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†E-mail: Francoise.Forges@eco.u-cergy.fr.
‡E-mail: Frederic.Koessler@eco.u-cergy.fr.

1



1 Introduction

Since the pioneering work of Aumann (1974) on correlated equilibria and Crawford
and Sobel’s (1982) analysis of cheap talk games, the introduction of communication
possibilities into the analysis of interactive decision situations has been commonplace
in a whole host of applied and theoretical researches (for some recent references, see,
e.g., Aumann and Hart, 2003, Baliga and Morris, 2002, Battaglini, 2002, Ben-Porath,
2003, Gerardi, 2003, Krishna and Morgan, 2002, Urbano and Vila, 2002, and Wolin-
sky, 2002). Such analyses are motivated by the fact that when individuals can talk
with each others before choosing their final payoff-relevant actions, they may be able
to share information and/or agree on compromises, and then reach outcomes that
differ from those of the standard Nash equilibrium solution concept. For example, a
correlated equilibrium of a strategic form game is a Nash equilibrium of some exten-
sion of the game where players receive private, “extraneous” and possibly correlated
signals before the beginning of the original game. Such a solution concept is ap-
propriate to characterize the set of all equilibrium outcomes achievable in one-shot
complete information games with cheap and non-binding communication.

With the exception of some specific applications discussed below, the literature
on communication games and the various extensions of the correlated equilibrium
to incomplete information typically relied on the assumption that the set of reports
available to a player does not depend on his private information.1 On the contrary,
our starting point in this paper is to consider that information which is transmit-
ted might be certifiable or provable by its sender, or verifiable by its receiver. Said
differently, we assume that the set of all possible arguments an individual is able
to present may vary with his actual state of knowledge. For example, reports may
consist of written documents or direct physical observations which are not possible
to forge unless their information contents are true.2 Alternatively, in economic or
legal interactions there may be penalties for perjury, false advertising and warranty
violations, or accounting principles that impose limits on what is possible to disclose.
Requiring traders in a exchange economy to deposit collateral for each order (as, e.g.,
in Forges, Mertens, and Vohra, 2002) also implies that their types are partially veri-
fiable because traders are not able to over-report their initial endowments.3 Finally,
an individual’s ability to manipulate and misrepresent information may be limited
due to psychological reasons (e.g., observable emotions such as blushing, stress and
discomfort, or a strong taste for honesty that cannot adequately be represented by
standard preferences, as in Alger and Ma, 2003, and Alger and Renault, 2002). The
purpose of this paper is precisely to study in a general and tractable framework the

1For an overview, see, e.g., Farrell and Rabin (1996), Forges (1993), and Myerson (1994).
2For instance, disclosures of knowledge generated by R&D may be knowledge-dependent in the

sense that an informed firm cannot disclose more knowledge than it has (see, e.g., d’Aspremont,
Bhattacharya, and Gérard-Varet, 2000).

3Similarly, the type of a budget-constrained buyer may be partially verifiable if the seller can
ask him to post a bond equal to his reported budget (as, e.g., in Che and Gale, 2000).
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effects of adding communication systems to incomplete information games in which
players’ types are certifiable, provable, or partially verifiable, and to characterize
canonical representations and equilibria of such extended communication games.

Our approach combines three areas of research. The first relates to the notion
of communication equilibrium (Forges, 1986; Myerson, 1982, 1986). A communica-
tion equilibrium is an extension of Aumann’s (1974) correlated equilibrium to the
framework of incomplete information, which allows players not only to receive rec-
ommendations from a mediator, but also to send signals to share some privately held
information. We extend this solution concept by allowing players to send certified
information into the communication system, in addition to cheap talk signals. This
means that the set of reports available to some type of a player can differ from the
set of reports available to another type of the same player. The associated set of
equilibrium outcomes, called certification equilibrium outcomes, is larger than the
set of communication equilibrium outcomes but it depends on the certifiability con-
figuration (i.e., on the set of exogenously certifiable types in the game) and on the
number of communication stages. Indeed, in general, the problem of adverse selec-
tion crucially depends on the information that players are able to certify and on the
number of arguments they can present.

The second area of research related to our work is the economic literature deal-
ing with strategic information revelation, initiated by Grossman (1981), Grossman
and Hart (1980) and Milgrom (1981), which investigates the amount of information
voluntarily transmitted when individuals are required to make only truthful—but
possibly very vague—disclosures.4 This literature has particular insight in oligopoly
theory (see, e.g., Okuno-Fujiwara, Postlewaite, and Suzumura, 1990), finance (see,
e.g., Shin, 2003), and law (see, e.g., Shin, 1994, 1998). The accounting literature has
also placed considerable emphasis on games with strategic information revelation
(see Dye, 2001, Verrecchia, 2001 and references therein). Contrary to those previous
contributions we consider a general game-theoretical framework allowing private,
stochastic, repeated, and mediated information revelation, and we do not require
players’ types to be independent.

Finally, our work is related to the literature on mechanism design with partially
verifiable information (Bull and Watson, 2002, Deneckere and Severinov, 2001, Green
and Laffont, 1986). This literature, which is restricted to the implementation of an
exogenous social choice function, studies the validity of the standard revelation prin-
ciple when the set of available reports of perfectly informed agents varies with the
true state of the world. In particular, several conditions have been identified in
which the revelation principle fails because the set of reports agents are able to send
to the principal is type-dependent. The difference with those previous contributions
is that our revelation principle is defined for (n-person) games of incomplete infor-
mation and allows, given any fixed set of certifiable information, a fully equivalent

4For more recent references, see, e.g., Glazer and Rubinstein (2001), Koessler (2002, 2003),
Lipman and Seppi (1995), Seidmann and Winter (1997), and Wolinsky (2003).
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equilibrium characterization. This is performed by providing canonical representa-
tions of communication systems and reporting correspondences which are compatible
with the original certification possibilities. In particular, since the set of canonical
equilibrium outcomes contains all non-canonical equilibrium outcomes but does not
allow to achieve more, our representations can be used without loss of generality to
maximize, e.g., a particular player’s payoff or a welfare function.

