;F , n, τ)| ≤
∑

j≥n δj = ∆n a.e., i = 1, 2.

The following Lemma states that if G δ-approximates F , and if the op-
ponent plays a G-strategy, then a player does not lose much by considering
only G-strategies.

Lemma 7.8. Assume that the sequence G δ-approximates F , and let τ > n
be a G-adapted stopping time. Let x be a G-strategy for player 1, and set
γ = esssup{γ2(x, y;G, n, τ), y is a G-strategy}. Then, for every F-strategy y,

ρ2(x, y;F , n, τ) ≤ γ · π(x, y;F , n, τ) + ∆n a.e.

Proof. Let α(G) = esssup{ρ2(x, y;G, n, τ)+γ·(1−π(x, y;G, n, τ)), y is a G-strategy}.
α(G) is the best possible payoff for player 2 in the game that starts at stage
n and, if no player stopped before stage τ , terminates with payoff γ. From
the definition of γ it follows that α(G) ≤ γ. Plainly α(G) = α(n,G), where
(α(i,G))M

i=n are given by

α(i,G) =

{
γ i ≥ τ
max{E(α(i + 1,G)|Gi), xi ·R2

i,{1,2} + (1− xi) ·R2
i,{2}} i < τ

.

(23)
Similarly, let α(F) = esssup{ρ2(x, y;F , n, τ)+γ·(1−π(x, y;F , n, τ)), y is a F -strategy}.

Then α(F) = α(n,F), where (α(i,F))M
i=n are given by

α(i,F) =

{
γ i ≥ τ
max{E(α(i + 1,F)|Fi), xi ·R2

i,{1,2} + (1− xi) ·R2
i,{2}} i < τ

.

(24)
Since xi and R2

i are Gi-measurable, it follows from (23), (24) and the
remark that follows Definition 7.6, that α(i,F) ≤ α(i,G) +

∑M
j=i δj for i =

n, . . . , M . In particular α(F) = α(n,F) ≤ α(n,G)+∆n ≤ γ +∆n. It follows
that for every F -strategy y, ρ2(x, y;F , n, τ)+γ ·(1−π(x, y;F , n, τ)) ≤ γ+∆n,
which implies ρ2(x, y;F , n, τ) ≤ γ · π(x, y;F , n, τ) + ∆n.
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7.7 Constructing Approximating Games

We now define a NT-function Γ.6 The range of the r.v. Γn,τ is games on
trees. In the next subsection we show that our construction is consistent.

Fix a non-negative integer n ≥ 0 and a bounded stopping time τ .
Define a r.v. Kτ

n = min{k ≥ n,P(τ ≤ k | Fn) = 1}. Since τ is bounded,
Kτ

n is bounded as well, and by definition it is Fn-measurable.

For every k ≥ n, every m ∈ {n, n + 1, . . . , k}, and every R̂ = (R̂i)
m
i=n ∈

Rm−n+1, define

Aτ
k,n(m, R̂) = {Kτ

n = k, τ = m, Ri = R̂i ∀i ∈ {n, n + 1, . . . ,m}} ∈ Fm.

Set
Aτ

k,n,m = {Aτ
k,n(m, R̂), R̂ ∈ Rm−n+1}.

Define
T τ

k,m = {Kτ
n = k, τ < m}.

Observe that Aτ
k,n,m ∪ {T τ

k,m} is a partition of {Kτ
n = k, τ ≤ m}.

We fix k ≥ n, and restrict ourselves to the Fn-measurable set {Kτ
n = k}.

We now construct an increasing sequence of finite partitions F̂ τ
k,n, . . . , F̂ τ

k,k

of the set {Kτ
n = k}, and for every m ∈ {n, n + 1, . . . , k − 1} and every F ∈

F̂k,m a probability distribution qF ∈ ∆(|F̂ τ
k,m+1|), that satisfy the following

properties for every m ∈ {n, n + 1, . . . , k − 1}.

1. Rm is F̂ τ
k,m-measurable.

2. For every F ∈ F̂k,m, ‖P(· | F̂ τ
k,m)− qF‖1 < δm on F .

Set
F̂ τ

k,k = Aτ
k,n,k ∪ {T τ

k,k}.

