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Abstract

We search for behavioral rules that attain minimax regret under geometric discounting in the

context of repeated decision making in a stationary environment where payo¤s belong to a given

bounded interval. Rules that attain minimax regret exist and are optimal for Bayesian decision

making under the prior where learning can be argued to be most di¢cult. Minimax regret can be

attained by randomizing using a linear function of the previous payo¤s. For myopic individuals,

minimax regret behavior requires only one round of memory, for intermediate discount factors

two rounds of memory su¢ce to attain minimax regret.

JEL classi…cation: D81, D83.



1 Introduction

Decision making is an elementary part of human behavior. It is the foundation of any model of

strategic interaction. The theory of decision making thus in‡uences directly or indirectly almost

any economic prediction. Under what we call rational decision making today (von Neumann-

Morgenstern 1944, Savage 1972), the decision maker …rst speci…es a prior probability distribution

over the set of states that may occur. Then he selects the action that maximizes expected

utility and updates this initial prior after any new information arrives. We call a decision maker

Bayesian if he behaves according to this procedure. From the start the Bayesian approach has

been criticized. In particular it has been questioned whether individuals are able to form such

priors and whether they have the ability and time to perform the necessary calculations. These

objections are particularly relevant when stakes are low, time is scarce and priors are di¤use (cf

Simon, 1982).

In the following we select behavior according to a worst case analysis based on regret which

extends work of Berry and Fristedt (1985) who themselves build on Gibbons (1952) and Wald

(1950). We measure performance of a rule according to the largest regret it induces among all

priors and select for rules with smallest maximal regret. We show how this approach relates to

a Bayesian decision maker is endowed with the prior under which learning is most di¢cult.

We use a distribution free approach which means that we do not invoke priors. This simpli…es

the task of the individual as he does not have to calculate a new rule each time he faces a similar

decision problem. Unfortunately there are only few results on selecting rules for decision making

using a distribution free method such as Börgers et al. (2001).

The setting of this paper is as in the classic multi-armed bandit problem where a decision

maker repeatedly chooses (in consecutive rounds) one of a …nite number of actions. Each choice

yields a random payo¤ which is drawn according to an action dependent distribution which is

stationary and independent of previous occurrences. We assume that payo¤s belong to [0;1]

but our results generalize immediately to any given bounded interval [®; !] ½ R. The classic

multi-armed bandit speci…cation includes a prior over these payo¤ distributions.

A behavioral rule is a description of which action the individual chooses next given his

previous observations. The behavioral rule has n round memory if current behavior does not
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depend on choices or payo¤s obtained more than n rounds ago. A (randomized) rule is a

probability measure over deterministic behavioral rules. A multi-action decision problem is the

speci…cation of a payo¤ distribution for each action. A prior is a probability measure over the

set of multi-action decision problems.

We assume that the individual is risk neutral and that future payo¤s are discounted with a

given discount factor ± 2 (0;1) : Again our results generalize immediately if instead we consider

von Neuman-Morgenstern utility that is contained in a bounded interval. A worst case prior

is a prior that maximizes over all priors the di¤erence between the expected discounted payo¤

obtained if the underlying distributions of each arm are known and the expected discounted

payo¤ achieved by the optimal rule. Here optimality refers to standard payo¤ maximization

while updating the prior over time. The regret of a given rule under a given prior is de…ned as

the di¤erence between the expected discounted payo¤ obtained if the underlying distributions

of each arm are known and the expected discounted payo¤ achieved by the given rule. Thus,

the worst case prior maximizes the regret of the optimal rule over all priors.

In this paper we are interested in selecting a rule without making assumptions on the prior

and choose to select according to minimax regret (Wald, 1950, Gibbons, 1952). The idea is to

learn when there are incentives to learn. We evaluate the performance of a given rule by the

maximal regret it yields over all priors and then select for the rule that yields the minimal value

of the maximal regret.

A behavioral rule is linear if choice probabilities are linear observed payo¤s. Typically linear

rules will not emerge from Bayesian learning as linear rules typically involve randomizing between

actions when all payo¤s observed belong to (0;1). On the other hand, we provide evidence that

Bayesian optimal rules typically do not involve randomizing.

Symmetric randomized rules are randomized rules whose behavior does not depend on the

labels of the actions. Under a symmetric rule each action is played equally likely in the …rst

round. Notice that randomized rules that are symmetric need not have only symmetric rules in

their support.

We extend results obtained by Berry and Fristedt (1985) for Bernoulli two-armed bandits

to our setting that includes also more than two actions and a continuum of payo¤s. (i) There

exists a randomized rule that only has linear symmetric rules in its support and that attains
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minimax regret. (ii) There exists a worst case prior that is a probability measure over Bernoulli

decision problems only. (iii) Any rule that attains minimax regret is optimal for a Bayesian

facing a worst case prior. The theorem also provides a method to characterize minimax regret

and worst case priors in terms of a Nash equilibrium of a zero-sum game where the player

minimizes regret and nature maximizes. Berry and Fristedt (1985) prove their result by …rst

establishing the existence of a Nash equilibrium and then invoking standard minimax results for

zero-sum games. However, as they also point out, regret is no longer continuous when payo¤s

are allowed to be in [0; 1] instead of only in f0;1g and consequently existence of Nash equilibria

can no longer be easily established. We avoid this problem with a very simple trick and show

that it is enough to use minimax regret rules obtained for the Bernoulli case if one extends these

linearly to rules on [0; 1].

Given the above, minimax regret can be considered a way to select among the rules that are

Bayesian optimal under some prior. Unfortunately, a large part of the literature on Bayesian

decision-making assumes that the arms are independent which need not be true.