At first sight, it is not clear how to define a canonical communication system and
equilibrium when the set of available reports may vary with the state of knowledge
of each player. Yet, once the certifiability configuration generated by the original
profile of reporting correspondences is well characterized, the canonical represen-
tation we propose is simple: players are only required to present, in a one-stage
game, the most informative certificate concerning their type to a mediator and to
make a cheap talk claim about their type. Then, once the mediator has received
a report in this “canonical” space from each player he makes private recommenda-
tions to the players. We show that there is no loss of generality in focusing on such
representations and on equilibria where players reveal their true type and follow
the recommendations of the mediator.5 If the original set of possible communica-
tion systems is restrained to one-period communication systems where players can
only present one verifiable argument, we also provide a sufficient condition on the
reporting correspondences which maintains the outcome equivalence between the
associated certification equilibria and canonical certification equilibria. Finally, we
construct an equilibrium characterization in which the set of available reports of
each player simply consists in a set of possible types, where it is implicitly assumed
that a report of a type is associated with all available certificates compatible with
this type. This construction can be done without loss of generality when the set of
reports available in the communication system can be restrained by the mediator
and in games with transferable utility. Various illustrating examples are examined
along the exposition.

The paper is organized as follows. In Section 2 we present our general framework
and some preliminary definitions. Canonical representations and generalized versions
of the revelation principle for Bayesian games are analyzed in Section 3. We conclude
in Section 4. The Appendix contains the proofs.

5In particular, the set of certification equilibrium outcomes has, as the set of correlated and
communication equilibrium outcomes, a simple and tractable mathematical structure: it is a convex
polyhedron.
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2 General Framework and Definitions

2.1 Bayesian Games and Communication Systems

We represent an interactive decision situation under asymmetric information by a
(finite) Bayesian game

G = 〈N, (Ai)i∈N , (Ti)i∈N , p, (ui)i∈N 〉,

where N = {1, . . . , n} is the set of players, Ai is player i’s set of possible actions, Ti is
player i’s set of possible types, p ∈ ∆(T ) is a common prior probability distribution
over the set of type profiles T =

∏
i∈N Ti, and ui : A × T → R is player i’s state

dependent payoff (utility) function, where A =
∏

i∈N Ai is the set of action profiles.
Let p(ti) ≡

∑
t−i∈T−i

p(ti, t−i) be the prior probability that player i’s type is ti.6

We assume without loss of generality that p(ti) > 0 for all i ∈ N and ti ∈ Ti. Let
p(t−i | ti) ≡ p(t)

p(ti)
be the subjective probability that player i assigns to the event that

t−i is the actual profile of the other players’ types if his own type is ti.7

To allow players to communicate before choosing an action in the Bayesian game
G, we introduce a communication system (or mediator) that helps players to share
information and to coordinate their actions.8 As usual, in a game with communi-
cation players exchange messages conditionally on past messages and on their own
type before choosing their actions. However, contrary to previous work related to
cheap talk communication and to the various extensions of the correlated equilibrium
to incomplete information, we assume that players are able to certify some of their
information. In other words, the set of available reports may be type-dependent,
which implies that a report may have some pure informational content which does
not depend on any particular equilibrium.

Formally, a (finite) communication system given the set of players, N , and the
set of possible type profiles, T , is denoted by

c = 〈(Ri)i∈N , (Si)i∈N , (Mi)i∈N ,K, (νk)k=0,1,...,K〉.

The positive integer K is the number of communication periods. For each player i,
Ri : Ti → Ri is a reporting correspondence that determines the set Ri(ti) of type-
dependent inputs available to player i of type ti ∈ Ti, i.e., the set of reports that
player i can send out into the communication system in each period if his actual
type is ti, and Ri ≡

⋃
ti∈Ti

Ri(ti) is the set of all reports the communication system
can receive from player i in each period. The set Si is the set of type-independent
inputs available to player i, i.e., the set of cheap talk signals that player i can send

6For any variable, we denote its profile over all agents except that of player i by the corresponding
letter with subscript −i.

7We do not assume that every type profile has non-zero probability.
8Players have no ability to sign any contract or binding agreement. Hence, our approach is

strictly non-cooperative.
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out into the communication system in each period. The set Mi is the set of outputs
for player i, i.e., the set of all messages that player i can privately receive from
the communication system in each period. Let R =

∏
i∈N Ri, S =

∏
i∈N Si, and

M =
∏

i∈N Mi. (Observe that, a priori, the elements ofR, S and M have no semantic
content.) In period 0, each player i privately receives from the communication system
an initial output m0

i ∈ Mi according to the probability distribution ν0 ∈ ∆(M).
Then, at the end of each communication period k ∈ {1, . . . ,K}, after all inputs
up to that period have been received by the communication system, the transition
probability

νk : Mk ×Rk × Sk → ∆(M),

chooses the outputs as a function of past outputs and past and present inputs.
That is, ν(mk | m0,m1, . . . , mk−1, r1, . . . , rk, s1, . . . , sk) is the conditional proba-
bility that mk = (mk

1, . . . , m
k
n) ∈ M are the messages privately received by the

various players at the end of period k given the sequence of vectors of past outputs
(m0,m1, . . . , mk−1) ∈ Mk, past and present type-dependent inputs (r1, . . . , rk) ∈
Rk, and past and present type-independent inputs (s1, . . . , sk) ∈ Sk.

2.2 Extended Bayesian Games and Certification Equilibria

Given a communication system c, one can define the extension Gc of G as the new
game obtained by adding c to G. Such a communication game proceeds as follows.
In period 0 every player i receives a confidential initial output m0

i ∈ Mi, where
m0 = (m0

i )i∈N is distributed according to ν0, and is privately informed about his
type ti ∈ Ti, where t = (ti)i∈N is distributed according to p. Then, at the beginning
of each period k ∈ {1, . . . , K} he sends a confidential input (rk

i , sk
i ) ∈ Ri(ti)× Si to

the communication system. At the end of each period k ∈ {1, . . . ,K}, he receives a
confidential output mk

i ∈ Mi from the communication system, where mk = (mk
i )i∈N

is conditionally distributed according the νk. Finally, after the last communication
period (in period K +1, which corresponds to the action phase) he chooses an action
ai ∈ Ai and is rewarded according to his utility function ui.

