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Abstract : In a given finite two-player zero-sum game if player one is sufficiently
bounded in rationality it might be possible for player two to beat him, i.e. to ensure
that he never gets more than his maxmin payoff in pure strategies at nearly all stages
of the repeated game. The issue in this case is first to determine the relative minimum
bound in complexity required for player two to defeat player one; it is then to determine
how well player two performs, that is at how many stages he fails to beat player one and
after which stage (if any) he can be certain to defeat him at each stage. Elaborating on
recent results this paper addresses these issues in the case where bounded rationality is
alternatively specified by means of finite state automata or bounded recall strategies.
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1 Introduction

The soundness of many results of repeated games theory as a modelization of economic
behaviors is moderated by their strong hypothesis that agents are individually rational and
infinitely intelligent. Thus numerous recent works have focused on repeated games played
by boundly rational agents (see [Rub98], [Kal93] or [Au81] for surveys).

In particular given a two-players game if player one is sufficiently bounded in rationality
it might become possible for player two to defeat him (i.e. play a best-reply action to his
action) at each stage of the associated repeated game. A key question is then to determine
such a bound explicitely. This requires defining a concept of bounded rationality first.

The reasoning complexity of a strategy can be modelized through the Theory of compu-
tational models (see [HU79] for an introduction). Among those models the class of Finite
State Automata has been shown (for instance by [Au81] or [Rub88]) to be particularly
adequate to modelize rationality in repeated games. Roughly speaking a finite state au-
tomaton is a deterministic machine with a finite number of states; each state determines
the action to be played, and after each stage the machine may change its state according
to the last action played by the adverse player. Such an automaton induces a strategy 3,
and thus the rationality of a given strategy can be defined by the minimum number of
states of an automaton that can implement it (if such an automaton exists).
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3More precisely a class of equivalence of strategies; refer to [Ney98] for details.
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Under this context E. Ben-Porath considers an infinitely repeated two-players zero-
sum game in which player one is restricted to strategies that can be implemented by an
automaton of a given number n ≥ 1 of states. The question is then to determine the
minimum number of states of an automaton for player two whose induced strategy would
beat any such strategy of player one without first knowing it. In [Por93] it is actually
shown that there exists an automaton with in the order of nCn+1 states which beats any
strategy for player one implemented by an automaton of at most n states at every stage
except at a finite number of them (where C is a constant which depends solely on the sets
of actions of the one-shot game). The proof of the existence of this automaton is based on
the fact that given a known automaton with n states for player one a best-reply automaton
for player two, which plays a best-reply action at each stage, needs not be larger than n.
The construction thus mainly consists in exhaustively concatenating all possible best-reply
automata; the result is then derived from the fact that there are in the order of nCn such
automata (see [Por93] for details).

On the other hand A. Neymann and D. Okada consider an infinitely repeated two-
players game in which player one is restricted to a given set of (pure) strategies, be they
implemented by an automaton or not. Player two knows this set and is supposed to be
unbounded in complexity, i.e. he is allowed to play any (pure) strategy. It is legitimate
under this context to hypothesize that due to its unbounded rationality player two will
beat player one. The main issue turns out to be at how many stages (depending on the
size of E) player one can actually avoid being beaten. In [NO00] it is proven that there
exists a strategy for player two that beats any strategy of a given set E at any stage except
possibly at dlog2 |E|e stages. Such a strategy is explicitely built based on the following
observation : at any stage of the repeated game, among all actions that player one may
play at next stage one of them is played more often than the others. Thus by playing a
best-reply to this action, player two ensures that either player one will play it (and will
thus get beaten), or that at most twice less strategies remain compatible with the history
of played action than at the beginning of the stage. The second case may eventually lead
player two to fully identify player one’s strategy, and thus beat him at each subsequent
stage. Note however that this winning strategy for player two is expressed in [NO00] in a
functionnal form rather than through an automaton.

Elaborating on these results the purpose of this paper is to answer the following ques-
tions :

(i) assuming that player one is of bounded rationality, what is the minimum rationality
required for player two to “beat” him ?

(ii) what is in this scenario the number of possible failures, i.e. the total number of stages
at which player one will not get beaten ?

(iii) after which date (if any) can player two be certain to beat player one at each subse-
quent stage ?
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More precisely this paper provides a (partial) unification of the aforementionned results in
the following way : on the one hand it exhibits a winning automaton for player two which
is at most twice larger than the one proposed by [Por93] and which wins logarithmically
quicker. And on the other hand we built an automaton that implements a similar strategy
as [NO00], although this requires a stronger hypothesis (hence the term partial unification).
In addition these results are extended to the context of Bounded Recall Strategies : this
article answers questions (i), (ii) and (iii) in the four possible cases where the rationality
of each player is expressed either in terms of finite state automata or in terms of bounded
recall.

The rest of this paper is organized as follows : the next section briefly recalls the notions
of repeated games and finite automata. In section 3 we define the notion of cyclicity and
state the main result. It is proven in section 4, and in section 5 it is extended to the
context of finite automata and bounded recall strategies. A real-world example is given in
section 6, and section 7 suggests possible extensions and future work.

2 Repeated games and finite automata

2.1 Repeated games

Let G = (A1, A2, r) be a finite two-player game in strategic form, where Ai is the finite
set of actions of player i and r : A → R

2 the payoff function, where A = A1 × A2.
For any player i ∈ {1, 2} we denote ′′ − i′′ = 3 − i the other player, and ui(G) =
maxai∈Ai mina−i∈A−i ri(ai, a−i) the maxmin in pure strategies; this is also the best payoff
player i can guarantee in G with a pure strategy. For any given adverse action a−i ∈ A−i

let Bri (a−i) be an arbitrarily selected pure best reply to a−i.

