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Abstract

This paper studies the repeated prisoner’s dilemma in a local inter-
action setup. We construct a sequential equilibrium in pure strategies
that sustains cooperation for sufficiently patient players. The notion of
sequential equilibrium is extended to extensive form games with infinite
time horizon. The strategy is embedded in an explicitly defined expecta-
tion system, which may also be viewed as a finite state automaton. The
belief system is derived by perturbing the strategy appropriately.

1 Introduction

This paper considers a society where individuals interact with others locally, but
a social norm of cooperative behavior is nonetheless sought to be sustained in
society as a whole. The development and stability of social norms of cooperation
is usually studied through an infinitely repeated prisoner’s dilemma, and we
adopt the same approach in this paper.

An example might clarify the nature of the problem. Consider a typical road
in residential suburban America where each house has a lawn in front. Each
houseowner derives a utility v from a well maintained lawn, but can only see
her own lawn and those of her neighbors. The cost ¢ of maintaining one’s lawn
is strictly greater than v. In the case each homeowner has two neighbors, her
payoff, if both neighbors maintain their lawns and she doesn’t, is 2v, while if
she does is 3v — c. If neither neighbor maintains his lawn, her payoff is v — ¢ if
she does and 0 otherwise.

Would we expect to see the lawns well maintained along the road in the
absence of police enforcement of regulations? This paper argues that this is
possible in pure strategies. In general, we want to model a situation in which
local interaction doesn’t create an intrinsic barrier to global coordination.



1.1 The model

The model has the following features:
1. A straight line (finite or infinite in one or both directions).

2. On each integer point lives an agent. Each agent has two neighbors except
the end player(s). Let N (j) denote j’s neighborhood.

3. Time is discrete, t = 1,2, ..., oc.

4. The stage game is the prisoner’s dilemma.
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where g > 0, [ > 0.

5. In each period, each player plays the stage game with his two neighbors.
He plays the same action against the two neighbors, and his stage game payoff
is the sum of his payoffs against both neighbors.

6. Everybody has the same discount factor §.

7. Each agent only observes what happens in his own neighborhood.

8. Let hdenote player j’s private history: h% = (ai_;, af, ajﬂ)z;ll,
where aj € {C, D},k € N (j)'. Let H; denote the set of j’s private histories.
A pure strategy of player j is a mapping from H; to {C, D}.

We are looking for a sequential equilibrium? that supports cooperation on
the line. The first natural candidate is, of course, the trigger strategy®. A trigger
strategy plays cooperation after any history in which no one in the neighborhood
has ever defected, and defection otherwise. It turns out that when [ > 1, the
trigger strategy works if § > Ti_g' When [ < 1, the trigger strategy also works
i -9 gt
ifde ol .

The trigger strategy fails when [ < 1 and ¢ is large enough for a simple
reason. When the cost of being defected upon is smaller than the payoff to

!Tn this paper sometimes k represents a generic player in N (5), like it does here; sometimes
it represents a fixed neighbor of j.

2The standard notion of sequential equilibrium is defined for finite extensive form games.
We have an extension of it in the next section.

3The discussion on trigger strategy and mixed strategy below is taken from a note of
Bhaskar.



mutual cooperation, and when people are sufficiently patient, they have an
incentive to block the spread of defection. That is, people would rather live
between a good neighbor and a bad one, than to punish the bad neighbor and
then live between two bad neighbors forever. The problem with the trigger
strategy is that punishment is both too severe and too lenient. It is too severe
in that even the slightest mistake will never be forgiven; it is too lenient in that
further deviation (like blocking) is not further punished.

There is a quick fix to the trigger strategy when [ < 1 and § is too large.

We know that the trigger strategy still works for § € [1—_%9, %} . By Lemma 2

in Ellison(1994), for any sufficiently large J, we can always use trigger strategy
to support cooperation by diluting the original game into a certain number of
replica games. Players play the trigger strategy in each replica, and when they
play in some replica, they ignore observations from other replicas. Effectively
dilution reduces players’ discount factor so that it falls back into the interval

[Ti—g, %} The problem with dilution is that it is not uniform with respect

to d: the larger ¢ is, the more replicas are needed to make people less patient.

An alternative to resolving the problem is using a mixed strategy. The idea
is to create some uncertainty about whether one’s neighbor is going to punish
or block defection, in such a way that this player himself is indifferent between
punishing and blocking. The nice feature of the mixed strategy equilibrium is
that bad behavior can be localized so that most part of the society is left unaf-
fected even if some player always plays defection. A mixed strategy equilibrium
of this form exists when the line is infinite in both directions. With a finite
number of agents, there is an "endpoint" problem, to be explained in the next
subsection.

The main result of this paper is the following. In the repeated prisoner’s
dilemma on the finite or infinite line, for any [ < 1, g > 0, there is a sequential
equilibrium in pure strategies that supports cooperation for any sufficiently large
0. As in standard folk theorem type of strategies, we need a book keeping device
to keep track of punishments and rewards as the game goes on. In standard
theory this is done by a machine. Here I do it by defining a pair of expectation
operators, (Ej (-|ht), Ej (Ey(-)|h})). For any private history h%, Ej (-|h}) is
the expectation that j forms on the future path of play in his neighborhood,
E; (Ek () |hj) is the expectation that 7 forms on his neighbor k’s expectation
on j’s future actions. After h'Jf, Jj simply does what E; (|hj) expects him to do.

1.2 An example

Let’s illustrate the strategy by the following three player expample.



