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Abstract

We demonstrate the existence of pure strategy equilibria in monotone
bidding functions in …rst-price auctions with asymmetric bidders, interde-
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the precisely two ways that single-crossing can fail, which we identify here.
We also provide a private value example suggesting that the assumption of
one-dimensional signals is essential.
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1. Introduction

There is by now a large literature on …rst-price auctions. While initial e¤orts
centered around the symmetric bidder case (e.g., Milgrom and Weber (1982)),
attention has begun to shift toward the even more challenging—and in practice
often very relevant—case of asymmetric bidders. A key di¤erence between the two
cases is that only the symmetric bidder setting admits closed-form expressions
for equilibrium bid functions. Because of this, analysis of equilibrium bidding
behavior in asymmetric …rst-price auctions requires an implicit characterization
of equilibrium through …rst-order necessary conditions for optimal bidding.1 But
if an equilibrium fails to exist, such an analysis is vacuous.
Our objective here is to provide conditions ensuring the existence of a pure

strategy equilibrium in nondecreasing bid functions for asymmetric …rst-price auc-
tions with a¢liated private information and interdependent values. As a by-
product, we therefore provide a foundation for the …rst-order approach to analyz-
ing equilibrium bidding behavior in such auctions.
Recent work on the question of equilibrium existence in …rst-price auctions

can be found in Athey (2001), Bresky (1999), Lebrun (1996, 1999), Lizzeri and
Persico (2000), Jackson and Swinkels (2001), Maskin and Riley (2000), and Reny
(1999).2 But there appears to be a common di¢culty. The above papers restrict
attention either to two bidders, symmetric bidders, independent signals, private
values, or common values. That is, the most general case involving three or
more asymmetric bidders with a¢liated signals and interdependent values is not
covered. The reason for this is that standard proof techniques rely on the following
single-crossing condition (SCC) exploited with great ingenuity in Athey (2001):

If the others employ nondecreasing bid functions and one’s payo¤ from a high bid
is no smaller than that from a lower bid, then the high bid remains as good as the
lower one when one’s signal rises.3

However, even when bidders’ signals are a¢liated, SCC can fail (see Section 3)
unless there is but a single other bidder (as in the two-bidder case), or all signals

1See, for example, Bajari (1997).
2For conditions ensuring uniqueness in two-bidder settings, see Lizzeri and Persico (2000),

Maskin and Riley (1996) and Rodriguez (2000). Under more restrictive conditions, Maskin and
Riley (1996) obtain some uniqueness results for more than two bidders. See also Bajari (1997)
and Lebrun (1999).

3This is only “half” of the condition. The other half is obtained by reversing the roles of
“high(er)” and “low(er),” and replacing “rises” with “falls.” See Section 2 for a formal de…nition.
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are symmetric and bidders employ the same bidding function (as in the symmetric
case), or signals are independent, or values are either purely private or purely
common. It is for this reason that a general result is not yet at hand.
Our main insight is that there are only two ways that SCC can fail for a

bidder. The …rst is when both of the bids the bidder employs are individually
irrational, yielding a negative expected payo¤. The second is when one of the
bidder’s bids ties one of the opponents’ bids with positive probability. That is,
we show that subject to no ties and individual rationality, SCC holds. More
precisely, we establish the following individually rational tieless single-crossing
condition (IRT-SCC) for …rst-price auctions:

If the others employ nondecreasing bid functions and one’s payo¤ from a high
bid is non-negative and no smaller than that from a lower bid, then the high bid
remains as good as the lower one when one’s signal rises so long as neither bid
ties a positive bid of any opponent with positive probability.4

Now, standard proofs that monotone pure equilibria exist in …rst-price auctions
begin by restricting bidders to …nite grids of bids. This renders their otherwise
discontinuous payo¤s, continuous, and so their best reply correspondences are ren-
dered nonempty-valued and upper hemicontinuous. These proofs then establish
single-crossing, which, as Athey (2001) demonstrates, su¢ces for the existence of
a pure monotone equilibrium in the …nite bid setting. One then takes the limit
of such equilibria as the …nite grid of bids becomes dense in R+ to obtain a pure
monotone equilibrium of the auction with unrestricted bids.
We too shall follow this standard line of proof, but we must tread somewhat

more carefully to avoid the two failures of SCC. We begin by restricting bidders to
…nite grids of bids with the property that the zero bid is the only bid common to
distinct bidders. Consequently, in our restricted auction game, by construction,
no ties can occur at positive bids. This avoids one of the ways that SCC can fail.
The remaining failure of SCC, occurring when bidders employ individually

irrational bids, does not in fact pose any di¢culty. This is because standard proof
techniques employ SCC only to show that, when the others use nondecreasing
bidding functions, a bidder’s best reply correspondence, as a function of his signal,
is (in an appropriate sense) nondecreasing. But because best replies are a fortiori
individually rational, SCC need then only hold when a bidder employs individually

4Once again, this only half of the condition and the other half is obtained as before. See
Section 2 for a formal de…nition.
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rational bids. Hence, the more permissive condition IRT-SCC su¢ces to establish
the required monotonicity of best reply correspondences, given our choice of the
…nite bid sets. Thus, the novel part of our proof centers around the demonstration
that IRT-SCC holds in quite general …rst-price auction environments. With this
result in hand, the existence of a pure monotone equilibrium in our auction with
carefully chosen …nite bid sets follows from arguments due to Athey (2001).
The …nal step in our proof is again standard. We consider a sequence of

monotone pure equilibria of the restricted auction games as the …nite grids of
bids become dense in R+ and show that any limit point of this sequence is a pure
monotone equilibrium of the …rst-price auction with unrestricted bids.
The remainder of the paper is organized as follows. Section 2 describes the

class of …rst-price auctions covered here, provides the assumptions we maintain
throughout, and contains our main result. This section also provides a discussion
of Athey’s (2001) single crossing condition (SCC) and introduces our individually
rational tieless single crossing condition (IRT-SCC). Section 3 provides examples
of the two ways Athey’s (2001) single crossing condition can fail. Section 4 pro-
vides a sketch of the proof of IRT-SCC. Section 5 provides a private value example
suggesting that one-dimensionality of the bidders’ signals is essential for the ex-
istence of monotone pure strategy equilibria in the class of …rst-price auctions
studied here. All proofs are contained in the appendix.

2. The Model and Main Result

Consider the following …rst-price auction game. There is a single object for sale
and N ¸ 2 bidders. Each bidder i receives a private signal si 2 [0; 1]: The joint
density of the bidders’ signals is f : [0; 1]N ! R+. After receiving their signals,
each bidder i submits a nonnegative sealed bid. The highest bid greater or equal
to the public reserve price r ¸ 0 wins the object, with ties broken randomly and
uniformly.
If the vector of signals is s = (s1; :::; sN) and bidder i wins the object with a

bid of bi; then bidder i’s payo¤ is given by ui(bi; s): All other bidders receive a
payo¤ of zero. This speci…cation allows for a variety of attitudes toward risk, as
well as a variety of payment rules.
We shall maintain the following assumptions. For all bidders i = 1; :::; N :

A.1 (i) ui : R+ £ [0; 1]N ! R is measurable, ui(bi; s) is bounded in

s 2 [0; 1]N for each bi 2 R+ and continuous in bi for each s:
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(ii) There exists ~b ¸ 0 such that ui(bi; s) < 0 for all bi > ~b and all
s 2 [0; 1]N .
(iii) ui(0; s) ¸ 0 for all s 2 [0; 1]N

(iv) For every bi ¸ 0; ui(bi; s) is nondecreasing in s¡i and strictly
increasing in si:

(v) ui(¹bi; s)¡ ui(bi; s) is nondecreasing in s whenever ¹bi > bi:
A.2 (i) f(s) is measurable and strictly positive on [0; 1]N :

(ii) f(s _ s0)f(s ^ s0) ¸ f(s)f(s0) for all s; s0 2 [0; 1]N ; where _ and ^
denote componentwise maximum and minimum, respectively.

Remark 1. It is not necessary that ui(bi; s) decrease in bi; only that it is even-
tually negative for large enough bi: Thus, while we require the winner to be the
highest bidder, we do not require the winner to pay his bid, nor even an amount
that is an increasing function of his bid.5 It is important, however, that the
winner’s payment depend only upon his own bid.

