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Abstract

We design a simple non-cooperative mechanism in the classs of NTU-
games. We study it in the context of a particular class of pure exchange
economies. When the corresponding NTU game (N, V ) satisfies that
V (N) is flat, the only payoff which arises in equilibrium is the Shapley
NTU value.

1 Introduction

The Shapley value (Shapley, 1953) is considered as one of the most important so-
lution concepts in the class of transferable utility games (TU games). However,
its generalization to nontransferable utility games (NTU games) is not clear.
For NTU games, there are three main solution concepts which generalize the
Shapley value: The Harsanyi value (Harsanyi, 1963), the Shapley NTU value
(Shapley, 1969), and the consistent value (Maschler and Owen, 1989, 1992).
Some characterizations for these values are given by Harsanyi (1963), Aumann
(1985) and Hart and Mas-Colell (1996), respectively.
Moreover, Hart and Mas-Colell (1996) design a non-cooperative mechanism1

such that the consistent value arises in subgame perfect Nash equilibria. As far
as we know, no similar result has been obtained for the Harsanyi value nor the
Shapley NTU value.
In this paper, we describe a simple mechanism of negotiation. The main idea

of the mechanism is the creation and further ampliation of a union or society
of players. The members of this society agree on a rule to share their resources.
Players outside the society can apply to enter the society by agreeing on the

∗Financial support by the Spanish Ministerio de Ciencia y Tecnología through grant
BEC2002-04102-C02-01 is gratefully acknowledged.

1We use the term non-cooperative mechanism instead of non-cooperative game in order to
avoid confusion with cooperative games.
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established internal rule. However, in the admission negotiation, candidates may
also propose to change the internal rule on entrance. Furthermore, unanimity
is required among every member of the society to change the rules.
Notice that a similar mechanism is used by supranational institutions such

like the European Union or NATO when new countries apply to join. In the
particular case of the European Union, refusal from any current member may
abort this ampliation. Thus, unanimity is required in changing the rules.
Surprisingly, in a particular class of games, the mechanism described above

implements the Shapley NTU value. This provides further support to this value.
The particular class of games we should restrict ourselves to are games (N,V )
such that V (N) is delimited by a hyperplane.
An example of such a game may be find in the following particular environ-

ment. Consider a pure exchange economy where big Factories acquire products
from farmers, who have limited liability. Suppose that the government would
like to favor the productivity of the farmers2 , avoiding the factories to take ad-
vantage of farmers’ lack of liability. Our analysis shows that this handicap can
be avoided by forcing the proposed mechanism. The Shapley NTU value, as
opposed to other values, such like Harsanyi’s and consistent, provide all agents
(both farmers and factories) with the Shapley value of the game which arises
from the economy when a common utility is freely transferable.
Next example is an adaptation of the game presented by Owen (1972). It

has also been used by Hart and Kurz (1983) and Hart and Mas-Colell (1996):

Example 1 Consider a pure exchange economy with three players {1, 2, 3} and
three commodities {x, y1, y2}. Initial endowments are given by:

z01 = (0, 1, 0)

z02 = (0, 0, 1)

z03 = (1, 0, 0)

and utility functions are given by

u1 (x, y1, y2) = x+min {y1, y2}
u1 (x, y1, y2) = x+

1

4
min {y1, y2}

u1 (x, y1, y2) = x+min {y1, y2}− 1.
Thus, commodity x (money) is additive and linear in every player’s utility

function. Commodities y1 and y2 may be considered as ‘left gloves’ and ‘right
gloves’, respectively. Players only get utility from pairs of gloves. However,
player 2 does not have as much production (or selling) ability as the rest of the
players. If players had unlimited liability, players 1 and 2 could agree on the
consumptions z1 =

¡−12 , 1, 1¢ and z2 = ¡12 , 0, 0¢, so that the final payoff would
be
¡
1
2 ,

1
2 , 0
¢
.

2A similar idea may be found in Dam and Pérez-Castrillo (2001), were they present a
model with tenants and landowners, tenants with limited liability.
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However, if we consider only nonnegative commodities, the above consump-
tions are not feasible. We are, thus, in the context of the non-transferable utility
(NTU) game given by

V ({i}) =
n
t ∈ R{i} : t ≤ 0

o
for all i ∈ {1, 2, 3}

V ({1, 2}) =

½
(t1, t2) ∈ R{1,2} : t1 + 4t2 ≤ 1, t1 ≥ 1, t2 ≥ 1

4

¾
V ({i, 3}) =

n
(ti, t3) ∈ R{i,2} : ti + t2 ≤ 0, ti ≤ 1, t3 ≤ 0

o
for all i ∈ {1, 2}

V ({1, 2, 3}) =

½
(t1, t2, t3) ∈ R{1,2,3} : t1 + t2 + t3 ≤ 1, t1 ≤ 2, t2 ≤ 5

4
, t3 ≤ 1

¾
.

Thus, player 3 (the banker) is needed as a catalyst. Players 1 and 2 may then
agree to share part of their resources (pair of gloves) with player 3 in exchange
of his services.
In particular, the Harsanyi value proposes a payoff of

¡
2
5 ,

2
5 ,

1
5

¢
. For example,

players 1 and 2 sell their shoes to player 3 at a exchange rate of 5 pairs for 4
currency units.
The consistent value, however, proposes a payoff of

¡
1
2 ,

3
8 ,

1
8

¢
, i.e. since

player 2 has the low production ability, he is the one who has to pay player 3.
Finally, the Shapley NTU value proposes a payoff of

¡
1
2 ,

1
2 , 0
¢
. For example,

players 1 and 2 sell their shoes to player 3 at a exchange rate of 1 pair for 1
currency unit. Notice that this payoff is the same players would have agreed
upon player 1 should initially have enough money.
It may be argued that, since player 3 is not a dummy in the game V (the final

payoff of
¡
1
2 ,

1
2 , 0
¢
is not attainable without him), he must receive more than 0.

However, player 3 does not contribute with any additional production capability.
He just provides the other players with money so that trade may freely happen.
We may want to incentive the production of goods and not the lending of money.
Thus, player 3 should not get profit from the simple fact to have money when
others do not have it. In this context, the Shapley NTU value seems a much
fairer allocation.

In our pure exchange economy, two conditions must hold:

1. The farmers have limited liability. The Factories have unlimited liability.

2. Production in Factories is much more efficient than in farms. Thus, it is
optimal (in the sense of maximizing aggregate utility) for the Factories to
hold all the non-monetary commodities.

