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Abstract

The Coase theorem is evaluated when there is sequential strategic coalitional
behavior and more than two agents are involved in the externality. Links or
networks, needed for gains of cooperation, are proposed and payoffs are eval-
uated according to "who is more connected". We use the Aumann-Myerson’s
bargaining solution (1988). Two firms pollute a third one. Without liabilities,
once the first link is agreed, the two players choose not to form extra links be-
cause they foresee a decrease in their bargaining power and hence lower payoffs;
so only two-firm coalitions form even with strict superadditivity and costless
links. If the latter is interpreted as zero transaction costs, then the latter re-
sult is inconsistent with the Coase theorem as with liability the grand coalition
forms (thus efficiency results). We give sufficient and necessary conditions for
related results in general three-person games. It is pointed out that for policy
purposes it is crucial to distinguish inefficiency induced by factors others than
transaction costs. Finally we give a counterexample in which allowing for exter-
nalities in coalition induces the grand coalition to form. As a solution concept,
we use the extended Shapley value in Partition function form (Myerson 1977)
and the link formation game of Aumann and Myerson.

∗Ricardo Nieva is Visiting Faculty at Rochester Institute of Technology. Thanks again to Leonid
Hurwicz as this paper was originated when he was wondering in a related project about enforcer
games(Nieva October 2002) if its core was empty. The bad news for the implementation theory is
that it was empty as in the game in this present paper.
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1 Introduction

A version of the Coase theorem-that, with zero transaction costs and zero income ef-
fects, the identical Pareto-efficient allocation of resources will emerge regardless of the
initial assignment of property rights- is evaluated when there is strategic coalitional
behavior and more than two agents are involved in a production externality as in
Aviazian, Callen and Lipnowski (1987). In less technical terms and to give intuition,
we pose the following informal question, if there is costless bargaining among three
firms, in which two of them generate pollution that affects negatively the production
of the third firm: will the three firms come up with an agreement that for example
leads the polluters to shut down and be compensated by the third firm independently
if the polluters are liable or not, and the society as a whole gains, i.e. the outcome is
the same and efficient?
We use the Aumann-Myerson (1988) bargaining solution concept for games of

endogenous networks with sequential proposals. We claim that the Aumann-Myerson
bargaining solution cannot be used in a proper formulation of the Coase theorem.
In an informal way again, we claim that the Coase theorem does not hold if the
latter bargaining solution is a realistic one, even though there is perfect information.
Misleading policy implications are discussed.1

To illustrate environments where Aumann-Myerson’s solution concept is relevant,
in our opinion, for production externalities, we have an example due toMaschler (cited
in Aumann and Myerson (1988)). Consider the coalitional game v with identical
players 1, 2 and 3 summarized as: v(B) = 0 if |B| = 1, v(B) = 60 if |B| = 2,
v(B) = 72 if |B| = 3, where |B| stands for number of players in coalition B and v(B)
denotes its worth, the maximum payoff that the respective coalition can achieve. If
every player acts alone they get zero each. Any pair colluded gets instead 60. Three
players in a coalition yield still 72. The standard question in cooperative game theory
is which coalitions form and how payoffs are distributed.
Most cooperative solutions argue that the three-player coalition results (or grand

coalition) and 72 would be divided in an appropriate way. But suppose players 1
and 2 meet in absence of 3. Looking ahead, they would be happy with 30 each and
would not invite 3 to join negotiations and instead, only a two-person coalition would
be the outcome despite of its inefficiency. They fear that once 3 joins negotiations,
the three players would be in symmetric roles and 72 may be divided equally, say
(24,24,24) (for example according to the cooperative solution given by the Shapley
value). Informally and to give intuition in our model, we could say that if the latter
situation arises every player would end up with the same bargaining power.
Following the same example as in Aviazian, Callen and Lipnowski (1987 and

1981), that use instead the bargaining set as a solution concept, and a reply by Coase