Remark 2. Note that A.1(v) is satis…ed automatically when bidder i is risk neu-
tral and the winner must pay his bid because in this case ui(bi; s) = wi(s) ¡ bi
and so the di¤erence expressed in A.1(v) is constant in s: More generally, if
ui(bi; s) = Ui(wi(s) ¡ bi); then A.1(v) holds when wi(s) is nondecreasing in s
and U 00i · 0 (i.e. bidder i is risk averse).

Remark 3. Assumption A.2 (i) rules out moving supports, and A.2(ii) requires
the bidders’ signals to be a¢liated (see MW).

Given a vector of bids b = (b1; :::; bN ); let vi(b; s) denote bidders i’s expected
payo¤ when the vector of signals is s: That is

vi(b; s) =

½
1
m
ui(bi; s);
0;

if m = #fj : bj = bi = maxk bk ¸ rg ¸ 1
otherwise.

5So, for example, we are able to cover settings in which the auction rules favor some bidders
by allowing them to pay only a fraction of their bid should they win.
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Note that this speci…cation implies that a lone bid equal to the reserve price is a
winning bid.
Throughout, upper case letters will denote random variables and lower case

letters will denote their realizations. A pure strategy for bidder i is a measurable
(bid) function bi : [0; 1]! R+: Given a vector of pure strategies b = (b1; :::;bN );
let Vi(b) denote bidder i’s (ex-ante) expected payo¤ in the auction. That is,

Vi(b) = E[vi(b(S); S)];

where b(S) denotes the random vector (b1(S1); :::;bN(SN)) and the expectation
is taken with respect to f: It will also be convenient to de…ne bidder i’s interim
payo¤. Accordingly, let Vi(bi;b¡i j si) denote bidder i’s expected payo¤ conditional
on his signal si and given that he bids bi and the others employ the strategies b¡i:
That is,6

Vi(bi;b¡i j si) = E[vi(bi;b¡i(S¡i); si; S¡i) jSi = si]:
A pure strategy equilibrium is an N -tuple of pure strategies b¤ = (b¤1; :::;b

¤
N )

such that for all bidders i; Vi(b¤) ¸ Vi(b0i;b¤¡i) for all pure strategies b0i:
Our interest lies in establishing, for any …rst-price auction game, the existence

of a pure strategy equilibrium in which each bidder’s bid function is nondecreasing
in his signal. We shall refer to this as a monotone pure strategy equilibrium. This
brings us to our main result.

Theorem 2.1. All …rst-price auction games satisfying assumptions A.1 and A.2
possess a monotone pure strategy equilibrium.

The proof of Theorem 2.1 is in the appendix and consists of two main steps.
The …rst step establishes that a monotone equilibrium exists when bidders are
restricted to …nite sets of bids with no positive bids in common, while the second
step shows that the limit of such equilibria, as the sets of permissible bids become
dense inR+; is an equilibrium when, for all bidders, any nonnegative bid is feasible.
The novelty of our approach lies in the …rst step, where standard techniques

have up to now failed. For example, it would be straightforward to establish the
existence of a monotone equilibrium with …nite bid sets if one could establish
the single-crossing condition employed in Athey (2001). One could then simply
appeal directly to Athey’s Theorem 1.

6All statements involving conditional probabilities are made with respect to the following
version of the conditional density: f(s¡ijsi) = f(s)=

R
[0;1]N¡1 f(si; s¡i)ds¡i; which, by A.2(i), is

well de…ned.
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In the context of our …rst-price auction, Athey’s (2001) single-crossing condi-
tion is as follows. For any bidder i; any bids bi and b0i; and any nondecreasing bid
functions bj for all bidders j 6= i; the following must hold:

SCC. If Vi(b0i;b¡i j si) ¸ Vi(bi;b¡i j si) then this inequality is maintained when si
rises if b0i > bi; while it is maintained when si falls if b

0
i < bi:

Unfortunately, Athey’s (2001) result cannot be applied because, for arbitrary
…nite or in…nite bid sets, SCC can fail in two ways (see Section 3). First, SCC can
fail when there are ties at positive bids and this is why we must approximate the
bidders’ common continuum bid set R+ with …nite bid sets whose only common
bid is zero.
Second, SCC can fail if a bidder employs an individually irrational bid. But

this failure of SCC does not pose a problem because Athey’s (2001) techniques
nonetheless apply. To see this, recall that Athey employs SCC only to establish
that when the others use monotone strategies, a bidder’s best reply correspon-
dence, as a function of his signal, is increasing in the strong set order.7;8 However,
being a property of best replies, the required monotonicity can in fact be estab-
lished precisely as in Athey (2001) so long as SCC holds for bids that are best
replies. That is, the failure of SCC for individually irrational bids is immaterial
for establishing strong set order monotonicity of the best reply correspondence.
Consequently, the existence of a monotone pure strategy equilibrium can be

established in a …rst-price auction with our particular …nite bid set approximation
if SCC can be established whenever ties at positive bids are absent and bids are
best replies.
We in fact establish a stronger form of single-crossing, which, a fortiori, suf-

…ces for our purposes. The following individually rational tieless single-crossing
condition (IRT-SCC) requires that, in addition to the absence of ties, one of the
two relevant bids be individually rational (neither bid is required to be a best
reply).

7That is, if a high bid is best at a low signal and a low bid is best at a high signal, then both
bids are best at both signals. (Milgrom and Shannon (1994) introduced the strong set order into
the economics literature and, using it, established a number of important comparative statics
results.)

8Athey’s (2001) convexity results then apply and existence follows, as Athey shows, from
Kakutani’s theorem.
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De…nition 2.2. A …rst-price auction satis…es IRT-SCC if for each bidder i;
and all pairs of bids bi; b0i 2 R+; the following condition is satis…ed for all
nondecreasing bid functions bj : [0; 1] ! R+ of the other bidders such that
Pr(bj > 0; and bj = bi or b0i) = 0 for all j 6= i.

IRT-SCC. Suppose Vi(b0i;b¡i j si) ¸ 0: If Vi(b0i;b¡i j si) ¸ Vi(bi;b¡i j si); then this
inequality is maintained when si rises if b0i > bi; while it is maintained when si
falls if b0i < bi:

The main contribution leading to the proof of Theorem 2.1 is the following
proposition. Its proof can be found in the appendix.

Proposition 2.3. Under assumptions A.1 and A.2, IRT-SCC holds.

Remark 4. It can in fact be shown that, given individual rationality, the single-
crossing inequality, IRT-SCC, holds even if ties occur at the higher of the two bids
b0i and bi: It is only ties at the lower of the two bids that cause single-crossing to
fail. But we shall not pursue this further here.

We next illustrate the two ways that SCC can fail.

3. The Two Failures of Single-Crossing

In each of the two examples below, there are three bidders and the joint distribu-
tion of their signals is as follows.
Bidders i = 1; 2 have signals, si; that are i.i.d. uniform on [0; 1]: These are

drawn …rst. Bidder 3’s signal, s3; is drawn from [0; 1] conditional on 1’s signal
according to the density

g(s3js1) =
8<: 1; if s1 · 1=2
2=3; if s1 > 1=2 and s3 · 1=2
4=3 if s1 > 1=2 and s3 > 1=2

Thus, 3’s signal is uniform on [0; 1] if s1 · 1=2. If s1 > 1=2; then 3’s signal is twice
as likely to be above 1/2 as below 1/2, but is otherwise uniformly distributed on
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each of the two halves of the interval [0; 1]: So de…ned, the bidders’ signals are
a¢liated.
The examples will be constructed so that SCC fails for bidder 1. Consequently,

bidders 2 and 3 can, for example, be given private values. In each example,
Bidder 1’s utility will take the quasilinear form u1(b; s) = w1(s) ¡ b; where, for
v0 · v1 · v2 · v3;

w1(s1; s2; s3) =

8>>>>>>>><>>>>>>>>:

v3; if (s2; s3) 2 [12 ; 1]£ [12 ; 1]

v2; if (s2; s3) 2 [12 ; 1]£ [0; 12)

v1; if (s2; s3) 2 [0; 12)£ [12 ; 1]

v0; if (s2; s3) 2 [0; 12)£ [0; 12)
Figure 3.1 illustrates both the distribution of the others’ signals conditional on
1’s signal, and bidder 1’s value for the good, w1(s1; s2; s3); as a function the
other bidders’ signals.9 In each panel, the numbers in square brackets are the
probabilities of each of the four regions conditional on 1’s signal. In panel (a) 1’s
signal is low (i.e., 1/2 or less), while in panel (b) it is high (i.e., above 1/2). In
both panels, the joint density of s2 and s3 is uniform within each region.
The two failures of SCC result from two distinct speci…cations of the values

v0; v1; v2; and v3:

3.1. The First Failure: Individually Irrational Bids

Consider the following values.

v0 = 1; v1 = 2; v2 = 8; v3 = 9

Suppose also that bidders 2 and 3 each employ a strictly increasing bidding
function that speci…es a bid of 5 at the signal 1/2 and a bid of 6 at the signal 1.
Now consider two signals, s1 and ¹s1; for bidder 1 such that s1 < 1=2 < ¹s1: Given
the bid functions of bidders 2 and 3, bidder 1 is indi¤erent between bidding 5 and
6 when his signal is s1; but that bidding 5 is strictly better than bidding 6 when
1’s signal increases to ¹s1 (see below). This of course violates SCC.