Assume we have already defined F̂ τ
k,m+1, . . . , F̂ τ

k,k. Recall that B = B|F̂
τ
k,m+1|

m

is a partition of the set ∆(|F̂ τ
k,m+1|) into sets with diameter smaller than δm.

Define a function gτ
k,m : Ω → ∆(|F̂ τ

k,m+1|) by

gτ
k,m[A] = P(A | Fm), ∀A ∈ F̂ τ

k,m+1.

6Recall that NT-functions are defined in Definition 4.1.
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Let Gτ
k,m be the inverse image of B under gτ

k,m. For each G ∈ Gτ
k,m assign the

element qB, where B ∈ B is the unique set that satisfies gτ
k,m(G) ⊆ B.

Finally, define
F̂ τ

k,m = Gτ
k,m ∪ Aτ

k,n,m ∪ {T τ
k,m}.

Though the partition F̂ τ
k,m depends on τ , the number of elements in this

partition is independent of τ , and for every two bounded stopping times
τ1, τ2 > n there is a natural 1-1 mapping from F̂ τ1

k,m to F̂ τ2
k,m:

Aτ1
k,n(m, R̂) 7→ Aτ2

k,n(m, R̂),

T τ1
k,m 7→ T τ2

k,m, and

(gτ1
k,m)−1(B) 7→ (gτ2

k,m)−1(B), ∀B ∈ B|B̂
τ
k,m+1|

m .

As the sequence (F̂ τ
k,m)m is not increasing, we replace F̂ τ

k,m with F̂ τ
k,n

∨
· · ·
∨
F̂ τ

k,m.

The sequence F̂ τ
k,n, . . . , F̂ τ

k,k, the collection (qF )F∈F̂τ
k,m,n≤m<k, and every

ω ∈ Ω, define naturally a game played on a finite tree, as explained in
section 7.5. We define Γn,τ (ω) to be this game.

7.8 The Construction is F-consistent

We here prove that Γ is F -consistent.
Fix n ≥ 0, a Fn-measurable set F , and two bounded stopping times τ1, τ2

that satisfy (a) τ1, τ2 > n on F , and (b) τ1 = τ2 on F .
Since F is Fn-measurable, and since Kτ

n is Fn-measurable for any bounded
stopping time τ , we have the following.

Lemma 7.9. Kτ1
n = Kτ2

n on F .

For the rest of the section we fix k ≥ n, and we restrict ourselves to the
set Fk = F ∩ {Kτ1

n = k} = F ∩ {Kτ2
n = k}.

The following lemma holds since τ1 = τ2 on Fk.

Lemma 7.10. For every m ∈ {n + 1, . . . , k} the following three assertions
hold.

a) Aτ1
k,n(m, R̂) ∩ Fk = Aτ2

k,n(m, R̂) ∩ Fk, for every R̂ ∈ Rm−n+1.
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b) T τ1
k,m ∩ Fk = T τ2

k,m ∩ Fk.

c) (gτ1
k,m)−1(B) ∩ Fk = (gτ2

k,m)−1(B) ∩ Fk for every B ∈ BF̂
τ
k,m

n .

The claim follows by the following Lemma.

Lemma 7.11. For every m ∈ {n + 1, . . . , k} the following three assertions
hold.

a) P(Aτ1
k,n(m, R̂) | Fm−1) = P(Aτ2

k,n(m, R̂) | Fm−1) on Fk, for every R̂ ∈
Rm−n+1.

b) P(T τ1
k,m | Fm−1) = P(T τ2

k,m | Fm−1) on Fk.

c) P
(
(gτ1

k,m)−1(B) | Fm−1

)
= P

(
(gτ2

k,m)−1(B) | Fm−1

)
for every B ∈ B|F̂

τ
k,m|

n .

Proof. The proof follows by Lemma 7.10 and by the following simple fact. If
G is a sub-σ-field of F , A ∈ F and B ∈ G, then P(A | G) = P(A ∩ B | G)
a.e. on B.