1For a treatment of different interpretations of the Coase theorem and their implications, and for
an adequate formulation of the mentioned theorem in terms of an adequate solution concept (say,
analyzing bargaining outcomes with the core solution concept) see Hurwicz (1995).
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(1981) we have two polluters that can affect a third agent. Two factories (firms 1
and 2) pollute a neighborhood laundry (firm 3). Let the characteristic function v
denote profits per day where v(1) = 1 v(2) = 2 v(3) = 3 v(1, 2) = 8
v(1, 3) = 9 v(2, 3) = 10 v(123) = 12. It is reasonable to motivate the latter
coalitions’ profits as assuming that collusion can be thought as implying more worth
because the polluters shut down and let the other firms produce and thus generate
more profit. Firms do not discount the future. This characteristic function, as in
Maschler’s example, is strictly superadditive or equivalently colluding always increases
total gains. Hence only the grand coalition can maximize joint profits.
It seems straightforward to think that with no transaction costs, or equivalently

costless bargaining, firms have an incentive to negotiate and internalize the exter-
nality. In particular the grand coalition internalizes the externality completely and
the joint gain would be one more than for any two-agent coalition. We explain that
the latter is not the case when we use a different bargaining solution concept than
the core because for this case the core is empty (as it is also the case in Maschler’s
example).
More formally and following Aumann and Myerson (1988), it is assumed that we

have a coalitional game with side payments and perfect information. The procedure
for bilateral links (necessary for gains of cooperation) or, equivalently, bilateral ne-
gotiations proposals by pairs of players follow a rule of order (thus, two players can
meet in the absence of the third). Proposers evaluate their link proposals accord-
ing to Myerson values (1977), that are predictions for individual payoffs or Shapley
values that take into account the link structure, i.e. who has more "connections"
matters. Evaluations depend additionally on other links that might be induced by
them accepting or rejecting a proposed link (proposers are non-myopic). We assume
also that the proposal procedure leads to a finite game. Finally, after the last link or,
equivalently, bilateral negotiation has been agreed upon, every pair has a last chance
to propose again. Given that this is a finite game of perfect information we have
subgame perfect equilibriums in pure strategies in which no more links are accepted.
Let us assume in our example, as in the Coase theorem, that there is no liability.

For the characteristic function above, once a link between any of the pair of agents
called upon to propose is agreed and their payoffs are evaluated according to the
Myerson value of the prospective new link structure, thinking ahead, each firm would
not find it optimal to propose any other link. This happens because the second link
induces the next pair of players, not linked yet, to propose and accept the third
last link. Intuitively it should be clear (in contrast with the players in the first link
thinking about forming a second link) that more connections are better in the latter
case, thus the grand coalition forms. The players who formed the first link would see
their payoffs or Myerson values decrease even if the game is strictly superadditive.
In other words the first pair to form does not want to individually "communicate"
with the third agent because even though total gains increase, their decreased bar-
gaining power leads the first pair to lower payoffs. The latter happens despite of the
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inefficiency of the outcome.
In this kind of games, for the Coase’s theorem to hold the following is necessary:

Assuming that the game is strictly superadditive the complete graph (or everyone
linked with everyone) that implies the grand coalition must be the unique subgame
perfect equilibrium outcome. Otherwise a Pareto-optimal allocation need not obtain.
It is not clear fromCoase if the bargaining procedure, when leading to an inefficient

outcome, can be thought as creating a transaction cost. If not then we claim that the
Aumann-Myerson bargaining solution cannot be used in a proper formulation of the
Coase theorem2 because of two reasons. First as we explained above, if there are no
liabilities only non-efficient allocations are stable or equivalently the grand coalition
doesn’t form. Second, as Aivazian and Callen show, if the polluters are liable, then
the grand coalition would result, the polluters would discontinue operations, and a
Pareto-optimal allocation of resources would result.
Note that the cost of forming links is zero or we could say we have zero transactions

costs. In other words it is not that negotiations are not possible. Instead two players
decide voluntarily and it is in their best self interest not to choose to form additional
links or coalitions because of the induced consequences. Ex-ante, before any pair
is called to propose, we could argue instead that the rule of order of pairs called
upon to propose induces a transaction cost. Therefore we have ambiguity. The policy
implications are important because in case of inefficiency, and if this is a reasonable or
realistic bargaining solution (see Nieva October 2002 for an argument in this sense in
enforcer games), we would be looking to design institutions to deal with transaction
costs that don’t even exist.
One might think that the example above is patological, but note that in it we