Let us define for T ∈ N∗ the finitely repeated game GT induced by the repetition of G
T times, and the infinitely repeated game G∞. First for t ∈ N

∗ let Ht = At−1 be the set
of all possible histories at stage t, with the convention A0 = {�} where � denotes the
empty history. We call H(T ) =

⋃

t∈J1,T K At−1 the set of histories up to stage T , and H∞ =
⋃

t∈N∗ At−1 the set of all histories. A strategy for player i in GT is any σi : H(T ) → Ai; we

note Si
T = (Ai)

H(T )
the set of all such (pure) strategies. Similarly a strategy for player i

in G∞ is any σi : H∞ → Ai and let Si = (Ai)
H∞ be the set of all such strategies.

A profile of strategy σ = (σ1, σ2) in GT (respectively in G∞) induces a play ω(σ)
in HT (respectively in H∞) defined recursively in the following way : first let ω(σ)1 =
(σ1

0(�), σ2
0(�)), and then set

ω(σ)t =
(
σ1

t−1 (ω(σ)t−1) , σ2
t−1 (ω(σ)t−1)

)

for any t ∈ J2, T K (respectively for any t ≥ 2). Two strategies σi and τ i for player i
are equivalent if ∀σ−i ω(σi, σ−i) = ω(τ i, σ−i). Finally let rT (σ) = 1

T

∑T

t=1 r (ω(σ)t) be the
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2.2 Finite automata

payoff in GT , and r∞(σ) = limT→+∞
1
T

∑T

t=1 r (ω(σ)t) the payoff in G∞. 4 This completes
the definition of GT = (ST , rT ) and G∞ = (S∞, r∞). A detailed study of repeated games
can be found in [Sor86].

In the rest of this paper we will need the following additional definitions. For any play
ω = (a1, . . . , at) ∈ Ht and any l ≤ t let ω|l = (a1, . . . , al) be ω truncated at sage l, and
note ω′ J< ω whenever ω′ is a truncature of ω. In a similar way any α ∈ H∞ is said to be
in tail of ω, which is denoted by α <K ω, whenever ∃β ∈ H∞ / βα = ω. Besides for n ∈ N

and hi ∈ (Ai)
n

let
hi =

((
hi

1,Br−i
(
hi

1

))
, . . . ,

(
hi

n,Br−i
(
hi

n

)))

be the best-reply path of hi.

2.2 Finite automata

Given a one-shot two-player game G we call finite state automaton (or automaton for
short) for player i any M i = [Qi, qi

∗, f
i, gi] where :

• Qi is a finite set called the set of states of the automaton

• qi
∗ ∈ Qi is its initial state

• f i : (Qi × A−i → Qi) is its transition function

• gi : (Qi → Ai) is its action function

The idea behind the model is that at each step the current state of the automaton deter-
mines its next action (through gi); and after each step it might change its state according
to the actions of other player (through f i). Note that the current action does not depend
directly on the past actions of the other player though. Formally given a strategy σ−i for
the other player an automaton M i induces a strategy σ(M i) in the repeated game GT (or
G∞) in the following way : 5

• at first, M i is in state qi
0 = qi

∗ and plays actions ai
0 = gi(qi

0), while the other player
plays action a−i

0 = σ−i(�)

• the action a−i
0 is then published to M i, which changes its state to qi

1 = f i(qi
0, a

−i
0 )

• player i plays ai
1 = gi(qi

1) while the other player plays a−i
1 = σ−i

((
ai

0, a
−i
0

))

• and so on . . .

4r∞(σ) may not always exist in the general case. However along this article all considered strategies
will be such that it is the case.

5This does not define any action after an history which could not have been played by the automaton,
although a strategy should do it. Thus this defines only an equivalence class of strategies; but since in
this paper automata will only face histories they have generated themselves we shall identify σ(M i) to a
plain strategy.
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Note that different automata may induce the same strategy; actually an adequate measure
on the strategic complexity of an automaton has been shown to be its size, i.e. the number
of its states |Qi| (see [Au81] and [Ney98]). Given a size n ∈ N∗ we note Mi (n) the set of
all automata of size n for player i; we have |Mi (n) | = n|Ai|

n
nn|A−i|.

3 Cyclicity of strategies and main result

3.1 Cyclicity of a strategy

Following Neyman ([Ney98]) a strategy σi of player i is said to be compatible with the play
ω = ((a1

1, a
2
1), . . . , (a

1
t , a

2
t )) (which will be denoted by σi

; ω) if

∀l ∈ J1, tK, σi
(
(a1

1, a
2
1), . . . , (a

1
l−1, a

2
l−1)
)

= ai
l

Note that for any strategy σi of player i, any play ω, any action ai and adverse actions
a−i 6= b−i we have σi

; (ω, (ai, a−i)) ⇔ σi
; (ω, (ai, b−i)).

Moreover a play ω ∈ Hn is said to be in correspondance for player i (which will be
denoted ω ∈ CC i

n ) if
∃φ : Ai → A−i /∀t ∈ J1, nK, ω2

t = φ(ω1
t )

As will be discussed in the next paragraph implementing an efficient strategy against
player one through an automaton requires an additional hypothesis be made on the strate-
gies of player one, which relies on the following definition.

Definition 1 A strategy σi is said to be T -cyclic for T ≥ 1 if ∀ω ∈ H∞, σ1
; ω,

(
∃α ∈ CCi

T , α <K ω
)

⇒
(
∃β ∈ Hn, β <K α, n ≥ 1, / σ1

; ωβββ . . .
)

In such a case n is called the period of σ1 along the play ω (which depends on ω).

Note that being T -cyclic implies being (T +1)-cyclic. For example the “tit-for-tat” strategy
is 1-cyclic; however the “progressive tit-for-tat” is not.