7.9 Applying Theorem 4.3

For every finite tree T apply the procedure presented in section 7.1. This
procedure yields (i) a sequence (T (j))k

j=1 of subtrees of T , (ii) a sequence of

stationary strategy pairs (x
(j)
T , y

(j)
T )J

j=0, (iii) an element c(T ) ∈ C, and (iv) if

c(T ) 6= ξ, a stationary ε
2
-equilibrium (x

(0)
T , y

(0)
T ) in T (J).

We set χ1(T ) = 1 if π(x
(0)
T , 0; T (J)) ≥ ∆n

ε
+ ∆n, and 0 otherwise. We set

χ2(T ) = 1 if π(0, y
(0)
T ; T (J)) ≥ ∆n

ε
+ ∆n, and 0 otherwise.

Set C∗ = C × {0, 1}2. We now define a C∗-valued F -consistent NT-
function c.

For every n ≥ 0 and every bounded F -adapted stopping time τ set

c∗n,τ = (c(Γn,τ ), χ
1(Γn,τ ), χ

2(Γn,τ )).

Since the r.v. Γn,τ is Fn-measurable and has finite range, c∗ is Fn-measurable.
Since Γ is F -consistent, so is c∗.

By Theorem 4.3 there is an increasing sequence of bounded stopping times
0 ≤ τ0 < τ1 ≤ · · · such that

p(c∗τ0,τ1
= c∗τl,τl+1

∀l ≥ 0) ≥ 1− ε. (25)
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7.10 The Relation Between the Finite Games and the
Original Game

To simplify computations, it is convenient to assume that the players continue
to play even if the game is stopped. That is, at stage θ + 1 the players keep
on playing, as if no player stopped at stage θ. The payoff, however, does not
depend on the play after stage θ. We denote by θl the first stage bigger or
equal to τl in which at least one player stops. We denote by Ql the subset of
players that stop at stage θl.

For every fixed l ≥ 0 the range of Γτl,τl+1
is a finite set {T1, . . . , TU}. For

each u = 1, . . . , U , denote by T
(j)
u the j’th subgame of Tu generated in the

coloring procedure for T = Tu presented in section 7.1.
For 1 ≤ j ≤ J , the leaves of (T

(j)
u )U

u=1 define, as explained in section

7.5, a stopping time τ
(j)
l , τl ≤ τ

(j)
l ≤ τl+1. Thus, one obtains a sequence of

increasing stopping times τl ≤ τ
(J)
l ≤ τ

(J−1)
l ≤ · · · ≤ τ

(0)
l = τl+1.

Let F̂τl
be the partition that contains for every ω ∈ Ω the atom of

F̂ τl+1

K
τl+1
τl(ω)

(ω),τl(ω)
that contains ω. Observe that F̂τl

is a finite partition of Ω,

but the sequence (F̂τl
)l≥0 is not increasing. Thus, Γτl,τl+1

is F̂τl
-measurable.

As explained in section 7.5, each pair of strategies (x, y) in Γ induce
a pair of strategies (x(Γτl,τl+1

(ω)), y(Γτl,τl+1
(ω))) in the game Γτl,τl+1

(ω), for
every l ≥ 0 and every ω ∈ Ω.

For every pair (x, y) of strategies denote by π(x, y; Γτl,τl+1
) the probability

of termination in the first round of the game Γτl,τl+1
under (x(Γ(τl, τl+1)(ω)), y(Γ(τl, τl+1)(ω))),

and by ρ(x, y; Γτl,τl+1
) the expected payoff in the first round. The r.v.s

π(x, y; Γτl,τl+1
) and ρ(x, y; Γτl,τl+1

) are F̂τl
-measurable.

By Lemma 7.7 one has almost everywhere

|Px,y(θl < τl+1 | F̂τl
)−Px,y(θl < τl+1 | Fτl

)| < ∆τl
, and (26)

|Ex,y(R
i
Ql,θl

1{θl<τl+1} | F̂τl
)− Ex,y(R

i
Ql,θl

1{θl<τl+1} | Fτl
)| < ∆τl

, for i = 1, 2,

whereas by Lemma 7.4

|Px,y(θl < τl+1 | F̂τl
)− π(x, y; Γτl,τl+1

)| <∆τl
, and

|Ex,y(R
i
Ql,θl

1{θl<τl+1} | F̂τl
)− ρi(x, y; Γτl,τl+1

)| <∆τl
, for i = 1, 2.