In the rest of the paper we consider two arms only. First weprovide someuseful techniques for

…nding minimax behavior. Assume that there is a rule with …nite memory that attains minimax

regret with a symmetric worst case prior that has only two two-armed decision problems in its

support. Then we prove that the worst case prior equals Q0 where Q0 is the symmetric prior

that puts equal weight on the two deterministic two-action decisions in which one arm yields

payo¤ 1 and the other payo¤ 0. So we only have to check Q0 as a worst case prior if we are

interested in simple rules and simple priors. In the proof we use existing results by Kakigi

(1983) on Bayesian optimal rules under two-point distributions. Next we show that there exists

a critical value ±1 ¼ 0:61 such that Q0 is not a worst case prior if ± > ±1: This result applies for

any minimax regret behavior and is proven using Taylor expansions near Q0:

Next we investigate minimax regret behavior when ± is small. It is intuitive that Q0 is the

worst case prior when ± is su¢ciently small as it maximizes the minimum regret in the …rst

round. In fact, the following symmetric linear single round memory rule is Bayesian optimal

against Q0: This rule speci…es to repeat the previous action with probability equal to the payo¤

attained. This rule has been proposed by Robbins (1952) as a very simple rule to use when

± = 1 and payo¤ are in f0; 1g who also derived its maximal regret for this case (see also Tsetlin,
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1961). We …nd that this single round memory rule attains minimax regret with Q0 as worst

case prior if ± · p
2 ¡ 1 ¼ 0:41 but does not attain minimax regret for higher values of ±. Our

result for small ± stands in contrast to the fact that Bayesian optimal rules do not necessarily

have …nite memory when ± is small. It is simply that the worst case prior does not require more

memory.

We also investigate two round memory rules and …nd that the linearization of a rule proposed

by Robbins (1956) (again for ± = 1 and payo¤s in f0;1g) attains minimax regret if and only

± · ±1 where ±1 is the same value obtained above. Q0 is the worst case prior when ± · ±1 and

thus together with our previous results that we …nd that Q0 is a worst case prior if and only if

± · ±1: The selected two round memory rule has the stay with a winner property in the sense

that the same action is played again whenever the highest payo¤ is obtained. It chooses the

same arm again in the next two rounds whenever payo¤ 1 is obtained and otherwise switches

arms each time 0 is obtained.

Finally we investigate for which values of ± between
p

2 ¡1 and ±1 memory of the payo¤ two

rounds ago is not necessary to achieve minimax regret. We …nd that there is a cuto¤ ±0 ¼ 0:54

such that this is only possible if ± < ±0: The selected symmetric linear rule has the stay with a

winner property, speci…es to switch arms after payo¤ 0 unless the same arm is chosen twice in

which case arms are switched with probability approximately equal to 0:16:

We proceed as follows. Section two introduces decision problems and strategies. Section

three contains the necessary de…nitions. In Section four we supply the main characterization

result of minimax regret behavior and worst case priors. In the …nal Section …ve we analyze

separately rules that attain minimax regret among those with single round memory, two round

memory and two round action memory.

2 Decision Problems and Rules

Let ¢Y denote the set of probability measures over the set Y: A multi-action decision problem

(W;P ) consists of a …nite set of actions W (with jWj ¸ 2) and a measurable payo¤ distribution

Pi 2 ¢R for each action i 2 W: Sometimes we will index parameters by the decision problem

D they refer to, e.g. write Pi (D) instead of Pi: In the following …x W and consider only
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payo¤ distributions belonging to ¢[0;1] :1 The set of all multi-action decision problems will be

denoted by D. A multi-armed bandit is described by a …nite set of actions W and by a prior (or

probability measure) Q 2 ¢D over the set of multi-action decision problems with action set W:

We add the term “Bernoulli” if realized payo¤s only belong to f0;1g where the payo¤s 0 and 1

are referred to as failure and success respectively.2 The set of all Bernoulli multi-action decision

problems will be denoted by D0:
Let ¼i (D) =

R
xdPi (x; D) denote the expected payo¤ of choosing action i when facing the

multi-action decision problem D: Given D 2 D and a permutation ¶ of W let D¶ 2 D be the

multi-action decision problem de…ned by permuting the labels of the actions in D using ¶, i.e.

Pi (D¶) = P¶(i) (D) for i 2 W: For a given multi-armed bandit Q 2 ¢D let Q¶ be the distribution

de…ned by interchanging the labels of the actions in Q. A prior Q is called symmetric if Q = Q¶

holds for all permutations ¶ of W: The set of symmetric priors over a subset Z of D will be

denoted by ¢pZ: The symmetric prior Q will be called a symmetric two point prior if there

exist 0 · v < w · 1 such that Q (v;w)
³

~D
´

= 1
2 for ~D 2 D0 with ¼1

³
~D
´

= v and ¼2
³

~D
´

= w:

We also write Q0 instead of Q (0;1) :

Consider an individual who repeatedly faces the same multi-armed bandit Q. In each of a

sequence of rounds the individual is asked to choose an action from W: Before the …rst round

nature selects the multi-armed decision problem
³
W; ~P

´
the individual is facing according to

the prior Q: Choice of action i in round t yields a payo¤ realized according to ~Pi that is drawn

independently of previous choices and payo¤ realizations of the individual.

A rule is the formal description of how this individual makes his choice as a function of his

previous experience. A behavioral rule is a mapping f : ; [1m=1£m
k=1fW £ [0; 1]g ! W where

f (;)i is the probability of choosing action i in the …rst round and f (a1; x1; ::; am;xm)i is the

probability of choosing action i in round m + 1 after choosing action ak and receiving payo¤

xk in round k for k = 1; ::;m. A deterministic rule is a behavioral rule in which the choice in

each round is always deterministic.. The set of all deterministic rules will be denoted by F: A

(randomized) rule Á is an element of ¢F:

1Our results can be applied to payo¤ distributions over a given bounded interval [®;!] by …rst rescaling payo¤s

using the linear transformation x 7¡! x¡®
!¡® :

2The machine learning literature (cf Naremdra and Thathachar, 1989) refers to this situation as the P-model.