could say that production of externalities exhibits decreasing marginal productivity
(see a precise definition of the term in section 2). Thus the gains in adding more
polluters to a coalition decreases. It is also implied that adding a second polluter to
say the coalition formed by players 1 and 3 decreases the percapita worth as is the
case in the example above. Both implications in turn are not uncommon at all.
Also we give sufficient and necessary conditions in claim 2a for similar results for

any three-person game that is superadditive. Only one-link graphs form (implying
that the grand coalition does not form), iff for at least one-link graph structure (two
players linked by a line represent a one-link graph for example) the Myerson values
for the respective two players linked is strictly greater than their Shapley values or
equivalently Myerson values in the complete graph. It is intuitively clear that if
adding one more agent to a two agent coalition (ceteris paribus or all other thinks
being constant) adds enough worth then the assumptions of claim 2a do not hold
anymore and the complete graph that implies the grand coalition forms. In other
words if the gains of adding one more player to the two person coalition are big

2Hurwicz (1996) points out that solution concepts with nonempty sets of solutions (at least in
common real world examples ) that are both efficient and individually rational (PO-IR) should be
used.
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enough there is no way two agents would gain by not inviting the third one to the
negotiations table. In our environment, if production of externalities exhibits high
enough marginal productivity in production of pollution (see definition in section 2),
even though the latter condition (adding one more player adds enough worth when
a new coalition forms) might be satisfied the assumption of ceteris paribus may be
violated as we have simultaneous changes in the worths of different coalitions. Thus
the complete graph might not form.
It is important to see that in the characteristic function given above the core

is empty. Nieva (October 2002) uses also the Aumann-Myerson solution concept
and show that enforcer games can lead also to empty cores and find examples in a
superadditive (not strictly superadditive) game in which the core is empty but the
grand coalition forms. So emptiness of the core is not a sufficient condition for the
grand coalition not to form at least in superadditive games. This result might look
counterintuitive but it is important to realize that the key here is that 2 players block
1 imputation, i.e. the one given by the Shapley values of the complete graph, with
the Myerson values implied by the first link they agreed to form. Even if this blocking
is not possible and the complete graph forms by claim 2, the core can still be empty.
Just think of the Shapley value imputation in question be blocked by a coalition of 2
that doesn’t use the Myerson values.
In a related paper Dixit (2000) also points out to a sequential game where nonco-

operative behavior induces inefficient outcomes in a context of public goods. In our
set up we have instead externalities in production when coalition formation depends
on the voluntary "communication" structure (links) and agents can collude even in
the first stage. In contrast, in the mentioned paper, Dixit assumes that the game
in its first stage is non-cooperative and in the second one cooperative. According
to the way we understood his model, we think that his assumption is ad-hoc in the
sense that non-coalition formation in the first stage is not an equilibrium outcome
according to the Nash program, but an assumption.
Finally in contrast to Aviazan and Callen (1987), allowing for spillovers in coalition

formation when we have unilateral externalities of 2 producers again a third one may
induce the grand coalition to form as the unique equilibrium outcome. The latter
will happen if the collution of two polluter firms decreases enough the payoff of the
third firm in comparison to the case where all firms operate separately. As solution
concepts, we use the extended Shapley value in Partition function form (Myerson
1977) and the link formation game of Aumann and Myerson (1988).
In the next section we describe the environment more in detail. A review of

the Myerson Value and Aumann-Myerson solution for sequential network formation
games follow together with the equilibrium analysis and results in section number 3.
Section 4 includes conclusions. The appendix includes the environment allowing for
coalition formation with the counterexample to Avazan and Callen.
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2 Environment

Using the same example as in Aivazian and Callen (1981), we consider 2 factories
(firm 1 and 2) polluting a neighborhood laundry (firm 3). Firms do not discount
the future. The laundry does not emit pollutants. Let the characteristic function v
denote profits per day where it is assumed that in absence of negotiations they get:

v(1) = 1 v(2) = 2 v(3) = 3
If negotiations are possible and merges brings about the reduction of pollution we

will have the following coalitional values:
v(1, 2) = 8 v(1, 3) = 9 v(2, 3) = 10 v(123) = 12
The characteristic function is strictly superadditive or in other words the forma-