(27)
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By (26) and (27) one has almost everywhere

|π(x, y; Γτl,τl+1
)−Px,y(θl < τl+1 | Fτl

)| <2∆τl
, and (28)

|ρi(x, y; Γτl,τl+1
)− Ex,y(R

i
Ql,θl

1{θl<τl+1} | Fτl
)| <2∆τl

for i = 1, 2. (29)

For 1 ≤ j ≤ J , let Ij = {τ (j)
l < τ

(j−1)
l i.o.}. Set G = (∪jIj)

c, and, for
1 ≤ v ≤ V , Gv = G ∩ {gv = cτ0,τ1 = cτ1,τ2 = . . .}. Note that {ξ = cτ0,τ1 =

cτ1,τ2 = . . .} = ∩l≥0{τl = τ
(k)
l } ⊆ ∩l≥0{τ (k)

l < τl+1} ⊆ I1 ∪ . . . ∪ Ik. By (25)
p(
⋃

j Ij ∪
⋃

v Gv) > 1 − ε. Let (Īj)1≤j≤J , (Ḡv)1≤v≤V ∈
⋃

n≥0Fn be mutually
disjoint sets such that:

p

(
V⋃

v=1

Ḡv ∪
J⋃

j=1

Īj

)
> 1− 2ε, (30)

p(Ij | Īj) > 1− ε, 1 ≤ j ≤ J, and (31)

p
(
Gv | Ḡv

)
> 1− ε, 1 ≤ v ≤ V. (32)

We assume also w.l.o.g that Ḡv, Īj ∈ Fτ0 for v = 1, . . . , V and j = 1, . . . , J ,
and that

p
(
∩l≥0{τ (J)

l = τl+1} | Gv ∩ Ḡv

)
> 1− ε; (33)

if necessary, start with τL instead of τ0 for a sufficiently large L ∈ N.
By Lemma 5.5 it is sufficient to prove that the games ΓĪj ,τ0 (the game

restricted to Īj and starting from τ0) and ΓḠv ,τ0 admit ε-equilibria. We there-
fore assume w.l.o.g that τ0 = 0 and deal separately with the games restricted
to Īj and Ḡv.

7.11 The Game Restricted to Īj

We here consider the game restricted to Īj, for some j = 1, . . . , J . De-
note hj = [a1, b1] × [a2, b2]. Let (x, y) be the concatenation of the strategies

(x
(j)
Γτl,τl+1

, y
(j)
Γτl,τl+1

).

We first prove that
Px,y(θ < ∞ | Ij) = 1. (34)

Indeed, by (28), the construction of (τ
(j)
l )l≥0, Proposition 6.4(2c), and
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Lemma 7.4(c), for every l ≥ 0,

Px,y(θl < τl+1 | Fτl
) ≥ π(x, y; Γτl,τl+1

)− 2∆τl

≥ ε2 · p(τ
(j)
l < τ

(j−1)
l | F̂τl

)− 3∆τl

≥ ε2 · p(τ
(j)
l < τ

(j−1)
l | Fτl

)− 4∆τl
.

Since p
(
τ

(j)
l < τ

(j−1)
l i.o. | Ij

)
= 1, whereas

∑
l≥0 ∆l = ε2, it follows that

Px,y(θ < ∞ | Ij) = 1, proving (34).
Next we prove that for every L ≥ 0

Ex,y[R
1
Q,θ1{θ<τL}] ≥ (a1 − ε)Px,y(θ < τL)− ε. (35)

Indeed, by (29), Proposition 6.4(2a), and (28)

Ex,y[R
1
Ql,θl

1{θl<τl+1} | Fτl
] ≥ ρ1(x, y; Γτl,τl+1

)− 2∆τl

≥ (a1 − ε) · π(x, y; Γτl,τl+1
)− 2∆τl

≥ (a1 − ε) ·Px,y(θl < τl+1 | Fτl
)− 4∆τl

.