The first condition implies that the farmers may be in an inferior position
with respect to the Factories. If every player had unlimited liability, we would
be in a transfer utility (TU) context, and our mechanism would implement the
Shapley value. In Example 1, players 1 and 2 play the role of farmers, and
player 3 is the Factory.
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The second condition implies that the farms produce not for domestic con-
sumption, but for selling to the Factories. Efficiency may be achieved with only
money assigned to farmers. In example 1, the consumptions z1 =

¡
1
2 , 0, 0

¢
, z2 =¡

1
2 , 0, 0

¢
, z3 = (0, 1, 1), which held the Shapley NTU value, maximize the aggre-

gate utility and give player 3 (the Factory) all the gloves.
In our mechanism, there is a society whose members (we call them active

players) have agreed on the way to share their resources (i.e. they have agreed
on a consumption sharing rule or simply a rule). There is also a set of players
(passive players) who have had the chance to join the society but they have
rejected to do so. The rest of the players are called candidates. Candidates
sequentially negotiate their admission to the society. The process of negotiation
is as follows. The candidate may simply join the society as it is, i.e. he agrees
on the rule. In this case, the society gets a new member and next candidate
is called upon. If the candidate does not agree on the rule, he may propose
a new rule and even suggest some of the passive players to join the society
with him. If every member of the proposed new society accepts this offer, this
new society forms with the suggested rule. Otherwise, the candidate becomes a
passive player and next candidate begins negotiations. Once there are no more
candidates, the coalition of active players is formed and its members get the
payoff given by the agreed single value. The passive players get nothing.
Notice that a passive player is, somehow, out of the game at least some

candidate suggests him to join the society.
In section 2, we present the notation and in section 3, we present formally

the mechanism and prove that every subgame perfect equilibrium yields the
Shapley NTU value.

2 Pure-exchange economies and the Shapley NTU
value

We consider pure-exchange economies with l commodities and n = nf + nF
players, nf ≥ 0 of them farmers and nF ≥ 1 of them factories. The set of
farmers is denoted by Nf and the set of factories by NF . We assume without
loss of generality N := Nf ∪NF = {1, 2, ..., n}.

1. A consumption zi for player i ∈ Nf (resp. NF ) is a pair (xi, yi) such that
xi ∈ R+ (resp. R) and yi ∈ Rl−1+ . Player i is characterized by an initial
endowment z0i =

¡
x0i , y

0
i

¢ ∈ Rl+ and a utility function ui : Rl+ → R (resp.
ui : R×Rl−1+ → R) such that ui (zi) = xi + u0i (yi) for some continuous,
nondecreasing function u0i : R

l−1
+ → R satisfying u0i

¡
y0i
¢
= 0 (this is a

normalization condition without consequence).

Notice that the additivity separability and linearity in xi of ui permits utility
transfers among players. However, the nonnegativeness of xi when i ∈ Nf
restricts these transfers when farmers are involved (they have limited liability).
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Given a coalition S ⊂ N , we denote by ΩS the set of feasible consumptions
for players in S, i.e.

ΩS :=

(
z = (zi)i∈S : zi ∈ Rl+∀i ∈ Nf ∩ S, zi ∈ R×Rl−1+ ∀i ∈ NF ∩ S,

X
i∈S
zi ≤

X
i∈S
z0i

)

2. There exists a yM ∈ Rl−1+ with yMi = 0 for all i ∈ Nf such that

X
i∈N

u0i
¡
yMi
¢
= max

(X
i∈N

u0i (yi) : (x, y) ∈ ΩN for some x ∈ RN
)
.

We assume endowments to be known by the planner. Furthermore, the
planner is capable of forcing any feasible consumption. However, the planner
does not know the particular utility functions.
We denote by E (N) the set of all economies e =

¡
Nf , NF , z

0, (ui)i∈N
¢
sat-

isfying 1 and 2. A consumption sharing rule is a function γ which assigns to
each e ∈ E (N) a feasible consumption γ (e) ∈ ΩN . Let Γ be the set of all con-
sumption sharing rules on E (N) for some N . In particular, we define γ0 ∈ Γ
by

γ0 (e) = z0

for all e =
¡
Nf , NF , z

0, (ui)i∈N
¢ ∈ E (N).

Fix e =
¡
Nf , NF , z

0, (ui)i∈N
¢ ∈ E (N). We can define the associated non-

transferable utility game (NTU game) as a pair (N,V e) where V e is a set-valued
correspondence (called characteristic function) that assigns to every coalition
S ⊂ N a subset V (S) ⊂ RS with represents the utility that players in V can
get by themselves by cooperating, i.e.

V e (S) :=
©
(ui (zi))i∈S ∈ RS : z ∈ ΩS

ª
.

Next properties can be easily deduced for V e:

(A1) For each S ⊂ N , the set V e(S) is nonempty, closed, convex and bounded
above (i.e., for each t ∈ RS, the set {t0 ∈ V e(S) : t0 ≥ t} is compact).

(A2) For each i ∈ N , max {t : t ∈ V e ({i})} = x0i .
(A3) Zero-Monotonicity: For each S ⊂ N , t ∈ V (S) and i /∈ S, we have¡

t, x0i
¢ ∈ V (S ∪ {i}). In particular, ¡x0j¢j∈S ∈ RS belongs to V (S).

Remark 2 Comprehensiveness is not required in this example. In particular,
the minimum utility a farmer β ∈ Nf can get is uβ (0).
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Let Π the set of all orders of players in N . Given π ∈ Π and i ∈ N , we
define Pπ

i as the set of players who come before i in the order π. Namely:

Pπ
i := {j ∈ N : π (j) < π (i)} .

For notational convenience, we denote Pπ
n+1 := N.

Let λ = (λi)i∈N ∈ RN++ and let S ⊂ N , we define

vλ,e (S) := max

(X
i∈S

λiui (zi) : z ∈ ΩS
)
= max

(X
i∈S

λiti : t ∈ V e (S)
)

for all S ⊂ N when this maximum exists. Notice that, for λ = 1N ,

v1N ,e (N) =
X
i∈N

x0i +
X
i∈N

u0i
¡
yMi
¢
.

Assume vλ,e (S) exists for every S ⊂ N . Let π ∈ Π. We define dπ (λ, e) ∈ RN
as the vector given by

dπi (λ, e) =
1

λi

£
vλ,e (Pπ

i ∪ {i})− vλ,e (Pπ
i )
¤

for all i ∈ N .
Notice that

P
i∈N

λid
π
i (λ, e) = v

λ,e (N) .

The Shapley value (Shapley, 1953) of
¡
N, vλ,e

¢
is the average of all these

dπ (λ, e)’s:

Sh (λ, e) :=
1

|Π|
X
π∈Π

dπ (λ, e) ∈ RN .

Clearly,
P
i∈N

λiShi (λ, e) = v
λ,e (N) .

A point t ∈ V e (N) is a Shapley NTU value (Shapley, 1969) of (N,V e) if
there exists a vector λ ∈ RN++ such that t = Sh (λ, e) .
Notice that the Shapley NTU value is defined on the space of utilities (which

is not checkable by the planner), wherever the consumption sharing rules are
defined on the space of commodities.
Next results are of interest:

Proposition 3 Given λ ∈ RN++ and π ∈ Π, dπi (λ, e) ≥ x0i for all i ∈ N.
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Proof. Fix i ∈ N and let z1 ∈ ΩPπi such that vλ,e (Pπ
i ) =

P
j∈Pπi

λjuj
¡
z1j
¢
.

Then, z2 :=
¡
z1, z0i

¢ ∈ ΩPπi ∪{i} and thus
λid

π
i (λ, e) = vλ,e (Pπ

i ∪ {i})− vλ,e (Pπ
i )

= vλ,e (Pπ
i ∪ {i})−

X
j∈Pπi

λjuj
¡
z1
¢

= vλ,e (Pπ
i ∪ {i})−

X
j∈Pπi

λjuj
¡
z1
¢− λiui

¡
z0i
¢
+ λix

0
i

= vλ,e (Pπ
i ∪ {i})−

X
j∈Pπi ∪{i}

λjuj
¡
z2
¢
+ λix

0
i

≥ λix
0
i .