A behavioral strategy for player i in Gc is a tuple ((σk
i )k=1,...,K , δi) where for all

k ∈ {1, . . . , K},

σk
i : Mk

i ×Rk−1
i × Sk−1

i × Ti → ∆(Ri × Si),

is player i’s communication strategy in period k satisfying σk
i (rk

i , sk
i | ·, ti) = 0

whenever rk
i /∈ Ri(ti), and

δi : MK+1
i ×RK

i × SK
i × Ti → ∆(Ai),

is player i’s strategy in the action phase. A profile of behavioral strategies is denoted
by (σ, δ) = (σi, δi)i∈N , where σi = (σk

i )k=1,...,K . Such a strategy profile in Gc gener-
ates an outcome µ : T → ∆(A) (i.e., a conditional probability distribution over A for
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each type profile t ∈ T ) and an expected payoff
∑

t∈T p(t)
∑

a∈A µ(a | t) ui(a, t) for
each player i.9 As usual, a (Bayesian) Nash equilibrium of the communication game
Gc is a strategy profile (σ, δ) such that no player can strictly increase his expected
payoff by unilaterally deviating from his strategy. The outcome generated by a Nash
equilibrium of Gc is called an equilibrium outcome of Gc.10

Definition 1 A certification equilibrium of G is a Nash equilibrium of the extended
game Gc obtained by adding a communication system c to G.

It can be shown11 that the set of all certification equilibrium outcomes, denoted
by E ⊆ [∆(A)]T , obtained when considering all possible communication systems (in
particular, all possible reporting correspondences), coincides with the set of Nash
equilibrium outcomes of the extended games obtained by adding a one-period com-
munication system (K = 1) without initial output (ν0 is degenerated), without
type-independent input (S is a singleton), satisfying M = A, Ri(ti) = {ti} for all
i ∈ N and ti ∈ Ti, and in which every player follows the recommendation of the
mediator. That is, a certification equilibrium outcome is simply characterized by a
recommendation µ : T → ∆(A) satisfying

∑

t−i∈T−i

p(t−i | ti)
∑

a∈A

µ(a | t)ui(a; t) ≥
∑

t−i∈T−i

p(t−i | ti)
∑

a∈A

µ(a | t) ui(a−i, di(ai); t),

for all i ∈ N , ti ∈ Ti, and di : Ai → Ai. The intuition of this equivalent characteri-
zation is very simple. Starting with any certification equilibrium, the mediator first
simulates the sequence of signals and reports (inputs) that would have been sent by
the players and the sequence of messages (outputs) that would have been received by
the players given the type profile under the original equilibrium. Then, he computes
the actions that would have been chosen by the players as a function of the type
profile and the sequence of inputs and outputs. Finally, he privately recommends
each player to choose the associated action. Clearly, if a player has an incentive to
deviate from the recommendation of the mediator, then the strategy profile of the
original communication game was not an equilibrium.

The previous observation can be interpreted as a form of “revelation principle”:
any certification equilibrium is outcome equivalent to a “truthful certification equi-
librium”. However, the set of “truthful certification equilibria” generated in this
way is much too large for the result to be interesting, and is not appropriate for
most applications. Indeed, players may have the right to remain silent or to present
only vague arguments, whereas in some certification equilibria they are compelled to

9That is, if for all (m, r, s) ∈ MK × RK × SK we denote by h(m, r, s | m0, t) the probability
distribution over MK × RK × SK generated by (σ, δ) in Gc given m0 ∈ M and t ∈ T , then
µ(a | t) =

P
m0∈M ν0(m0)

P
(m,r,s)∈MK×RK×SK h(m, r, s | m0, t)δ(a | m0, m, r, s, t).

10We consider equilibrium outcomes rather than equilibrium strategies because the dimension of
strategy sets depends on the underlying communication system. By contrast, equilibrium outcomes
are always in [∆(A)]T .

11The formal proof is a simplified version of the Proof of Theorem 1.
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reveal their type to the mediator even if they have no incentive to do so. A simple
illustration is provided in Example 1. On the other hand, in some environments
players may have only limited ability to certify claims. Accordingly, when certifi-
ability possibilities are given and only partial, it is not appropriate to consider a
communication system with Ri(ti) = {ti} for all i ∈ N and ti ∈ Ti because what is
certified with such a communication system might not be certifiable with the original
set of available reports.

For those reasons we define certification equilibria that can be obtained only
with a specified profile of available type-dependent inputs, i.e., with communica-
tion systems where the reporting correspondences R = (Ri)i∈N are given. Such
communication systems are called R–communication systems. Of course, if the set
of available inputs does not depend on players’ types then the set of associated
equilibria is, by definition, the set of communication equilibria.

Definition 2 A R–certification equilibrium of G is a Nash equilibrium of the ex-
tended game Gc obtained by adding a R–communication system c to G. A commu-
nication equilibrium is a R–certification equilibrium where Ri(ti) = Ri(t′i) for all ti,
t′i ∈ Ti and i ∈ N .

We denote by E(R) the set of R–certification equilibrium outcomes and by E0

the set of communication equilibrium outcomes. Clearly, we have E0 ⊆ E(R) ⊆ E for
every profile of reporting correspondences R, and all these sets are convex (thanks
to the preliminary lottery ν0). As shown in the following example these inclusions
may be strict.

Example 1 Consider a consumer whose endowments depend on two equally likely
types, t1 and t2, which are private information to the consumer. There are two com-
modities. In state t1 (t2, resp.) the consumer’s endowment is (10, 0) ((0, 10), resp.).
A government can choose to deduct taxes of twenty per cent either on commodity 1
(action a1) or on commodity 2 (action a2). If each unit of commodity provides a util-
ity of one to the consumer and to the government, this situation can be represented
by the Bayesian game of Figure 1 on the next page. In this game the set of commu-
nication equilibrium outcomes and the set of R–certification equilibrium outcomes
coincide whenever player 1 can remain silent, i.e., whenever

⋂
t∈T R1(t) 6= ∅: they

are characterized by µ(a2 | t2) = 1− µ(a1 | t1). Hence, the only associated vector of
expected payoffs is (9, 1). The set of all certification equilibrium outcomes is how-
ever strictly larger since it is the set of outcomes satisfying µ(a2 | t2) ≥ 1−µ(a1 | t1).
In particular, the perfectly revealing recommendation induces such an equilibrium
outcome with the vector of expected payoffs (8, 2).