(36)

Since {τl ≤ θ} ∈ Fτl
it follows from (36) that

Ex,y[R
1
Ql,θl

1{τl≤θ<τl+1}] ≥ (a1 − ε) ·Px,y(τl ≤ θ < τl+1)− 4∆τl
. (37)

One obtains (35) by summing (37) over 0 ≤ l ≤ L. In particular, it follows
from (35), (34) and (31) that γ1(x, y) ≥ a1 − 3ε.

We now prove that for every strategy x′ of player 1 and every L ≥ 0

Ex′,y[R
1
Q,θ1{θ<τL}] ≤ (b1 + 9ε)Px′,y(θ < τL) + 2ε. (38)

Indeed, let 0 ≤ l < L. If P0,y(θl < τl+1 | F̂τl
) >

∆τl

ε
then by Corollary 7.5

and Proposition 6.4(2b), for every F̂ -strategy x′,

γ1(x′, y; F̂ , τl, τl+1) ≤ γ1(x′, y; Γτl,τl+1
) + 2ε ≤ b1 + 9ε. (39)

By Lemma 7.8 it follows that in this case, for every F -strategy x′,

Ex′,y(R
1
Ql,θl

1{θl<τl+1} | Fτl
) ≤ (b1 + 9ε)Px′,y(θl < τl+1 | Fτl

) + ∆τl
. (40)

If, on the other hand, P0,y(θl < τl+1 | F̂τl
) <

∆τl

ε
, then one has

Ex′,y(R
1
Ql,θl

1{θl<τl+1} | Fτl
) ≤ R1Px′,y(θl < τl+1 | Fτl

) + 2
∆τl

ε

≤ (b1 + ε)Px′,y(θl < τl+1 | Fτl
) + 2

∆τl

ε
. (41)
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Eq. (38) follows by summing (40) and (41) over l = 0, . . . , L− 1, and taking
expectation.

In particular, it follows from (38) that for every strategy x′ of player 1
such that Px′,y(θ < ∞) = 1, γ(x′, y) ≤ b1 + 11ε. Thus, player 1 cannot
profit much by deviating with a strategy that eventually stops. If R1 < 0 it
may still be the case that he can profit by never stopping (see Example 7.2).
To overcome this difficulty we add a punishment strategy to y. Namely, we
augment y by the following construction. Let L ∈ N be sufficiently large so
that Px,y(θ < τL) > 1−2ε. Let y∗ be the strategy that follows y up to stage L,
and from that stage on stops at each stage n with probability ε · 1{R2

{2},n
=R2}.

That is, player 2 stops with small probability whenever R2
{2},n = R2.

Since R2
{2},n = R2 infinitely often, P0,y∗(θ < ∞) = 1. Since Px,y(θ <

τL) > 1− 2ε, |γ2(x, y∗)− γ2(x, y)| ≤ 4ε. By (38), A.6, and since b1 ≥ R1− ε,
one has for every x′

γ1(x′, y∗) ≤ Ex′,y[R
1
Q,θ1{θ<τL}] + (R1 + 2ε)Px′,y(θ ≥ τL) ≤ b1 + 11ε.

We augment x in a similar fashion to obtain a strategy x∗ of player 1. The
pair (x∗, y∗) is then a 19ε-equilibrium.

7.12 The Game Restricted to Ḡv

We here consider the game restricted to Ḡv, for some v = 1, . . . , V . De-
note gv = [a1, b1] × [a2, b2]. Let (x, y) be the concatenation of the strategies

(x
(0)
Γτl,τl+1

, y
(0)
Γτl,τl+1

).

We first claim that

If b1 ≤ R1 − ε then P0,y(θ < ∞ | Gv) = 1.

If b2 ≤ R2 − ε then Px,0(θ < ∞ | Gv) = 1.
(42)

We prove the first inequality. By (28), Lemma 6.19, Lemma 7.4(d), and (28)
again, for every l ≥ 0,

P0,y(θl < τl+1 | Fτl
) ≥ ε

4
P0,y(∪

τ
(J)
l

n=τl{R1
{1},n = R1} | Fτl

)− 4∆τl
.