In the Q-model and in the S-model the support of the payo¤ distribution is …nite and in…nite respectively.
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We say that the behavioral rule f has n round memory if the behavior of f in round m +1

does not depend on ak or xk for k · m¡n. f has …nite memory if there exists n such that f has

n round memory. f has n round action memory if f has n round memory where the behavior

of f in round m + 1 does not depend on xk for k · m ¡ 1:

Given a behavioral rule f and a permutation ¶ of W let ¶ (f) be the behavioral rule that is de-

rived from f by permuting actions with ¶; i.e., ¶(f) (;)i = f (;)¶(i) and ¶(f) (a1; x1; ::; am;xm)i =

f (¶(a1) ; x1; ::; ¶ (am) ;xm)¶(i) : Then f is called symmetric if ¶ (f) ´ f for all permutations ¶ of

W: The set of all symmetric rules are denoted by Fp: A randomized rule Á is called symmetric

if Á (T) = Á (f¶ (f) s.t. f 2 Tg) holds for all permutations ¶ of W and for all sets of deter-

ministic rules T: The set of symmetric randomized rules will be denoted by ¢pF: Notice that

¢Fp $ ¢pF:

A behavioral rule f is called linear if f (a1;x1; ::; am; xm)i is linear in xk for all k = 1; ::; m

and all m which means that

f (a1; x1; ::; am;xm)i =
1X

j1=0

::
1X

jm=0

[¦mk=1 (jkxk + (1 ¡ jk) (1 ¡xk))]f (a1; j1; ::; am; jm)i

holds for all m and for all ai 2 W and xi 2 [0;1], i = 1; ::;m: The set of all linear deterministic

rules will be denoted by FL:

The behavioral rule f will be attributed the ‘stay with a winner’ property if f (a1;x1; ::; am;1)am =

1 for all ak; xk; k = 1; ::; m ¡ 1; all am and all m:

3 Selection

Assume from now on that the individual is risk neutral and discounts future payo¤s with discount

factor ± 2 (0; 1) :3 For a given rule Á and a given decision problem D let p(n)i = p(n)i (Á;D) be

the probability of choosing action i 2 W in round n unconditional on previous choices. Then

¼± (Á;D) := (1 ¡ ±)
P1
n=1

P
i2W p(n)i (Á;D) ¼i (D) is the discounted value of future payo¤s.

The regret (or opportunity loss) of a rule Á when facing the multi-action decision problem

D is de…ned as LÁ (D) := maxi2W f¼i (D)g ¡ ¼± (Á; D) : Regret is a measure of the loss due to

ignorance of the true state of a¤airs.
3Our analysis also applies to agents that are not risk neutral by replacing payo¤s with von Neumann-

Morgenstern utilities as long as utility is bounded.
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If the individual faces a known multi-armed bandit ~Q then he chooses a rule Á¤ 2 arg max
R

¼±Á (D)d ~Q (D) : Wecall Á¤ with this property Bayesian optimal under ~Q. We will call ¹Q a worst

case prior if it maximizes the expected regret of this individual, i.e. if ¹Q 2 maxQ2¢D
R

LÁ¤(Q) (D)dQ (D)

where Á¤ (Q) is a Bayesian optimal rule under Q: Simplifying we obtain that ¹Q is a worst case

prior if and only if ¹Q 2 maxQ2¢DminÁ2¢F
R

LÁ (D)dQ (D) :

If W is known but the prior ~Q is unknown then according to Savage (1972) the individ-

ual speci…es a subjective prior Q̂ and chooses a Bayesian optimal rule under Q̂: An alternative

approach is to assume that the individual selects a rule that minimizes among all rules the max-

imum among all decision problems (with action set W ) the expected regret. More speci…cally,

we say that Á attains minimax regret if Á¤ 2 arg minÁ2¢F supD2DLÁ (D) :

4 General Results

We present our central theorem on the characterization of minimax regret behavior and worst

case priors.

Proposition 1 i) There exists a worst case prior in ¢pD0 and a rule in ¢FL
p that attains

minimax regret. The value of minimax regret is strictly positive.

ii) Á¤ 2 ¢FLp attains minimax regret and Q¤ 2 ¢pD0 is a worst case prior if and only if

Z
LÁ¤ (D)dQ (D) ·

Z
LÁ¤ (D)dQ¤ (D) ·

Z
LÁ (D)dQ¤ (D) 8Á 2 ¢FL

p 8Q 2 ¢pD0:

(iii) Á¤ 2 ¢F attains minimax regret and Q¤ 2 ¢D is a worst case prior if and only if

Z
LÁ¤ (D)dQ (D) ·

Z
LÁ¤ (D)dQ¤ (D) ·

Z
LÁ (D)dQ¤ (D) 8Á 2 ¢F 8Q 2 ¢D: (1)

In particular, this means that any rule that attains minimax regret is Bayesian optimal under

any worst case prior. The above generalizes …ndings that Berry and Fristedt (1985) obtained

already for Bernoulli two-armed bandits. The only additional insight for this special case is that

we prove the existence of a randomized symmetric rule that attains minimax regret instead of

simply existence of a symmetric randomized rule that possibly includes non symmetric rules in

its support.
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Proof. We …rst review the results of Berry and Fristedt (1985) obtained for Bernoulli two-

armed bandits which are statement (i) and the ‘if ’ statements of (ii) and (iii) while replacing

¢FL
p by ¢pFL. They introduce a topology on the set of strategies and then show that a Nash

equilibrium (Á¤;Q¤) exists in the zero sum game where the individual chooses a rule to minimize

regret and nature chooses a prior to maximize regret. If (Á¤;Q¤) is a such a Nash equilibrium

(i.e. (1) holds when restricted to the case of jW j = 2 and Q 2 ¢D0) then
Z

LÁ¤ (D)dQ¤ (D) = max
Q2¢D0

Z
LÁ¤ (D)dQ (D) ¸ min

Á2¢F
max
Q2¢D0

Z
LÁ (D)dQ (D)

¸ max
Q2¢D0

min
Á

Z
LÁ (D) dQ (D) ¸ min

Á2¢F

Z
LÁ (D)dQ¤ (D) =

Z
LÁ¤ (D)dQ¤ (D)

which proves the ‘if ’ statement of (iii) for Bernoulli two-armed bandits. Berry and Fristedt (1985)

also ensure the existence of a strictly positive lower bound on the value of minimax regret so this

completes (i) for Bernoulli two-armed bandits. Quasi-concavity of maxQ2¢D0
R

LÁ (D)dQ (D)

as a function of Á shows that ¢pF \ arg minÁ2¢F maxQ2¢D0
R

LÁ (D)dQ (D) 6= ;: Similarly,

quasi-convexity of minÁ2¢F
R

LÁ (D)dQ (D) as a function of Q is used to show that ¢pD0 \
arg maxQ2¢D0 minÁ2¢F

R
LÁ (D)dQ (D) 6= ;: Finally, the ‘if’ statement of (ii) follows from

the fact that ¢pD0 \ arg maxQ2¢D0
R

LÁ¤ (D)dQ(D) 6= ; if Á¤ 2 ¢pF and similarly, ¢pF \
arg minÁ2¢F

R
LÁ (D)dQ¤ (D) 6= ; if Q¤ 2 ¢pD0:

The above can be generalized to Bernoulli multi-armed bandits immediately. In the following

we will show that it also holds when payo¤s are not restricted to f0; 1g : Let (Á¤; Q¤) 2 ¢FL£
¢D0 be a Nash equilibrium (that exists) of the zero-sum game when restricting attention to D0:
Since Á randomizes over linear rules, maxQ2¢D0

R
LÁ¤ (D)dQ (D) = maxQ2¢D

R
LÁ¤ (D)dQ (D)

and Q¤ 2 ¢D0 implies that minÁ2¢FL
R

LÁ (D) dQ¤ (D) = minÁ2¢F
R

LÁ (D)dQ¤ (D)and hence

(1) holds. Notice furthermore that the “if statement” of (iii) holds as stated by the same proof

as when we considered only D0. Part (i) and the “if statement” of (ii) then also follow as above.

Consider now the ‘only if’ statements of (ii) and (iii). If Á¤ attains minimax regret and Q¤

is a worst case prior then
Z

LÁ¤ (D)dQ¤ (D) · sup
Q2¢D

Z
LÁ¤ (D)dQ (D) = min

Á2¢F
sup
Q2¢D

Z
LÁ (D)dQ (D)

max
Q2¢D

inf
Á2¢F

Z
LÁ (D)dQ (D) = inf

Á2¢F

Z
LÁ (D)dQ¤ (D) ·

Z
LÁ¤ (D)dQ¤ (D)
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so the claim follows as we know that minÁ2¢F supQ2¢D0
R

LÁ (D)dQ (D) = maxQ2¢D0 infÁ2¢F
R

LÁ (D)dQ(D) holds.

Finally weneed to showthat ¢pFL can be replaced by ¢FL
p in the statements above. Assume

that Á¤ 2 ¢pFL attains minimax regret. Let Á+ 2 ¢FL
p be such that Á+ (a; ::) ´ Á¤ (a; ::) :

Then
R

LÁ¤ (D)dQ(D) =
R

LÁ+ (D)dQ (D) holds for all Q 2 ¢pD0 which proves the statement.

The above undermines the usefulness of linearity for attaining minimax regret. Notice that

linear rules typically involve randomizing after round one, for instance whenever only interior

payo¤s in (0; 1) are obtained in all previous rounds then behavior is either random or all payo¤s

are “ignored”. More speci…cally, if f is a linear rule and xk 2 (0;1) for all n then either

f (a1;x1; ::; an; xn)c is independent of x1; ::; xn or f (a1;x1; ::; an; xn; ::; am;xm) =2 W: In contrast

we now show that Bayesian optimal rules typically do not involve randomizing.

Proposition 2 For almost all symmetric priors there is some payo¤ z 2 (0; 1) that can occur

in any round where no Bayesian optimal rule will randomize after receiving z:

Proof. Consider a symmetric prior Q 2 ¢pD such that there exists a payo¤ z 2 (0; 1)

that can occur for any D drawn under Q and that reveals that the current arm is best, i.e.

P (¼c (D) > ¼d (D) j arm c yields z, D unknown but drawn using prior Q) = 1; c 6= d: Notice

that the set of such priors lies dense in ¢pD. Consider any f 2 arg minf2F
R

Lf (D)dQ (D)

and any history (a1; x1; ::; am¡1;xm¡1) that can arise under f for some D drawn under Q: Then

f (a1;x1; ::; am; z)am = 1:

4.0.1 Necessary Conditions in Two-Armed Bandits

Given Proposition 1 minimax regret can be considered a method to select among rules that are

Bayesian optimal under some prior. Unfortunately we cannot utilize the bulk of the two-armed

bandit that concerns only independent arms as we do not expect that worst case prior have this

property. We start by investigating when a …nite memory rule can attain minimax regret under

a symmetric prior with a two point distribution.

Proposition 3 Consider the case of two-armed bandits. If the linear symmetric n round mem-

ory rule Á¤ attains minimax regret and arg maxD2D0 :¼a(D)>¼b(D)LÁ¤ (D) is single valued then

9



Q0 is a worst case prior.

Proof. Let fD0g = argmaxD2D0 :¼a(D)>¼b(D)LÁ¤ (D) : Since Á¤ is assumed to attain minimax

regret, ¼b (D0) < ¼a (D0). Hence, the symmetric two point prior Q (¼b (D0) ; ¼a (D0)) is a worst

case prior.

We now analyze optimal behavior under a symmetric two point prior Q (v; w).

Kakigi (1983) shows that the following symmetric rule is optimal in such a symmetric two

point prior. Choose action c in round n if the beliefs based on experience up to round n indicate

that the probability that ¼c > ¼d is greater than 0:5 where fc; dg = fa;bg :

Samaranayake (1992) shows that the two arms are negatively correlated after any history.

As the support of each marginal distribution has two elements we can apply Proposition 5.2 in

(Samaranayake, 1992) to show that the individual strictly prefers action c over d after c yielded

a success and strictly prefers action d over c after c yielded a failure. This means that the rule

of Kakigi (1983) is the unique optimal behavior whenever the updated prior does not equal 0:5:

It is clear that the optimal behavior does not have …nite round memory when 0 < v < w < 1.