In the following section we introduce canonical communication systems and equi-
libria given some specified profile of reporting correspondences R = (Ri)i∈N in order
to obtain a simple and equivalent characterization of the set of all R–certification
equilibrium outcomes.
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a1 a2

t1 (8, 2) (10, 0)
t2 (10, 0) (8, 2)

Figure 1: Bayesian Game of Example 1.

3 Canonical Representations

3.1 Certifiability Configuration and Canonical Communication Sys-

tems

As noted earlier, the inputs in a communication system have no semantic content. In
order to capture certification possibilities in a canonical way, we represent certifiable
information as events of the state space. More precisely, we define a certifiability
configuration as an n-tuple of collections of sets of types, Y = (Yi)i∈N , where an
element yi ∈ Yi ⊆ 2Ti\{∅} is a certificate (certifiable event) concerning player i’s
type. For all i ∈ N and ti ∈ Ti we assume that there exists yi ∈ Yi such that
ti ∈ yi.12 The set of events that player i of type ti is able certify concerning his type
is the set of certificates containing ti and is denoted by Yi(ti) ≡ {yi ∈ Yi : ti ∈ yi}.
Hence, a certifiability configuration Y = (Yi)i∈N can equivalently be viewed as a
profile of reporting correspondences R = Y = (Yi)i∈N . The closure of a certifiability
configuration Y is the certifiability configuration Y = (Y i)i∈N where for all i ∈ N

and ti ∈ Ti, Y i(ti) is the element of Y i containing ti, and Y i is the smallest set
containing Yi which is closed under intersection. Define MiniYi(ti) ≡

⋂
yi∈Yi(ti)

yi

and let MiniY (t) = (MiniYi(ti))i∈N .
Let R = (Ri)i∈N be an arbitrary profile of reporting correspondences. With any

such profile we can associate a unique certifiability configuration Y R = (Y R
i )i∈N ,

where Y R
i (ti) ≡ {R−1

i (ri) : ri ∈ Ri(ti)} for all ti ∈ Ti, i ∈ N , and R−1
i (ri) ≡

{ti ∈ Ti : ri ∈ Ri(ti)} is the set of types of player i who can send the report ri.
Hence, YR

i ≡ {Y R
i (ti) : ti ∈ Ti} = {R−1

i (ri) : ri ∈ Ri} for all i ∈ N . It is worth
mentioning that many different profiles of reporting correspondences can generate
the same certifiability configuration.

To characterize in a tractable way the set of all R–certification equilibrium out-
comes of a Bayesian game we will prove a generalized version of the revelation
principle by defining appropriate canonical communication systems where the pro-
file of reporting correspondences is written as a certifiability configuration. More
precisely, given a certifiability configuration Y and its closure Y , we define a canon-
ical Y –communication system as a Y –communication system such that S = T ,
M = A, K = 1, and ν0 is degenerated. Hence, in a canonical Y –communication
system there is no initial output, there is only one communication period, a report

12The set Yi is not assumed to be closed under intersection, union or complementation, even if
the closure under intersection often seems natural as will be discussed later.
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of each player i ∈ N of type ti ∈ Ti is a certificate concerning his type, yi ∈ Y i(ti),
a cheap talk signal is a claim about his type, si ∈ Ti, and messages sent by the
communication system are (recommended) actions.

3.2 Canonical Certification Equilibria

Definition 3 A canonical Y –certification equilibrium of G is a Nash equilibrium
of the extended game Gc obtained by adding a canonical Y –communication system
c to G, and in which every player certifies the smallest event concerning his type,
reveals truthfully his type, and follows the recommendation of the mediator.

In other words, in a canonical Y –certification equilibrium each type ti ∈ Ti of
every player i ∈ N sends the report MiniYi(ti), sends the cheap talk signal ti, and
plays the action recommended by the mediator. Hence, such an equilibrium outcome
is simply characterized by a recommendation (transition probability) ν∗ : Y × T →
∆(A) satisfying

∑

t−i∈T−i

p(t−i | ti)
∑

a∈A

ν∗(a | MiniY (t), t) ui(a; t) ≥
∑

t−i∈T−i

p(t−i | ti)
∑

a∈A

ν∗(a | (MiniY−i(t−i), yi), (t−i, t
′
i))ui(a−i, di(ai); t),

(1)

for all i ∈ N , ti, t′i ∈ Ti, yi ∈ Y i(ti), and di : Ai → Ai. The set of canonical Y –
certification equilibrium outcomes is denoted by E∗(Y ). According to the following
theorem, for any profile of reporting correspondences R = (Ri)i∈N , the set E∗(Y R),
where Y

R is the closure of the certifiability configuration generated by R, exactly
coincides with the set of all Nash equilibrium outcomes achievable through all R–
communication systems. The intuition of this result is similar to the revelation prin-
ciple for Bayesian games with non-certifiable information (see, e.g., Myerson, 1994).
The notable difference, however, is that by taking the closure Y

R of the certifiability
configuration Y R generated by the reporting correspondences R we ensure that every
information which can be certified by sending different reports at different periods
in the original equilibrium can also be certified in the one-period canonical com-
munication system. In that case, the mediator can simulate an outcome equivalent
canonical equilibrium and, since any relevant deviation in the canonical equilibrium
was already available in the original equilibrium and since only the minimal infor-
mation is revealed by the mediator through its recommendations, the constructed
equilibrium is incentive compatible. The formal proof is detailed in the appendix.

Theorem 1 The set of R–certification equilibrium outcomes coincides with the set
of canonical Y

R–certification equilibrium outcomes. That is, E(R) = E∗(Y R) for all
profiles of reporting correspondences R.