9Note that w1(s) is nondecreasing in s; but, contrary to A.1, it is independent of s1: This
is for simplicity only. Adding "s1 to w1(s); for " > 0 small enough, renders 1’s utility strictly
increasing in his signal and maintains the failure of SCC in both examples.
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Figure 3.1: 1’s Payo¤ Distribution

Furthermore, both bids, 5 and 6; are individually irrational for bidder 1
whether his signal is high or low. As we have already indicated, and as our
proof establishes, without ties in bids this is the only way that single-crossing can
fail. The requisite calculations follow.

V1(b1 = 6;b2;b3js1) = 1
4
(9 + 8 + 2 + 1)¡ 6 = ¡1

V1(b1 = 5;b2;b3js1) = 1
4
(1¡ 5) = ¡1

V1(b1 = 6;b2;b3j¹s1) = (1
3
9 + 1

6
8 + 1

3
2 + 1

6
1)¡ 6 = ¡5

6

V1(b1 = 5;b2;b3j¹s1) = 1
6
(1¡ 5) = ¡2

3

3.2. The Second Failure: Ties at Positive Bids

Consider now the following values.

v0 = 0; v1 = 0; v2 = 336; v3 = 336

Suppose this time that bidders 2 and 3 bid zero when their signal is 1=2 or
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lower and bid 120 when their signal is above 1=2: Consequently, bidders 2 and 3
bid zero and 120 with positive probability each.
Consider again two signals, s1 and ¹s1; for bidder 1 such that s1 < 1=2 < ¹s1:

Direct calculations now establish that, given the bidding functions of bidders 2
and 3, bidder 1’s unique best reply among the bids f0; 120; 167g is 167 when his
signal is s1; but his unique best reply when his signal increases to ¹s1 is 120: Thus
SCC is again violated. However, this time the chosen bids, 120 and 167; are
individually rational. The relevant calculations are as follows.

V1(b1 = 167;b2;b3js1) = 1
4
(0 + 0 + 336 + 336)¡ 167 = 1

V1(b1 = 120;b2;b3js1) = 1
4
(0¡ 120) + 1

4
(1
2
)(336¡ 120)

+1
4
(1
2
)(0¡ 120) + 1

4
(1
3
)(336¡ 120) = 0

V1(b1 = 0;b2;b3js1) = 1
4
(1
3
)(0¡ 0) = 0

V1(b1 = 167;b2;b3j¹s1) = 1
6
336 + 1

3
336¡ 167 = 1

V1(b1 = 120;b2;b3j¹s1) = 1
6
(0¡ 120) + 1

6
(1
2
)(336¡ 120)

+1
3
(1
2
)(0¡ 120) + 1

3
(1
3
)(336¡ 120) = 2

V1(b1 = 0;b2;b3j¹s1) = 1
6
(1
3
)(0¡ 0) = 0

4. IRT-SCC: A Sketch of the Proof

We now provide a sketch of the proof of IRT-SCC. To keep things simple, we shall
consider the case of three bidders, 1, 2, and 3, and establish only part of IRT-SCC
for bidder 1. Assumptions A.1 and A.2 are, of course, in force.
Consider two bids, ¹b1 > b1 > 0 for bidder 1, and suppose that bidders j =

2; 3 each employ a strictly increasing bidding function, bj ; such that bj(0) =
0; bj(¹sj) = ¹b1 and bj(sj) = b1 for some signals ¹sj > sj:

10 Because the joint

10Because we allow asymmetric bidders, the bidding functions employed by bidders 2 and 3
needn’t be identical. Consequently, we assume neither that s2 = s3 nor that ¹s2 = ¹s3: The as-
sumption that these bidding functions are strictly increasing, rather than merely nondecreasing,
is made only to simplify this proof sketch. The proof given in the appendix requires only that
these functions do not induce ties at either ¹b1 or b1:
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density over signals is everywhere strictly positive, both bids of bidder 1 win with
strictly positive probability regardless of his signal. Note also that ties occur with
probability zero. Throughout this section, the strategies of bidders 2 and 3 will
remain …xed, and all statements about 1’s payo¤ are against these …xed strategies.
Consider two signals for bidder 1, one high, ¹s1; and one low, s1: We shall

content ourselves with showing that if ¹b1 is individually rational and at least as
good as b1 for bidder 1 when his signal is low, then ¹b1 remains at least as good as
b1 for bidder 1 when his signal is high.
Now, b1 is either individually rational or individually irrational for bidder

1 at ¹s1: Consider …rst the case in which it is individually irrational. Hence,
by de…nition, 1’s payo¤ from bidding b1 at ¹s1 is negative. Now, because we
are assuming that ¹b1 is individually rational at s1; 1’s payo¤ from bidding ¹b1 is
nonnegative at s1: Therefore, because u1(¹b1; s) is nondecreasing in s; and because
the signals are a¢liated, ¹b1 is also individually rational at ¹s1:11 Consequently,
bidding ¹b1 is at least as good as bidding b1 when 1’s signal is high, which is our
desired conclusion. So, in the remainder of this proof-sketch we may assume that
we are in the other case, namely, that in which b1 is individually rational for
bidder 1 at ¹s1:
Consult Figure 4.1. The …gure identi…es four regions of the joint signal space

of bidders 2 and 3. In region A0; both bids, ¹b1 and b1; are winning for bidder 1,
while in regions A1; A2; and A3; only the higher bid, ¹b1; is winning for bidder 1.
Consequently, as shown in the …gure, the ex-post di¤erence in 1’s payo¤ from ¹b1
versus b1; which we shall denote by ¢(s); is u1(¹b1; s)¡u1(b1; s) in region A0; while
it is simply u1(¹b1; s) in the other three regions.
Let A = [0; ¹s2] £ [0; ¹s3] denote the union of the four regions, i.e., the event

that ¹b1 is a winning bid. When (s2; s3) is outside A; both bids lose and so ¢(s) is
zero. Consequently, given his signal s1; the di¤erence in 1’s payo¤ from bidding
¹b1 versus b1 is

Pr(Ajs1)E(¢(S)jA; s1):
Now, because ¹b1 wins with positive probability regardless of 1’s signal,

Pr(Ajs1) > 0: Hence, if we could show that E(¢(S)jA; s1) were nondecreasing
in s1 we would be done. The following question thus arises. When are condi-
tional expectations of functions of a¢liated random variables monotone in their
conditioning variables?