Proposition 4 There exists a unique Shapley NTU value of
¡
N,V λ,e

¢
, and it

can be obtained with λ = (1, ..., 1) .

Proof. Let 1N := (1, ...,1) ∈ RN++. By Proposition 3, we know that
Sh (1N , e) ≥ x0. We prove that Sh (1N , e) ∈ V (N).
Clearly, v1N ,e (N) =

P
i∈N

x0i +
P
i∈N

u0i
¡
yMi
¢
. We take

¡
x, yM

¢ ∈ ΩN with x

given by:

xi = Shi (1N , e)− u0i
¡
yMi
¢
.

For i ∈ Nf , u0i
¡
yMi
¢
= u0i (0) ≤ 0 (notice that u0 is nondecreasing) and

so xi ≥ x0i ≥ 0. Hence,
¡
x, yM

¢
is actually feasible. Moreover, ui

¡
xi, y

M
i

¢
=

Shi (1N , e) and thus Sh (1N , e) ∈ V (N).
Let λ ∈ RN++ such that Sh (λ, e) ∈ V e (N).
Let α ∈ NF . Assume there exists β ∈ N such that λα < λβ. Given any

M > 0 we will find a z = (x, y) ∈ ΩNF such that
P
i∈NF

λiui (zi) ≥ M . We

can take x ∈ RN such that xα = − M
λβ−λα , xj =

M
λβ−λα and xk = 0 for all

k ∈ N\ {i, j}. Clearly, ¡x, y0¢ ∈ ΩN . Moreover,X
i∈N

λiui
¡
xi, y

0
i

¢
=
X
i∈N

λiui
¡
0, y0i

¢
+

M

λβ − λα
(λβ − λα) =M.

Thus, there not exists vλ,e (N). This contradiction proves λi = λj for all
j ∈ NF and λi ≥ λj for all j ∈ Nf .
Assume now there exists β ∈ Nf such that λα > λβ.
Let zλ ∈ ΩN such that Shi (λ, e) = ui

¡
zλi
¢
for all i ∈ N . Since P

i∈N
λiShi (λ, e) =

vλ,e (N), we deduceX
i∈N

λiui
¡
zλi
¢
= vλ,e (N) = max

(X
i∈N

λiui (zi) : z ∈ ΩN
)
.
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Furthermore, by Proposition 3, ui
¡
zλi
¢ ≥ x0i for all i ∈ N . Let z∗ = ¡x∗, yM¢

such that x∗i = ui
¡
zλi
¢−u0i ¡yMi ¢ for all i ∈ N\ {α,β}, x∗α = uα ¡zλα¢+uβ ³zλβ´−

u0α
¡
yMα
¢
and x∗β = −u0β

³
yMβ

´
. Since u0i

¡
yMi
¢
= u0i (0) ≤ 0 for all i ∈ Nf and

uα
¡
zλα
¢
+ uβ

³
zλβ

´
≥ x0α + x0β ≥ 0, we deduce that z∗ ∈ ΩN . Furthermore,X

i∈N
λiui (z

∗
i ) =

X
i∈N

λi
£
x∗i + u

0
i

¡
yMi
¢¤

=
X

i∈N\{α,β}
λiui

¡
zλi
¢
+ λα

£
uα
¡
zλα
¢
+ uβ

¡
zλβ
¢¤

=
X
i∈N

λiui
¡
zλi
¢
+ (λα − λβ)uβ

¡
zλβ
¢

Since
P
i∈N

λiui
¡
zλi
¢
is maximum and uβ

³
zλβ

´
≥ x0β ≥ 0, we deduce that either

uβ

³
zλβ

´
= 0 or λα ≤ λβ. If uβ

³
zλβ

´
= 0, player β is a null player3 in both¡

N, vλ,e
¢
and

¡
N, v1N ,e

¢
. Thus, Shβ

¡
N,vλ,e

¢
= Shβ

¡
N, v1N ,e

¢
= 0 and for

every no-null player i ∈ N , λi = λα. Hence, Sh
¡
N, vλ,e

¢
= Sh

¡
N, v1N ,e

¢
.

>From now on, we denote dπ (1N , e), Sh (1N , e) and v1N ,e as dπ (e), Sh (e)
and ve, respectively.

Proposition 5 For each S ⊂ N and i /∈ S
ve (S ∪ {i}) ≥ ve (S) + x0i .

Proof. Let z∗ = (x∗, y∗) ∈ ΩS such that P
j∈S
uj
¡
z∗j
¢
= ve (S). Clearly,

P
j∈S
x∗j =

P
j∈S
x0j . Furthermore, z

∗∗ :=
¡
z∗, z0i

¢ ∈ ΩS∪{i}. Thus
ve (S) =

X
j∈S
x0j +

X
j∈S
u0j
¡
y∗j
¢

=
X

j∈S∪{i}
x0j +

X
j∈S
u0j
¡
y∗j
¢
+ u0i

¡
y0j
¢− x0i

=
X

j∈S∪{i}
uj
¡
y∗∗j
¢− x0i

≤ ve (S ∪ {i})− x0i .

Corollary 6 For any S, T ⊂ N such that S ⊂ T
ve (S) ≤ ve (T ) .

3A null player in (N, v) is a player i ∈ N such that v (S ∪ {i}) = v (S) for all S ⊂ N\ {i}.
The Shapley value gives 0 to any null player. Furthermore, the Shapley value for the other
players does not change if we add or remove a null player from the game.
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3 The non-cooperative mechanism

Players should form a society. First, an order of the players is randomly chosen.
Assume the order is (12...n). Player 1 should then present a rule4 γ ∈ Γ. No
restrictions (apart from feasibility) are imposed on γ. Player 2 may either agree
on γ and join the society, or disagree on γ and propose a new rule eγ to player 1.
If player 1 accepts (he votes ‘yes’ ), the society {1, 2} forms with the new ruleeγ, and turn passes to player 3. If player 2 rejects (he votes ‘no’ ), he remains
out of the society and turn passes to player 3.
In general, when turn reaches player i, he faces a society S ⊂ Pπ

i with
certain rule γ, and a set of players W = Pπ

i \S who have chosen to stay out
of the society. Players in S, W and N\Pπ

i are called active players, passive
players and candidates, respectively. Player i must then either agree to join
the society (in that case, player i becomes an active player and turn passes to
candidate i + 1) or disagree and propose both a new rule eγ and a new societyeS ⊂ Pπ

i ∪ {i} which includes himself and all the members of the old one (i.e.
S ∪ {i} ⊂ eS). The members of eS\ {i} vote sequentially whether they accept
or reject this proposal. If all of them vote ‘yes’, the new society eS forms with
the new value (we say then that the proposal is accepted), and turn passes to
candidate i+ 1. If at least one member of eS\ {i} votes ‘no’, player i becomes a
passive player and turn passes to candidate i+ 1.
Once there are no more candidates, we have a society S ⊂ N of active players,

a rule γ for the society, and a set W = N\S of passive players. Then, every
player i ∈ S receives γi (S) and every player in W keeps his initial endowment
z0i . This means that the final payoff for each player i ∈ S is uiγi (S) and5 the
final payoff for each player i ∈ N\S is ui

¡
z0i
¢
= x0i .

