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Abstract

It has been shown (Hart [2002]) that the backward induction (or
subgame-perfect) equilibrium of a perfect information game is the
unique stable outcome for dynamic models consisting of selection and
mutation, when the mutation rate is low and the populations are large,
under the assumption that the expected number of mutations per gen-
eration is bounded away from zero.

Here it is shown that one can dispense with this last condition.
In particular, it follows that the backward induction equilibrium is
evolutionarily stable for large populations.

1 Introduction

Conventional game theory relies on the assumption that players are rational.

However, in evolutionary models there is no assumption of rationality, and

the behavior driving the process by which agents adjust their strategies may

be entirely mechanistic. Therefore, it seems surprising that both lead to

“rational” stability, i.e., to equilibrium behavior.

∗This research was done as a Master Thesis in the Department of Mathematics, The
Hebrew University of Jerusalem, under the supervision of Sergiu Hart. It was supported
by the Department of Mathematics and by the Center for Rationality and Interactive
Decision Theory, The Hebrew University of Jerusalem. The author thanks Sergiu Hart for
his guidance and insight, and Evgeny Begelfor for his helpful comments.

†Center for Rationality and Interactive Decision Theory; Department of Mathematics;
The Hebrew University of Jerusalem, 91904 Jerusalem, Israel. E-mail: zivg@math.huji.ac.il

1



The “rational” outcome of evolutionary models is due to a combination of

the two main ingredients of evolution: selection, which is a process whereby

better strategies prevail, and mutation, which is relatively rare and generates

random strategies.

The consideration of evolutionary dynamics naturally gives rise to the

concept of an evolutionarily stable strategy (ESS), introduced by Maynard

Smith and Price [1973]. An ESS is a Nash equilibrium in which any small

change by mutation will be eliminated by the process of selection. Therefore,

an ESS is “stable” with regard to both selection and mutation.

1.1 This Paper

In this paper we follow the work of Hart [2002]. We study the long-run be-

havior of evolutionary dynamics, we introduce a few notions of stability, and

finally, we show the stability properties of the backward induction equilib-

rium.

As in Hart [2002], the games we consider are finite games in extensive form

with perfect information. In these games, an equilibrium point can always be

obtained by “backward induction.” The result is also an equilibrium in each

subgame, whether that subgame is reached or not. Such a point is called a

subgame-perfect equilibrium, or a backward induction equilibrium.

For each game, there is an associated population game; i.e., at each node

there is a distinct population of individuals who play the game in the role of

the corresponding player. For each population, the proportions of different

strategies in the population may be viewed as a mixed strategy.

The dynamic process is a Markov chain on the space of the mixed strate-

gies of the various populations. The model is as follows. At each period, one

individual is chosen at random in each population. His current strategy may

then change by selection, mutation, or it may not change at all. Selection re-

places his strategy by another strategy which, against the other populations
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currently playing the game (i.e., “against the field”), yields a higher payoff.

Mutation replaces his strategy by an arbitrary strategy, chosen at random.

Finally, all the choices at each node are made independently.

Such dynamics yield an irreducible and aperiodic system whose long run

behavior is well described by the corresponding unique invariant distribution,

which for each state gives the frequency of that state’s occurrence during any

large time interval.

As in the case of ESS, we are looking for stable strategies in this model,

which are able to withstand the pressure of mutation. Therefore, a strategy

profile (i.e., a mixed strategy in each population) is stable if the frequency

of its occurrence in the long run depends on selection and not on mutation.

When the populations are fixed, a strategy profile is evolutionarily stable

if its occurrence is positive independently of the mutation rate, i.e., if its

invariant probability is bounded away from zero as the mutation rate goes to

zero. When the populations increase, the invariant distribution may change.

Therefore, we define a strategy profile to be evolutionarily stable for large

populations (ESLP) if its invariant probability is bounded away from zero as

the mutation rate goes to zero and the populations increase to infinity.

In Hart [2002] it is shown that when the populations are fixed, the back-

ward induction equilibrium is evolutionarily stable. Moreover, it is shown

that the backward induction equilibrium becomes in the limit the only stable

outcome as the mutation rate decreases to zero and the populations increase

to infinity, provided that the expected number of mutations per generation

is bounded away from zero.1 Therefore, only the backward induction equi-

librium may be ESLP.

In this paper we show that this additional proviso (on the expected num-

ber of mutations per generation) is not needed.2 Thus, the backward induc-

tion equilibrium must be ESLP, and we have the stronger result:

1I.e., the populations go to infinity at least as fast as the mutation rate goes to zero.
2The class of dynamics considered here is less general than Hart [2002]: we assume that

the probability for selection is bounded away from zero. See Remark 3 in Subsection 2.3.
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Main Result: The backward induction equilibrium is the unique

outcome that is evolutionarily stable for large populations; i.e.,

it is in the limit the only stable outcome as the mutation rate

decreases to zero and the populations increase to infinity.

The following section presents the model. Section 3 defines stability and

presents the Main Theorem as well as some preliminaries results. Section

4 proves the Main Theorem, using a few general propositions on Markov

chains. Section 5 concludes with possible extensions of our result.

2 The Model

The model is as in Hart [2002], except for a somewhat less general class of

dynamics.3

2.1 The Game

Let Γ be a finite extensive-form game with perfect information. We are thus

given a rooted tree; each non-terminal vertex corresponds to a move. It may

be a chance move, with fixed positive probabilities for its outgoing branches;

or it may be a move of one of the players, in which case the vertex is called

a node. The set of nodes is denoted N . It is convenient to view the game in

“agent-normal form”: at each node there is a different agent, and a player

consists of a number of agents with identical payoff functions. For each node

i∈N , the agent there — called “agent i” — has a set of choices Ai, which is

the set of outgoing branches at i. We refer to ai in Ai as a strategy of i, and

we put A :=
∏

i∈N Ai for the set of N -tuples of strategies. At each terminal

vertex (or leaf ) there are associated payoffs to all agents; let ui : A → R

be the resulting payoff function of agent i (i.e., for each a = (aj)j∈N ∈A: if

there are no chance moves, then ui(a) is the payoff of i at the leaf that is

3See Remarks 1 and 3 in Subsection 2.3.
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reached when every agent j ∈N chooses aj; if there are chance moves, it is

the appropriate expectation). As usual, the payoff functions are extended

multilinearly to randomized (or mixed) strategies; thus ui : X → R, where

X :=
∏

i∈N X i and X i := ∆(Ai) = {xi ∈ RAi

+ |
∑

ai∈Ai xi
ai = 1}, the unit

simplex on Ai, is the set of probability distributions over Ai.

For each node i∈N , let N(i) be the set of nodes that are successors (not

necessarily immediate) of i in the tree, and let Γ(i) be the subgame starting

at the node i.

An N -tuple of randomized strategies x = (xi)i∈N ∈X is a Nash equilibrium

of Γ if4 ui(x) ≥ ui(yi, x−i) for every yi∈X i. It is moreover a subgame-perfect

(or backward induction) equilibrium of Γ if it is a Nash equilibrium in each

subgame Γ(i), for all i ∈ N . Such an equilibrium is therefore obtained by

backward induction, starting from the final nodes (those nodes i with no

successors, i.e., with N(i) = φ) and going towards the root. We will denote

by EQ and BI the set of Nash equilibria and the set of backward induction

equilibria, respectively, of the game Γ; thus BI ⊆ EQ ⊆ X.