The rational behind the definition of cyclicity lies in the following property :

Proposition 1 The strategy induced by any automaton of size n is n-cyclic.

which is a direct consequence of the definition of an automaton (see appendices for a proof).
The main result of this paper holds under assumptions that are formulated in terms of

cyclicity; although they could have been expressed in terms of the size of some automata
these weaker assumptions enlarge the application domain of the theorem to bounded recall
strategies (as will be exposed in section 5).
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3.2 Situation of the problem and main result

3.2 Situation of the problem and main result

Let G be a finite two-players zero-sum game G and let us consider G∞ the associated
infinitely repeated game. For each profile of pure strategies (σ1, σ2) ∈ S∞ let

N
(
σ1, σ2

)
= |{τ ∈ N / r

(
ω
(
σ1, σ2

)

τ

)
> u1(G)}|

be the total number of stages at which player two does not beat player one, and

T
(
σ1, σ2

)
= inf{t0 ∈ N / ∀τ > t0 / r

(
ω
(
σ1, σ2

)

τ

)
≤ u1(G)}

be the first stage after which player two always beats player one (with inf ∅ = +∞ ).
Let E ⊂ S1

∞ be a non-empty set of allowed (pure) strategies for player one, and assume
E is known by player two. Note however that player two does not know which strategy
among E player one actually selects to play in G. Define for any σ2 ∈ S2

∞

N
(
E, σ2

)
= sup

σ1∈E

N(σ1, σ2) and T
(
E, σ2

)
= sup

σ1∈E

T (σ1, σ2)

the total number of failures and the time-to-win of σ2 respectively.
The purpose of this article is first to determine if there exists a strategy σ2 for player

two such that N(E, σ2) and T (E, σ2) are both finite (i.e. player two effectively beats
player one), and more precisely to minimize the complexity of such a winning strategy as a
function of the complexity of the strategies of E. The second goal is to minimize N(E, σ2)
and T (E, σ2). In this article complexity is tackled with in terms of size of finite automata
and in terms of size of the memory of a bounded recall strategy.

Under this context the following results have already been proven :

Theorem 1 (Ben-Porath 1993) Let n ∈ N∗. Then there exists M 2 ∈ M2 (n|M1 (n) |)
such that ∀M 1 ∈ M1 (n) r∞ (σ(M1), σ(M2)) ≤ u1(G)

In other words setting E = M1 (n) there exists M 2 ∈ M2 (n|M1 (n) |) such that
N (E, σ(M2)) < +∞ (and thus T (E, σ(M 2)) < +∞). Note that n|M1 (n) | = nCn+1 for
C = |S2| + log |S1| + 1 as was claim in the introduction of this paper.

Moreover although it is not explicitely stated it follows from the proof of Theorem 1
that T (E, σ (M2)) = N (E, σ (M2)) = n (|E| − 1). 6

The core of the construction of M 2 consists for player two in assuming that it faces a
certain automaton M 1; as soon as player one plays an action that M 1 would not have
played, player two chooses (through an arbitrary ordering among automata) another com-
patible automaton and assumes it plays against it, and so on until its actual opponent is
fully identified (see [Por93] for details). The main difference of the strategy suggested in

6Following [Por93] notations let N = |M1 (n) | and let α(1), . . . ; α(N) be the (finite) enumeration of
all possible automata for player one, and consider M 1 = α(N). Then M2 will need to successively switch
from the best-reply automata α(1), . . . , α(N − 1) and possibly each of their n copies before eventually
switching to α(N), and hence the result.
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3.2 Situation of the problem and main result

[NO00] (apart from the fact that it is not directly implemented by an automaton) is that
it updates its hypothesis on its opponent in a maximum likelihood fashion, which leads to
a much stronger victory of player two as stated in the following result :

Theorem 2 (Neyman-Okada 2000) There exists σ2 ∈ S2
∞ such that N(E, σ2) ≤ dlog2 |E|e.

The proof of this theorem is based on the following observation : passed histories provide
for a partition of the set E of strategies of player one. More precisely for any stage t ∈ N

and any history ht ∈ Ht define the partition It =
⋃

ht∈Ht
Ct(ht). It materializes the

information set of player two at stage t, since after ht player two knows that the strategy
of player one is in Ct(ht). The desired property is that It converges to a fully identified
partition, i.e. an union of singletons (or more adequately to a union of subsets such that
all strategies of a given subset are equivalent). The point here is to set player two’s action
after history ht to be the best-reply to the action played by the largest subset It+1(ht, ·)
at stage t + 1. 7 This ensures that at next stage, at most half of the remaining compatible
strategies of E will avoid being beaten, and hence the result.

However σ2 has an unspecified complexity in terms of finite automata or bounded-recall;
moreover T (E, σ2) is unbounded. The purpose of the next section is to implement σ2

through an automaton and to bound T (E, σ2). Note that this requires that the convergence
of It to a fully-identified partition happens in uniformly bounded time, which is not true
in general without further assumptions on E. The next sections shows that assuming an
uniformly bounded cyclicity of the strategies of E is sufficient, as stated in the following
result :

Theorem A Let T ∈ N∗ and suppose that E ⊂ S1
∞ is such that each σ1 ∈ E is

T -cyclic. Then there exists M 2 ∈ M2 (2T |E|) such that T (E, σ (M 2)) ≤ 2T dlog2 |E|e and
N (E, σ (M2)) ≤ dlog2 |E|e.

This result is proven in the next section. The rational of stating the hypothesis on E
in terms of cyclicity is that it allows us to repharse Theorem A in terms both of finite
automata and of bounded-recall strategies, as will be done in section 5.