11This follows from the monotonicity result due to Milgrom and Weber (1982) described
below.
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Figure 4.1: Payo¤ di¤erence from b1 = ¹b1 vs. b1 = b1

An important and well-known theorem due to Milgrom and Weber (1982)
states that if X1; :::; Xn are a¢liated and Á(x1; :::; xn) is a nondecreasing real-
valued function, then the expectation of Á; conditional on any number of events
of the form Xk 2 [ak; bk]; is nondecreasing in all the ak and bk; and where ak = bk
is permitted.
So, for example, if the ex-post di¤erence, ¢(s); in 1’s payo¤ from bidding ¹b1

versus b1 were nondecreasing in s = (s1; s2; s3) across the four regions of the …gure
we’d be done.
Now, by assumption, within each of the four regions, ¢(s) is, for …xed s1;

nondecreasing in s2 and s3; and for any …xed s2 and s3 it is nondecreasing in s1:
Unfortunately, ¢(s) need not be nondecreasing across all four regions because it
can quite easily happen that a negative value of u1(b1; s) near the upper border
of region A0 renders u1(¹b1; s)¡ u1(b1; s) strictly greater than u1(¹b1; s) just across
that border into region A1; say, so that ¢(s) falls as (s2; s3) increases from region
A0 into region A1: This is the essential di¢culty that must be overcome.
The idea is to instead consider the average values of ¢(s) in each of the

four regions, rather than ¢(s) itself. We will see that these average values are
nondecreasing and this will allow us to apply Milgrom and Weber’s monotonicity
result to the desired e¤ect.
First, let us write E(¢(S)jA; s1) as the sum of the conditional expectations

over the four regions, i.e.,
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E(¢(S)jA; ; s1) = Pr(A0jA; s1)E(¢(S)jA0; s1)
+Pr(A1jA; s1)E(¢(S)jA1; s1)
+Pr(A2jA; s1)E(¢(S)jA2; s1)
+Pr(A3jA; s1)E(¢(S)jA3; s1):

As already remarked, ¢(s) is nondecreasing in s 2 [0; 1] £ Ak for each k =
0; 1; 2; 3: Consequently, Milgrom and Weber’s monotonicity result implies
E(¢(S)jAk; s1) · E(¢(S)jAk; ¹s1) for each k: Hence, we may write

E(¢(S)jA; s1) · Pr(A0jA; s1)E(¢(S)jA0; ¹s1)
+Pr(A1jA; s1)E(¢(S)jA1; ¹s1)
+Pr(A2jA; s1)E(¢(S)jA2; ¹s1)
+Pr(A3jA; s1)E(¢(S)jA3; ¹s1):

Letting ®k = E(¢(S)jAk; ¹s1) denote the average value of ¢(s) within region
Ak given ¹s1; we may write the above expression more succinctly as

E(¢(S)jA; s1) · Pr(A0jA; s1)®0+Pr(A1jA; s1)®1+Pr(A2jA; s1)®2+Pr(A3jA; s1)®3:
Consider now the following step function over the four regions of the …gure:

h(s2; s3) = ®k; if (s2; s3) 2 Ak:
Then we may rewrite once more the above inequality as

E(¢(S)jA; s1) · E(h(S2; S3)jA; s1):
Suppose, for the moment, that the step-function h is nondecreasing over all

four regions. Then, by Milgrom and Weber’s monotonicity result, we’d have

E(¢(S)jA; s1) · E(h(S2; S3)jA; s1)
· E(h(S2; S3)jA; ¹s1)
= E(¢(S)jA; ¹s1);

where the last equality follows from the de…nitions of h and the ®k; and we’d have
proven the desired monotonicity of E(¢(S)jA; s1) in s1: Hence, it su¢ces to show
that h is nondecreasing, or, equivalently, that ®0 · ®k · ®3 for k = 1; 2:

14



Now, for k = 1; 2,

®k = E(u1(¹b1; S)jAk; ¹s1)
· E(u1(¹b1; S)jA3; ¹s1)
= ®3;

where the inequality follows from Milgrom and Weber’s monotonicity result. It
therefore remains only to show that ®0 · ®k for k = 1; 2:
It is here where the individual rationality of the bid b1 at ¹s1 is needed. Note

that a bid of b1 wins precisely when the others’ signals are in region A0; and this
occurs with positive probability. Hence, b1 is individually rational at ¹s1 if and
only if

E(u1(b1; S)jA0; ¹s1) ¸ 0:
We then have that for k = 1; 2:

®k = E(u1(¹b1; S)jAk; ¹s1)
¸ E(u1(¹b1; S)jA0; ¹s1)
= E(u1(¹b1; S)¡ u1(b1; S)jA0; ¹s1) + E(u1(b1; S)jA0; ¹s1)
¸ E(u1(¹b1; S)¡ u1(b1; S)jA0; ¹s1)
= E(¢(S)jA0; ¹s1)
= ®0;

where the …rst inequality follows from Milgrom and Weber’s monotonicity result
and the second follows from the individual rationality of the bid b1 at ¹s1:

5. Multi-Dimensional Signals: A Private Value Counterex-
ample

We now provide a private value example suggesting that Theorem 2.1 fails if
the bidders’ signals are not one-dimensional. The example possesses a unique
equilibrium, which is pure and non-monotone.
The example is only suggestive because, while it satis…es the multi-dimensional

signal analogue of assumption A.1, it involves several extreme distributional spec-
i…cations. For example, some signals are discrete random variables rather than
continuous ones, and some signals are perfectly correlated with others. Conse-
quently, the joint signal distribution has no density function and so, formally, A.2
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fails. However, the signals in our example are a¢liated, and we conjecture that
no smoothed nearby example satisfying A.1 and A.2 will possess a monotone pure
strategy equilibrium either.12 But this remains an open question.
There are three bidders, 1,2,3. Bidder 1 receives the two-dimensional signal

S1 = (X; Y ); while bidders 2 and 3 each receive the same two-dimensional sig-
nal S2 = S3 = (Y; Z); where X and Y are i.i.d. random variables taking on
the values 0 and 1 with probability 1/2 each; and Z is independently and uni-
formly distributed on [0; 1] [ [2; 3]: Consequently, the six real random variables
(S1; S2; S3) = (X; Y; Y; Z; Y; Z) are a¢liated.
The bidders have private values and quasilinear utilities. Bidder 1’s value is

v1(x; y) = 6x;

while bidders 2 and 3 have identical values v2(y; z) = v3(y; z) = v(y; z); where

v(y; z) =

8<: 7 if y = 1; z 2 [2; 3]

z otherwise.

Proposition 5.1. The above …rst-price auction example possesses a unique equi-
librium (up to ex ante probability zero events) which is pure and non-monotone.
Indeed, the equilibrium is: For y = 0; 1 and a.e. z; b1(0; y) = 0; b1(1; 0) = 3;
b1(1; 1) = 1; bj(y; z) = v(y; z) j = 2; 3:

The proof of the proposition is in the appendix, but the argument is straight-
forward. Because bidders 2 and 3 have identical values, and because their signals
are also identical, their identical values are common knowledge between them.
Consequently, a standard Bertrand competition argument establishes that bid-
ders 2 and 3 must each bid their value in equilibrium. Hence, bidders 2 and 3
employ monotone pure strategies. It remains only to …nd bidder 1’s best reply.
When 1’s signal S1 = (x; y) = (0; y); bidder 1’s unique best reply is to bid zero

because his value is v1 = 6x = 0: The interesting case is when x = 1:
When S1 = (x; y) = (1; 0); bidder 1’s value is v1 = 6 and he knows that Y = 0:

Consequently, he knows that the common bid of bidders 2 and 3 is v(0; Z) = Z;
which is uniformly distributed on [0; 1] [ [2; 3]; and a straightforward calculation
establishes that 1’s unique best reply is to bid 3.

12Arbitrarily nearby examples satisfying A.1 and A.2 exist.
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However, when S1 = (x; y) = (1; 1); bidder 1’s value is again v1 = 6; but he
now knows that Y = 1: Consequently, he knows that bidders 2 and 3 each bid
v(1; Z) = 7 if Z 2 [2; 3] while they each bid v(1; Z) = Z if Z 2 [0; 1]: Clearly,
it would be suboptimal for bidder 1 to bid 7 or more since his value is only 6.
Consequently, bidder 1 will bid less than 7 and so can condition on the event that
2 and 3 bid less than 7 as well. But, conditional on bidding less than 7; bidders
2 and 3 submit a common bid that is uniformly distributed on [0; 1]: Another
straightforward calculation establishes that bidder 1’s unique best reply now is to
bid 1.
Hence, bidder 1’s unique equilibrium bidding function is non-monotone, falling

from a bid of 3 to a bid of 1 when his signal increases from (1; 0) to (1; 1):
One reason for the failure of monotonicity here is the failure of a¢liation to be

inherited by monotone functions of multi-dimensional a¢liated random variables.
Speci…cally, even though the random variables Y and Z are independent and
hence a¢liated, the random variables Y and v(Y; Z) are not a¢liated, despite the
fact that v(Y;Z) is nondecreasing. To see this simply observe that

Pr(v(Y; Z) 2 [2; 3]jY = 0)
Pr(v(Y; Z) 2 [0; 1]jY = 0) = 1 > 0 =

Pr(v(Y; Z) 2 [2; 3]jY = 1)
Pr(v(Y; Z) 2 [0; 1]jY = 1) :