The classical result of Kuhn [1953] states that there always exists a pure

backward induction equilibrium. We assume here that the game Γ has a

unique backward induction equilibrium, which must therefore be pure; we

denote it b = (bi)i∈N ∈A, and refer to bi as the “backward induction strategy

of i.” This uniqueness is true generically, i.e., for almost every game. For

instance, when there are no chance moves, it suffices for each player to have

different payoffs at different leaves.

2.2 The Gene-Normal Form

We now consider a population game associated to Γ: at each node i ∈ N

there is a nonempty finite population M(i) of individuals playing the game

in the role of agent i. We assume that the populations at different nodes are

4We write x−i for the (|N | − 1)-tuple of strategies of the other agents, i.e., x−i =
(xj)j∈Nr{i}.
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distinct:

M(i) ∩ M(j) = φ for all i 6= j. (2.1)

Each individual q∈M(i) is characterized by a pure strategy in Ai, which we

denote by ωi
q∈Ai; let ωi = (ωi

q)q∈M(i) and ω = (ωi)i∈N . For each ai∈Ai, let

xi
ai ≡ xi

ai(ωi) :=

∣

∣{q∈M(i) | ωi
q = ai}

∣

∣

|M(i)|
(2.2)

be the proportion of population M(i) that plays the strategy ai; then xi ≡

xi(ωi) := (xi
ai(ωi))ai∈Ai ∈ X i may be viewed as a mixed strategy of i. The

payoff of an individual q ∈M(i) is defined as his average payoff against the

other populations, i.e., ui(ωi
q, x

−i); we shall slightly abuse notation by writing

this as ui(ωi
q, ω

−i).

We refer to the above model as the gene-normal form of Γ (by (2.1),

which is the counterpart, in population games, of the “agent-normal form”).

2.3 The Dynamics

We come now to the dynamic model. Our processes will be discrete-time

stationary Markov chains:

Let Ω = Ω(Γ, (M(i))i∈N ) :=
∏

i∈N (Ai)M(i) be the state space. A state ω of

the system specifies the pure strategy of each individual in each population;

i.e., ω = (ωi)i∈N , where ωi = (ωi
q)q∈M(i) and ωi

q ∈ Ai for each i ∈ N and

q∈M(i).

We first present a simple dynamic model, which we call the basic model.

Assume that all populations are of equal size, say m = |M(i)| for each i∈N .

Let µ > 0 and σ > 0 be given, such that µ+σ ≤ 1. Let Q = (qω,ω̃)ω,ω̃∈Ω be a

one-step transition matrix on Ω, defined by the following process performed

independently for each i∈N :

• Choose an individual q(i)∈M(i) at random: all m individuals in M(i)

have the same probability 1/m of being chosen.

6



• Let ω̃i
q := ωi

q for each q ∈M(i) such that q 6= q(i); i.e., all individuals

in M(i) except q(i) do not change their strategies.

• Choose one of SE(i) (“selection”), MU(i) (“mutation”) and NC(i)

(“no change”), with probability σ, µ and 1 − µ − σ, respectively.

• If selection SE(i) was chosen, then define

Bi ≡ Bi(q(i), ω) := {ai∈Ai | ui(ai, ω−i) > ui(ωi
q(i), ω

−i)}. (2.3)

Bi is the set of “better strategies” — those strategies at node i that

are strictly better in Γ, against the populations at the other nodes,

than the strategy ωi
q(i) of the chosen individual q(i). If Bi is not empty,

then the new strategy ω̃i
q(i) of q(i) is a randomly chosen better strategy:

ω̃i
q(i) := ai with probability 1/ |Bi| for each ai∈Bi. If Bi is empty, then

there is no change in q(i)’s strategy: ω̃i
q(i) := ωi

q(i).

• If mutation MU(i) was chosen, then ω̃i
q(i) is a random strategy in Ai;

i.e., ω̃i
q(i) := ai with probability 1/ |Ai| for each ai∈Ai.

• If no-change NC(i) was chosen, then the strategy of q(i) does not

change: ω̃i
q(i) := ωi

q(i).

In general, there is no need for the various probabilities to be equal, just

comparable. Therefore the general model is as follows. We are given a mu-

tation rate parameter µ > 0, and a population size m such that |M(i)| = m

for all nodes i ∈ N . The process is a stationary Markov chain on Ωm =

Ω(Γ, (M(i))i∈N ), whose one-step transition probability Q = (qω,ω̃)ω,ω̃∈Ωm
sat-

isfies:

7



• Conditional independence over i∈N , i.e.,5

Q[ω̃ | ω] =
∏

i∈N

Q[ω̃i | ω]. (2.4)

• For each i ∈ N , one individual q(i) ∈ M(i) is chosen, such that there

exist constants γ1,γ2 > 0 with

γ1

m
≤ Q[q(i) = q | ω] ≤

γ2

m
for each q∈M(i), and (2.5)

Q[ω̃i
q = ωi

q for all q∈M(i)r {q(i)} | ω] = 1. (2.6)

• There exists a constant σ > 0 such that, for each i∈N ,

Q[ω̃i
q(i) = ai | ω] ≥ σ for each ai∈Bi, (2.7)

where Bi ≡ Bi(q(i), ω) is the set of strictly better strategies, as defined

in (2.3).

• There exist constants α1,α2 > 0 such that, for each i∈N ,

Q[ω̃i
q(i) = ai | ω] ≥ α1µ for each ai∈Ai, and (2.8)

Q[ω̃i
q(i) = ai | ω] ≤ α2µ for each ai /∈ Bi,ai 6= ωi

q(i). (2.9)

Without loss of generality, all parameters α1,α2,γ1,γ2,σ are taken to be

the same for all i∈N . It can easily be seen that the basic model is a special

case of the general model, where γ1 = γ2 = 1, α1 = 1/ maxi∈N |Ai| and

α2 = 1/ mini∈N |Ai|.

Remarks:

5For each ω ∈ Ωm, we view Q[· | ω] as a probability distribution over Ωm, such that
Q[Ω′ | ω] =

∑

ω′∈Ω′ qω,ω′ for all Ω′ ⊆ Ωm; derived probabilities — like its marginals, etc.
— will also be denoted by Q[· | ω].
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1. For simplicity we assume that |M(i)| = m for all nodes i∈N , but the

same proof (up to minor changes) will work even if we assume only

that the populations are comparable; i.e., the ratios |M(i)| / |M(j)| for

all nodes i, j∈N are bounded away from zero.

2. As in Hart [2002], we assume that the mutation rate µ is fixed, but

we only need the mutation rates in the different populations to be

comparable.

3. We assume that the probability of switching to a better strategy by

selection is bounded away from zero — whether or not that strategy is

currently present in the population. Therefore, our class of dynamics

is less general than that of Hart [2002] (where the above probability

may be proportional to the current proportion of the strategy in the

population. See Hart [2002, (2.7)]).