Assume v = 0 and w 2 (0;1) : Then a Bayesian optimal behavior is given by the symmetric

two round memory rule f¤ that has the staying with a winner property and where f¤ (c;0)c =

f¤ (c; 0; d; 0)d = 0 and f¤ (c;¤; c; 0)c = 1 for c 6= d: Let z be the future value after only failure

obtained previously then z = (1 ¡ ±) 12w + 1
2w±w +

¡
1 ¡ 1

2w
¢
±z so z = w 1¡±+w±

2¡2±+w± and hence

Lf¤ = w ¡ z =
(1¡±)w
2¡2±+w± which for given ± obtains its unique maximum when w = 1: Thus,

Q (0;w) is never a worst case prior if w < 1:

Finally, assume v > 0 and w = 1: Here a Bayesian optimal behavior is given by the symmetric

single round memory rule f¤ that has the staying with a winner propertyand where f¤ (c; 0)c = 0:

Let x be the future value of payo¤s after only achieving successes in the previous rounds with

the worse arm. Then x = (1 ¡ ±)v + v±x + (1 ¡ v) ± so x = ±+v¡2±v
1¡±v and hence Lf¤ = 1 ¡

1
2 ¡ 1

2
±+v¡2±v
1¡±v = 1

2
(1¡±)(1¡v)
1¡±v which for given ± obtains its unique maximum when v = 0: Thus,

Q (v; 1) is never a worst case prior if v > 0:

Proposition 4 Consider two-armed bandits. Then Q0 is not a worst case prior for ± > ¡1
2 +

1
2

p
5.
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Proof. Consider a symmetric rule f¤ that attains minimax regret with Q0 as worst case prior.

Then d
d¼a

L (1;0) ¸ 0 ¸ d
d¼b

L (1; 0) : In the following we will consider only regret in the two two-

armed Bernoulli decisions with (¼a;¼b) 2 f(1; v) ; (w;0)g for v; w 2 (0; 1) : Since f¤ is symmetric,

f¤ (;) = 1
2: Since Q0 is a worst case prior we have f¤ (c;x)c = x for c 2 fa; bg and x 2 f0; 1g :

When facing (¼a; ¼b) = (1; v) then we will ignore events when arm b yields two successes.

Similarly, when facing (¼a;¼b) = (w; 0) then we will ignore events when arm a yields two failures.

Given these restrictions we can assume that f¤ plays a best response whenever possible against

these two particular decision problems. So once we observe two successes of the same arm then

we are choosing the better arm and lock in on that action. In particular this means that when

facing (¼a;¼b) = (1; v), if we choose the better action in the …rst round then this action is chosen

forever. Similarly, we know that arm a is the better arm after observing (b; 0) and (a;1).

Let x = f¤ (c;1; c; 0)d and y = f¤ (d; 0; c;0)d for c 6= d: Consider payo¤s when facing

(¼a; ¼b) = (w; 0) : Then

¼± = (1 ¡ ±)
1

2
w + (1 ¡ ±) ±

1

2
(1 +w)w +

1

2
w±2w +

1

2
w2±2w

+(1 ¡ ±) ±2
µ

1

2
w (1 ¡w)x +

1

2
(1 ¡ w)y +

1

2
(1 ¡ w) (1 ¡ y)

¶
w

+±3
µ

1

2
(1 ¡x)w2 (1 ¡ w)w +

1

2
w (1 ¡ w)xw

¶

+
1

2
(1 ¡ w) ±3w ((1 ¡ y) + yw + (1 ¡ y)w + y)+ O

³
(1 ¡w)2

´

where the expressions refer to the payo¤s in round one and two, continuation payo¤ start-

ing round three after the events (b;0; a;1) and (a; 1; a; 1) ; round three payo¤s after (a;1; a;0) ;

(a; 0; b;0)and (b;0; a;0)and continuation payo¤s starting round four after (a; 1; a; 0; a; 1) ; (a;1; a; 0; b;0)

and after (a; 0; b;0; b; 0) ; (a;0; b; 0; a; 1) ; (b;0; a;0; a; 1) and (b; 0; a; 0; b;0) : Here we assume that

f¤ (a;0; b; 0; b;0)b = f¤ (b;0; a; 0; b;0)b = 0 following the Bayesian optimal behavior against

Q (0;w) : Consequently,

Lf¤ =
1

2
(1 ¡ ±) ¡ 1

2
(1 ¡ ±)

¡
1 ¡ ± ¡ ±2 ¡x±2

¢
(1 ¡ w) +O

³
(1 ¡w)2

´

and hence 1¡±¡±2¡x±2 ¸ 0 is necessary for Q0 to be a worst case prior. However, 1¡±¡±2 < 0

for ± > ¡1
2 + 1

2

p
5 so for values of ± with this property there is no value of x under which Q0 is

a worst case prior.

11



We combine the above to obtain the following.

Corollary 5 Consider two armed bandits and assume ± > ¡1
2 + 1

2

p
5: Then either there is no n

round memory rule that attains minimax regret or the worst case prior arg maxD2D0:¼a(D)>¼b(D) LÁ¤ (D)

is not single valued for any Á¤ that attains minimax regret.

Next we derive behavior in the …rst three rounds for a symmetric rule that attains minimax

regret at the critical discount factor.

Proposition 6 Assume that f¤ is a symmetric rule that attains minimax regret when ± =

¡1
2 + 1

2

p
5: Then f¤ (c; 0)c = 0; f¤ (c;1; c;0)c = 1; f¤ (c; 0; d; 1)d = 1; f¤ (c; 1; c;1; c; 0)c = 1;

f¤ (c; 1; c;0; c; 0)c = 0; f¤ (c; 0; d; 1; d;0)d = 1; f¤ (c;0; d;0; c; 0)c = 0 if f¤ (c;0; d;0)c > 0;

f¤ (c; 0; d; 0; d;0)d = 0 if f¤ (c; 0; d;0)d > 0 and f¤ does not switch after any success in the

…rst three rounds. In particular, f¤ does not have n round action memory for any n.

In particular, rules suggested by Robbins (1956) or Isbell (1959) for n > 2 do not attain

minimax regret when ± = ¡1
2 + 1

2

p
5.