Consequently, in the example, one of the dimensions of bidder 1’s signal, Y; is
not a¢liated with the equilibrium bids of the other bidders.
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A. APPENDIX

Proof of Proposition 2.3. To establish IRT-SCC, …x ¹bi > bi and, for all bidders
but i; …x nondecreasing bid functions, b¡i; satisfying Pr(bj > 0; and bj = ¹bi or
bi) = 0 for all j 6= i: Because the IRT-SCC inequality holds trivially when the
reserve price, r; strictly exceeds ¹bi; assume without loss that ¹bi ¸ r:
Let Vi(bi;b¡i jD; si) denote i’s expected payo¤, conditional on an event D (a

Borel subset of [0; 1]N ) and the signal si; from bidding bi when the others employ
the given strategies b¡i:
Let A denote the event that bidder i’s bid of ¹bi is among the highest, i.e.,

A =
T
j 6=i
fs 2 [0; 1]N : bj(sj) · ¹big:

If Pr(Ajsi) = 0 for some si 2 [0; 1]; then (because f > 0 on [0; 1]N ) Pr(Ajsi) = 0
for all si 2 [0; 1] and the IRT-SCC inequality holds trivially. Hence, we may
assume that Pr(A j si) > 0 for all si 2 [0; 1]: So, because for bi · ¹bi; Vi(bi;b¡i jsi) =
Pr(A j si)Vi(bi;b¡i jA; si); the IRT-SCC inequality will hold if for ¹si > si
Vi(¹bi;b¡i jA; si)¡Vi(bi;b¡i jA; si) ¸ 0 implies Vi(¹bi;b¡i jA; ¹si)¡Vi(bi;b¡i jA; ¹si) ¸ 0;

(A.1)
when Vi(¹bi;b¡i jA; si) ¸ 0; and

Vi(¹bi;b¡i jA; ¹si)¡Vi(bi;b¡i jA; ¹si) · 0 implies Vi(¹bi;b¡i jA; si)¡Vi(bi;b¡i jA; si) · 0;
(A.2)

when Vi(bi;b¡i jA; ¹si) ¸ 0:
Now, ¹bi > bi ¸ 0 implies Pr(bj = ¹bi) = Pr(bj > 0; and bj = ¹bi) · Pr(bj > 0;

and bj = ¹bi or bi) = 0 for all j 6= i: But f > 0 on [0; 1]N then implies Pr(bj =
¹bijsi) = 0 for all si 2 [0; 1]: Hence, Vi(¹bi;b¡i jA; si) = E(ui(¹bi; S)jA; si): Moreover,
by A.1 (iv) and Theorem 5 in Milgrom and Weber (1982) (henceforth MW Thm.
5), E(ui(¹bi; S)jA; si) is nondecreasing in si, and so

Vi(¹bi;b¡i jA; si) ¸ 0 implies Vi(¹bi;b¡i jA; ¹si) ¸ 0:

Consequently, if Vi(¹bi;b¡i jA; si) ¸ 0 and Vi(bi;b¡i jA; ¹si) < 0; then (A.1) holds
simply because the second di¤erence is positive, being the di¤erence between a
nonnegative and a negative number. Hence, it su¢ces to establish (A.1) and (A.2)
when Vi(bi;b¡i j ¹si) ¸ 0:
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We shall in fact show more than this, namely, that if

Vi(bi;b¡i j ¹si) ¸ 0; (A.3)

then

Vi(¹bi;b¡i jA; si)¡ Vi(bi;b¡i jA; si) · Vi(¹bi;b¡i jA; ¹si)¡ Vi(bi;b¡i jA; ¹si) (A.4)

To see this, de…ne for j 6= i; Âj(sj) = 0 if bj(sj) 2 [0; bi] and Âj(sj) = 1 if
bj(sj) 2 (bi;¹bi]: Partition A into subevents as follows. For each x 2 f0; 1gN¡1 let

A(x) = fs : Âj(sj) = xj ;8j 6= ig
be the event that bidders j 6= i such that xj = 0 submit bids in [0; bi]; while bidders
j 6= i such that xj = 1 submit bids in (bi;¹bi]:13 Consequently, fA(x)gx2f0;1gN¡1 is
a partition of A:14

Note that for any x 2 f0; 1gN¡1; our assumption that f > 0 implies that if
Pr(A(x)jA; si) is zero for some si; then it is zero for all si:
The event A(0) is that in which all bidders j 6= i bid weakly below bi: Now,

if Pr(A(0)jA; si) is zero for some si; it is zero for all si; so that bidder i’s bid of
bi wins with probability zero regardless of his signal. In this case, (A.4) reduces
to E(ui(¹bi; S)jA; si) · E(ui(¹bi; S)jA; ¹si); which follows from MW Thm. 5. Hence,
we may assume that Pr(A(0)jA; si) > 0 for every si 2 [0; 1]:
Now, if bidder i bids bi and bi > 0 then Pr(bj = bi) = Pr(bj > 0; and

bj = bi) · Pr(bj > 0; and bj = ¹bi or bi) = 0 for all j 6= i: Hence, because f > 0 on
[0; 1]N ; Pr(bj = bijA(0); si) = 0 for all si 2 [0; 1]: That is, conditional on the others
bidding weakly below bi; and conditional on any si bidder i wins with probability
one with a bid of bi: Hence, i’s expected payo¤ would be E(ui(bi; S)jA(0); si):
On the other hand, if bidder i bids bi and bi = r = 0; then Pr(bj = bijA(0); si) =

1: That is, conditional on the others bidding bi = 0 and conditional on si, bidder i
ties with every other bidder with probability one with a bid of zero. In this case,
i’s expected payo¤ would be 1

N
E(ui(bi; S)jA(0); si):

13The components of theN¡1 dimensional vector x are numbered in ascending order excluding
i: For example, if i = 2 and N = 4; then x = (x1; x3; x4): This is equivalent to writing x¡i when
x = (x1; x2; x3; x4); but is notationally less burdensome in what follows.
14The reader might wonder why we do not employ a more succinct notation for the subevents.

For example, for J µ Nnfig; letting A(J) = fs : bj(sj) 2 [0; bi] if j =2 J[fig; and bj(sj) 2 (bi;¹bi]
if j 2 Jg produces the same partition of events as J varies over all subsets of Nnfig: But the
reader will see shortly that we will make use of the ordering of the vectors x in f0; 1gN¡1 and
the notation A(x) will then prove especially useful.
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Finally, as we have already shown, because ¹bi > 0; Pr(bj = ¹bi) = 0 for all
j 6= i: So, because f > 0; Pr(bj = ¹bijA; si) = 0 for all si 2 [0; 1]: That is, a bid
of ¹bi wins with probability one conditional on any si and conditional on A; the
event that all other bidders bid weakly below ¹bi: This gives i an expected payo¤
of E(ui(¹bi; S)jA; si)
Hence, we may write the left-hand side of (A.4) as

Vi(¹bi;b¡i jA; si)¡ Vi(bi;b¡i jA; si) =

Pr(A(0)jA; si)E[ui(¹bi; S)¡ ¸ui(bi; S)jA(0); si]

+
X

x2f0;1gN¡1nf0g
Pr(A(x)jA; si)E[ui(¹bi; S)jA(x); si];

where ¸ = 1 if bi = max(bi; r) > 0; ¸ = 1=N if bi = r = 0 and ¸ = 0 if bi < r.
If some probability in the sum above is zero, de…ne the associated conditional
expectation to be any …nite number.
Because we have assumed that both ui(¹bi; s)¡ui(bi; s) and ui(¹bi; s) are nonde-

creasing in s; their convex combination, ui(¹bi; s)¡¸ui(bi; s); is also nondecreasing
in s: Consequently, because the Sk are a¢liated, we have (by MW Thm.5)

Vi(¹bi;b¡i jA; si)¡ Vi(bi;b¡i jA; si) =

Pr(A(0)jA; si)E[ui(¹bi; S)¡ ¸ui(bi; S)jA(0); si]

+
X

x2f0;1gN¡1nf0g
Pr(A(x)jA; si)E[ui(¹bi; S)jA(x); si]

(A.5)

· Pr(A(0)jA; si)E[ui(¹bi; S)¡ ¸ui(bi; S)jA(0); ¹si]

+
X

x2f0;1gN¡1nf0g
Pr(A(x)jA; si)E[ui(¹bi; S)jA(x); ¹si]:

De…ne h : f0; 1gN¡1 ! R+ as follows: For x = 0 de…ne

h(0) = E[ui(¹bi; ¹si; S¡i)¡ ¸ui(bi; ¹si; S¡i)jA(0); ¹si]:
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Next, for all nonzero x de…ne

h(x) = max
0·y·x;Pr(A(y)jsi)>0

E[ui(¹bi; S)jA(y); ¹si]; (A.6)

where the maximum is always well de…ned because Pr(A(0)jsi) > 0: Hence, by
MW Thm.5, Pr(A(x)jA; si) > 0 implies

h(x) = E[ui(¹bi; S)jA(x); ¹si]: (A.7)

So, we may rewrite the inequality expressed in (A.5) as

Vi(¹bi;b¡i jA; si)¡ Vi(bi;b¡i jA; si) ·
X

x2f0;1gN¡1
Pr(A(x)jA; si)h(x): (A.8)

We shall argue that the sum on the right-hand side of (A.8) is nondecreasing
in i’s signal. To see this, note …rst that given (A.6), h(x) is nondecreasing on
f0; 1gN¡1nf0g: So, h will be nondecreasing on all of f0; 1gN¡1 if h(x) ¸ h(0) for
all nonzero x: But this follows from the fact that for any 0 · y · x such that
Pr(A(y)jA; si) > 0 (and hence Pr(A(y)jA; ¹si) > 0);

E[ui(¹bi; S)jA(y); ¹si] ¸ E[ui(¹bi; S)jA(0); ¹si]
= E[ui(¹bi; S)¡ ¸ui(bi; S)jA(0); ¹si]

+E[¸ui(bi; S)jA(0); ¹si]
= h(0) + E[¸ui(bi; S)jA(0); ¹si]
= h(0) + Vi(bi;b¡i j ¹si)=Pr(A(0) jA; ¹si)
¸ h(0);

where the …rst inequality follows from MW Thm.5, and the last inequality follows
from (A.3). Thus, we have established that h is nondecreasing.
For each vector of signals s; de…ne

Á(s) =

½
h(x);
0;

if s 2 A(x) for x 2 f0; 1gN¡1
otherwise

So de…ned, Á(s) is nondecreasing in s on A: Consequently, by MW Thm. 5,
E(Á(S)jA; Si = si) is nondecreasing in si. Observing that

E(Á(S)jA; Si = si) =
X

x2f0;1gN¡1
Pr(A(x)jA; si)h(x)

21



establishes that the sum on the right-hand side of (A.8) is nondecreasing in i’s
signal. Consequently, from (A.8) we have

Vi(¹bi;b¡i jA; si)¡ Vi(bi;b¡i jA; si) ·
X

x2f0;1gN¡1
Pr(A(x)jA; si)h(x)

·
X

x2f0;1gN¡1
Pr(A(x)jA; ¹si)h(x)

= Vi(¹bi;b¡i jA; ¹si)¡ Vi(bi;b¡i jA; ¹si);

where the …nal equality follows from (A.7) and because Pr(A(x)jA; ¹si) = 0 when-
ever Pr(A(x)jA; si) = 0: Thus, we have established that (A.3) implies (A.4).

Proof of Theorem 2.1. PART 1. In this …rst part of the proof we shall focus
attention on a slightly modi…ed …rst-price auction game. There are two modi-
…cations. First, we restrict the bidders to …nite sets of nonnegative bids. Each
…nite set contains the zero bid, but no two sets have any positive bids in com-
mon. This means that ties can only occur at bids of zero. Second, we restrict the
bidders’ strategies so that each bidder must bid zero when his signal is in [0; ");
where " 2 (0; 1) is …xed. Because the joint density of signals is strictly positive
on [0; 1]N ; every bid b ¸ r wins with strictly positive probability regardless of
one’s signal. Consequently, such bids must earn non-negative expected utility in
equilibrium. We wish to show the following.

Under the two modi…cations above, a monotone pure strategy equilibrium exists.

To establish this, it would su¢ce to verify the single-crossing condition (SCC)
employed in Athey (2001). We could then appeal to Athey’s Theorem 1. However,
as we have seen, SCC does not hold in our setting. Fortunately, Athey’s existence
proof goes through without any changes if the following, more permissive, best-
reply single-crossing condition holds in our modi…ed auction.

BR-SCC. If b0i is a best reply for si against b¡i; and bi is any other feasible bid,
then the inequality Vi(b0i;b¡i j s0i) ¸ Vi(bi;b¡i j s0i) holds for all s0i > si if b0i > bi;
while it holds for all s0i < si if b

0
i < bi:

Hence, if we can show that BR-SCC holds in our modi…ed auction, then it

22



possesses a monotone pure strategy equilibrium.15 We now show that this is
indeed the case.
So, suppose that in our modi…ed auction b0i is a best reply for si against the

others’ monotone strategy b¡i; and bi is any other feasible bid for i. If si 2 [0; ");
then b0i = bi = 0 and we are done. Hence, we may suppose that si ¸ ": Now,
because the zero bid is available for i and b0i is a best reply for si; we must have
Vi(b

0
i;b¡i j si) ¸ max(Vi(bi;b¡i j si); Vi(0;b¡i j si)) ¸ 0: Hence, in addition to being

as good as bi; b0i is individually rational for i at si:
Also, because the only common bid available to distinct bidders is zero, Pr(bj >

0; and bj = b0i or bi) = 0 for all j 6= i: Hence, by Proposition 2.3 we may conclude
that Vi(b0i;b¡i j s0i) ¸ Vi(bi;b¡i j s0i) holds for all s0i > si if b0i > bi; while it holds for
all s0i < si if b

0
i < bi:

This establishes BR-SCC for our modi…ed auction and so we conclude that it
possesses a monotone pure strategy equilibrium.16

PART 2. In this second part of the proof, we consider a sequence of monotone
equilibria of the modi…ed auctions from Part 1. For n = 1; 2; :::; let Gn denote
the modi…ed auction in which " = 1=n and bidder i’s …nite set of bids is denoted
by Bni . Further, suppose that B

n
i ¶ Bn¡1i and that B1i = [nBni is dense in R+:

Let b̂n denote a monotone pure strategy equilibrium of Gn:Without loss we may
suppose that no bid b̂ni (si) is strictly between zero and r because equilibrium will
be preserved if all such bids are rede…ned to be zero. Also, by A.1 (ii), there exists
~b ¸ 0 such that ui(b; s) < 0 for all b > ~b and all s 2 [0; 1]N . Consequently, because
all bids equal to or above r win with positive probability, because the zero bid
is available in Gn and because, by A.1(iii), ui(0; s) ¸ 0 for all s 2 [0; 1]N ; each
b̂ni ¸ 0 is bounded above by ~b: By Helley’s Theorem, we may assume without loss
that b̂n(s)! b̂(s) for every s 2 [0; 1]N ; where each b̂i is nondecreasing on [0; 1]:17
We shall argue that b̂ is a monotone equilibrium of the …rst-price auction game.

15While our …rst restriction, that bids are taken from …nite sets, matches Athey’s …nite action
set environment, our second restriction, that bidders must bid zero when their signals are less
than "; is not present in Athey’s (2001) treatment. Nonetheless, Athey’s results easily go through
with this restriction in place because it has no e¤ect on her convexity arguments.
16Note that our example of the second failure of SCC in Section 5 demonstrates that BR-SCC

fails if one allows the bidders’ …nite bid sets to have positive bids in common.
17Most versions of Helley’s theorem state that convergence can be guaranteed at all continuity

points of each b̂i: However, because signals are one-dimensional, and each b̂i is nondecreasing,
there are at most countably many discontinuity points and so convergence can in fact be guar-
anteed everywhere by suitably modifying b̂i at these countably many points and considering a
subsequence if necessary.
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To do so, we …rst establish that, given b̂; the probability that any two distinct
bidders each submit the highest bid weakly above r is zero.
Suppose, by way of contradiction, that the probability that the bid ¹b ¸ r is the

highest bid and is submitted simultaneously by two distinct bidders is positive.
For every bidder i; de…ne si = inffsijb̂i(si) ¸ ¹bg and ¹si = supfsijb̂i(si) · ¹bg:18

Note then that b̂i(si) = ¹b for all si 2 (si; ¹si), and there is a subset, I; containing
at least two bidders such that

Pr(si 2 (si; ¹si); 8i 2 I and si < ¹si; 8i) > 0: (A.9)