4. A general model with a one-step transition matrix Q satisfying (2.4) –

(2.9) yields a Markov chain which is irreducible, since the probability

of reaching any state from any other state is positive (as follows from

(2.5) and (2.8), by using an appropriate sequence of mutations). Hence

there exists a unique invariant distribution π on Ωm. The Markov chain

is moreover aperiodic, since there is positive probability of staying in

the same state. Therefore the long-run behavior of the process is well

described by π, in the following two senses:

• In any long enough period of time, the relative frequency of visits

at a state ω is approximately π[ω]; i.e., for every ω∈Ωm:

lim
T2−T1→∞

|{t | T1 < t < T2, ωt = ω}|

T2 − T1
= π[ω].

• The probability that the state ω occurs at a period t is approxi-
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mately π[ω] for large t; i.e., for every ω∈Ωm:

lim
t→∞

P [ωt = ω] = π[ω].

The two properties hold regardless of the initial state; moreover, they

hold not only for single states ω but also for any set of states Ω′ ⊆ Ωm.

3 Stability

In this section we define stability and present the main result of this work.

3.1 Definitions

We are interested in the behavior of the process when the mutation rate is

low, i.e., in the limit of the invariant distribution π as µ → 0. We will look at

the case where the population size m is fixed, and at the case where m → ∞.

Let the game Γ and the constants α1, α2, γ1, γ2 and σ be fixed. For every

mutation rate µ > 0 and population sizes m, let Θ(m, µ) be the set of all

one-step transition matrices Q = (qω,ω̃)ω,ω̃∈Ωm
satisfying (2.4) – (2.9) with

mutation rate µ and population sizes m. For every Q ∈Θ(m, µ), let πQ be

the unique invariant distribution of Q, and let πm,µ[ω] = infQ∈Θ(m,µ) πQ[ω]

for all ω∈Ωm.

Definition 3.1. A state ω∈Ωm is m-evolutionarily stable if

lim inf
µ→0

πm,µ[ω] > 0.

Recall that each state ω ∈ Ωm may be viewed as an N -tuple of mixed

strategies x(ω) = (xi(ωi))i∈N ∈ X (see (2.2)). The invariant distribution πQ

on Ωm therefore induces a probability distribution π̂Q := πQ ◦ (x)−1 over X;
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i.e., π̂Q[Y ] := πQ[{ω ∈Ωm | x(ω)∈ Y }] for every (measurable) Y ⊆ X. Let

π̂m,µ[Y ] = infQ∈Θ(m,µ) π̂Q[Y ].

Definition 3.2. An N -tuple of mixed strategies x ∈ X is m-evolutionarily

stable if
lim inf

µ→0
π̂m,µ[x] > 0.

We now consider the case where the populations increase, i.e., m → ∞

(while the game and constants remain fixed). As m → ∞, the state space

changes and becomes infinite in the limit; we need therefore to consider the

probabilities of neighborhoods rather than the probability of a single point.

For every ε > 0 and N -tuple of mixed strategies x ∈ X, let xε be the

ε-neighborhood of x, i.e., xε := {y∈X : ‖x − y‖ < ε} (we will also use BIε

instead of bε).

Definition 3.3. An N -tuple of mixed strategies x∈X is evolutionarily stable

for large populations (ESLP) if

lim inf
µ→0

m→∞

π̂m,µ[xε] > 0.

We will also use ESLP to denote the set of all N -tuples which are ESLP.

Thus, x is ESLP if, for any neighborhood of x, the relative frequency of

visits at that neighborhood is bounded away from zero, for all large popula-

tion sizes and all small mutation rates.

Remarks:

1. When the populations are fixed, equilibria other than the backward in-

duction equilibrium b may be evolutionarily stable (for example, equi-

librium c in the game6 Γ1 of Figure 1; see also Remark 2 in Subsection

6This is game Γ3 of Hart [2002].
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2

c1

�

(5,9,0)

c2

3

b2

�

(0,0,0)

c3

�

(0,10,1)

b3

�

(4,0,0)

b1

Figure 1: The Game Γ1

3.1 of Hart [2002]). Therefore, the backward induction equilibrium is

not the only equilibrium which is “m-evolutionarily stable for all m;”

but as seen in Hart [2002], the probabilities of all other equilibria go to

zero as m → ∞.

2. We use xε and not x, because lim inf µ→0
m→∞

π̂m,µ[b] may be zero: in the

simple case of a one-person game with the basic model, we have7 π̂[b] $

e−mµ, which goes to zero as mµ → ∞.

7We write f(m, µ) $ g(m, µ) if f(m, µ)=O(g(m, µ)) and g(m, µ)=O(f(m, µ)), where
we use the “big-O” notation: f(m, µ) = O(g(m, µ)) if there exists a constant c = c(Γ, ε)
which does not depend on m or µ such that |f(m, µ)| ≤ c |g(m, µ)| for all m > m0 and
µ<µ0 for some m0 and µ0 >0.
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3.2 The Main Result

In Hart [2002] it is shown that the backward induction equilibrium is m-

evolutionarily stable for all m, and that only the backward induction equi-

librium may be evolutionarily stable for large populations, i.e., ESLP ⊆ BI.

Here we show that the backward induction equilibrium is always ESLP. More-

over, any neighborhood of the backward induction occurs in the limit with

probability 1.

Theorem 3.4 (Main Theorem). ESLP = BI. Moreover, for every ε > 0,

lim
µ→0

m→∞

π̂µ,m[BIε] = 1. (3.1)

Thus, in the long run, as the mutation rate is low and the populations

are large, the dynamic system is most of the time in states where almost

every individual plays his backward induction strategy; i.e., for all ρ > 0,

when µ < µ0 ≡ µ0(ε, ρ) and m > m0 ≡ m0(ε, ρ), at least 1 − ρ of the time,

the proportion of individuals at all nodes who do not play their backward

induction strategy is < ε, for all dynamics Q∈Θ(m, µ).

The backward induction equilibrium is m-evolutionarily stable for all m,

and therefore any neighborhood of it is also m-evolutionarily stable. More-

over, from the double limit (3.1) it follows that the iterative limit limm limµ

is 1 — and thus positive, which implies that BI is m-evolutionarily stable

uniformly in m.

Corollary 3.5. For every ε>0,

lim
m→∞

lim
µ→0

π̂µ,m[BIε] = 1.
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Therefore, any neighborhood of backward induction equilibrium is uni-

formly evolutionarily stable, i.e., the probability, as µ → 0, to be in BIε is

bounded away from zero for all m (and goes to 1 as m → ∞).

3.3 Preliminary Results

For each m, let ESm be the set of all m-evolutionarily stable N -tuples of

mixed strategies.

The following result describes the relations between the different sets of

equilibria.

Proposition 3.6. ESLP ⊆ BI ⊆ ESm ⊆ EQ, and each one of the last two

inclusions may be strict.8

Proof. The inclusions are all results of Hart [2002]. By Theorem 3.1 of Hart

[2002], the backward induction equilibrium is m-evolutionarily stable for

all m; therefore, BI ⊆ ESm. The dynamic here satisfies (3.4) of Hart

[2002]; therefore, by Remark 1 in Subsection 3.1 of Hart [2002], we have

ESm ⊆ EQ. And finally, let x ∈ X such that x 6= b, and take ε > 0

small enough, such that xε ∩ BIε = φ. By Theorem 3.2 of Hart [2002], for

any sequence {Qm,µ} such that Qm,µ ∈ Θm,µ and mµ > δ for some δ > 0,

we have limm→∞µ→0 π̂Qm,µ
[BIε] = 1. Hence, limm→∞µ→0 π̂Qm,µ

[xε] = 0 and

lim infm→∞µ→0 π̂m,µ[xε] = 0. Therefore, ESLP ⊆ BI.