In the following example we give an illustration of the canonical representation
and show how the revelation principle applies. We also show that communication

10



equilibria can differ from certification equilibria even if we consider certifiability
configurations Y R allowing players to remain silent, i.e., such that Ti ∈ Y R

i (ti) for
all ti ∈ Ti and i ∈ N .13

Example 2 Consider the game of Figure 2, where N = {1, 2}, T = T1 = {t1, t2, t3},
A = A2 = {a1, a2}, and consider the following reporting correspondence: R(t1) =
{r, r′} and R(t2) = R(t3) = {r, r′, r′′}. A naive application of the standard revelation
principle in this game leads to the conclusion that the complete information outcome
(a1 | t1, a2 | t2, a2 | t3) is not implementable since if each type sends a different report
to the mediator, then the sender of type t1 deviates by sending the same report
as type t2 or t3. Consider on the contrary the canonical representation presented
before. The certifiability configuration generated by R is YR = {{t2, t3}, T}, so Y

R =
Y R, MiniY R(t1) = T and MiniY R(t2) = MiniY R(t3) = {t2, t3}. The complete
information outcome can be truthfully implemented with the recommendation ν∗ :
YR × T → ∆(A) satisfying ν∗(a2 | ({t2, t3}, t2)) = ν∗(a2 | ({t2, t3}, t3)) = 1 and
ν∗(a1 | (y, t)) = 1 for all other inputs (y, t) ∈ YR × T . Of course, this outcome is
not a communication equilibrium outcome since type t1 will claim that his type is
t2 or t3.

a1 a2

t1 (0, 1) (1, 0)
t2 (0, 0) (1, 1)
t3 (0, 0) (1, 1)

Figure 2: Bayesian Game of Example 2.

3.3 One-Period Communication Systems

In this subsection we give a sufficient condition on the profile of reporting cor-
respondences R such that the set of all Nash equilibrium outcomes that can be
achieved with all one-period R–communication systems coincides with the set of R–
certification equilibrium outcomes. The motivation for the restriction to Bayesian
games extended with only one-period communication systems is that in some ap-
plications one may be interested by the set of equilibria that can be achieved when
players are restricted to present only one or few arguments, as it is the case, e.g., in
Glazer and Rubinstein’s (2001) analysis of debates.

An other interesting example is the configuration examined by Alger and Ma
(2003) and Alger and Renault (2002). There, the informed player can be of two
different payoff-relevant types, t1 and t2, and in addition he can be honest or
(possibly) dishonest. The honest player can only reveal his true payoff-relevant

13Note that this condition is equivalent to
T

ti∈Ti
Ri(ti) 6= ∅ for all i ∈ N . In other words, each

player can send an uninformative report (i.e., a report which is available whatever his type).
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type, whereas the dishonest player can also lie. Denote by tlh (tld, resp.) the hon-
est player (dishonest player, resp.) whose payoff-relevant type is tl, for l = 1, 2.
The reporting correspondence of the player is thus characterized by R(t1h) = {t1},
R(t2h) = {t2}, and R(t1d) = R(t2d) = {t1, t2}. This correspondence generates the
certifiability configuration YR = {{t1h, t1d, t

2
d}, {t2h, t1d, t

2
d}}, and its closure is YR =

{{t1h, t1d, t
2
d}, {t2h, t1d, t

2
d}, {t1d, t2d}}. Consider now the game of Figure 3 with a flat prior

probability distribution. It is easy to see that there is a R–certification equilibrium
generating the outcome µ(a1 | t1d) = µ(a1 | t2d) = µ(a2 | t1h) = µ(a3 | t2h) = 1.
However, this equilibrium outcome cannot be achieved with any one-period R–
communication system since one of the honest type will always imitate the input
used by one of the dishonest type. Once multiple communication periods are al-
lowed, a dishonest type can prove to be dishonest by sending two “contradicting”
reports (t1 and t2). This possibility is implicitly introduced by taking the closure
of the original certifiability configuration, but is probably not satisfactory given the
psychological considerations that motivate the example.14

In the following lines we show that if each player is able to certify the intersection
of all certifiable events concerning his true type, then considering multiple periods
or only single period communication systems is equivalent. Otherwise, as in the
previous example, we are not able to provide a simple representation of the set of
one-period certification equilibria since different inputs should be used to achieve
different possible outcomes, and an initial lottery is thus necessary to ensure the
convexity of the set of equilibrium outcomes.

a1 a2 a3

t1d (2, 1) (0, 2) (1,−2)
t1h (2, 1) (0, 2) (1,−2)
t2d (2, 1) (1,−2) (0, 2)
t2h (2, 1) (1,−2) (0, 2)

Figure 3: One-Period vs Multiple-Period Certification Equilibria.

Definition 4 A certifiability configuration Y = (Yi)i∈N , or an associated profile
of reporting correspondences R such that Y R = Y , satisfies the Minimal Closure
Condition (MCC) if MiniYi(ti) ∈ Yi(ti) for all i ∈ N and ti ∈ Ti.

Obviously, a sufficient but not necessary condition for MCC to be satisfied is
that each collection of events Yi is closed under intersection, i.e., Y = Y . An other

14In particular, following Alger and Renault’s (2002) terminology, the “truth-telling honesty”
configuration in which an honest player can neither imitate a dishonest player by lying about his
payoff-relevant type nor by lying about his ethics becomes equivalent to the previous “equity-minded
honesty” configuration in which an honest player is only required to tell the truth concerning his
payoff-relevant type.
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sufficient condition for a certifiability configuration to satisfy MCC is that it is gener-
ated by a profile of reporting correspondences satisfying Green and Laffont’s (1986)
Nested Range Condition (NRC). More precisely, a profile of reporting correspon-
dences R such that ti ∈ Ri(ti) ⊆ Ti for all i ∈ N and ti ∈ Ti satisfies NRC if for
all i ∈ N and ti, t′i ∈ Ti we have t′i ∈ Ri(ti) ⇒ Ri(t′i) ⊆ Ri(ti). It is not difficult
to prove that under NRC the generated certifiability configuration satisfies MCC.
However, the converse is not true. Indeed, consider a reporting correspondence as
in Example 2: T = {t1, t2, t3}, R(t1) = {t1, t2}, R(t2) = R(t3) = T . NRC is not
satisfied since t2 ∈ R(t1) but R(t2) * R(t1). However, MCC is satisfied since the
generated set of certifiable events, YR = {{t2, t3}, T}, is closed under intersection.

Theorem 2 If R satisfies the minimal closure condition, then the set of one-period
R–certification equilibrium outcomes coincides with the set of R–certification equi-
librium outcomes.