Proof. First we provide the analogous calculations as in the proof of Proposition 4 when facing

(¼a; ¼b) = (1; v) : We calculate ¼± where we do not explicitly calculate events where two successes

of the worse arm occur. Then

¼± =
1

2
+

1

2
(1 ¡ ±)v +

1

2
(1 ¡ v) ± +

1

2
v (1 ¡ v)x±2 +

1

2
v (1 ¡ v) (1 ¡ x) (1 ¡ v) ±3+ O

¡
v2

¢

where the expressions refer to the event (a;1; a;1; :::), the payo¤ in round one from choosing arm

b and the events (b; 0; a; 1; a;1; :::) ; (b; 1; b;0; a;1; a;1; :::) and (b; 1; b;0; b;0; a;1; a;1; :::). Conse-

quently

Lf¤ =
1

2
(1 ¡ ±)¡ 1

2
(1 ¡ ±)

¡
1 ¡ ± ¡ (1 ¡ x) ±2

¢
v + O

¡
v2

¢

and hence 1 ¡ ± ¡ ±2+ x±2 ¸ 0 is necessary if Q0 is a worst case prior.

Looking a bit more carefully at the above calculations as well as those in the proof of

Proposition 4 it is easily veri…ed that Q0 is not a worst case prior if one of the conditions in the

statement of the proposition do not hold.
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5 Rules attaining minimax regret in two-armed bandits

In the following we will consider two arms only and search for rules that attain minimax regret

when ± is small. Let W = fa;bg. Given our above result we search for Nash equilibria of the

zero-sum game. If Á is symmetric then each action is played with probability 0:5 in the …rst

round and we obtain LÁ (D) = (1 ¡ ±) 0:5 j¼a ¡¼bj + (1 ¡ ±)o(±) : This gives us intuition that

the decision problem that maximizes regret satis…es f¼a;¼bg = f0; 1g. We do not try to prove

this directly but use this intuition to motivate our search for situations where the worst case

prior puts equal weight on the two two-armed decision problems in which one arm yields payo¤

1 and the other arm yields payo¤ 0: Let Q0 denote this prior. Bayesian optimal rules with …nite

memory for facing Q0 are easily computed. All we then check is whether Q0 maximizes regret

of such a Bayesian optimal rule.

5.1 Single round memory

Proposition 7 The linear symmetric single round memory rule that has the stay with a winner

property and that satis…es f (a;0)a = 0 attains minimax regret if and only if ± · p
2 ¡ 1. This

rule yields

¼± =
1

2
(¼a +¼b) +

1

2
±

1

1 + ± (1 ¡¼a ¡¼b)
(¼a ¡¼b)

2 .

No other single round memory rule attains minimax regret when ± =
p

2 ¡ 1 ¼ 0:41:

Notice that Bayesian optimal rules generally do not have …nite memory even when ± is small.

For instance, as argued in the proof of Proposition 3, any Bayesian optimal rule under the two

point distribution Q (v; w) with 0 < v < w < 1 does not have …nite round memory.

Proof. Let Dc be the two-action decision problem with Pc (1) = Pd (0) = 1 for d 2 Wn fcg and

let Q0 be the prior such that Q0 (Dc) = 0:5 for c 2 W: Then it follows immediately that the

single round memory rule described above is the unique symmetric linear Bayesian optimal rule

under Q0:

In the following we show how to derive the above expression for ¼±: Let zc be the dis-

counted future value of payo¤s conditional on choosing action c: Then za = (1 ¡ ±)¼a+±¼aza+

(1 ¡ ¼a) ±zb. Similar expression for zb and solving yields the above.

13



Finally, given ¼a > ¼b we obtain

d

d¼a
L =

1

2

1 + 2± ¡ 4±¼a + ±2 ¡ 4±2¼a +2±2¼2a +4±2¼a¼b ¡ 2±2¼2b
(1 + ± ¡ ±¼a ¡ ±¼b)

2

where the enumerator is decreasing in ¼a: If ¼a = 1 then the enumerator is also increasing in

¼b. So evaluating the enumerator at ¼a = 1 and ¼b = 0 we obtain 1 ¡ 2± ¡ ±2 which has the

positive root ¡1 +
p

2. Hence d
d¼a

L ¸ 0 holds for all ¼a and ¼b if ± · ¡1 +
p

2: On the other

hand, if ± > ¡1 +
p

2 then d
d¼a

L < 0 when ¼a = 1 and ¼b = 0.

Similarly for ¼a > ¼b we obtain

d

d¼b
L = ¡1

2

(1 + ± ¡ 2±¼a)
2

(1 + ± ¡ ±¼a ¡ ±¼b)
2

which shows that Q0 is a worst case prior as long as ± · ¡1 +
p

2:

Finally, it can be veri…ed for the selected rule, denote this by Á¤; that arg maxD2D0 :¼a(D)>¼b(D)LÁ¤ (D)

is single valued for all ± 2 (0; 1) : Thus, by Corollary 5 Á¤ does not attain minimax regret for

± > ¡1 +
p

2: As Á¤ is the unique symmetric linear single round memory rule that is Bayesian

optimal against Q0 the statement is proven.

5.2 Two round memory

We …nd that the linearization of the rule suggested by Robbins (1956) for use in Bernoulli two-

armed decisions when ± = 1 attains minimax regret when ± is not too large. When payo¤s are

in f0;1g this rule prescribes to switch back and forth until the …rst success is obtained and then

to only switch after two consecutive failures.

Proposition 8 Consider the linear symmetric two round memory rule that has the stay with a

winner property and that satis…es f (¤;0; c; 0)c = 0 and f (c;1; c; 0)c = 1 which yields

¼±;1 =
1

2
(¼1+ ¼2) +

1

2
±

(¼1 ¡¼2)
2 (1 + ± ¡ ± (¼1 +¼2))

±2 (1 ¡ ¼1)
2+ ±2 (1 ¡¼2)

2 +(1 ¡ ±) (1 + ± (2 ¡ ¼1¡ ¼2))
.

This rule attains minimax regret if and only if ± · ¡1
2+ 1

2

p
5. No other two round memory rule

attains minimax regret when ± = ¡1
2 + 1

2

p
5 ¼ 0:62:

The rule selected above behaves in Bernoulli two-armed decisions like the one suggested by

Robbins (1956) for use when ± = 1 with the only alteration that the decision maker randomizes

in the …rst round.
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Proof. Consider a two round memory rule with the stay with a winner property that is

Bayesian optimal against Q0: Then f (;)a = 0:5; f (c; 0)c = 0 and f (c;1)c = f (¤;¤; c; 1)c = 1:

Let z = f (c;0; c; 0)d ; x = f (c; 1; c;0)d and y = f (d; 0; c;0)d for c 6= d.