On Gv, R1
{1},n = R1 infinitely often, whereas only finitely many times

τ
(J)
l < τl+1. Therefore P0,y(θ < ∞ | Gv) = 1, proving (42).
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We now claim that if b1 ≤ R1 − ε then χ2(Γτl,τl+1
) = 1 for every l ≥ 0 on

Gv. Indeed, on Gv one has c∗τ0,τ1
= c∗τl,τl+1

for every l ≥ 0. Hence, if the claim

does not hold then χ2(Γτl,τl+1
) = 0 for every l ≥ 0 on Gv. By definition this

implies that π(0, y
(0)
Γτl,τl+1

; Γτl,τl+1
) <

∆τl

ε
+ ∆τl

. Hence P0,y(θ < ∞ | Gv) < 1,

a contradiction to (42). Thus, by Lemma 7.4, we get the following.

If b1 ≤ R1 − ε then P0,y(θl < τ
(J)
l | F̂τl

) ≥ ∆τl

ε
on Gv. (43)

Next we prove that for every L ≥ 0,

Ex,y[R
1
Q,θ1{θ<τL}] ≥ a1 ·Px,y({θ < τL})− 5ε. (44)

Indeed, by (29), the construction of (x, y), and (28)

Ex,y(R
1
Ql,θl

1{θl<τ
(J)
l }∩{cτl,τl+1

=gv}
| Fτl

)

≥ a1 ·Px,y({θl < τ
(J)
l } ∩ {cτl,τl+1

= gv} | Fτl
)− 4∆τl

. (45)

Summing (45) over l = 0, ..., L− 1, and taking expectation, we get:

Ex,y

[
R1

Q,θ1⋃
0≤l<L({θl<τ

(J)
l }∩{cτl,τl+1

=gv})

]
≥ a1 ·Px,y

( ⋃
0≤l<L

({θl < τ
(J)
l } ∩ {cτl,τl+1

= gv})

)
− ε. (46)

Let G∗
v = Ḡv∩

⋃
0≤l<L({τ (J)

l < τl+1}∪{cτl,τl+1
6= gv}). From (32) and (33)

it follows that:
p(G∗

v) < 2ε. (47)

Since {θ < τL} ⊆ G∗
v∪
⋃

0≤l<L({θl < τ
(J)
l }∩{cτl,τl+1

= gv}), (44) follows from
(47) and (46).

Next we claim that for every L ≥ 0, and every strategy x′ of player 1,

Ex′,y[R
1
Q,θ1{θ<τL}] ≤ (b1 + 2ε) ·Px′,y({θ < τL}) + 6ε. (48)

Indeed, the same argument used to prove Eq. (38) proves, using Corollary
7.5, the definition of (x, y), (43) and Lemma 7.8, that

Ex′,y[R
1
Q,θ1⋃

0≤l<L({θl<τ
(J)
l }∩{cτl,τl+1

=gv})
]

≤ (b1 + 2ε) ·Px′,y

( ⋃
0≤l<L

({θl < τ
(J)
l } ∩ {cτl,τl+1

= gv})

)
+ 2ε.
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Eq. (48) follows using (47).
In particular, it follows from (38) that for every strategy x′ of player 1

such that Px′,y(θ < ∞) = 1, γ(x′, y) ≤ b1 + 8ε. Thus, player 1 cannot profit
much by deviating with a strategy that eventually stops. If b1 < R1 − ε
then by (42) and (32) Px′,y(θ < ∞) ≥ P0,y(θ < ∞) ≥ 1 − ε for every x′. If
b1 ≥ R1 − ε one should augment y by adding a punishment strategy as in
section 7.11.

8 More than Two Players

When there are more than two players, it is no longer true that the game
on a tree admits a stationary ε-equilibrium. An example of a three-player
game where this phenomenon happens was first found by Flesch et al (1997).
Nevertheless, a consequence of Solan (1999) is that any three-player game on
a tree admits a periodic ε-equilibrium, but the period may be long. We do
not know whether one can use this result to generalize Proposition 6.4 for
three-player games.

When there are at least four players, existence of ε-equilibria in stopping
games on finite trees is still an open problem, even in the deterministic case;
that is, when every node in the tree has at most a single child. For more
details the reader is referred to Solan and Vieille (2001).
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