As we have seen in Remark 1 in Subsection 3.1, equilibria other than the

backward induction equilibrium may be m-evolutionarily stable. Therefore,

we have BI  ESm.

In order to prove that ESm may be a proper subset of EQ, consider the

game Γ2 of Figure 2. Assume that m > 2 is even and let x∈X be the mixed

profile (1, 1/2) — i.e., the proportion of c1 is 1 and the proportion of c2 is 1/2

— then x is a Nash equilibrium. The backward induction equilibrium (0, 0)

8Of course, the result of our Main Theorem is that the first inclusion is actually an
equality.

14



1

�
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c1

2

b1
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(0,0)

c2

�

(2,1)

b2

Figure 2: The Game Γ2

(i.e., b = (b1, b2)) is one-mutation-reachable (see the proof of Theorem 3.1.

of Hart [2002]) from9 x; i.e., b can be reached from x by one mutation step in

node 2 (from c2 to b2) followed by selection steps in the two nodes. Therefore,

there is a constant C = C(m) > 0, such that the probability of leaving x and

reaching b before returning to x is at least cµ (as m is fixed and for all µ > 0).

In order to reach x from b, we must have two consecutive moves by mutation

in any of the nodes (either a mutation from b1 to c1 or a mutation from b2 to

c2) while there is selection in both nodes towards b. Therefore, the mean first

entrance time from b to x, denoted ub,x, is of the order of10 (σ/mµ)2
$ 1/µ2.

The mean recurrence time of x satisfies ux ≥ Cµ · ub,x $ 1/µ. The invariant

probability of x is11 1/ux $ µ, and therefore x is a Nash equilibrium which

is not m-evolutionarily stable.12

9To streamline the argument, we are ignoring the distinction between a state ω and its
corresponding pair of mixed strategies x = x(ω) (given by (2.2)).

10Note that m is fixed and therefore m $ 1.
11See (7.4) of Feller [1950].
12See also Subsection 2.3 of Nöldeke and Samuelson [1993]. There it is shown (Propo-

sition 1) that if a component of states is not one-mutation-reachable from any other
component, but is one mutation away from some other component, then that component
is not in the support of the limiting distribution.
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4 The Outcome of the Dynamics

In this section we prove a few general propositions on Markov chains, and

we use these propositions to describe the long-run behavior of our dynamics,

and to prove the Main Theorem.

4.1 An Outline of the Proof

We begin by providing an outline of the proof. By Theorem 3.2 of Hart

[2002], in order to show (3.1), it is enough to assume that mµ ≤ D for some

D < ∞.

The proof is based on the following two properties of our dynamic system,

regardless of what specific matrix Q∈Θm,µ we choose:

P1 The expected time to reach BIε is at most C1(m + 1/µ) for some con-

stant C1.

P2 The expected time to leave BIε is at least C2m/µ for some constant

C2.

By P1 and P2, over time, the Markov chain looks like this:

C2 · m/µC1(m + 1/µ)C2 · m/µC1(m + 1/µ)

BIεBIε

Time

Therefore (Proposition 4.4), on average, the system will be in BIε a

proportion of at least C2m/µ
C2m/µ+C1(m+1/µ)

$
1

1+µ+1/m
of the time, or π[BIε] ≥

1
1+µ+1/m

→ 1 as m → ∞ and µ → 0.

In order to show P2, note that if the populations at all nodes play the

backward induction strategy, then the unique local best reply for each i is

bi (recall that b is the unique backward induction equilibrium). Therefore,
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there exists a λ > 0 such that bi is the unique local best reply of i when the

proportion of the individuals at each node who do not play the backward

induction strategy is less than λ, and therefore a change from bi towards any

other strategy can be done only by mutation.

If ε < λ, the proportion of bi for each state in BIε will decrease only by

mutation, and if we start in BIε/2 ⊆ BIε we will need ≥ mε/2 mutations.

The expected time of each mutation is 1/µ; therefore, the expected time

to leave BIε (starting from BIε/2, we use P1 with ε/2) is at least C2m/µ

(Proposition 4.8).

In order to show P1, we need the following proposition (Proposition 4.3):

Let Ω be a finite state space, which can be partitioned into K+1 different

subspaces Ω0, . . . , ΩK . Our aim is to calculate the expected time it takes

to get to Ω0, starting from ΩK (denote that average by U). Let uk, for

k = 1, . . . , K, be the expected time it takes to go from Ωk to Ωk−1. Then it

is easy to see that U ≤ uK + · · · + u1.

Now assume that we have the one-step probabilities. Assume that for ev-

ery k = 1, . . . , K, there is a probability of fk of going (in one step) “forward”

from Ωk to Ωk−1, and there is also a probability of gk of going “back” from

Ωk to ΩK (and a probability of (1 − fk − gk) of staying in Ωk). If gk = 0

for all k, then the expected time to go from Ωk to Ωk−1 is 1/fk, and we get

U ≤ 1/fK + · · · + 1/f1.

If gk ≥ 0 (for the case K = 2, see Figure 3), the expected time to go

from ΩK to ΩK−1 is 1/fK. However, in ΩK−1, for each “successful” move

to ΩK−2, there are, on average, gK−1/fK−1 moves back to ΩK. Therefore,

the expected time to go from ΩK−1 to ΩK−2 is 1/fK−1 + gK−1/fK−1 · 1/fK.

Adding for all k and rearranging yield

U ≤

K
∑

k=1

[ 1

fk

k−1
∏

l=1

(1 +
gl

fl
)
]

≤
(

K
∑

k=1

1

fk

)[

K−1
∏

l=1

(1 +
gl

fl
)
]

. (4.1)
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Ω2Ω1Ω0 g2

f2

g1

f1

Figure 3: The State Space for K = 2

The proof of P1 is by backward induction. Let us show it in the game

Γ1 of Figure 1 with the basic dynamics, for node i = 2.

Let Ω′ be the set of states with x3(b3) ≥ 1−ε (for some ε < 1/10, which is

an appropriate λ for this game). A move at 3 from b3 to c3 can only occur by

mutation; therefore the proportion of b3 will stay above 1−ε with probability

greater than13,14 (1 − µ).

Assume by induction that it takes O(m + 1/µ) periods to reach Ω′. Let

U be the expected time until both x2(b2) ≥ 1 − ε and x3(b3) ≥ 1 − ε. Then

we have U ≤ O(m + 1/µ) + U1 + U2, where U1 is the expected time until

node 2 becomes a reached node15 (while in Ω′ and not leaving it) and U2 is

the expected time until x2(b2) ≥ 1 − ε (while in Ω′ and node 2 is reached).

Step 1: We compute U1 (Proposition 4.5).