These results may be summarized as follows:

E. Ben-Porath A. Neyman & D. Okada This paper
Strategies of
player one

Automaton
E = M1 (n)

any
(unbounded complexity)

strategies which are T -cyclic

Strategy of
player two

Automaton
of size n|E|

functional form
(unspecified complexity)

Automaton of size
2T |E|

Total number
of failures

(|E| − 1) dlog2 |E|e dlog2 |E|e

Time-to-win n (|E| − 1) unbounded 2T dlog2 |E|e

7If there are more than one subset It+1(ht, ·) of maximum cardinality, anyone will do.
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4 Proof of Theorem A

Let T ∈ N
∗ and E ⊂ S1

∞ be such that each σ1 ∈ E is T -cyclic. We built an automaton
M2 ∈ M2 (2T |E|) such that T (E, σ (M 2)) = 2T dlog2 |E|e. The sketch of the proof is as
follows. First we build the automaton M 2 which implements the desired winning strategy;
then we prove that it is of adequate size and effectively beats any σ1 ∈ E sufficiently
quickly.

The construction of M 2 relies on two distinct ideas : on the one hand the information set
It of [NO00] is explicitely materialized through an automaton; on the other hand cyclicity
ensures that a finite number of states may be sufficient to implement such an automaton.
In the second part of the proof both ideas ensure that T (E, σ(M 2)) ≤ 2T dlog2 |E|e (each
accounting for the dlog2 |E|e or for the 2T factors respectively); eventually cyclicity ensures
that the size of M 2 is bounded by 2T |E|.

4.1 Construction of M 2

Let b0 ∈ A2 be a fixed action for player two. For any stage t ∈ N∗ and any ω ∈ Ht let
Ct(ω) = {σ ∈ E / σ ; ω} be the set of all compatible strategies. We build an infinite tree
(Qk, f

2
k )k∈N

whose nodes (Qk)k∈N
materialize the informations sets (Ik)k∈N and whose edges

are defined by (f 2
k )k∈N

. Together with adequate actions (g2
k : Qk → A2)k∈N

this will be the
ground of M2. To simplify the presentation we also introduce the set of all encountered
histories (Ωk)k∈N

. Let us define T = (Ωk, Qk, f
2
k , g2

k)k∈N recursively in the following way :

• Let Ω0 = {�} and Q0 = C0(Ω0) = {E}.

• Let k ≥ 0 be such that Ωk and Qk are well-defined; let us define g2
k, f

2
k and Ωk+1.

Let g2
k :

(
Qk → A2

Ck(ω) 7→ Br2 (argmaxa1∈A1 |Ck+1(ω, (a, b0))|)

)

be the best reply to

the “most played” action of player one.

Let Ωk+1 = {(ω, (a, b)) / ω ∈ Ωk and a ∈ A1 and b = g2
k (Ck(ω))} be the set of all

possible histories given the action of player two at the last stage, and let Qk+1 =
Ck+1 (Ωk+1).

Then define f 2
k :

(
Qk × A1 → Qk+1

(Ck(ω), a1) 7→ Ck+1 (ω, (a, b0))

)

the transition function that

goes from the state Ck(ω) to the state Ck+1 (ω, (a, b0)). Note that Ck+1 (ω, (a, b0)) =
Ck+1 (ω, (a, g2

k(Ck(ω)))) so that Ck+1 (ω, (a, g2
k(Ck(ω)))) is effectively the next state.

The infinite tree T thus has an infinite number of rows whose nodes Ck(ω) form for each
ω ∈ Ωk a partition of E, which materializes Ik, as illustrated in the following :
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4.1 Construction of M 2
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In addition at each node Ck(ω) the action g2
k (Ck(ω)) is defined to be the best-reply to

the “most-often played” action (namely a in the above illustration). In this example
if player one plays a, then he will be beaten at stage one and player two knows that
σ1 ∈ C1 (a,Br2 (a)). Otherwise player one plays for example b and although may get a
higher payoff than u1(G) at stage one, on the other hand player two knows that σ1 ∈
C1 (b,Br2 (a)). The key point here is that |C1 (b,Br2 (a)) | ≤ 1

2
|E| since |C1 (b,Br2 (a)) | ≤

|C1 (a,Br2 (a)) |.
There are two caveats that need however to be addressed : first T has an infinite number

of nodes; and second it may happen that no two different actions are possibly played
from one stage to another (so that (It) need not necessarily converge to a fully-identified
partition). In order to tackle with these issues we need the following definitions.

For k ≥ 2T let

Wk = {ω = ((a1, b1), . . . , (ak, bk)) ∈ Ωk / ∀l ∈ Jk − 2T + 1, kK, bl = Br2 (al)}

be the set of the plays have been victorious during the last 2T stages. Define W k =
Wk \

⋃k−1
l=2T Wl ×Hk−l. The point here is that due to the following result it is not necessary

to wait for all strategies among a given branch of T to differentiate one from another
(which may actually not always happen) :

Lemma 1 Let k ≥ 2T and ω ∈ Hk be such that (ωk−2T+1, . . . , ωk) is a best-reply path.
Then ∀n ∈ N, ∀α1 ∈ (A1)

n
, ∀σ1, µ1 ∈ Ck(ω), σ1

; (ωα1) ⇔ µ1
; (ωα1)

This lemma (which is proven in appendices) ensures that once a group of strategies have
been beaten 2T times they will never distinguish one from each other (as long as player
two plays a best reply at each stage). It is thus sufficient to beat one of them; but since
they are T -cyclic, it is sufficient to loop-back n stages earlier where n ≤ T is the period of
one of them along ω (as will be shown below).