An immediate corollary of Theorems 1 and 2 is that under MCC the set of
all one-period R–certification equilibrium outcomes exactly coincides with the set
of canonical Y

R–certification equilibrium outcomes. It is also worth mentioning
that under MCC a canonical Y R–certification equilibrium is well defined and that
E∗(Y R) = E∗(Y R) even if Y

R 6= Y R.

3.4 An Alternative Representation

In this subsection, following the approach of Forges et al. (2002),15 we present an
alternative representation theorem for Bayesian games with certifiable information
by constructing, from any given R–communication system, a R∗–communication
system in which the set of available inputs of each type ti of every player i is restricted
to a subset R∗

i (ti) of his set of types (i.e., R∗
i (ti) ⊆ Ti for all ti ∈ Ti and i ∈ N).

Such a communication system can be (uniquely) defined for any R–communication
system, and the associated set of equilibrium outcomes contains all R–certification
equilibrium outcomes. However, in general, it is not equivalent to the set of R–
certification equilibrium outcomes because it may contain more outcomes that can
actually be achieved with R–communication systems. Nevertheless, natural sufficient
conditions are provided for the equivalence to hold.

More precisely, given any profile of reporting correspondences R, let R∗
i (ti) ≡

{si ∈ Ti : MiniY R
i (si) ∈ Y

R
i (ti)} for all ti ∈ Ti and i ∈ N . That is, in a R∗–

communication system the set of all type-dependent inputs that the mediator can
receive from each player is a claim concerning his type, where it is implicitly as-
sumed that when some type ti is reported by player i he also sends the associated
certificate MiniY R

i (ti). It is not difficult to check that the profile of correspondences

R∗ generates the certifiability configuration ỸR = (Ỹi
R
)i∈N , where for all i ∈ N ,

15Forges et al. (2002) considered an exchange economy model in which traders are required to
present their initial endowments to a market mechanism designer.
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ỸR
i ≡ {MiniY R

i (ti) : ti ∈ Ti}.16 Hence, from Theorem 1 we know that the set
of R∗–certification equilibrium outcomes coincides with the set of Ỹ R–certification
equilibrium outcomes. Moreover, since players have less possible deviations in a
(canonical) Ỹ R–certification equilibrium than in a (canonical) Y

R–certification equi-
librium, the set of R–certification equilibrium outcomes is included in the set of
R∗–certification equilibrium outcomes. The next theorem shows that we can even
consider one-period R∗–certification equilibria without initial outputs and without
cheap talk signals, where every player truthfully reveals his type and follows the
recommendation of the mediator.

Theorem 3 Every R–certification equilibrium is outcome-equivalent to a one-period
R∗–certification equilibrium in which the communication system has no initial out-
put, S is a singleton, M = A, and R∗

i (ti) ≡ {si ∈ Ti : Mini Y R
i (si) ∈ Y

R
i (ti)} for all

i ∈ N and ti ∈ Ti, and in which strategies are truthful and obedient.

For example, the complete information outcome obtained in Example 2 can be
truthfully implemented with this alternative representation, which gives R∗(t1) =
{t1} and R∗(t2) = R∗(t3) = {t1, t2, t3}. In this example the modification of the
reporting correspondence R is irrelevant since the closure of the generated certifi-
ability configuration is not modified (Y R = Ỹ R). However, in general, the closure
of the certifiability configuration generated by R is different from the certifiability
configuration generated by R∗, so the inclusion in Theorem 3 may be strict (see
Example 1).

The equivalence is restored, for example, if the mediator is able to impose a
penalty to any player whose report does not correspond to any equilibrium report,
i.e., if for all i ∈ N and t−i ∈ T−i there exists a−i ∈ A−i such that ui(ai, a−i; t) ≤
ui(a′; t) for all ai ∈ Ai, a′ ∈ A and ti ∈ Ti. This assumption is for instance satisfied in
the standard mechanism design framework with transferable utility, where there are
n−1 agents (with no decision to make) and one uninformed player (the principal) who
can make monetary transfers between agents. Alternatively, a mechanism designer
or a mediator may be able to directly restrict the set of reporting choices of the
individuals (albeit not being able to prevent them to lie), as it is the case when
positive disclosures are mandatory. Under one of these conditions, an interesting
corollary of Theorem 2 is that under MCC the set of all one-period R–certification
equilibrium outcomes exactly coincides with the set of truthful and obedient one-
period R∗–certification equilibrium outcomes. This characterization may be very
useful in many applications since a truthful and obedient one-period R∗–certification

16Of course, when certification possibilities are partial, this implies that players can still lie
concerning their true type. For example, if Mini Y R

i (si) ∈ eY R
i (ti) for si 6= ti, then type ti can

certify Mini Y R
i (si) 6= Mini Y R

i (ti). This cannot happen, however, if all types can be fully certified,

i.e., if {ti} ∈ YR
i for all i ∈ N and ti ∈ Ti.
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equilibrium is simply characterized by an outcome function µ : T → ∆(A) satisfying

∑

t−i∈T−i

p(t−i | ti)
∑

a∈A

µ(a | t) ui(a; t) ≥
∑

t−i∈T−i

p(t−i | ti)
∑

a∈A

µ(a | t−i, t
′
i) ui(a−i, di(ai); t),

(2)

for all i ∈ N , ti ∈ Ti, t′i ∈ R∗(ti), and di : Ai → Ai.
Finally, it is interesting to remark that the approach proposed here allows to make

a direct link with Green and Laffont’s (1986) framework. Indeed, it can be checked
that a profile of reporting correspondences R satisfies NRC if and only if R = R∗.
As a consequence, if one of the conditions discussed in the previous paragraph is
satisfied, then for any profile R we can construct unambiguously, and without loss
of generality, another profile R∗ satisfying NRC. Otherwise, in the general case, the
canonical construction of the representation theorem 1 or 2 should be used.

4 Concluding Remarks

In this paper we have characterized in a tractable way the set of all Nash equilibrium
outcomes that can be achieved in Bayesian games in which players have the ability to
voluntarily certify and exchange their information through general communication
systems. In particular, our framework and results encompass the representation
theorem for communication equilibria, as well as existing versions of the revelation
principle for principal-agent problems where the set of reports available to the agent
is type-dependent.