We now describe the mechanismM (e) formally. We first describe the games
M (e,π, i,W, γ) and fM (e,π, i,W, γ). M (e,π, i,W, γ) is the subgame which be-
gins when, given the order π, turn reaches player i and he faces a society of
active players S = Pπ

i \W with a proposed rule γ ∈ Γ, and a set of passive
players W . fM (e,π, i,W, γ) is the subgame which arises after player i disagrees
in the subgame M (e,π, i,W, γ).

Let π ∈ Π be an order of the players. We can assume without loss
of generality that π = (12...n). Given i ∈ N ∪ {n+ 1}, γ ∈ Γ and
W ⊂ Pπ

i , we inductively define the mechanismsM (e,π, i,W, γ) andfM (e,π, i,W, γ) as follows.

In both M (e,π, n+ 1,W,γ) and fM (e,π, n+ 1,W, γ), every player
i ∈ N\W receives uiγi (N\W ) and every i ∈ W receives ui

¡
z0i
¢
=

x0i .

Assume bothM (e,π, j,W 0, γ0) and fM (e,π, j,W 0, γ0) are defined for
all j > i, γ0 ∈ Γ and W 0 ⊂ Pπ

j .

4>From now on, we use the term rule instead of the more cumbersome consumption sharing
rule.

5We write uiγi (S) instead of ui (γi (S)) .
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In fM (e,π, i,W, γ), player i proposes a rule eγ ∈ Γ and a set fW ⊂
W . If all the members of Pπ

i \fW vote ‘yes’ — they are asked in

some prespecified order — then the mechanism M
³
e,π, i+ 1,fW, eγ´

is played. If at least one member of Pπ
i \fW votes ‘no’, the mechanism

M (e,π, i+ 1,W ∪ {i} , γ) is played.
InM (e,π, i,W,γ), player i can either agree or disagree on (W, γ). If
he disagrees, fM (e,π, i,W, γ) is played. If he agrees,M (e,π, i+ 1,W, γ)
is played.

The mechanism M (e) consists in choosing randomly an order π0 ∈
Π, being each order equally likely to be chosen, and playing the gamefM ¡

e,π0,π0−1 (1) , ∅,γ0¢.
Clearly, for any set of pure (mixed) strategies, this mechanism terminates in

finite time. Thus, the (expected) payoffs at termination are well-defined.
Let π ∈ Π. From now on, we assume without loss of generality that π =

(12...n).

Theorem 7 There exists at least a subgame perfect Nash equilibrium (SPNE)
in the negotiation mechanism M (e). Moreover, the only expected final payoff in
any SPNE is the Shapley NTU value of the game (N,V e).

Proof. First, we prove that there exists a SPNE. Then, we prove that every
SPNE yields the Shapley NTU value.
We consider the following set of strategies:
In the subgame M (e,π, n,W, γ), player n agrees on (W, γ) if and only if

unγn (N\W ) ≥ ve (N)−
X

i∈Pπn \W
uiγi (P

π
n \W )−

X
i∈W

x0i .

In the subgame fM (e,π, n,W, γ), player n proposes (∅, eγ) such that eγ (N) =¡
x, yM

¢
with x given by

xi = uiγi (P
π
n \W )− u0i

¡
yMi
¢

for all i ∈ Pπ
n \W

xi = x
0
i − u0i

¡
yMi
¢

for all i ∈W
xn = v

e (N)− P
i∈Pπn \W

uiγi (P
π
n \W )−

P
i∈W

x0i − u0n
¡
yMn
¢

We check that eγ (N) is a feasible consumption; i.e. P
i∈N

xi ≤
P
i∈N

x0i and

xi ≥ 0 for all i ∈ Nf :X
i∈N

xi = v
e (N)−

X
i∈N

u0i
¡
yMi
¢
=
X
i∈N

x0i .

Let β ∈ Nf . We have
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• If β ∈ Pπ
n \W , then

xβ = uβγβ (P
π
n \W )− u0β (0)

= γβx (P
π
n \W ) + u0βγβy (Pπ

n \W )− u0β (0)
≥ γβx (P

π
n \W )

≥ 0.

• If β ∈W , then xβ = x0β − u0β (0) ≥ x0β − u0β
³
y0β

´
= x0β ≥ 0.

• If β = n, then

xn = ve (N)−
X

i∈Pπn \W
uiγi (P

π
n \W )−

X
i∈W

x0i − u0n
¡
yMn
¢

=
X

i∈N\W
x0i +

X
i∈Pπn

u0i
¡
yMi
¢− X

i∈Pπn \W
uiγi (P

π
n \W )

≥
X

i∈N\W
x0i +

X
i∈Pπn

u0i
¡
yMi
¢− X

i∈Pπn \W
x0i −

X
i∈Pπn \W

u0iγiy (P
π
n \W )

≥ x0n ≥ 0.

Thus, eγ (N) is a feasible consumption.
In the subgame fM (e,π, n,W, γ), assume player n proposes

³fW, eγ´ and i ∈
Pπ
α \fW . Then, player i votes ‘yes’ if and only if

uieγi ³N\fW´ ≥ uiγi (Pπ
n \W ) .

Fix i ∈ N . Assume we have defined the strategies of the players inM (e,π, j,W, γ)

and fM (e,π, j,W, γ) for any j > i and any (W, γ). We denote by a (j,W,γ) the
final payoff in the subgameM (e,π, j,W, γ) when players follow these strategies.
This value is well-defined for any j > i and any (W, γ).
We now describe the strategies in M (e,π, i,W, γ) and fM (e,π, i,W, γ).
In M (e,π, i,W, γ), player i agrees if and only if

ai (i+ 1,W, γ) ≥ ve
¡
Pπ
i+1

¢− X
j∈Pπi

aj (i+ 1,W ∪ {i} ,γ) . (1)

In the subgame fM (e,π, i,W, γ), player i proposes (∅, eγ) such that eγ (N) =¡
x, yM

¢
with x given by

xj = aj (i+ 1,W ∪ {i} ,γ)− u0j
¡
yMj
¢

for all j ∈ Pπ
i

xi = v
e
¡
Pπ
i+1

¢− P
j∈Pπi

aj (i+ 1,W ∪ {i} , γ)− u0i
¡
yMi
¢

xj = d
π
j (v

e)− u0j
¡
yMj
¢

for all j > i.


(2)
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We check later (Claim (II) below) that this consumption eγ (N) is feasible.
In the subgame fM (e,π, i,W, γ), assume player i proposes

³fW, eγ´ and j ∈
Pπ
i \fW . Then, player j votes ‘yes’ if and only if

aj

³
i+ 1,fW, eγ´ ≥ aj (i+ 1,W ∪ {i} , γ) . (3)

It is straightforward to check that, under these strategies, player 1 proposes
(∅,γπ) with uiγπ (N) = dπi (v) for all i ∈ N and the rest of players agree on
it. Society is then formed with all the players and the final outcome is dπ (v).
Hence the final expected final outcome is the Shapley NTU value.
In order to check that these strategies form a SPNE, we prove three claims:

Claim (I): Given i ∈ N , W ⊂ Pπ
i and γ ∈ Γ

aj (i,W, γ) = x
0
j

for all j ∈W .
We proceed by induction on i. For i = n, the result is straightforward.