Let us define the automaton M 2 explicitly.
Let N = 2T dlog2 |E|e and let Q = Q1

⋃
· · ·
⋃

Q2T−1

⋃
C2T

(
W 2T

)⋃
· · ·
⋃

CN

(
W N

)
. Q

is the smallest subset of (Qk)k∈J1,NK that contains all nodes corresponding to a winning

history in Wk. Let g :

(
Q → A2

Ck(ω) 7→ g2
k(Ck(ω))

)

. Now define the transition function f
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4.2 Proof of the adequation of M 2

step-by-step : first implement all transitions already defined on (Qk)k through f 2
k , and then

add all loop-back transitions from the leaves W k after which player one will get beaten at
each stage. Formally for any ω in a given E let τ(ω) be be an arbitrary selection, and let
n(ω) ≤ T be its period along ω.8 Define

f :





Q × A1 → Q

(Ck(ω), a) 7→

{
f 2

k (Ck(ω), a) if ω /∈ W k

Ck−n(ω)(ω|k−n(ω)) otherwise





This completes the definition of the automaton M 2 = [Q, q∗ = E, f, g].

4.2 Proof of the adequation of M 2

We now show that M 2 is a quickly winning automaton. Let σ1 ∈ E be a strategy for
player one, and set ω = ω (σ1, σ (M2)). First let us show the following lemma :

Lemma 2 Suppose that there exists k ∈ N∗ such that ω|k ∈ W k. Then σ1 will be beaten
by σ(M2) at all stages after the first k ones.

Proof Let k ∈ N∗ be such that ω|k ∈ W k. At stage k + 1 player two loops back to node
Ck−n(ω)+1(ω|k−n(ω)+1) and plays a best reply to τ(ω) at stage k − n(ω) + 1; note that by
definition of n(ω) this is also a best reply to τ(ω) at stage k + 1. In addition we have
τ(ω) ; ω|kααα . . . for α = (ωk−n(ω)+1, . . . , ωk). But since ω ∈ W k and n(ω) ≤ T < 2T ,
α is a best-reply path and lemma 1 applies; thus σ1

; ω|kααα . . . since σ1 ∈ W k, and in
particular σ1 plays the same action as τ(ω) at stage k + 1. Thus player two plays a best-
reply to it at that stage. But then in turn the same reasoning proves that both τ(ω) and
σ1 play the same action at stage k+2, and thus that player two plays a best-reply at stage
k + 2. Then a simple induction shows that σ(M 2) ; ω|kααα . . ., so that ω = ω|kααα . . . :
player 1 will be beaten by player two at all stages after the first k ones.

2

Now define p0 = 0 and for l ≥ 1 pl = inf{p > pl−1 / r (ωp) > u1(G)} be the l-th stage at
wich player one does not lose (with inf ∅ = +∞). We have

Proposition 2 ∀l > log2 |E|, pl = +∞.

Proof Assuming pl+1 < +∞ we have |Cpl+1
(ω|pl+1

)| ≤ 1
2
|Cpl

(ω|pl
)|; thus for all l ∈ N

pl < +∞ ⇒ 1 ≤ |Cpl
(ω|pl

)| ≤
1

2l
|E|

Since 1
2l |E| < 1 for l > log2 |E| the result follows.

2

8The point here is that n(ω) is the period of one (undetermined) strategy τ(ω) of Ck(ω), although the
transition is consistant for any τ ∈ Ck(ω) due to lemma 1. This is shown in the next paragraph.

Draft of 14/05/2003-13h53 10



Note that this also proves that N (E, σ (M 2)) ≤ dlog2 |E|e : player one can not avoid being
beaten more that dlog2 |E|e times. And besides there always exists a k ∈ N∗ such as in
lemma 2, and and it is bounded by 2T dlog2|E|e :

Proposition 3 There exists k ≤ 2T dlog2|E|e such that ω|k ∈ W k.

Proof On the one hand because of lemma 2 we have ∀l < l′, pl′ < pl + 2T . On the other
hand because of proposition 2 we have {p > pdlog2 |E|e ∈ N / r (ωp) > u1(G)} = ∅. But
since pl ≥ p0 + l · (2T ) this means that {p > 2T dlog2|E|e ∈ N / r (ωp) > u1(G)} = ∅, and
hence the result.

2

It follows from proposition 3 and lemma 2 that M 2 beats any strategy σ1 of E at all stages
after the first 2T dlog2|E|e ones. In other words we have T (E, σ (M 2)) ≤ 2T dlog2|E|e.

To complete the proof of Theorem A observe that the size of M 2 is no larger than
2T |E| : on the one hand there are at most |E| leaves (nodes from which the automaton
loops back) in the transition graph of the automaton since each leaf contains at least one
strategy. And on the other hand, any node belongs to at least one winning path of length
at most 2T (since at each node the automaton plays the best reply to at least one strategy,
and beating a strategy requires at most 2T steps before looping back). Thus the transition
graph of the automaton contains at most 2T |E| nodes, that is |Q| ≤ 2T |E|.

5 Application to finite automata and bounded-recall

strategies

5.1 Application to finite automata

In the context of finite automata since the strategy induced by an automaton is cyclic
Theorem A leads to the following result :

Corollary 1 There exists an automaton of size 2n|M1 (n) | which beats any automaton of
size at most n at each stage except possibly at the first 2ndlog2 |M

1 (n) |e.

This is a direct consequence of Proposition 1. This result is similar to Theorem 1. Let
N2 be the automaton defined in [Por93] and let us compare N 2 with M2. On the one hand
M2 may be twice larger than N 2; recall however that the size of N 2 is nCn+1. And on
the other hand we have N (E, σ (N 2)) = (|E| − 1) whereas N (E, σ (M 2)) = 2ndlog2 |E|e
which is logarithmically smaller, and in the same way T (E, σ (N 2)) = n (|E| − 1) whereas
T (E, σ (M2)) = dlog2 |E|e. This is a consequence of the fact that instead of updating his
beliefs on the strategy of player one arbitrarily as does [Por93], in Theorem A player two
does it in a maximum likelihood fashion as suggested in [NO00].