Since we have considered general communication systems the question of how
certification equilibrium outcomes can be implemented in an equilibrium by adding
only unmediated communication systems to the original Bayesian game was not
addressed in this paper and remains the topic of future research. In particular,
it should be interesting to investigate whether certification equilibrium outcomes
can be implemented with direct communication systems by considering a sufficient
number of players (as, e.g., in Bárány, 1992, Ben-Porath, 2003, Forges, 1990, and
Gerardi, 2003), by allowing codified messages and bounded computational abilities
(as in Urbano and Vila, 2002), or by considering the correlated equilibrium instead
of the Nash equilibrium as a solution concept (as in Forges, 1988). It should also
be helpful to provide a geometric characterization of the set of Nash equilibrium
outcomes achievable with direct communication with certifiable information in two-
player games with incomplete information on one side, as is provided by Aumann
and Hart (2003) for cheap talk communication. There, the set of communication
equilibrium outcomes gives an upper bound for the set of Nash equilibrium out-
comes achievable with unmediated communication systems when information is not
certifiable. The set of certification equilibrium outcomes characterized in this paper
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gives exactly the analog of this upper bound for direct communication games with
partially verifiable types.

Appendix

To prove the theorems we introduce some lemmas and some additional notations.
Denote by E(R | K = 1) the set of one-period R–certification equilibrium outcomes,
and denote by E#(R∗) the set of one-period R∗–certification equilibrium outcomes
in which the communication system has no initial output, S is a singleton, M = A,
and in which strategies are truthful and obedient. Let QR = (QR)i∈N be the profile
of correspondences defined by QR

i (ti) ≡ {qi ∈ 2Ri : qi ⊆ Ri(ti)} for all ti ∈ Ti and

i ∈ N . Clearly, we have Y QR
= Y

QR

= Y
R.

Lemma 1 If MiniY R
i (t′i) ∈ Y

R
i (ti), then Ri(t′i) ⊆ Ri(ti).

Proof. We show that Ri(t′i) * Ri(ti) ⇒ MiniY R
i (t′i) /∈ Y

R
i (ti). Let ri ∈ Ri(t′i),

ri /∈ Ri(ti). We have ri ∈ Ri(t′i) ⇒ R−1
i (ri) ∈ Y

R
i (t′i) ⇒ MiniY R

i (t′i) ⊆ R−1
i (ri), and

ri /∈ Ri(ti) ⇒ ti /∈ R−1
i (ri). Thus, ti /∈ MiniY R

i (t′i), which implies that MiniY R
i (t′i) /∈

Y
R
i (ti) since ti ∈ yi for all yi ∈ Y

R
i (ti). ¤

Lemma 2 For every profile of reporting correspondences R, E∗(Y R) ⊆ E(R). If R

satisfies MCC, then E∗(Y R) ⊆ E(R | K = 1).

Proof. Let ν∗ : YR × T → ∆(A) be any canonical Y
R–certification equilibrium.

We construct an outcome-equivalent R–certification equilibrium as follows. Let c be
a R–communication system satisfying M = A, S = T , K > |Ri(ti)| for all i ∈ N

and ti ∈ Ti, νk is degenerated for k = 0, 1, . . . ,K − 1. In addition, νK only depends
on the sequence of reporting profiles r = (r1, . . . , rK) ∈ RK and on the cheap talk
signals sent in the last communication period (period K), sK = (sK

1 , . . . , sK
n ) ∈ T .

More precisely, let

νK(m, r, s) = ν∗([
⋂

k∈{1,...,K}
R−1

i (rk
i )]i∈N , sK),

for all (m, r, s) ∈ MK ×RK ×TK . Since YR
i = {⋂k∈{1,...,K}R−1

i (rk
i ) : ri ∈ RK

i } and⋂
ri∈Ri(ti)

R−1
i (ri) = MiniY R

i (ti) for all i ∈ N , the strategy which consists for each
type ti of every player i in sending every report in Ri(ti) during the communication
phase, revealing his true type in the last communication period and following the
recommendation of the mediator is, by the definition of the original canonical Y

R–
certification equilibrium and the construction of c, a Nash equilibrium of Gc. This
equilibrium is clearly outcome-equivalent to ν∗. Similarly, to prove the second part
of the lemma let ν(m, r, s) = ν∗([R−1

i (ri)]i∈N , s) for all (m, r, s) ∈ M ×R × T and
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remark that under MCC, for all i ∈ N and ti ∈ Ti, there exists ri ∈ Ri(ti) such that
R−1

i (ri) = MiniY R
i (ti). ¤

Lemma 3 For every profile of reporting correspondences R, E(R) ⊆ E(QR | K = 1).

Proof. Consider any Nash equilibrium of any communication game Gc where c

is a R–communication system. We construct an outcome-equivalent one-period Q–
certification equilibrium where Q = QR, M = A, the initial lottery is degenerated,
the transition probability is π : (

∏
i∈N 2Ri) × T → ∆(A), each player i of type ti

follows the recommendation generated by π, sends the report Ri(ti) ∈ Q(ti) and
reveals his true type. That is, σi(ti) = (Ri(ti), ti) and δi(ai | ai, ri, si, ti) = 1 for
all ti ∈ Ti, ai ∈ Ai, (ri, si) ∈ Qi(ti) × Ti and i ∈ N . If every player i sends an
input (Ri(si), si) for some si ∈ Ti, then π simulates the action profile played in
the original equilibrium when the type profile is s = (s1, . . . , sn) ∈ T . Clearly,
this constructed mechanism generates the original equilibrium outcome. To verify
that it is incentive compatible we must verify that for every player i, no type ti
has an incentive to deviate from (Ri(ti), ti) to (qi, si) 6= (Ri(ti), ti) for all (qi, si) ∈
Qi(ti) × Ti. If (qi, si) = (Ri(si), si) (unobservable deviation), then Ri(si) ⊆ Ri(ti)
(because Ri(si) ∈ Qi(ti) ⇒ Ri(si) ⊆ Ri(ti)), which means that type ti already
had the possibility to imitate type si’s communication strategy under the original
equilibrium. If (qi, si) 6= (Ri(si), si) (observable deviation), then π simulates the
outcome generated by a deviation of player i to, e.g., an unconditional sequence of
K reports of any single report in qi and K cheap talk signals in Si under the original
equilibrium. This deviation was already available to type ti since qi ∈ Qi(ti) ⇒ qi ⊆
Ri(ti). ¤

Lemma 4 For every profile of reporting correspondences R, E(R | K = 1) ⊆
E∗(Y R).