Hence, ¹si > 0 for all bidders i = 1; 2; :::; N; and si < ¹si for all bidders i 2 I:
For distinct bidders i and j; and si 2 [0; 1]; let snj (si) denote the supremum

of those sj 2 [0; 1] such that b̂nj (sj) · b̂ni (si):
19 Because snj (si) is nondecreasing

in si; we may assume without loss (by Helley’s Theorem) that snj (si)! ŝj(si) for
every si 2 [0; 1]:
Note that ŝj(si) · ¹sj for every si 2 (si; ¹si): To see this, …x si 2 (si; ¹si) and

~sj > ¹sj : By the de…nition of ¹sj; we have b̂j(~sj) > ¹b = b̂i(si): Consequently, for
n large enough, b̂nj (~sj) > b̂ni (si); so that s

n
j (si) · ~sj : Taking the limit yields

ŝj(si) · ~sj ; and because ~sj > ¹sj is arbitrary, we conclude that ŝj(si) · ¹sj :
Consider si 2 (si; ¹si): Because for no n is b̂ni (si) strictly between zero and r;

b̂ni (si)! b̂i(si) = ¹b ¸ r implies b̂ni (si) ¸ r for all n large enough.
Because in Gn ties in bids can occur with positive probability only at the bid

zero, i’s payo¤ at b̂n when his signal is si 2 (si; ¹si) and his bid (greater or equal
to r for n large enough) is among the highest, is equal to E(ui(b̂ni (si); S)jSi =
si; b̂

n
j (Sj) · b̂ni (si);8j 6= i); unless b̂ni (si) = 0 in which case his payo¤ is 1=Nth as

large. In either case, for every si 2 (si; ¹si); and for n large enough, we must have;

0 · E(ui(b̂
n
i (si); S)jSi = si; b̂nj (Sj) · b̂ni (si); 8j 6= i)

= E(ui(b̂
n
i (si); S)jSi = si; Sj · snj (si); 8j 6= i)

! E(ui(¹b; S)jSi = si; Sj · ŝj(si); 8j 6= i);

where the inequality follows because, in Gn; all bids greater or equal to r win with
positive probability and the zero bid is available and yields at least zero utility;

18De…ne si = 1 if the set in its de…nition is empty, and de…ne ¹si = 0 if the set in its de…nition
is empty.
19Such sj ’s always exist because our restriction requires b̂nj (sj) = 0 for all sj 2 [0; 1=n]:
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and where the limit follows if ŝj(si) > 0; 8j 6= i: So, for every si 2 (si; ¹si) such
that ŝj(si) > 0 8j 6= i;

0 < E(ui(¹b; S)jSi = si; Sj · ŝj(si); 8j 6= i) · E(ui(¹b; S)jSi = si; Sj · ¹sj ; 8j 6= i);
(A.10)

where the strict inequality follows because ui is strictly increasing in si; and the
weak inequality follows from MW Thm. 5 because ŝj(si) · ¹sj.
Next, we wish to argue that ŝj(si) = ¹sj for every distinct i; j and every si 2

(si; ¹si): So, assume by way of contradiction that ŝj(si) < ¹sj for some i; j and some
si 2 (si; ¹si): Then because f is strictly positive on [0; 1]N ; and ¹sk > 0 for all k;

Pr(Sk · ¹sk; 8k 6= ijsi) > Pr(Sk · ŝk(si); 8k 6= ijsi): (A.11)

Also, if ŝj(si) < ¹sj ; then for all s0i 2 (si; si) we have ŝj(s0i) < ¹sj. Consequently, by
(A.10) and (A.11),

Pr(Sk · ¹sk; 8k 6= ijs0i)E(ui(¹b; S)jSi = s0i; Sk · ¹sk;8k 6= i) >
(A.12)

Pr(Sk · ŝk(s0i); 8k 6= ijsi)¸E(ui(¹b; S)jSi = s0i; Sk · ŝk(s0i);8k 6= i);

for any ¸ 2 [0; 1] if ŝk(s0i) > 0; 8k 6= i: By de…ning the right-hand side to be zero
when ŝk(s0i) = 0 for some k; this strict inequality holds whether or not ŝk(s

0
i) > 0

8k 6= i; because the left-hand side is strictly positive.20
Observe that, because ui(¢; s) is continuous by A.1(i), the left-hand side of

(A.12) is the limit as n!1 and then as ± # 0; of s0i’s payo¤ when he bids ¹b+ ±
in Gn: Similarly, having de…ned the right-hand side to be zero when ŝj(s0i) = 0

ensures that the right-hand side is the limit of s0i’s payo¤ when he bids b̂
n
i (s

0
i) in

Gn; where ¸ is understood to be 1=N in case b̂ni (s
0
i) = 0 for n large enough, while

¸ = 1 otherwise.
So, if for every m; bm 2 Bmi is a feasible bid for i in Gm and bm # ¹b (such a

sequence exists because Bmi becomes dense in R+); then for all s0i 2 (si; si)
20Strict positivity follows from (A.11) and the relations, taken from above, that for all si 2

(si; ¹si); 0 · E(ui(b̂ni (si); S)jSi = si; b̂nj (Sj) · b̂ni (si);8j 6= i) = E(ui(b̂
n
i (si); S)jSi = si; Sj ·

snj (si);8j 6= i) · E(ui(b̂ni (si); S)jSi = si; Sj · ¹sj ;8j 6= i) ! E(ui(¹b; S)jSi = si; Sj · ¹sj ;8j 6=
i); because ¹sj > 0 for all j: Hence, E(ui(¹b; S)jSi = si; Sj · ¹sj ;8j 6= i) > 0 for all si 2 (si; ¹si)
because ui is strictly increasing in si:
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lim
m
lim
n
Vi(bm; b̂

n
¡ijs0i)

= Pr(Sj · ¹sj; 8j 6= ijs0i)E(ui(¹b; S)jSi = s0i; Sj · ¹sj ; 8j 6= i)

> Pr(Sj · ŝj(s0i); 8j 6= ijsi)¸E(ui(¹b; S)jSi = s0i; Sj · ŝj(s0i); 8j 6= i)

= lim
n
Vi(b̂

n
i (s

0
i); b̂

n
¡ijs0i):

Consequently, we may choose a subsequence nm of n such that nm ¸ m for all
m; and such that for all s0i 2 (si; si)

lim
m

h
Vi(bm; b̂

nm
¡i js0i)¡ Vi(b̂nmi (s0i); b̂nm¡i js0i)

i
= Á(s0i) > 0;

where Á(s0i) = Pr(Sj · ¹sj; 8j 6= ijs0i)E(ui(¹b; S)jSi = s0i; Sj · ¹sj; 8j 6= i)¡
Pr(Sj · ŝj(s

0
i);8j 6= ijsi)¸E(ui(¹b; S)jSi = s0i; Sj · ŝj(s

0
i);8j 6= i) is the di¤er-

ence between the left-hand side and right-hand side in (A.12).
Hence, letting fi denote the marginal of f on bidder i’s signal, we have, by

Lebesgue’s dominated convergence theorem,

lim
m

Z si

si

h
Vi(bm; b̂

nm
¡i js0i)¡ Vi(b̂nmi (s0i); b̂nm¡i js0i)

i
fi(s

0
i)ds

0
i =

Z si

si

Á(s0i)fi(s
0
i)ds

0
i > 0;

so that for m large enough,

Vi(bm; b̂
nm
¡i js0i) > Vi(b̂nmi (s0i); b̂nm¡i js0i)

for a positive fi measure of signals s0i 2 (si; si): But because nm ¸ m implies
that Bnm contains Bm and so also that bm 2 Bnm ; this contradicts b̂nm being an
equilibrium in Gnm :
Therefore, we must have ŝj(si) = ¹sj for every si 2 (si; ¹si) and every distinct

i; j: But this implies that for si 2 (si; ¹si) and sj 2 (sj; ¹sj); b̂nj (sj) · b̂ni (si) and
(reversing the roles of i and j) b̂nj (sj) ¸ b̂ni (si); for all n large enough. Recalling
that, in Gn; ties in bids can occur only at a bid of zero, we may conclude that for
all distinct i; j; every si 2 (si; ¹si) and every sj 2 (sj ; ¹sj); b̂nj (sj) = b̂ni (si) = 0 for
all n large enough.
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Choose i; j 2 I: Then, for every si 2 (si; ¹si);