Starting round two the rule has six states a0a; a1a; a0b; b0b; b1b and b0a where cxd denotes

the state in which the present action is d and the previous action was c which yielded x 2 f0; 1g :

Then the probability of being in these states in round 2 equals 0; 12¼a;
1
2 (1 ¡ ¼a) ; 0; 12¼b and

1
2 (1 ¡ ¼b) respectively. Given the transition matrix M equal to

(1 ¡¼a) (1 ¡ z) (1 ¡ ¼a) (1 ¡ x) 0 0 0 (1 ¡¼a) (1 ¡ y)

¼a ¼a 0 0 0 ¼a

(1 ¡ ¼a) z (1 ¡ ¼a)x 0 0 0 (1 ¡ ¼a)y

0 0 (1 ¡ ¼b) (1 ¡ y) (1 ¡¼b) (1 ¡ z) (1 ¡¼b) (1 ¡ x) 0

0 0 ¼b ¼b ¼b 0

0 0 (1 ¡¼b)y (1 ¡¼b) z (1 ¡ ¼b)x 0

we obtain for ¼a > ¼b that

L (¼a; ¼b) = ¼a ¡ 1

2
(1 ¡ ±) (¼a + ¼b) ¡ (1 ¡ ±) ±

³
¼a ¼a ¼b ¼b ¼b ¼a

´
(Id ¡ ±M)¡1 »

where » is the vector of probabilities in round two.

It can be veri…ed that

d

d¼a
L (1; 0) =

1

2

1 ¡ (3 ¡ z) ± + (¡x+ 2 ¡ 2z) ±2+
¡¡zy ¡ x¡ xz +xy + y2+ z

¢
±3 +(z ¡ y) (y ¡ x) ±4

1 ¡ ± + ±z

d

d¼b
L (1; 0) = ¡1

2

(1 ¡ ±)
¡
1 ¡ 2± + ±z + (x¡ z) ±2

¢

1 ¡ ± + ±z

We search for maximal ± such that d
d¼a

L (1; 0) ¸ 0 ¸ d
d¼b

L (1;0) : From the second inequality

we obtain x ¸ z ¡ (1 ¡ 2± + ±z)=±2: Since d
d¼a

L (1;0) is decreasing in x we replace x by z ¡
(1 ¡ 2± + ±z)=±2 in the enumerator of d

d¼a
L (1;0) to obtain that

¡
2 ¡ 4± +

¡¡2±3 ¡ 3±2 + 3±
¢
z +

¡¡±4 + ±2
¢

z2
¢
+±

¡
2±3z ¡ ±2z + 2±2+ ± ¡ ±z ¡ 1

¢
y+±3 (1 ¡ ±)y2 ¸ 0

It is easily veri…ed that the left had side of the above inequality is convex in z and y and hence

there are four cases z; y 2 f0; 1g to check. It is then directly veri…ed that the inequality is

violated for ± < 0:6 when z = 0 while it holds for ± · ¡1
2 + 1

2

p
5 when z = 1 and either y = 0

or y = 1:
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Consider the rule with y = 1; z = 1 and x = 0: This yields

L =
1

2

(¼a ¡¼b)
¡
1 + ± ¡ 2±¼a ¡ 2±2¼a +2±2¼2a

¢

1 + ± ¡ ±¼a ¡ ±¼b ¡ ±2¼a ¡ ±2¼b + ±2¼2a + ±2¼2b
:

Assume ± · ¡1
2 + 1

2

p
5: By …rst showing that d

d¼b
L · 0 and then that d

d¼a
L ¸ 0 holds when

¼b = 0 it can easily be veri…ed that (¼a; ¼b) = (1; 0) is the unique maximizer of L conditional

on ¼a > ¼b.

The alternative rule with y = 0; z = 1 and x = 0 we obtain for ¼2 = 0

L =
1

2
¼1

± + ±3+ 1 + 2±2¼21 ¡ 2±¼1¡ 3±2¼1 ¡ 3±3¼1+ ±2+ 2±3¼21
1 + ± ¡ 2±2¼1 ¡ 2±3¼1+ ±2¼21 ¡ ±¼1+ ±3¼21 + ±3 + ±2

and d2

(d¼1)
2L = ± (2± ¡ 1) (1 + ±)2 if ¼1 = 1 so this rule does not attain minimax regret if ± > 1

2:

Finally, it can be veri…ed for the selected rule, denote this by Á¤; that arg maxD2D0 :¼a(D)>¼b(D)LÁ¤ (D)

is single valued for all ± 2 (0; 1) : Thus, by Corollary 5 Á¤ does not attain minimax regret for

± > ¡1
2 + 1

2

p
5:

Combining the above result with Proposition 4 we obtain:

Corollary 9 Q0 is a worst case prior if and only if ± · ¡1
2 + 1

2

p
5:

5.3 Two round action memory

Proposition 10 There exists ±0 with ±0 ¼ 0:544 such that:

(i) If ± · ±0 then the linear symmetric two round action memory rule that has the stay with

a winner property and that satis…es f (c; ¢; c; 0)c = 1¡±0
±0

¼ 0:84 and f (c; ¢; d; 0)d = 0 for c 6= d

attains minimax regret.

(ii) If ±0 < ± · ¡1
2 + 1

2

p
5 then there is no two round action memory rule that attains

minimax regret.

Proof. Consider a two round action memory rule with the stay with a winner property that is

Bayesian optimal against Q0: Then f (;)a = 0:5; f (c;0)c = 0 and f (c;1)c = f (d;x;c;1)c = 1:

Let ¸ = f (c;¤; c; 0)d and ¹ = f (c;¤; d; 0)c for c 6= d.