Initially everybody expects everybody to play cooperation forever. Then if
say player 2 is surprised by a defection from player 1, 2 expects himself to begin
a punishment of, say T periods, and then to go back to cooperation forever. 2
expects 1 to play anything (i.e. neither D nor C will surprise him) in the next
T —1 periods, then 2 expects 1 to go back to C (the ambiguity in 2’s expectation
is not necessary here, since 2 knows that if 1 follows the strategy, 1 will have
T — 1 periods of D to play for sure. The ambiguity will be useful after more
complicated histories, so that when someone finishes punishing one neighbor, he
can safely go back to C' without further surprising the other neighbor). 2 also
expects that 1 expects 2 to punish for T periods, and if 2 fails to punish, 2 will
surprise 1 and trigger a more severe punishment. At the same time, 2 anticipates
that the punishment will surprise 3 in turn, so he expects 3 to punish him for T’
periods. If 3 fails to fully carry out the punishment, then 2 expects himself to
punish 3 for a much longer period of time, say bT periods, b > 1. Meanwhile, it
is the mutual expectation of 2 and 3 that 3 should keep playing cooperation after
3 blocks. Finally 2 should also anticipate that his long punishment will keep
surprising 1 later on, and 1 should react to it appropriately, and so on. A kind
of social norm can thus be established by specifying people’s expectations after
any history. People then use the expectations to judge other people’s behavior,
and to guide their own.

Given any history of player 2, if he expects himself to play C in the next
period, the strategy is going to be defined such that he also expects that at
least one of the neighbors also expects him to play C, and if he deviates, he will
postpone the time when the entire neighborhood goes back to C'; if he expects
himself to play D in the next period, he doesn’t want to play C because it is
either unnecessary to do so (when both 2 and 3 expect anything from him), or
too costly to do so (when he expects at least one neighbor to expect him to play
D). So far, sequential rationality is relative to the artificially defined expectation
operators. Sequential equilibrium requires that the strategy be optimal with
respect to real expectations formed under a consistent belief system. As we will
see in later sections, essentially these real expectations are going to be duplicated
by the artificial expectations, if we perturb the strategy approriately.

We can also see from this example why the mixed strategy doesn’t work for
finite number of players: 2 has incentive to mix between punishing and blocking
only if 1 and 3 also have such incentive, but they don’t.

1.3 Comparison with the Random Matching Model

The main message of this paper is this. The ultimate source of stability in this
simple society is shared belief, or mutually compatible expectations on each



other. An explicitly defined expectation system can be used as a social norm.
What is important is not a common observation of a physical outcome, what
is important is a common understanding of the social norm, the understanding
that everybody knows the norm and is willing to follow it after any history.

This paper can be viewed as a special variation under a general theme, which
is to disperse information in a repeated game among the players and ask whether
the efficient outcome can still be maintained or not. There are other ways to
disperse information. In Kandori(1992), people are pairwise matched at random
in each period and play the prisoner’s dilemma in each match. Each player only
observes what goes on in his own matches, but not in other matches. Kandori
constructs a contagion strategy that supports the cooperative outcome, provided
that the cost of being defected upon is sufficiently large*. Bhaskar(1998) studied
a simple transfer game in an overlapping generation setup. He found that with
some mild informational constraints, transfers (from the young to the old in
each period) cannot be supported by pure strategy equilibria. For example, if
each generation only observes the actions of the past generation, then the only
pure strategy equilibrium is global autarchy.

Apart from the superficial differences between our model and the random
matching model, there are similarities as well as differences between the two. In
both models, if [ is large enough, the trigger strategy works for sufficiently large
§%; if I is small, the trigger strategy works for moderate values of §. Moreover,
Ellison’s dilution idea applies to both models. The differences are more subtle:
in the random matching model with public randomization, the supporting strat-
egy is uniform with respect to J, so long as § is large enough. Without public
randomization, however, the supporting strategy is not uniform with respect to
§. In addition, the equilibrium with public randomization is globally stable’,
but without public randomization, it is unknown whether global stability is pos-
sible. In our model, the strategy, call it E from now on, is both uniform with
respect to § and globally stable, for [ < 1 and g > 0.

In the anonymous random matching model, a player’s information about
history can be summarized by a one dimensional statistic. It is impossible to
keep track of other players’ actions, and it is not necessary either. Although a
player needs to guess how many players have been infected after any history,
Kandori and Ellison simplified the analysis by constructing a strategy that is
optimal against any reasonable guesses. Hence consistency is not an issue. In
our model, however, the information is two dimensional, and a player has to
treat them separately. Instead of implementing a T-period punishment scheme

4Ellison(1994) embedded a public randomizing device into the contagion strategy and
showed that cooperation can be supported for any payoff parameters.

5In the random matching model the cutoff value of I depends on the population size, but
it doesn’t here.

6In the sense of Kandori(1992), global stability requires that players be able to return to
efficient outcome eventually after any history.



probablistically, as in the strategy with public randomization in the random
matching model, we carry it out deterministically here. The tradeoff is we have
to specify a consistent belief system, because the strategy cannot be a best
response for all belief systems.

This paper is organized as follows. Section 2 defines the pure strategy FE,
by defining a pair of expectation operators inductively. Section 3 shows that
the strategy is sequentially rational with respect to the expectation operators.
Section 4 derives a consistent belief system, under which real expectations can
be formed after any private history. It is then shown that the real expectations
formed after a history can be mimiced by the expectation operators after the
same history. Section 5 discusses extensions to circles and trees. Section 6
concludes.