Assume the result holds for i + 1 and any W ⊂ Pπ
i , γ ∈ Γ. In the subgame

M (e,π, i,W, γ), given j ∈W , three cases may occur:

1. Player i agrees. Then, aj (i,W, γ) = aj (i+ 1,W, γ), which is x0j by induc-
tion hypothesis.

2. Player i disagrees, proposes (∅,eγ) given as in (2), and this proposal is
accepted. Then, the rest of the players agree too and aj (i,W, γ) =
ujeγj (N) = aj (i+ 1,W ∪ {i} , γ), which is x0j by induction hypothesis.

3. Player i disagrees, proposes (∅,eγ) given as in (2), and this proposal is
rejected. Then, aj (i,W, γ) = aj (i+ 1,W ∪ {i} , γ), which is x0j by induc-
tion hypothesis.

Claim (II): Given i ∈ N , W ⊂ Pπ
i and γ ∈ ΓX

j∈Pπi
aj (i,W, γ) ≤ ve (Pπ

i \W ) .

We proceed by induction on i. For i = n, the result is straightforward.
Assume the result holds for i + 1 and any W ⊂ Pπ

i , γ ∈ Γ. In the subgame
M (e,π, i,W, γ), two cases may occur:

1. Player i agrees. Then

a (i,W, γ) = a (i+ 1,W, γ)

12



and

ai (i+ 1,W,γ) ≥ ve
¡
Pπ
i+1

¢− X
j∈Pπi

aj (i+ 1,W ∪ {i} , γ) .

Thus, using induction hypothesis, Claim (I) and monotonicity of (N, v):X
j∈Pπi

aj (i,W, γ) =
X

j∈Pπi+1
aj (i+ 1,W, γ)− ai (i+ 1,W, γ)

≤ ve
¡
Pπ
i+1\W

¢− ve ¡Pπ
i+1

¢
+
X
j∈Pπi

aj (i+ 1,W ∪ {i} , γ)

≤ ve
¡
Pπ
i+1\W

¢− ve ¡Pπ
i+1

¢
+ ve

¡
Pπ
i+1\ (W ∪ {i})

¢− ai (i+ 1,W ∪ {i} , γ)
≤ ve

¡
Pπ
i+1\ (W ∪ {i})

¢− ai (i+ 1,W ∪ {i} , γ)−X
j∈W

x0j

≤ ve (Pπ
i \W )−

X
j∈W

x0j

≤ ve (Pπ
i \W ) .

2. Player i disagrees. Then

aj (i,W, γ) = aj (i+ 1,W ∪ {i} , γ)
for all j ∈ Pπ

i .
Thus, using induction hypothesis and Claim (I):X

j∈Pπi
aj (i,W, γ) =

X
j∈Pπi

aj (i+ 1,W ∪ {i} , γ)

≤ v
¡
Pπ
i+1\ (W ∪ {i})

¢− ai (i+ 1,W ∪ {i} , γ)
≤ v (Pπ

i \W ) .

Now, we check that eγ (N)= ¡x, yM¢ given by (2) is feasible:
X
j∈N

xj = v
e
¡
Pπ
i+1

¢
+
X
j>i

dπj (v
e)−

X
j∈N

u0j
¡
yMj
¢
= ve (N)−

X
j∈N

u0j
¡
yMj
¢
=
X
j∈N

x0j .

Given β ∈ Nf :

1. • If β ∈ Pπ
i ,

xβ = aβ (i+ 1,W ∪ {i} , γ)− u0β
¡
yMβ
¢ ≥ uβ (0)− u0β (0) = 0.

13



• If β = i,

xi = ve
¡
Pπ
i+1

¢− X
j∈Pπi

aj (i+ 1,W ∪ {i} , γ)− u0i
¡
yMi
¢

≥ ai (i+ 1,W ∪ {i} , γ)− ui (0) ≥ 0.

• If β > i,

xβ ≥ dπβ (e)− u0β (0) ≥ x0β ≥ 0.

Claim (III): ai (i,W, γ) ≥ x0i for all i ∈ N , W ⊂ Pπ
i and γ ∈ Γ.

In the subgame M (e,π, i,W, γ), two things may happen:

1. Player i agrees. Then:

ai (i,W,γ) = ai (i+ 1,W, γ)

≥ ve
¡
Pπ
i+1

¢− X
j∈Pπi

aj (i+ 1,W ∪ {i} , γ)

= ve
¡
Pπ
i+1

¢− X
j∈Pπi+1

aj (i+ 1,W ∪ {i} , γ)

≥ x0i + v
e
¡
Pπ
i+1\ (W ∪ {i})

¢− X
j∈Pπi+1

aj (i+ 1,W ∪ {i} , γ)

≥ x0i .

2. Player i disagrees. Then:

ai (i,W, γ) = v
e
¡
Pπ
i+1

¢− X
j∈Pπi

aj (i+ 1,W ∪ {i} , γ) ≥ x0i .

We now prove that these strategies form a SPNE.
Assume we are in the subgame fM (e,π, i,W, γ) and player i proposes

³fW, eγ´
with j ∈ Pπ

i \fW .
If some player after player j is bound to vote ‘no’ should turn reach him,

player j is indifferent between voting ‘yes’ or ‘no’. Assume then the offer is
bound to be accepted should player j vote ‘yes’. By doing so, and given the
strategies of the rest of the players, player j gets aj

³
i+ 1,fW,eγ´. By rejecting,

however, player i gets aj (i+ 1,W ∪ {i} , γ). Thus, it is optimal for player i to
vote ’yes’ if and only if (3) holds.
Assume now we are in the subgame fM (e,π, i,W, γ) and assume player i

changes his strategy and proposes a different
³fW,eγ´. If (3) does not hold for
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some j ∈ Pπ
i \fW , this player will vote ‘no’ and, by Claim (I), the final payoff for

player i is x0i , i.e. not more than with the original strategy.
Assume then (3) holds for all j ∈ Pπ

α \fW . The proposal is then accepted and
the final payoff for player i is at most ai

³
i+ 1,fW,eγ´. However, by using (3),

Claim (I), Claim (II) and Claim (III):

ai
³
i+ 1,fW,eγ´ =

X
j∈Pπi+1

aj
³
i+ 1,fW, eγ´− X

j∈Pπi
aj
³
i+ 1,fW, eγ´

≤ ve
³
Pπ
i+1\fW´− X

j∈Pπi \W
aj (i+ 1,W ∪ {i} ,γ)−

X
j∈W

x0j

= ve
³
Pπ
i+1\fW´− X

j∈Pπi
aj (i+ 1,W ∪ {i} , γ)

≤ ve
¡
Pπ
i+1

¢− X
j∈Pπi

aj (i+ 1,W ∪ {i} , γ)

and thus player i does not improve his final payoff.
Finally, assume we are in the subgame M (e,π, i,W, γ).
If (1) holds and player i disagrees on (W, γ), he will get at most

ve
¡
Pπ
i+1

¢− X
j∈Pπi

aj (i+ 1,W ∪ {i} , γ) (4)

which is not less than what he would get by agreeing. Thus, he will not improve
his final payoff by deviating.
If (1) does not hold and player i agrees on (W, γ), he will get less than (4),

which is the payoff he obtains by not deviating. Thus, it is optimal for him to
disagree.