Starting round two the rule has four states aa; ab; bb; ba where cd denotes the state in which

the present action is d and the previous action was c: Let vn; wn; yn and zn be the probabilities
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of being in these states in rounds n ¸ 2: Then v2 = 1
2¼a; w2 = 1

2 (1 ¡¼a) ; y2 = 1
2¼b and

z2 = 1
2 (1 ¡¼b) : Given the transition matrix M equal to

¼a+ (1 ¡ ¼a) (1 ¡ ¸) 0 0 ¼a + (1 ¡¼a) (1 ¡ ¹)

(1 ¡¼a)¸ 0 0 (1 ¡ ¼a)¹

0 ¼b +(1 ¡¼b) (1 ¡¹) ¼b +(1 ¡ ¼b) (1 ¡ ¸) 0

0 (1 ¡¼b)¹ (1 ¡ ¼b)¸ 0

we obtain
³

vn+1 wn+1 yn+1 zn+1

´T
= M

³
vn wn yn zn

´T
and hence

L = maxf¼a; ¼bg

¡1

2
(1 ¡ ±) (¼a + ¼b) ¡ (1 ¡ ±) ±

³
¼a ¼b ¼b ¼a

´
(Id ¡ ±M)¡1

³
v2 w2 y2 z2

´T

where Id 2 R4;4 is the identity matrix.

The explicit expression for L is too elaborate to present here but it is easily veri…ed for

¼a > ¼b that

d

d¼a
Lj(¼a;¼b )=(1;0) =

1

2

¡
1 ¡ 3± + ±¸ + 2±2¡ 3±2¸¡ ±3¸2¡ ±4¸2

¢
+2±4¸¹ +

¡
±3¡ ±4

¢
¹2

1 ¡ ± + ±¸

d

d¼b
Lj(¼a;¼b )=(1;0) = ¡1

2

(1 ¡ ±) (1 ¡ 2± + ±¸)

1 ¡ ± + ±¸

In the following we search values of ¸ and ¹ that maximize the largest value of ± such that
d
d¼a

Lj(¼a;¼b)=(1;0) ¸ 0 and d
d¼b

Lj(¼a;¼b)=(1;0) · 0 holds. Let ¸0; ¹0 and ±0 be the solutions to this

problem. It follows that ¹0 = 1 which yields d
d¼a

Lj(¼a;¼b)=(1;0) = 1
2

¡¡±3¸ + ±3¡ ±2¸ ¡ 2± +1
¢
:

So we are looking for ¸0 and ±0 such that 1¡ 2±0+ ±0¸0 = 0 and ¡±30¸+±30¡±20¸0¡ 2±0+1 = 0:

Solving these two equations yields ¸0 = 2±0¡1
±0

and

±0 = 3

sµ
17

27
+

1

9

p
33

¶
¡ 2

9 3

q¡
17
27 + 1

9

p
33

¢ ¡ 1

3
¼ 0:54369:

Thus, for ± > ±0 either d
d¼a

Lj(¼a;¼b)=(1;0) < 0 or d
d¼b

Lj(¼a;¼b)=(1;0) > 0 which means for ± > ±0

that either Q0 is not a worst case prior. Combining this with Proposition 8 we have proven part

(ii).

In the following we consider ± · ±0; ¸ = ¸0; ¹ = 1 and ¼a > ¼b and will prove that L attains

its maximum at (¼a; ¼b) = (1;0) :
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First we will prove that d
d¼b

L · 0. Let ¼a = 1 ¡ w: Then

L =
1

2

(1 ¡ w ¡¼b) + (1 ¡ w ¡¼b) (¸0w + w ¡ 2 +¼b + ¸0 ¡¼b¸0) ±

+(¸0 ¡ 1) (¡1 + w +¼b) (¡¸0w + ¼b¸0w ¡ 2w + ¼bw +1 ¡¼b) ±2

+w (¸0 ¡ 1)2 (¡1 +¼b) (¡1 + w +¼b) ±3

1 ¡ (1 + ¼b¸0¡ ¸0 ¡¸0w) ± ¡ w (¸0 ¡ 1) (¸0+ 1) (¡1 +¼b) ±2¡ w (¸0 ¡ 1)2 (¡1 + ¼b) ±3

Now also assume ¼b = 0: Then

d

d¼b
L = ¡1

2

¡
1 ¡ (1 ¡ w ¡¸0w) ± ¡ w (1 ¡ ¸0) ±2

¢ ¤
³
1 ¡ (2 ¡ ¸0) ± + ±

³
1 + ¸0 (1 ¡ ±)+ ¸20± + (1 ¡¸0)

2 ±2
´

w ¡ (1 ¡¸0) ±2w2
´

¡
1 + ¸0w± ¡ w (1 ¡ ¸0) ±2

¢³
1 ¡ (1 ¡ ¸0 ¡¸0w) ± ¡ w

¡
1 ¡ ¸20

¢
±2+ w (1 ¡ ¸0)

2 ±3
´

The second factor in the enumerator is the only one that can take negative values. Looking at

this term we …nd that d
d¼b

Lj(¼a;¼b)=(1;0) · 0 implies d
d¼b

Lj¼b=0 · 0 for all ¼b: We also obtain

d

d¼b

d

d¼b
L = ¡±

(1 + ±¸0 ¡ ±)
¡
±¸0w + ±2¸0w ¡ ± + 1 ¡w±2+ ±w

¢2
(±¸0w +1 ¡ ±w)2¡

1 ¡ (1 + ¼b¸0¡ ¸0 ¡¸0w) ± ¡ w (1 ¡ ¸0) (1 ¡¼b) ±2 (1 +¸0¡ (1 ¡¸0) ±)
¢3 · 0

which completes the proof that d
d¼b

L · 0 holds for ± · ±0:

If ¼b = 0 then

d

dw
L = ¡1

2

¡
1 ¡ 2± ¡ ±2¸0¡ ±3¸0+ ±3

¢
+ 2± (1 + ¸0+ ±¸0 ¡ ±)w

+±2 (1 + ¸0 + ±¸0 ¡ ±) (¸0 + ±¸0¡ ±)w2

¡
w±2¸0 + ±¸0w ¡w±2 +1

¢2

Since (1 + ¸0 + ±¸0¡ ±) ¸ 0 we obtain d
dwLj(w;¼b)=(0;0) · 0 implies d

dwLj¼b=0 · 0 which

completes the proof of the fact that (¼a; ¼b) = (1;0) maximizes L.
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