Pr(Sk · ¹sk; 8k 6= ijsi)E(ui(0; S)jSi = si; Sk · ¹sk;8k 6= i) =

Pr(Sk · ŝk(si); 8k 6= ijsi)E(ui(0; S)jSi = si; Sk · ŝk(si);8k 6= i) > (A.13)

Pr(Sk · ŝk(si); 8k 6= ijsi) 1
N
E(ui(0; S)jSi = si; Sk · ŝk(si); 8k 6= i) > 0;

the third line being strictly positive because ui(0; s) ¸ 0 is strictly increasing in
si; and because Pr(Sk · ŝk(si);8k 6= ijsi) = Pr(Sk · ¹sk;8k 6= ijsi) > 0: The strict
inequality in the second line, being N times the third line, then follows.
Observe now that the …rst line of (A.13) is the limit as n ! 1 and then as

± # 0;of si’s payo¤ when he bids ± in Gn; while the third line is the limit of his
payo¤ when he bids b̂ni (si) = 0 in G

n: Hence, as before, for n large enough, bidder
i has a pro…table deviation in Gn against b̂n¡i; a contradiction. We conclude that,
given b̂; the probability that distinct bidders submit the highest bid weakly above
r is zero.
We now complete the proof by showing that b̂ is an equilibrium. Note …rst

that because b̂ involves no ties at bids that win with positive probability, each
Vi(b) is continuous (in the topology of pointwise convergence) at b̂:
Assume by way of contradiction that b̂ is not an equilibrium. Then some

bidder i has a pro…table deviation, ~bi say, which, without loss, is bounded (by
A.1(ii)). Now, ~bi; being measurable, is the pointwise limit of a sequence, ~bni ; of
simple functions.21 Further, we may assume without loss that, for every n; the
joint strategy (~bni ; b̂¡i) involves no ties at bids that win with positive probability
and consequently that Vi is continuous at (~bni ; b̂¡i):

22

By Lebesgue’s dominated convergence theorem, ~bni is a pro…table deviation
for i for some n: But this implies that at least one of the bids, ¹b; in the range of
~bni is a pro…table deviation for every member of a positive fi-measure set, Si; of
i’s signals. Hence, the strategy

¹bi(si) =

½
b̂i(si);
¹b;

if si 2 [0; 1]nSi
if si 2 Si (A.14)

21A simple function is one that takes on …nitely many values.
22This is because each b̂j induces a distribution of bids with at most countably many mass

points. One can therefore choose the …nitely many values taken on by each ~bni to be distinct
from all such mass points.
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is a pro…table deviation for bidder i; and Vi is continuous at (¹bi; b̂¡i)
So, altogether we have that

Vi(¹bi; b̂¡i) > Vi(b̂)

and Vi is continuous at both (¹bi; b̂¡i) and b̂; where ¹bi is de…ned by (A.14).
Choose a sequence bn ! ¹b so that bn 2 Bn for every n: Then the sequence of

bidding functions

¹bni (si) =

½
b̂ni (si);
bn;

if si 2 [0; 1]nSi
if si 2 Si

converges pointwise to ¹bi: Furthermore, for every n; ¹bni is a feasible strategy for
i in Gn; and

lim
n
Vi(¹b

n
i ; b̂

n
¡i) = Vi(¹bi; b̂¡i) > Vi(b̂) = limVi(b̂

n):

Consequently, for n large enough,

Vi(¹b
n
i ; b̂

n
¡i) > Vi(b̂

n);

contradicting b̂n being an equilibrium ofGn:We conclude that b̂ is an equilibrium.

Proof of Theorem 5.1. Consider any equilibrium b1; b2; b3 (not necessarily pure).
We …rst establish a number of claims.

1. b1(0; y) = 0 for y = 0; 1:

Proof. Assume by way of contradiction that there exist y and ±, 0 < ± < 1
s.t. Pr(b1(0; y) ¸ ±) > 0. In this event, bidder 1 must lose with probability
1, since otherwise his payo¤ in equilibrium would be negative, which is
impossible in equilibrium. Hence,

Pr (b2(y; z) _ b3(y; z) > ±) = 1; a.e. z

and in particular, a.e. z 2 [0; ±):

Consequently, for a positive measure of z 2 [0; ±) one of bidder 2 or 3 wins
the auction and pays more than his value for the object, earning a negative
payo¤, which is a contradiction.

28



2. For j = 2; 3, let ej(y; z) be the equilibrium payo¤ of bidder j with signal
(y; z). We claim that ej(y; z) = 0 y = 0; 1 and a.e. z:

Proof. Suppose by way of contradiction that, for example, e2(y; z) > 0 for
y = 0 or 1 and a positive measure of z: Then 9± > 0 and a set, A; of z’s of
positive measure s.t. for all z 2 A; Pr(b2(y; z) · v(y; z) ¡ ±) > 0: Against
this, and given (1), bidder 3 with signal (y; z); where z 2 A; can guarantee
a positive payo¤ by bidding v(y; z)¡ ±=2. Hence, e3(y; z) > 0, a.e. z 2 A:
Consequently, for j = 2; 3; and a.e. z 2 A; the least point of the support of
bj(y; z), denoted bj(y; z); must satisfy b2(y; z) = b3(y; z) = b(y; z) < v(y; z).
(We must have b2(y; z) = b3(y; z) because b2(y; z) < b3(y; z) would imply
e2(y; z) = 0 and b3(y; z) < b2(y; z) would imply e3(y; z) = 0.)

Hence, for a.e. z 2 A; there can be no atom of bj(y; z) at b(y; z) since other-
wise, b(y; z) + ² would be a pro…table deviation from b(y; z) for su¢ciently
small ² > 0. But the absence of atoms implies that the bid b(y; z) loses with
probability 1, implying e2(y; z) = 0 for a.e. z 2 A, a contradiction.
The claim now follows because equilibrium requires ej(y; z) ¸ 0 a.e. z:

3. For j = 2; 3, bj(y; z) ¸ v(y; z) y = 0; 1 and a.e. z:

Proof. For example, b2(y; z) < v(y; z) for a positive measure of z’s implies
e3(y; z) > 0 for a positive measure of z’s, contradicting (2).

4. For j = 2; 3; Pr(bj(y; z) = v(y; z)) = 1 y = 0; 1 and a.e. z:

Proof. Let b(y; z) = b2(y; z) _ b3(y; z). If, for ± > 0; some y; and a positive
measure of z; b(y; z) = b2(y; z) = v(y; z)+± ¸ b3(y; z); then with probability
at least 1

2
(for x = 0) £1

2
(for the tie) bidder 2 wins when his signal is (y; z),

and so obtains a negative payo¤ for a positive measure of his signals in
equilibrium which is impossible. A similar contradiction obtains by reversing
the roles of bidders 2 and 3. The claim now follows from (3).

We may conclude from (4) that if there is an equilibrium, then bidders 2 and
3 must each bid their values with probability one, as stated in the proposition.
Note that in the presence of bidder 3’s strategy, bidder 2’s strategy is a best reply
regardless of the behavior of bidder 1 (and similarly for bidder 2’s strategy in
the presence of 3’s). Consequently, it remains only to verify that the proposition
speci…es a best reply for bidder 1 against the strategies of bidders 2 and 3 and
that this best reply is unique.
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Clearly, it is uniquely optimal for bidder 1 to bid zero when x = 1: Hence, it
remains only to show that deviations for bidder 1 when x = 1 are strictly worse
than following the given strategy. Now, if y = 0, he is supposed to bid 3, winning
for sure and obtaining a payo¤ of 3: Clearly any deviation to 3+ ² is inferior while
bidding 3¡ ² yields:

(3¡ ²)(1¡ ²
2
) = 3¡ ²

2
¡ ²2

2
< 3; if 0 < ² · 1

1
2
(3 + ²) = 3

2
+ ²

2
· 5

2
; if 1 · ² · 2

1
2
(3 + ²)(3¡ ²) · 5

2
; if 2 · ² · 3

9>>>>=>>>>;
strictly suboptimal for
every value of " > 0

For x = 1 and y = 1, bidder 1 is supposed to bid 1 yielding an expected payo¤
of 1

2
£ 4 = 2. Clearly, for " > 0; any deviation to 1 + ² is inferior, while bidding

1¡ ² yields: 1
2
(4 + ²)(1¡ ²) < 2.
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