We now prove that every SPNE has the Shapley NTU value as expected final
outcome. Assume we are in an SPNE. Let b ∈ V e (N) be the expected final
payoff. Let b (π0) ∈ V e (N) be the expected final payoff conditioned to π0 ∈ Π
be the chosen order. Thus,

b =
1

|Π|
X
π0∈Π

b (π0) .

We prove that bi (π) = dπi (e) for all i ∈ N .
Given i ∈ N , W ⊂ Pπ

i and γ ∈ Γ, let b (i,W, γ) ∈ V e (N) be the expected
final payoff in the subgame M (e,π, i,W, γ), and let eb (i,W, γ) ∈ V e (N) be
the expected final payoff in the subgame fM (e,π, i,W, γ). Notice that, by the
mechanism definition, bi (i,W, γ) ≥ ebi (i,W, γ).
Given S ⊂ N , we define

Sπ := {i ∈ S : Pπ
i ⊂ S} .
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Thus, players in Sπ are the first players out of S who come together in the
order π. We also define

Γπ :=
n
γ ∈ Γ : γ (S) = ¡γj (Sπ)¢j∈Sπ × ¡z0j ¢j∈S\Sπ for all S ⊂ No .

Thus, Γπ is the set of rules which do not share the resources of the players
after the first ‘gap’ in the coalition (with respect to π).
We proceed by a series of claims.

Claim (A): Assume we are in the subgame fM (e,π, i,W, γ) for some (W, γ)
such that γ ∈ Γπ. If the proposal of player i is rejected, the final payoff of any
player j ∈ Pπ

i+1 is ujγj (P
π
i \W ) (if j ∈ Pπ

i \W ) or x0j (if j ∈W ∪ {i}). Namely:

γ ∈ Γπ =⇒
½
bj (i+ 1,W ∪ {i} , γ) = ujγj (Pπ

i \W ) for all j ∈ Pπ
i \W

bj (i+ 1,W ∪ {i} , γ) = x0j for all j ∈W ∪ {i} .

Claim (B): Assume player i proposes
³fW,eγ´ in the subgame fM (e,π, i,W, γ)

for some (W, γ). If bj
³
i+ 1,fW, eγ´ > bj (i+ 1,W ∪ {i} , γ) for all j ∈ Pπ

i , then
the proposal is accepted.

Claim (C): Assume we are in the subgame M (e,π, i,W, γ) for some (W, γ).
Then, the final payoff for player i is not less than ve

¡
Pπ
i+1

¢− P
j∈Pπi \W

ujγj (P
π
i \W )−P

j∈W
x0j . Namely

bi (i,W,γ) ≥ ebi (i,W, γ) ≥ ve ¡Pπ
i+1

¢− X
j∈Pπi \W

ujγj (P
π
i \W )−

X
j∈W

x0j

for all (W, γ).

Claim (D): Player i can assure himself a final expected payoff of at least
dπi (e). Namely,

bi (j,W, γ) ≥ dπi (e)ebi (j,W, γ) ≥ dπi (e)

for all j ≤ i and all (W, γ).

Claim (E): Assume we are in the subgame fM (e,π, i,W, γ) for some (W, γ)
such that γ ∈ Γπ. Then, any player j ∈ Pπ

i gets a final payoff of ujγj (P
π
i \W )

(if j ∈ Pπ
i \W ) or x0j (if j ∈W ). Namely,

γ ∈ Γπ =⇒
( ebj (i,W, γ) = ujγj (Pπ

i \W ) for all j ∈ Pπ
i \Webj (i,W, γ) = x0j for all j ∈W.
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Claim (F): Assume we are in the subgame M (e,π, i,W, γ) for some (W, γ)
such that γ ∈ Γπ. If player i disagrees on γ, his final payoff is ve (Pπ

i ∪ {i})−P
j∈Pπi \W

ujγj (P
π
i \W )−

P
j∈W

x0j . Namely,

γ ∈ Γπ =⇒ ebi (i,W, γ) = ve ¡Pπ
i+1

¢− X
j∈Pπi \W

ujγj (P
π
i \W )−

X
j∈W

x0j .

Claim (G): Assume we are in the subgame M (e,π, i,W, γ) for some (W, γ)
such that γ ∈ Γπ and

ukγk (N) > v
e
¡
Pπ
k+1

¢− X
j∈Pπk \W

ujγj (P
π
k \W )−

X
j∈W

x0j (5)

for all k ≥ i. Then player i agrees on γ.

We prove these claims by induction on i.

Proof of Claim (A) for i = n: Trivial, since the final payoff in case of
rejection is

b (n+ 1,W ∪ {n} ,γ) = ¡ujγj (Pπ
n \W )

¢
j∈Pπn \W

× ¡x0j¢j∈W∪{n} .
Proof of Claim (B) for i = n: Assume players in Pπ

n \fW vote in the order
j1, j2, ..., jl. If turn reach player jl, i.e. there has been no previous rejection, it
is optimal for him to vote ‘yes’. If turn reach player jl−1, he anticipates player
jl’s reaction. Thus, it is also optimal for him to vote ‘yes’. By going backwards,
we prove the result.

Proof of Claim (C) for i = n: Assume Claim (C) does not hold for i = n.
Namely, there exists r > 0 such thatebn (n,W, γ) = ve (N)− X

j∈Pπn \W
ujγj (P

π
n \W )−

X
j∈W

x0j − r.

Since player n can easily assure himself a final payoff of x0n, we deduce that

ve (N)−
X

j∈Pπn \W
ujγj (P

π
n \W )−

X
j∈W

x0j − r ≥ x0n. (6)

Let ε ∈ (0, r) and assume player n changes his strategy so that he disagrees
on (W, γ) and proposes (∅, eγ) such that eγ (N) = ¡x, yM¢ with x given by
xj = ujγj (P

π
n \W ) +

ε

(n− 1) − u
0
j

¡
yMj
¢

for all j ∈ Pπ
n \W

xj = x0j +
ε

(n− 1) − u
0
j

¡
yMj
¢

for all j ∈W
xn = v

e (N)− P
j∈Pπn \W

ujγj (P
π
n \W )−

P
j∈W

x0j − ε− u0n
¡
yMn
¢
.
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This rule is feasible:X
j∈N

xj = v
e (N)−

X
j∈N

u0j
¡
yMj
¢
=
X
j∈N

x0j .

Let j ∈ Nf . If j 6= n, by arguments similar to those used in the proof of (2),
we can prove that xj ≥ 0. Assume n ∈ Nf . By (6)

xn = ve (N)−
X

j∈Pπn \W
ujγj (P

π
n \W )−

X
j∈W

x0j − ε− u0n (0)

≥ x0n + r − ε− u0n (0) > 0
Hence, the rule is feasible.
Furthermore, it is straightforward to check that conditions of Claim (B) are

satisfied and thus (∅,eγ) is accepted. Hence, the final payoff of player n is bigger
than ebn (n,W, γ). This contradiction proves Claim (C) for i = n.