Divide Ω′ into two sets: in Ω1 put all the states where all the population

at 1 plays b1 (and therefore node 2 is not a reached node), and in Ω0 put

all the states where node 2 is a reached node. There is a probability of at

least µ of going from Ω1 to Ω0 (a mutation at node 1 from b1 to c1), and

the probability of going back — outside of Ω′, i.e., the probability that the

13We are ignoring all the constants.
14This is also true when |N(i)|>1.
15A node i is a reached node in state ω, if in all the nodes between i and the root, at

least one individual plays the strategy towards node i.
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proportion of b3 will decrease below 1− ε — is only µ. Using (4.1) we have16

U1 ≤ (O(m + 1/µ) + 1/µ)(1 +
µ

µ
) = O(m + 1/µ).

Step 2: We compute U2 (Proposition 4.6).

Node 2 will remain a reached node, unless there is only one individual in

node 1 who plays c1, and that individual is chosen (with probability 1/m).

Therefore the node will remain a reached node with probability (1 − 1/m).

If the proportion of c2 is greater than ε, then the probability of choosing

such an individual is ≥ ε, and the probability that the individual will change

his strategy to b2 by selection is ≥ σ. Therefore, the probability that the

proportion of c2 will decrease is ≥ εσ.

A move from b2 to c2 can be done only by mutation. Therefore the

probability that the proportion of c2 will increase is ≤ µ.

Using (4.1), we have (we assume that mµ ≤ D)

U2≤
(

O(m + 1/µ)+
m

∑

k=1

1

εσ

)(

m
∏

k=1

(1 +
µ

εσ
)
)

≤O(m+1/µ)emµ =O(m+1/µ).

Therefore, U ≤ O(m + 1/µ), and by induction we have P1.

4.2 General Propositions

Let Ω be a finite state space with a transition matrix Q=(qω,ω′)ω,ω′∈Ω. For

each Ω′ ⊆ Ω and ω∈Ω, let {Xt}
∞
t=0 be a Markov chain on Ω with initial state

ω. Define T (ω, Ω′) = min{t ≥ 0 | Xt ∈ Ω′}; i.e., T (ω, Ω′) is the number of

periods it takes to get to Ω′ starting from ω.

Let U(ω, Ω′) = E[T (ω, Ω′)].

For each Ω1, Ω2 ⊆ Ω let U(Ω1, Ω2) = maxω∈Ω1
U(ω, Ω2).

16For a node at distance k from the root, Ω′ is partitioned into (k−1) sets, which yields
an expected time of the order of (k − 1) · (1/µ + m) and not (1/µ + m)k−1.

19



Proposition 4.1. Let Ω be a finite state space with a transition matrix Q

and let Ω0, Ω1, Ω2 ⊆ Ω. Then U(Ω0, Ω2) ≤ U(Ω0, Ω1) + U(Ω1, Ω2).

Proof. Let ω0 ∈ Ω0 such that U(ω0, Ω2) = U(Ω0, Ω2), and let {Xt}
∞
t=0 be a

Markov chain on Ω with initial state ω0. Define T1 = T (ω0, Ω2) and T2 =

min{t ≥ T1 | Xt∈Ω2}. Therefore E[T1]=U(ω0, Ω2), and as T2 ≥ min{t ≥ 0 |

Xt∈Ω2}=T (ω0, Ω2) we get E[T2] ≥ U(ω0, Ω2).

E[T2 − T1] =
∑

ω∈Ω

P [XT1
= ω]E[T2 − T1 | XT1

= ω]

=
∑

ω∈Ω1

P [XT1
= ω]E[T2 − T1 | XT1

= ω]

and

E[T2 − T1 | XT1
= ω] =

∞
∑

k=1

P [T2 − T1 ≥ k | XT1
= ω]

=

∞
∑

k=1

∑

ω1,...,ωk−1 /∈Ω2

qω,ω1
· · · qωk−2,ωk−1

=

∞
∑

k=1

P [T (ω, Ω2) ≥ k] = U(ω, Ω2).

Therefore

U(Ω0, Ω2) ≤ E[T2] = E[T1] + E[T2 − T1] ≤ U(Ω0, Ω1) + U(Ω1, Ω2).

Proposition 4.2. Let {fn}
∞
n=1 and {gn}

∞
n=1 be two real sequences such that

fn > 0 and gn ≥ 0 for all n. Let {an}
∞
n=0 satisfy a0 = 0 and for all n > 0,

an ≤
1

fn

+ (1 +
en

fn

)an−1.
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Then for all n > 0,

an ≤

n
∑

k=1

[
1

fk

n
∏

l=k+1

(1 +
gl

fl
)].

Proof. We will use induction on n. For n = 1 we have a1 ≤ 1/f1 + (1 +

e1/f1)a0 = 1/f1. Assume that

an−1 ≤

n−1
∑

k=1

[
1

fk

n−1
∏

l=k+1

(1 +
gl

fl
)].

Then

an ≤
1

fn

+ (1 +
en

fn

)an−1 ≤
1

fn

+ (1 +
en

fn

)
n−1
∑

k=1

[
1

fk

n−1
∏

l=k+1

(1 +
gl

fl

)]

=
1

fn

+
n−1
∑

k=1

[
1

fk

n
∏

l=k+1

(1 +
gl

fl

)] =
n

∑

k=1

[
1

fk

n
∏

l=k+1

(1 +
gl

fl

)].

Let Ω be a state space with a transition matrix Q. For all ω ∈ Ω and

A ⊆ Ω, let Q(ω, A)=
∑

ω′∈A qω,ω′ — the probability of going from ω to A in

one step.

Proposition 4.3. Let Ω=
⋃K

k=0 Hk be a finite state space, where Hk 6=φ for

all k=0, . . . , K and Hk

⋂

Hl =φ for all 0 ≤ l < k ≤ K. Let Q be a transition

matrix on Ω such that for all 1 ≤ k ≤ K there are constants fk > 0 and gk,

such that Q(ω,∪k−1
l=0 Hl) ≥ fk and Q(ω,∪K

l=k+1Hl) ≤ gk for all ω∈Ωk. Then

U(Ω, H0) ≤

K
∑

k=1

[ 1

fk

k−1
∏

l=1

(1 +
gl

fl
)
]

≤
(

K
∑

k=1

1

fk

)[

K−1
∏

l=1

(1 +
gl

fl
)
]

.

Proof. For every 1 ≤ k ≤ K, let Ak =
⋃k−1

l=0 Hl, Bk =
⋃K

l=k Hl, uk =U(Hk, Ak)

and vk =uK + · · · + uk, and let vK+1 =0.

For every 1 ≤ k ≤ l ≤ K we will prove by induction on s= l, l − 1, . . . , k

that U(Hl, As) ≤ ul + ul−1 + · · · + us. For s = l, we have U(Hl, As) =

21



U(Hl, Al)=ul.

Assume by induction that U(Hl, As+1) ≤ ul+· · ·+us+1. Since U(As, As)=

0 and U(Hs, As) ≥ 0, we get U(As ∪ Hs, As)=max{U(As, As), U(Hs, As)}=

U(Hs, As). Therefore, using Proposition 4.1,

U(Hl, As) ≤ U(Hl, As ∪ Hs) + U(As ∪ Hs, As) = U(Hl, As+1) + U(Hs, As)

≤ ul + · · · + us+1 + us.

Therefore U(Bl, Ak)=maxs=l,...,K U(Hs, Ak) ≤ vk for every 1 ≤ k ≤ l ≤ K.