Note further that Theorem 2 addresses the case where the strategies of player one are
completely arbitrary - as long as E is bounded. However this only provides a bound
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5.2 Extension to bounded-recall strategies

on N(E, σ2) since T (E, σ2) can not be bounded in terms of |E| only : consider for any
N ∈ N the case where E contains only two strategies which unconditionnally play the
same until stage N but then differentiate one from another. As a consequence without
further assumptions on E there can be no automaton whose size would depend only on |E|
which would eventually beat all strategies of E : it is required that any two strategies have
bounded differenciation time, i.e. once they have played the same for a sufficiently long
time they are indeed equivalent. In this sense Theorem A establishes a stronger result
based on a stronger hypothesis; the point here is that this hypothesis is stated in terms of
cyclicity. The main advantage is that it is related to each strategy individually instead of
E globally. 9 It is the essence of Lemma 1 to turn the individual cyclicity into the global
property of bounded differenciation time.

5.2 Extension to bounded-recall strategies

Apart from finite state automata another model of bounded rationality has been defined
by E. Lehrer in the mean of Stationary Bounded Recall Strategies (SBRS) :

Definition 2 A strategy σi for player i is said to be n-SBRS if there exists e ∈ Hn and
φi : (Hn → Ai) such that ∀t ∈ N, ∀h ∈ Ht, σi

t(h) = φi (ht−n+1, . . . , ht) with the convention
that (h−n, . . . , h−1) = (e1, . . . , en). In this case we note σi = σ (φi).

This states that the action played by σi at stage t depends only on the last n actions,
provided an initial memory e. Note that φi might be an arbitrarily complex function as
long as it remains deterministic. Setting l = |A| the following result is proven in [Leh94] :

Theorem 3 There exists a (l2 + 1)
n
-SBRS strategy of player two that beats any n-SBRS

strategy of player one after stage (l2 + 1)
n

+ ln.

The aim of this paragraph is to elaborate a similar result on the basis of Theorem A . Note
that a direct consequence of the definition of a SBRS strategy is :

Proposition 4 Any n-SBRS strategy is ln-cyclic.

As a consequence setting k = |A2| we have

Corollary 2 There exists an automaton of size 2lnkln for player two that beats any n-SBRS
strategy at any stage except possibly at the first 2l2ndlog2 ke ones.

Proof Let E be the set of all n-SBRS strategies; we have |E| = kln. Because of Proposi-
tion 4 any strategy of E is ln-cyclic. Thus by Theorem A let M 2 be an automaton of size
2T |E| = 2lnkln such that N (E, σ (M 2)) = dlog2 |E|e and T (E, σ (M2)) = 2T dlog2 |E|e.
We have T (E, σ (M 2)) = 2ln

⌈
log2

(
kln
)⌉

≤ 2l2ndlog2 ke, and hence the result.
2

9With the provision that there is an uniform bound on the latest stage after which a strategy is cyclic.
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5.2 Extension to bounded-recall strategies

Note that similarly to what happens in the case of finite automata, the number of failures is
roughly logarithmically smaller than the minimum complexity of the strategy of player two
(be it the size of an autoaton or of a memory) : this is an intrisic property of Theorem A .
However the interest of Corollary 2 is moderated by the huge size of M 2 : even in the
simple case where |A1| = |A2| = 2 it states that any 5-SBRS can be beaten by a given
automaton of size . . . 21035 !

This is why we rather consider the case where both player one and player two play
bounded-recall strategies, as in the following result :

Theorem B Let T ∈ N∗ and suppose that E ⊂ S1
∞ is such that each σ1 ∈ E is T -

cyclic. Then there exists a 2T dlog2 |E|e-SBRS for player two which beats any cyclic strategy
of E at each stage except possibly at the first 2T dlog2 |E|e ones.

Proof The proof of Theorem A can be tailored to fit the case where both players play
bounded-recall strategies. Obviously E is non-empty; let T = ln. Let us define φ2 such
that T (E, σ (φ2)) ≤ 2T dlog2 |E|e. Recall that there are indeed two operations involved in
Theorem A : first to progressively identify the strategy σ1 actually selected by player one,
and then to play a best-reply action at each stage.

In order to implement the progressive identification of player one’s strategy let T =
(Ωk, Qk, f

2
k , g2

k)k∈N be the infinite information tree defined in the proof of Theorem A , and
let M2 be the corresponding automaton. The point here is to define φ2 based on a finite
subtree of T so that it plays like M 2; this relies on the following definition.

Definition 3 A play ω ∈ Hn, n ∈ N∗ is said to be t-looping at stage τ < n if
∃α ∈ Hτ−1, ∃λ ∈ Hp, ∃β ∈ Hr, p ≥ 1 / ω = αλλβ andβ J<λ and 2p + r ≥ t.

Let N = 2T dlog2 |E|e. The proof consists in defining a N -SBRS φ2 such that the play of
any σ1 against σ(φ2) is looping at stage 2T dlog2 |E|e at the latest.

Let φ2 :





⋃

n≤N Hn → A2

ω 7→

{
g2

n(Cn(ω)) if ω ∈ Hn is not 2T -looping
Br2

(
ω1

r+1

)
if ω is 2T -looping



. Note that

in the case where ω is looping the pair of actions ωr+1 ∈ {ω1, . . . , ωr} has already been
played so that the definition of φ2 always makes sense.