Proof of Claim (D) for i = n: Since turn eventually reaches player n and
bn (n,W,γ) ≥ ebn (n,W, γ), it is enough to prove that ebn (n,W, γ) ≥ dπn (e) for
any (W, γ). By Claim (C),

ebn (n,W, γ) ≥ ve (N)− X
j∈Pπn \W

ujγj (P
π
n \W)−

X
j∈W

x0j

let z∗ ∈ ΩPπn be given by z∗j = γj (P
π
n \W) for all j ∈ Pπ

n \W and z∗j = z
0
j for all

j ∈W :

= ve (N)−
X
j∈Pπn

uj (z
∗) ≥ ve (N)− ve (Pπ

n ) = d
π
n (e) .

Proof of Claim (E) for i = n: Assume Claim (E) does not hold for i = n. As-
sume first there exists a player j ∈ Pπ

n \W such that ebj (n,W, γ) < ujγj (Pπ
n \W )

or a player j ∈ W such that ebj (n,W, γ) < x0j . This means that the offer of n
is accepted, but this is not possible because any player j in Pπ

n \W or W , by
rejecting, assures himself a payoff of ujγj (P

π
n \W ) or x0j , respectively. This

contradiction proves that ebj (n,W, γ) ≥ ujγj (P
π
n \W) for all j ∈ Pπ

n \W andebj (n,W, γ) ≥ x0j for all j ∈W .
Assume now there exists either a player j0 ∈ Pπ

n \W such that ebj0 (n,W,γ) =
uj0γj0 (P

π
n \W ) + r or a player j0 ∈ W such that ebj0 (n,W, γ) = x0j0 + r with

r > 0. This means that the proposal of n (say,
³fW, eγ´) is accepted and thus

his final payoff is ebn (n,W, γ) = uneγn ³N\fW´. FurthermoreX
j∈Pπn

ebj (n,W, γ) ≥ X
j∈Pπn \W

ujγj (P
π
n \W ) +

X
j∈W

x0j + r
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and so

uneγn ³N\fW´ ≤ ve (N)− X
j∈Pπn \W

ujγj (P
π
n \W )−

X
j∈W

x0j − r.

Let ε ∈ (0, r). Assume player n changes his strategy and proposes
³
∅, eeγ´

with eeγ (S) = 0 for all S Ã N and eeγ (N) = ¡x, yM¢ such that:
xj = ujγj (P

π
n \W ) +

ε

n− 1 − u
0
j

¡
yMj
¢

for all j ∈ Pπ
n \W

xj = x
0
j +

ε

n− 1 − u
0
j

¡
yMj
¢

for all j ∈W
xn = v

e (N)− P
j∈Pπn \W

ujγj (P
π
n \W )−

P
j∈W

x0j − ε− u0n
¡
yMn
¢

By the same arguments used in the proof of Claim (C) for i = n, it is not
difficult to check that eeγ (N) is feasible. Furthermore, eeγ ∈ Γπ. Moreover, by
Claim (B) this proposal is accepted by players in Pπ

n and thus the final payoff

for player n is uneeγn (N) > uneγn ³N\fW´. This contradiction proves Claim (E)
for i = n

Proof of Claim (F) for i = n: Assume player n rejects (W, γ):

ebn (n,W, γ) =X
j∈N

ebj (n,W, γ)− X
j∈Pπn

ebj (n,W,γ)
by Claim (E) applied to i = n:

=
X
j∈N

ebj (n,W, γ)− X
j∈Pπn \W

ujγj (P
π
n \W )−

X
j∈W

x0j

≤ v (N)−
X

j∈Pπn \W
ujγj (P

π
n \W )−

X
j∈W

x0j .

By Claim (C), equality holds and thus Claim (F) holds for i = n.

Proof of Claim (G) for i = n: Assume

unγn (N) > v
e (N)−

X
j∈Pπn \W

ujγj (P
π
n \W )−

X
j∈W

x0j .

Then, it is optimal for n to accept γ and obtain γn (N), since by Claim (F)
his maximal payoff after rejection is not more that this. Thus, Claim (G) holds
for i = n.

Assume now Claims (A), (B), (C), (D), (E), (F) and (G) hold for j > i
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Proof of Claim (A): Clearly, any player j ∈ Pπ
i \W can assure himself a payoff

of ujγj (P
π
i \W ) by rejecting any new proposal. Notice that, since γ ∈ Γπ, the

final payoff for player j is not affected by new players joining the society by
agreeing on (W,γ). Similarly, any player j ∈ W ∪ {i} can assure himself a
payoff of x0j . Hence

bj (i+ 1,W ∪ {i} , γ) ≥ ujγj (Pπ
i \W ) for all j ∈ Pπ

i \W
bj (i+ 1,W ∪ {i} , γ) ≥ x0j for all j ∈W ∪ {i} .

¾
(7)

Furthermore, by induction hypothesis applied to Claim (D), we know that

bj (i+ 1,W ∪ {i} , γ) ≥ dπj (e)
for all j > i+ 1; and, by induction hypothesis applied to Claim (C)

bi+1 (i+ 1,W ∪ {i} , γ) ≥ ve
¡
Pπ
i+2

¢− X
j∈Pπi \W

ujγj (P
π
i \W )−

X
j∈W∪{i}

x0j .

Thus X
j∈Pπi+1

bj (i+ 1,W ∪ {i} , γ)

≤ ve (N)− bi+1 (i+ 1,W ∪ {i} , γ)−
X
j>i+1

bj (i+ 1,W ∪ {i} , γ)

≤ ve (N)− ve ¡Pπ
i+2

¢
+

X
j∈Pπi \W

ujγj (P
π
i \W ) +

X
j∈W∪{i}

x0j −
X
j>i+1

dπj (e)

=
X

j∈Pπi \W
ujγj (P

π
i \W ) +

X
j∈W∪{i}

x0j .

Thus, equalities hold in (7).

Proof of Claim (B): If the proposal is rejected, any player j ∈ Pπ
i \fW receives

bj (i+ 1,W ∪ {i} ,γ). If the proposal is accepted, any player j ∈ Pπ
i \fW receives

bj
³
i+ 1,fW, eγ´. Thus, the result is straightforward.
Proof of Claim (C): Assume Claim (C) does not hold. Namely, there exists

a r > 0 such that

ebi (i,W, γ) = ve ¡Pπ
i+1

¢− X
j∈Pπi \W

ujγj (P
π
i \W )−

X
j∈W

x0j − r.

Since player i can easily assure himself a payoff of x0i , we deduce that

ve
¡
Pπ
i+1

¢− X
j∈Pπi \W

ujγj (P
π
i \W )−

X
j∈W

x0j − r ≥ x0i . (8)
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Let ε ∈ (0, r) and assume player i changes his strategy so that he disagrees
on (W, γ) and proposes (∅, eγ) such that

eγ (Pπ
k ) = argmax

( P
j∈Pπk

uj (z) : z ∈ ΩPπk
)

for all k > i

eγ (S) = eγ (Sπ) for all S Ã N.