Let ωk ∈ Hk such that U(Hk, Ak) = uk is attained at ωk, i.e., uk =

U(ωk, Ak). Then ωk /∈ Ak and we have

uk = U(ωk, Ak) = 1 +
∑

ω∈Ω

qωk,ωU(ω, Ak)

= 1 +
∑

ω∈Bk+1

qωk ,ωU(ω, Ak) +
∑

ω∈Hk

qωk ,ωU(ω, Ak) +
∑

ω∈Ak

qωk ,ωU(ω, Ak)

≤ 1 + U(Bk+1, Ak)Q(ωk, Bk+1) + U(Ωk, Ak)Q(ωk, Hk) + 0

≤ 1 + vk+1gk + uk(1 − fk) + 0.

After rearrangement we have

fkuk + fkvk+1 ≤ 1 + gkvk+1 + fkvk+1, and

vk ≤
1

fk
+ (1 +

gk

fk
)vk+1.

Therefore, by Proposition 4.2,

U(Ω, H0) = U(B1, A1) ≤ v1 ≤
K

∑

k=1

[ 1

fk

k−1
∏

l=1

(1 +
gl

fl
)
]

.

Remark 4.1. In Proposition 4.3 it is sufficient to assume that U(Ω, ΩrHK)=

U(HK , AK) = vK ≤ 1/fK, without any other assumptions on the one-step
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transition probabilities on HK.

Proposition 4.4. Let a finite state space Ω and a transition matrix Q be an

irreducible and aperiodic Markov chain with an invariant distribution π. Let

Ω1 ⊆ Ω2 ⊆ Ω and let C1 and C2 be constants which satisfy:

1. U(Ω, Ω1) ≤ C1.

2. 0 < C2 ≤ U(ω, Ωr Ω2) for every ω∈Ω1.

Then
π[Ωr Ω2]

π[Ω2]
≤

C1

C2
.

Proof. Let X = (Xt)
∞
t=0 ∈ ΩN. Let T0 = T0(X) = 0 and define successively

for n ≥ 1:

T2n−1 = T2n−1(X) = min{t > T2n−2 | Xt∈Ω1}

T2n = T2n(X) = min{t > T2n−1 | Xt∈Ωr Ω2}.

For every t ≥ 1 define:

Ht = Ht(X) = max{n | T2n < t}

Pt = Pt(X) =
1

t

t−1
∑

n=0

1{Xn∈ΩrΩ2}

Qt = Qt(X) =
1

t

t−1
∑

n=0

1{Xn∈Ω2}.
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Then for every t

Pt =
1

t

t−1
∑

n=0

1{Xn∈ΩrΩ2} =
1

t

[

T1−1
∑

n=0

1{Xn∈ΩrΩ2} + · · · +

t−1
∑

n=T2Ht

1{Xn∈ΩrΩ2}

]

≤
1

t
[T1 + · · ·+ (T2Ht−1 − T2Ht−2) + (T2Ht+1 − T2Ht

)]

=

∑Ht+1
n=1 (T2n−1 − T2n−2)

t

Qt =
1

t

t−1
∑

n=0

1{Xn∈Ω2} =
1

t

[

T1−1
∑

n=0

1{Xn∈Ω2} + · · ·+

t−1
∑

n=T2Ht

1{Xn∈Ω2}

]

≥
1

t
[(T2 − T1) + · · ·+ (T2Ht

− T2Ht−1)] =

∑Ht

n=1(T2n − T2n−1)

t
.

Let {Xt}
∞
t=0 now be a Markov chain on Ω with some initial distribution

(qω)ω∈Ω, and define as above Tn, Ht, Pt and Qt for all n ≥ 0, t ≥ 1. Note

that limt→∞ E[Pt] = π[ΩrΩ2] and limt→∞ E[Qt] = π[Ω2]. As in the proof of

Proposition 4.1, for every n ≥ 1, we have E[T2n−1 − T2n−2] ≤ U(Ω, Ω1) ≤ C1

and C2 ≤ E[T2n − T2n−1].

Therefore

π[ΩrΩ2] = lim
t→∞

E[Pt] ≤ lim sup
t→∞

E
[

∑Ht+1
n=1 (T2n−1 − T2n−2)

t

]

≤ lim sup
t→∞

E[Ht] + 1

t
· C1 =C1 lim sup

t→∞

E[Ht]

t
=

C1

C2

lim sup
t→∞

E[Ht]C2

t

≤
C1

C2

lim sup
t→∞

E
[

∑Ht

n=1(T2n − T2n−1)

t

]

≤
C1

C2

lim sup
t→∞

E[Qt]

=
C1

C2
π[Ω2].

4.3 The Proof of the Main Theorem

We now use the previous propositions to prove the Main Theorem. Let the

game Γ be fixed. We start with a number of useful notations.
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• For each node i ∈ N , let Y i(ω) = 1 − xi
bi(ω). This is the proportion

of population i that does not play the backward induction strategy in

state ω.

• Given two nodes i, j∈N such that i is a descendant of j (i.e., i∈N(j)),

let Rj,i(ω) be an indicator random variable, defined as 1 if node i is

reached from node j in state ω, and 0 otherwise; i.e., Rj,i(ω) = 1 if and

only if for every node k∈N on the path from j to i there is at least one

individual q∈M(k) whose choice ωk
q is the strategy that leads toward

i. Let ak,i∈Ak be that strategy. When j is the root we will write Ri(ω)

for the indicator that i is reached.

• For each node i∈N , when every j∈N(i) plays the backward induction

strategy — i.e., when Y j(ω) = 0 — the unique local best reply for i is bi

(recall that b is the unique backward induction equilibrium). Therefore

there exists a λi > 0 (appropriately small) such that bi is the unique

local best reply of i when Y j(ω)<λi for all j ∈N . Let λ = mini∈N λi.

This λ depends on the game only, and will be fixed from now on.

• Let Li(ω) be an indicator random variable, defined as 1 if Y j(ω) < λ

for all j∈N(i), and 0 otherwise. Thus, when Li(ω) = 1 the backward

induction strategy bi is the unique local best reply of i.

• Assume that the nodes are numbered {1, . . . , n}, where n = |N |, such

that j ∈N(i)⇒ j > i. Let ε>0. Define Gi(ε)={ω | Y j(ω) ≤ ε ∀j ≥ i}

for all i ∈ N , and Gn+1(ε) = Ω. Note that if ε < λ, then for every

ω ∈ Gi(ε) and every j1 ≥ i, we have Y j2(ω) ≤ ε < λ for all j2 > j1.

Therefore, Lj1(ω) = 1 for all j1 ≥ i.

• Let ε>0. For all i, j∈N , define Gj,i(ε)={ω∈Gj(ε) | Ri(ω)=1}. Note

that if ε<λ and N(i) ⊆ {j, j+1, . . . , n}, then Ri(ω) = 1 and Li(ω) = 1

for every ω∈Gj,i(ε).
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For every mutation rate µ > 0 and population size m, let Q ∈ Θ(m, µ).

For every ω∈Ωm let ω̃ be the next state, i.e., for all ω′∈Ωm, P [ω̃ = ω′ |ω] =

P [Xt+1 = ω′ | Xt = ω] = qω,ω′ .