Proof. The proof is similar to the proof of Lemma 3. Consider any Nash equi-
librium of any communication game Gc where c is a one-period R–communication
system. We construct an outcome-equivalent canonical Y –certification equilibrium
ν∗ : Y × T → ∆(A), where Y = Y

R, as follows. If every player i sends an input
(MiniYi(si), si) for some si ∈ Ti, then ν∗ simulates the action profile played in the
original equilibrium when the type profile is s ∈ T . If some player i sends an input
(yi, si) 6= (MiniYi(si), si), then ν∗ simulates the outcome generated by player i’s
deviation to some report ri such that yi ⊆ R−1

i (ri) and some cheap talk signal in
Si under the original equilibrium. This deviation was already available to type ti
since yi ∈ Y i(ti) ⇒ ti ∈ yi ⊆ R−1

i (ri) ⇒ ri ∈ Ri(ti). It remains to show that type
ti has no incentive to send an input (MiniYi(si), si) for si 6= ti. This is obtained
by Lemma 1 since MiniYi(si) ∈ Yi(ti), so Ri(si) ⊆ Ri(ti), which means that an
equivalent deviation was already available under the original equilibrium. ¤
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Proof of Theorem 1. Lemma 4 gives E(QR | K = 1) ⊆ E∗(Y QR

) = E∗(Y R).
Therefore, by Lemmas 2 and 3 we get E(QR | K = 1) ⊆ E∗(Y R) ⊆ E(R) ⊆ E(QR |
K = 1), so E∗(Y R) = E(R). ¤

Lemma 5 For every profile of reporting correspondences R, E#(R∗) = E∗(Ỹ R).

Proof. Clearly, we have E#(R∗) ⊆ E(R∗). In addition, Theorem 1 gives
E(R∗) = E∗(Ỹ R) because the profile of reporting correspondences R∗ generates the
certifiability configuration Ỹ R. Thus, we have to show that E∗(Ỹ R) ⊆ E#(R∗). Let
ν∗ : ỸR×T → ∆(A) be any canonical Ỹ R–certification equilibrium. We have to show
that µ : T → ∆(A), where µ(a | t) = ν∗(a | MiniY R(t), t), induces a truthful and
obedient one-period R∗–certification equilibrium outcome (an outcome in E#(R∗)),
i.e., that Equation (2) on page 15 is satisfied for all t′i ∈ R∗(ti) and di : Ai → Ai.
Since t′i ∈ R∗(ti) ⇔ MiniY R

i (t′i) ∈ Ỹ R
i (ti), this condition is implied by the fact

that ν∗ is a Ỹ R–certification equilibrium outcome (see Equation (1) on page 10 with
Y = Y = Ỹ R). ¤

Proof of Theorem 2. Let R be a profile of reporting correspondences satisfying
MCC. By Lemma 4 we have E(R | K = 1) ⊆ E∗(Y R), and by Lemma 2 we have
E∗(Y R) ⊆ E(R | K = 1), so E∗(Y R) = E(R | K = 1). Thus, by Theorem 1 we get
E(R) = E(R | K = 1). ¤

Proof of Theorem 3. We have E(R) = E∗(Y R) by Theorem 1, E∗(Y R) ⊆ E∗(Ỹ R)
because players have less possible deviations in a canonical Ỹ R–certification equi-
librium than in a canonical Y

R–certification equilibrium, and E∗(Ỹ R) = E#(R∗) by
Lemma 5. Consequently, E(R) ⊆ E#(R∗). ¤
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THEMA, Université de Cergy-Pontoise.

——— (2003): “Persuasion Games with Higher-Order Uncertainty,” Journal of Eco-
nomic Theory, forthcoming.

Krishna, V. and J. Morgan (2002): “The Art of Conversation,” mimeo.

Lipman, B. L. and D. Seppi (1995): “Robust Inference in Communication Games
with Partial Provability,” Journal of Economic Theory, 66, 370–405.

Milgrom, P. (1981): “Good News and Bad News: Representation Theorems and
Applications,” Bell Journal of Economics, 12, 380–391.

Myerson, R. B. (1982): “Optimal Coordination Mechanisms in Generalized
Principal-Agent Problems,” Journal of Mathematical Economics, 10, 67–81.

——— (1986): “Multistage Games with Communication,” Econometrica, 54, 323–
358.

——— (1994): “Communication, Correlated Equilibria and Incentive Compatibil-
ity,” in Handbook of Game Theory, ed. by R. J. Aumann and S. Hart, Elsevier
Science B. V., vol. 2, chap. 24, 827–847.

Okuno-Fujiwara, A., M. Postlewaite, and K. Suzumura (1990): “Strategic
Information Revelation,” Review of Economic Studies, 57, 25–47.

Seidmann, D. J. and E. Winter (1997): “Strategic Information Transmission
with Verifiable Messages,” Econometrica, 65, 163–169.

Shin, H. S. (1994): “The Burden of Proof in a Game of Persuasion,” Journal of
Economic Theory, 64, 253–264.

——— (1998): “Adversarial and Inquisitorial Procedures in Arbitration,” Rand
Journal of economics, 29, 378–405.

——— (2003): “Disclosures and Asset Returns,” Econometrica, 71, 105–133.

Urbano, A. and J. E. Vila (2002): “Computational Complexity and Communi-
cation: Coordination in Two-Player Games,” Econometrica, 70, 1893–1927.

Verrecchia, R. E. (2001): “Essays on Disclosure,” Journal of Accounting and
Economics, 32, 97–180.

Wolinsky, A. (2002): “Eliciting Information from Multiple Experts,” Games and
Economic Behavior, 41, 141–160.

——— (2003): “Information Transmission when the Sender’s Preferences are Un-
certain,” Games and Economic Behavior, forthcoming.

20