Lemma 3 σ(φ2) and σ(M2) are equivalent against all strategies of E :
∀σ1 ∈ E, ω (σ1, σ (φ2)) = ω (σ1, σ (M2)).

Proof Let σ1 ∈ E, and set ω = ω (σ1, σ (φ2)) and w = ω (σ1, σ (M2)). Because of Propo-
sition 3 let k ≤ N be the smallest stage such that w|k ∈ W k (k ≥ 2T by definition of W k).
It follows that w is 2T -looping. Let us prove by induction that ∀t ∈ N, w|t = ω|t.

• At t = 0 we have w|0 = � = ω|0.
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5.2 Extension to bounded-recall strategies

• Suppose that there exists t ≥ 1 such that w|t−1 = ω|t−1, and let us prove that wt = ωt.
Since w1

t = σ1(w|t−1) = σ1(ω|t−1) = ω1
t it remains to be proven that w2

t = ω2
t .

Suppose first that t − 1 < k; then w|t−1 /∈ Wt−1 and thus ω|t−1 = w|t−1 is not
2T -looping. Thus

w2
t = g2

t−1

(
Ct−1

(
w|t−1

))
= g2

t−1

(
Ct−1

(
ω|t−1

))
= ω2

t

(recall that k ≤ N so that ω|t−1 fits into the bounded recall HN of φ2).

Otherwise, t−1 ≥ k and thus w|t−1 = ω|t−1 is looping, and let α ∈ Hn, λ ∈ Hp, β ∈ Hr

be such that ω|t−1 = αλλβ with β J< λ. The caveat here is that the whole ω|t−1 may
not fit into the bounded recall HN of φ2. If t − 1 ≤ N then this is not the case and

ω2
t = Br2

(
ω1

t

)
= Br2

(
ω1

t−p

)
= Br2

(
w1

t−p

)
= Br2

(
w1

t

)
= w2

t

Otherwise t − 1 > N and ω2
t = φ2 (ωt−N , . . . , ωt−1). But since ωt is looping, ω2

t =
φ2 (ωt−N , . . . , ωt−1) is a best-reply path; and since σ1 is T -cyclic we have p ≤ T . As
a consequence since N = 2T dlog2 |E|e ≥ 2T , ωt−N , . . . , ωt−1 is also looping. Thus
similarly

ω2
t = Br2

(
ω1

t

)
= Br2

(
ω1

t−p

)
= Br2

(
w1

t−p

)
= Br2

(
w1

t

)
= w2

t

which completes the induction.

This shows that σ(φ2) and σ(M2) are equivalent against σ1.
2

To complete the proof of Theorem B observe that φ2 has a bounded-recall of size N =
2T dlog2 |E|e as claimed; moreover we have T (E, σ (φ2)) = T (E, σ (M2)) ≤ 2T dlog2 |E|e
by Theorem A . Note that in addition N (E, σ (φ2)) = N (E, σ (M2)) ≤ dlog2 |E|e.

2

A direct consequence of Theorem B is the following :

Corollary 3 There exists a l2n (dlog2 ke + 1)-SBRS strategy for player two which beats any
n-SBRS strategy of player one at each stage after stage l2n (dlog2 ke + 1).

To complete the panorama we shall also mention the following :

Corollary 4 There exists a 2ndlog2 |E|e-SBRS strategy which beats any automaton of size
n of player one at each stage after stage 2ndlog2 |E|e.

These result may be summarized in the following way :

player two implements his
strategy through an automaton

player two plays
a bounded-recall strategy

To beat any automaton
of size n of player one

of size 2n|E| and wins
after stage 2ndlog2 |E|e

of size 2ndlog2 |E|e and wins
after stage 2ndlog2 |E|e

To beat any n-SBRS
strategy of player one

of size 2lnkln and wins
after stage 2l2ndlog2 ke

of size l2n (dlog2 ke + 1) and wins
after stage l2n (dlog2 ke + 1)
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6 Example

To illustrate the main result we consider in this section the infinitely repeated “Matching
Pennies” zero-sum game defined by Ai = {H i, T i}, i ∈ {1, 2} and with payoff r given by

H2 T 2

H1 +1 -1
T 1 -1 +1

Let us consider the case where player one is restricted to strategies that can be implemented
by an automaton of size two : E = M1 (2). To build the complete automaton M 2 which
eventually beats any strategy of E let us label each edge by the action played by player
one and label each state C(ω) both by its cardinality |C(ω))| and by the associated action
g2(C(ω)), as in the following example :

57

T
H

By definition the action played by player two at the source node is always the best reply
to the edge which leads to the node with highest cardinality (by convention all those edges
will be put left-most). In this situation at the next stage 7 automata would play H and 5
would play T ; player two thus plays T = Br2 (H).

In addition fully identified automata are represented below their corresponding identifi-
cation leaf. Observe that automata for player one may not have more than two states and

may not play more than two actions; thus we suppose that g1 :

{
q1 7→ H
q2 7→ T

. An automa-

ton for player one is thus characterized by its transition function f 1 : Q1 × A2 → Q1.

For example
1 1

1
T
H 2

H T
stands for the automaton

1

2

T
If player two
played

H
If player two
played H T

If player two
played or

2

1
g (q  ) = T

1

1g (q  ) = H
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7 Conclusion and future work

The results presented in this paper suggest that the learning tree structure presented
in [NO00], provided an adequate hypothesis on the strategies of player one, constitue a
convenient framework to answer questions (i), (ii) and (iii) whenever rationality bounds
are expressed in terms of finite state automata or of bounded-recall strategies.

Practical analysis shows however that the theoritical bounds may be oversized : this is
largely due to the fact that since player two plays a best-reply most of the time during the
learning phase most of the strategies of player one play equivalently although they are not
equivalent in general. This leads to a much quicker identification and a reduction of the
number of nodes of T that are actually required; it remains unclear at this stage of this
reduction can be quantified.