We use the notations above to state the following implications of the

dynamics given by (2.4) – (2.9):

1. All strategies have a positive probability of being chosen by mutation:

P [ω̃i
q(i) = ai |ω] ≥ α1µ for every ai∈Ai. (4.2)

2. If node i is not reached, i.e., Ri(ω) = 0, then all strategies of i yield

the same payoff and only mutation affects ωi. Therefore:

If Ri = 0 then P [ω̃i
q(i) 6= ωi

q(i) |ω] ≤ α2µ. (4.3)

3. If Ri(ω) = 1 and Li(ω) = 1 then bi is the global best reply of i and

thus certainly a “better strategy” for a “non-bi individual” (i.e., bi ∈

Bi(q(i), ω) when ωi
q(i) 6= bi), and there isn’t any “better strategy” for a

“bi individual” (i.e., B(q(i), ω) = φ when ωi
q(i) = bi). Therefore:

If LiRi = 1 and ωi
q(i) 6= bi then P [ω̃i

q(i) = bi | ω] ≥ σ. (4.4)

If LiRi = 1 and ωi
q(i) = bi then P [ω̃i

q(i) 6= bi | ω] ≤ α2µ. (4.5)

If LiRi = 1 then P [Y i(ω̃)>Y i(ω) |ω] ≤ α2µ. (4.6)

4. Using (4.3) and (4.6) we get

If Li = 1 then P [Y i(ω̃)>Y i(ω) |ω] ≤ α2µ. (4.7)

5. If Ri(ω)=1, then for all the nodes j∈N on the path from the root to

node i, there must exist q∈M(j) such that wj
q =aj,i (recall that aj,i is
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the strategy in node j which leads toward node i). To get Ri(ω̃) = 0,

there must be some node j on the path where no one plays aj,i, which

means that the only individual who played aj,i must have been chosen.

Therefore (by (2.5)):

If Ri = 1 then P [Ri(ω̃) = 0 |ω] ≤ nγ2
1

m
. (4.8)

6. If ε < λ, then for every ω ∈Gi(ε), we have Lj(ω) = 1 for all j ≥ i. If

ω̃ /∈Gi(ε) then there is some node j ≥ i such that Y j(ω̃) ≥ ε>Y j(ω).

Therefore (by (4.7)):

If ω∈Gi(ε) then P [ω̃ /∈Gi(ε) |ω] ≤ (n + 1 − i)α2µ. (4.9)

From now on, ε > 0, m > 2nγ2, µ < 1/(2α2) and Q ∈ Θ(m, µ) are fixed.

Proposition 4.5. If λ > ε, then there is a constant C1,1 = C1,1(Γ, ε) such

that U(Ωm, Gj,i(ε)) ≤ C1,1(U(Ωm, Gj(ε)) + 1/µ) for all i, j∈N .

Proof. Without loss of generality assume that the nodes along the path from

the root to node i are 1, 2, . . . , i.

Let Hk = {ω ∈Gj(ε) | Rk,k+1(ω) = 0, Rk+1,i(ω) = 1} for k = 1, . . . , i − 1;

i.e., Hk is the set of all states in Gj(ε) such that node i is reached from node

k + 1, but in node k no one chooses the strategy towards node k + 1. Let

H0 =Gj,i(ε) and let Hi =Ω rGj(ε). If node i is not reached, then there is a

node where no one chooses the strategy towards node i, and there is a unique

maximum node like that. Therefore {Hk}
i
k=0 is a partition of Ω.

Let 1 ≤ k < i and ω ∈Hk. Then ω ∈Gj(ε) and Rl(ω) = 0, Rl,l+1(ω) = 1

for all k ≤ l<i. To get ω̃∈Hl for some k<l<i there must be Rl,l+1(ω̃)=0,

which can happen only by mutation (by (4.3)). By (4.9) we get P [ω̃ ∈Hi |

ω]=P [ω̃ /∈Gj(ε) |ω] ≤ O(µ). Therefore there is a constant gk (which depends

27



on the game and not on m or µ) such that

Q(ω,∪i
l=k+1Hl)=P [ω̃∈∪i

l=k+1Hl |ω] ≤ gkµ. (4.10)

To get ω̃∈Hl for some 0 ≤ l < k, it is enough that all the following will

happen:

• ω̃∈Gj(ε), and by (4.9) we get P [ω̃∈Gj(ε) |ω] ≥ (1 − α2µ).

• Rl′,l′+1(ω̃) = 1 for all k < l′ < i, and by (4.3) we get P [Rl′,l′+1(ω̃) = 1 |

ω] ≥ (1 − α2µ).

• Rk,k+1(ω̃) = 1, which happens if q(k) choose by mutation the strategy

towards node i, and by (4.2) we get P [Rk,k+1(ω̃)=1 |ω] ≥ α1µ.

As each of those things depends on different nodes, we get (using (2.4))

that there is a constant fk >0 such that

Q(ω,∪k−1
l=0 Hl)=P [ω̃∈∪k−1

l=0 Hl |ω] ≥ (1 − α2µ)i−kα1µ ≥ fkµ. (4.11)

Using Proposition 4.3 on {Hk}
i
k=0 with (4.10) and (4.11) we get

U(Ωm, Gj,i(ε)) = U(Ωm, H0) ≤
(

U(Ωm, Ωm rHi) +
i−1
∑

k=1

1

fkµ

)

i−1
∏

k=1

(1 +
gkµ

fkµ
)

≤ C1,1(U(Ωm, Gj(ε)) +
1

µ
).

Proposition 4.6. If λ > ε, then there is a constant C1,2 = C1,2(Γ, ε) such

that U(Ωm, Gi(ε)) ≤ C1,2 · (U(Ωm, Gi+1,i(ε)) + m)eC1,2mµ for all i∈N .

Proof. Without loss of generality assume that εm is an integer.

Let i∈N . Note that by the assumption on the numbering of the nodes,

for every node j∈N(i) we have j >i. Therefore N(i) ⊆ {i + 1, . . . , n}.

Let K = m − εm + 1. Let HK = Ω r Gi+1,i(ε), let Hk = {ω ∈Gi+1,i(ε) |

Y i(ω)= k+εm
m

} for k = 1, . . . , K − 1, and let H0 ={ω∈Gi+1,i(ε) | Y i(ω) ≤ ε}.
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Then {Hk}
K−1
k=0 is a partition of Gi+1,i(ε) according to the value of Y i, and

{Hk}
K
k=0 is a partition of Ω.

Let 1 ≤ k <K and ω∈Hk. Then ω∈Gi+1(ε), Ri(ω) = 1 and Li(ω) = 1.

To get ω̃ ∈ Hl for some k < l < K, there must be Y i(ω̃) > Y i(ω). To get

ω̃ ∈HK there must be ω̃ /∈Gi+1,i(ε), which means that either Ri(ω̃) = 0 or

ω̃ /∈ Gi+1(ε). Therefore (using (4.6), (4.8) and (4.9)) there is a constant g

(which does not depend on k) such that

Q(ω,∪K
l=k+1Hl) = P [ω̃∈∪K

l=k+1Wl |ω]

≤ P [Y i(ω̃)>Y i(ω) |ω]+P [Ri(ω̃)=0 |ω]+P [ω̃ /∈Gi+1(ε) |ω]

≤ g(µ +
1

m
). (4.12)

To get ω̃∈Hk−1, it is enough that all the following will happen:

• ω̃∈Gi+1(ε), and by (4.9) we get P [ω̃∈Gi+1(ε) |ω] ≥ (1 − α2µ).