Notice that
P
j∈Pπk

ujγj (P
π
k ) = v

e (Pπ
k ) for all k > i. Finally, eγ (N) = ¡x, yM¢

with x given by

xj = bj (i+ 1,W ∪ {i} , γ) + ε

(n− 1) − u
0
j

¡
yMj
¢

for all j ∈ Pπ
i

xi = v
e
¡
Pπ
i+1

¢− P
j∈Pπi

bj (i+ 1,W ∪ {i} , γ)− ε− u0i
¡
yMi
¢

xj = d
π
j (e) +

ε

(n− 1) − u
0
j

¡
yMj
¢

for all j > i

This eγ (N) is feasible:X
j∈N

xj = v
e
¡
Pπ
i+1

¢−X
j∈N

u0j
¡
yMj
¢
+
X
j>i

dπj (e) = v
e (N)−

X
j∈N

u0j
¡
yMj
¢
=
X
j∈N

x0j .

Let j ∈ Nf . If j 6= i, by arguments similar to those used in the proof of (2),
we can prove that xj ≥ 0 for all j ∈ Nf . Assume i ∈ Nf
xi = ve

¡
Pπ
i+1

¢− X
j∈Pπi

bj (i+ 1,W ∪ {i} ,γ)− ε− u0i
¡
yMi
¢

≥ ve
¡
Pπ
i+1

¢− ve (N) +X
j≥i
bj (i+ 1,W ∪ {i} , γ)− ε− u0i

¡
yMi
¢

≥ ve
¡
Pπ
i+1

¢− ve (N) + x0i +X
j>i

bj (i+ 1,W ∪ {i} , γ)− ε− u0i
¡
yMi
¢
.

By induction hypothesis applied to Claim (C) and Claim (D)

xi ≥ ve
¡
Pπ
i+1

¢− X
j∈Pπi \W

ujγj (P
π
i \W )−

X
j∈W

x0j − ε− u0n
¡
yMi
¢
. (9)

Since yMi = 0 and by (8)

xi ≥ x0i + r − ε− u0n (0) > 0.
Hence, eγ (N) is feasible. Furthermore, eγ ∈ Γπ.
If players in Pπ

i accept (∅,eγ), we check that condition (5) of Claim (G) with
γ = eγ is satisfied for i+ 1, ..., n. Given (∅, eγ) and k > i
ukeγk (N) > dπk (e) = ve ¡Pπ

k+1

¢− ve (Pπ
k ) = v

e
¡
Pπ
k+1

¢− X
j∈Pπk

ujeγj (Pk)
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Hence, any player in {i+ 1, ..., n} is bound to agree on (∅, eγ) once the turn
reaches him. We conclude then that bj (i+ 1, ∅,eγ) = ujeγj (N) for all j ∈ N .
We check that the condition of Claim (B) hold. Given j ∈ Pπ

i ,

bj (i+ 1, ∅, eγ) = ujeγj (N) > bj (i+ 1,W ∪ {i} ,γ) .
Thus, the proposal is accepted and the final payoff of player i is

bi (i+ 1, ∅,eγ) = uieγi (N) = xi + u0i ¡yMi ¢
by (9)

≥ ve ¡Pπ
i+1

¢− X
j∈Pπi \W

ujγj (P
π
i \W )−

X
j∈W

x0j − ε

which is bigger than ebi (i,W, γ). This contradiction proves Claim (C) for i = n.

Proof of Claim (D): Given (W,γ), it is enough to prove that ebi (i,W, γ) ≥
dπi (e). By Claim (C),

bi (i,W, γ) ≥ ve
¡
Pπ
i+1

¢− X
j∈Pπi \W

ujγj (P
π
i \W)−

X
j∈W

x0j

let z∗ ∈ ΩPπi be given by z∗j = γj (P
π
i \W) for all j ∈ Pπ

i \W and z∗j = z0j for all
j ∈W :

= ve
¡
Pπ
i+1

¢− X
j∈Pπi

uj (z
∗) ≥ ve ¡Pπ

i+1

¢− ve (Pπ
i ) = d

π
i (e) .

Proof of Claim (E): Assume we are in fM (e,π, i,W, γ) with γ ∈ Γπ. By
Claim (A), any player j ∈ Pπ

i \W , by voting ‘no’, can assure himself a payoff of
ujγj (P

π
i \W ). Similarly, any player j ∈W can assure himself a payoff of x0j by

voting ‘no’. Hence

ebj (i,W, γ) ≥ ujγj (Pπ
i \W ) for all j ∈ Pπ

i \Webj (i,W, γ) ≥ x0j for all j ∈W.

)

Furthermore, by Claim (C)

ebi (i,W, γ) ≥ ve ¡Pπ
i+1

¢− X
j∈Pπi \W

ujγj (P
π
i \W)−

X
j∈W

x0j

and, by Claim (D)

ebj (i,W, γ) ≥ dπj (e)
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for all j > i. HenceX
j∈Pπi

ebi (i,W, γ) =
X
j∈N

ebi (i,W, γ)−ebi (i,W, γ)−X
j>i

ebj (i,W, γ)
≤ ve (N)− ve ¡Pπ

i+1

¢
+

X
j∈Pπi \W

ujγj (P
π
i \W ) +

X
j∈W

x0j −
X
j>i

dπj (e)

=
X

j∈Pπi \W
ujγj (P

π
i \W ) +

X
j∈W

x0j .

Thus, Claim (E) holds.

Proof of Claim (F): Assume we are in fM (e,π, i,W, γ) with γ ∈ Γπ. By
Claim (E)

ebj (i,W, γ) = ujγj (Pπ
i \W ) for all j ∈ Pπ

i \Webj (i,W, γ) = x0j for all j ∈W.

)

Furthermore, by Claim (C)

ebi (i,W, γ) ≥ ve ¡Pπ
i+1

¢− X
j∈Pπi \W

ujγj (P
π
i \W)−

X
j∈W

x0j

and, by Claim (D)

ebj (i,W, γ) ≥ dπj (e)
for all j > i. Hence

ebi (i,W, γ) ≤ ve (N)−
X

j∈N\{i}
ebj (i,W, γ)

≤ ve (N)−
X

j∈Pπi \W
ujγj (P

π
i \W )−

X
j∈W

x0j −
X
j>i

dπj (e)

= ve
¡
Pπ
i+1

¢− X
j∈Pπi \W

ujγj (P
π
i \W )−

X
j∈W

x0j .

By Claim (C), equality holds.

Proof of Claim (G): Assume (5) holds for all k ≥ i. If player i agrees on
(W, γ), by induction hypothesis applied to Claim (G), players i+1, ..., n all agree
on (W, γ) and the final payoff is ujγj (N) for all j ∈ N . Then, it is optimal for
player i to accept (W, γ) and obtain uiγi (N), since by Claim (F) his maximal
payoff after rejection is not more that this. Thus, Claim (G) holds.

We now prove that the final expected payoff for player i ∈ N is dπi (e).
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By Claim (D), we know that bi (π) ≥ dπi (e) for all i ∈ N . This means
that

P
i∈N

bi (π) ≥ ve (N). Since b ∈ V (N), we have
P
i∈N

bi = ve (N) and thus

bi (π) = d
π
i (e) for all i ∈ N .

We have proved that bi (π) = dπi (e) for all i ∈ N and all π ∈ Π. Thus

zi =
1

|Π|
X
π∈Π

dπi (e) = Shi (e) .
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