Besides in this paper only pure strategies are considered. On the first hand the results
still hold in the case where player one plays a mixt strategy of the repeated game, which
consists in randomly choosing at stage zero a pure strategy for the whole game. On the
other hand if player one plays a behavioural strategy the identification tree T can not
identify his strategies anymore; an approach based on coordination as studied in [GH03]
seems more appropriate in this case. And in the case where player two in turn randomizes
the discussion by E. Kalai and E. Solan ([KS00]) suggests that he may beat player one
more efficiently would he implement an automaton with random transitions, although this
remains unclear under the present context.
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Appendices

Proof of proposition 1

Let n ∈ N∗ and M1 = [Q, q∗, f, g] ∈ M1 (n) be an automaton for player i.
Let ω ∈ HN such that σ(M1) ; ω.
Let α ∈ C1

n, α <K ω.

Setting q0 = q∗ consider q :

(
J1, n + 1K → Q1

t 7→ f
(
qt−1, ω

2
t−1

)

)

; then |Q1| = n and thus q

can not be injective : let i < j be the first stages among J1, n + 1K such that qi = qj, and
set T = j − i.
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� -

� -

�-

α

ω

i

β

j

We have ωN−n+i = (g1(qi), φ(g1(qi))) = (g1(qj), φ(g1(qj))) = ωN−n+j.
Thus by induction ∀t ∈ J0, p − 1K, ωN−n+i+t = ωN−n+j+t.
Let s = T mod p et β = (ωi+r+1, . . . , ωi+p, ωi, . . . , ωi+r).
We have σ(M1) ; ωβββ . . ., which completes the proof.

2

Lemma 4

The proof of lemma 1 relies on the following lemma :

Lemma 4 Let f : (N → X) be a periodic function of period n, and g : (N → X) one of
period k, such that ∀t ∈ J0, n + k − 1K, f(t) = g(t). Then ∀t ∈ N, f(t) = g(t).

Proof Let f and g be two such functions, and assume without loss of generality that
1 ≤ k ≤ n. Let us show that ∀t ∈ J0, 2(n + k) − 1K, f(t) = g(t) first.
If k divides n, then g is also periodic of period n and the assertion is trivial.
Otherwise, let r = n mod k ∈ J1, k − 1K the reminder of the division of n by k.
Let t ∈ J0, 2(n + k) − 1K.
If t ≤ n+ k, the result is true by hypothesis; otherwise, let s = t− (n+ k) ∈ J0, n+ k− 1K.
On one hand we have

f(t) = f(n + k + s) by definition of s
= f((k + s) mod n) since f is periodic of period n
= f((k mod n) + (s mod n)) sine (k + s) mod n = ((k mod n) + (s mod n)) mod n
= f(k + (s mod n)) since k mod n = k
= g(k + s mod n) by hypothesis, since k + s mod n ≤ k + n − 1
= g(s mod n) since g is periodic of period k

On the other hand we have

g(t) = g(n + k + s) by definition of s
= g((n + s) mod k) since g is periodic of period k
= g((n mod k) + (s mod k)) since (n + s) mod k = ((n mod k) + (s mod k)) mod k
= g(n + (s mod k)) since g is periodic of period k
= f(n + (s mod k)) by hypothesis, since n + (s mod k) ≤ n + k − 1
= f(s mod k) since f is periodic of period n
= g(s mod k) by hypothesis since (s mod k) ≤ k − 1 ≤ n + k − 1
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And for j ∈ J0, n + k − 1K we have

g(j mod k) = g(j) since g is periodic of period k
= f(j) by hypothesis, since j ≤ n + k − 1
= f(j mod n) since f is periodic of period n
= g(j mod n) by hypothesis, since j mod n ≤ n − 1 ≤ n + k − 1

Thus g(t) = f(t), that is

∀t ∈ J0, 2(n + k) − 1K, f(t) = g(t)

To complete the proof of the lemma, observe that f and g are also periodic of periods 2n
and 2k respectively, so that applying the same proof leads to ∀t ∈ J0, 4(n+k)−1K, f(t) =
g(t).
Hence by a simple induction

∀t ∈ N
∗, f(t) = g(t)

2

Proof of lemma 1

Let n ∈ N and α1 ∈ (A1)
n
.

Let σ1 ∈ Ck(ω) be such that σ1
; ωα1.

Let µ1 ∈ Ck(ω); let us show that µ1
; ωα1.

Note that (ωk−2T+1, ωk) is a best-reply path, and thus is in correspondance for player one.
Since σ1 is T -cyclic, let t0 ∈ J1, T K and α ∈ Ht0 tail of ω such that ∀n ∈ N, σ1

; ωα . . . α
︸ ︷︷ ︸

n times

;

let n0 = T − t0. Note that α is a best-reply path.
Define conversely t1 ∈ J1, T K and β ∈ Ht1 for strategy µ1, and let n1 = T − t1.
Assume without loss of generality that n1 ≤ n0, and define

c1 :

(
N → A1

t 7→ σ1
([(

ω|k−2T+n0

)
αα . . .

]

|k−2T+n0+t

)

)

Then c1 is a t0-periodic function for any t ∈ N. Define

d1 :

(
N → A1

t 7→ µ1
([(

ω|k−2T+n1

)
ββ . . .

]

|k−2T+n0+t

)

)

Then d1 is t1-periodic (even if n1 < n0).
Moreover ∀t ∈ J0, 2T − n0 − 1K, c1

t = ω1
2T−n0+t = d1

t . It follows from lemma 4 that
∀p ∈ N, f(p) = g(p), that is µ1

; ωα1.
2
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