• Ri(ω̃)=1, and by (4.8) we get P [Ri(ω̃)=1 |ω] ≥ (1 − nγ2
1
m

).

• Y i(ω̃)=Y i(ω)− 1
m

, and that happens if q(i) is chosen from {q∈M(i) |

wi
q 6= bi}, and changes his strategy to bi. By (2.5) and (4.4) we get

P [Y i(ω̃)=Y i(ω) − 1
m

|ω] ≥ σγ1
|{q∈M(i)|wi

q 6=bi}|
m

=σγ1Y
i(ω) ≥ σγ1ε.

As each of those things depends on different nodes, we get (using (2.4))

that there is a constant f >0 such that

Q(ω,∪k−1
l=0 Hl) = P [ω̃∈∪k−1

l=0 Hl |ω] ≥ (1− α2µ)(1− nγ2
1

m
)σγ1ε ≥ fε. (4.13)
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Using Proposition 4.3 on {Hk}
K
k=0 with (4.12) and (4.13) we get

U(Ωm, Gi(ε)) = U(Ωm, H0)≤
(

U(Ωm, ΩmrHK)+

K−1
∑

k=1

1

fε

)

K−1
∏

k=1

(1+
g(µ+1/m)

fε
)

≤ (U(ΩM , Gi+1,i(ε)) +
m

fε
)(1 +

g

fε

mµ + 1

m
)m

≤
1

fε
· (U(Ωm, Gi+1,i(ε)) + m) · e

g
fε

(mµ+1).

Corollary 4.7. U(Ωm, G1(ε)) ≤ C1(m + 1/µ)eC1mµ.

Proof. If ε1 ≥ ε2 > 0 then G1(ε2) ⊆ G1(ε1) and therefore U(Ωm, G1(ε2)) ≥

U(Ωm, G1(ε1)). Thus, assume that ε<λ. Using Proposition 4.5 with Propo-

sition 4.6 we get, for all i∈N ,

U(Ωm, Gi(ε)) ≤ C1,2 · (U(Ωm, Gi+1,i(ε)) + m)eC1,2mµ

≤ C1,2 · (C1,1 · (U(Ωm, Gi+1(ε)) + 1/µ) + m)eC1,2mµ.

As U(Ωm, Gn+1(ε))=0, we get U(Ωm, G1(ε)) ≤ C1 · (m + 1/µ)eC1mµ.

Proposition 4.8. Let λ > ε1 > ε2 > 0. Then there is a constant C2 =

C2(Γ, ε1− ε2)>0 such that U(ω, ΩmrG1(ε1))>C2(m/µ) for every ω∈G1(ε2).

Proof. Let ω∈G1(ε1) such that Y i(ω) ≤ k/m for some i∈N and k ≤ ε1m.

By (4.7) and (2.6) P [Y i(ω̃)= k+1
m

|ω] =P [Y i(ω̃)>Y i(ω) |ω] ≤ α2µ. There-

fore, for ω∈G1(ε1) such that maxi∈N Y i(ω) ≤ k/m, we get P [maxi∈NY i(ω̃)=
k+1
m

| ω] ≤ nα2µ and U({maxi∈N Y i ≤ k
m
}, {maxi∈NY i = k+1

m
}) ≥ 1

nα2µ
for

all k ≤ ε1m. Let Xk = {ω | maxi∈N Y i(ω) = k
m
} for all k ≤ ε1m and

XK = {ω | maxi∈N Y i(ω) > ε1}= ΩmrG1(ε1), where K = bε1mc + 1. Thus

U(Xk, Xk+1) ≥ 1
nα2µ

and U(Xk, XK) =
∑K−1

l=k U(Xl, Xl+1) for all k ≤ ε1m.

Therefore, for all ω∈G1(ε2),

U(ω, XK) ≥

bε1mc
∑

l=dε2me

1

nα2µ
≥

(ε1 − ε2)m − 2

nα2µ
.
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Now we can prove our main result:

Theorem 4.9. For every ε > 0 and ∞ > D > 0,

lim
µ→0

m→∞
µm≤D

π̂µ,m[BIε] = 1.

Proof. Without loss of generality assume that ε<λ. For17 mµ ≤ D and Q ∈

Θ(m, µ), there is, by Corollary 4.7, a constant C1 such that U(Ωm, G1(ε/2)) ≤

C1(m + 1/µ), and by Proposition 4.8, there is a constant C2 > 0 such that

for every ω ∈G1(ε/2), we have U(ω, ΩmrG1(ε)) > C2(m/µ). Let πQ be the

invariant distribution of Q; then, by Proposition 4.4,

π̂Q[
X r BIε

BIε

] = πQ[
Ωm rG1(ε)

G1(ε)
] ≤

C1(m + 1
µ
)

C2(m/µ)
=

C1

C2

(µ +
1

m
).

Therefore,

π̂m,µ[BIε] ≥
1

1 + C1

C2
(µ + 1

m
)
−−−→
µ→0
m→∞

1.

Proof of Theorem 3.4. Follows immediately from Theorems 4.9 and 3.2 of

Hart [2002].

5 Extensions

We now present some related questions.

1. As seen in Remark 2 in Subsection 3.1, we must take a neighborhood

of b in order to assure that the limit (3.1) exists and is positive, and

therefore, as seen in Corollary 3.5, for every ε > 0, the iterative limit

lim infm lim infµ is positive. However, we do not know whether we need

to take a neighborhood of b in order to assure that the iterative limit

is positive.

17We may assume, of course, that m > 2nγ2 and µ < 1/(2α2).
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Thus, it is possible that the backward induction equilibrium is uni-

formly evolutionarily stable; i.e., the probability, as µ → 0, of reaching

BI is bounded away from zero for all m.

2. In order to prove the Main Theorem, we assume that the probability of

switching by selection to a better strategy is positive (see Remark 3 in

Subsection 2.3). It seems that without this assumption, the limit (3.1)

may well be strictly less than 1, but this does not necessarily imply

that the backward induction equilibrium is not ESLP.

3. We assume in our proof that mµ ≤ D for some 0 < D < ∞. This

assumption is needed in order to show, using Proposition 4.6, that

U(Ωm, Gi(ε)) ≤ O(U(Ωm, Gi,i+1(ε)) + m);

i.e., if node i is a reached node, and in all nodes j > i most of the indi-

viduals play their backward induction strategy, then after m periods,

most of the individuals in node i will play their backward induction

strategy.

It seems possible that the inequality

U(Ωm, Gi(ε)) ≤ O(U(Ωm, Gi,i+1(ε/2)) + m + 1/µ)

can be proven without any assumption on mµ; i.e., if we start from

a state in which at all the nodes j > i the proportion of individuals

who do not play the backward induction strategy is small enough (no

more than ε/2), then the expected time to reach Gi(ε) is bounded. In

this case, one obtains a unified proof of the Main Theorem and the two

cases (mµ ≤ D here and mµ ≥ δ in Hart [2002]) need not be considered

separately.
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