tion of coalition always gives a net positive gain. Hence only the grand coalition can
maximize joint profits. If players 1 and 3 would collude their net gain would be of 5.
Even if the two factories collude the net gain is positive. One way to motivate the
latter would be that one of them pollutes the other one or maybe some economies to
scale or some fixed cost sharing kick in. For simplicity we assume that there are not
spillovers in coalition formation (i.e. the value say of firm 3 is the same if the firms 1
and two collude or not).Also, for assessing the importance of marginal productivity
in production of pollution for our results, it will be useful to assume that firms 1 and
2 cannot pollute each.
Only if the grand coalition forms the externality is completely internalized (we

can imagine that the polluters close down) and total gains are maximized. We point
out that this example is not patological because we could say that production of
externalities exhibits decreasing marginal productivity. More precisely:
Definition:
The marginal productivity in production of pollution of polluter 1 is defined as the

extra amount of pollution of firm 1 imposed on the laundry, player 3, and is directly
proportional to the difference v(123)− v(23) or v(23)− v(3). The lower the marginal
productivity the lower is the gain of forming the coalitions with the polluters given
our assumption that the polluters shut down. We define for player 2 the respective
term in analogous way¥.
Also in this example the core is empty, where the core is the set of allocations x

that satisfy the following conditions:
x1 = v(1) x2 = v(2) x3 = v(3)
x1 + x2 = v(12) x1 + x3 = v(13) x2 + x3 = v(23)
x1 + x2 + x3 ≥ v(123)

Note that if the core is non-empty then v(123) ≥ v(12)+v(13)+v(23)
2

. Clearly this does
not hold in the example above.
Before we review the idea of networks and the related negotiations or communi-

cation environment let N be a finite set of players. Given N , let CL be the set of all
coalitions (non-empty subsets) of N ,

CL = {B ⊆ N,B 6= ∅}
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Let PT be the set of partitions or coalition structures of N , so
{B1, ..., Bl} ∈ PT iff:
U l
i=1Bi = N, ∀j Bj 6= ∅,∀kBi ∩Bk = ∅ if k 6= j.
A richer negotiations framework (allowing for network formation) will help us

formulate our arguments precisely. For modelling this richer kind of setups Myerson
(1977) defined a cooperation structure (or cooperation graph) in a coalitional game.
This graph is one whose vertices are the players .As in Aumann and Myerson (1987)
a link between two players (and edge of the graph) exists if it is possible for them to
carry on meaningful direct negotiations with each other.
In particular, ordinary partitions or coalition structures{B1, ..., Bl} may be mod-

eled within this framework by defining two players to be linked if and only if they
belong to the same Bj.
In our case for three players we have the empty graphs without links. The complete

graph gN in contrast is represented as:
3

/ \
1––2
graph N

The one link graphs representation is:
3 3 3

/ \
1 2 1 2 1––2
graph 1 graph 2 graph 3
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The two links graphs:
3 3 3

/ \ \ /
1 2 1–— 2 1––2
graph 4 graph 5 graph 6

As is explained in the next section the bargaining environment can be modelled
sequentially in a game with finite number of stages.
With respect to the information structure, after any stage, everyone observes past

moves including mixed actions.

3 Decision rules and solution concepts in a sequen-
tial model of endogenous networks

3.1 The Myerson value and the Aumann-Myerson solution

This section follows Aumann and Myerson (1988) very closely.

3.1.1 The Myerson value

The Shapley value evaluates the players’ prospects when there is full and free com-
munication among all of the players—when the cooperation structure is ’full’, when
any two players are linked. Otherwise a player say i who is totally isolated(no links
with anyone) can expect to get nothing beyond his own worth v({i}); in general the
more links a player has with others, the better the expected prospects.
Myerson (1977) defined an extension of the Shapley value of a coalitional game v

to the case of an arbitrary cooperation structure g for games with transferable utility
as is our case. In particular, if g is the complete graph on the all-player setN (any two
players are directly linked) as in gN , then Myerson’s value coincides with Shapley’s.
Moreover, if the cooperation graph g corresponds to the coalition structure (B1, ..., Bl)
in the sense indicated here, then the Myerson value of a member i of Bj is the Shapley
value of i as a player of the game v|Bj(v restricted to Bj). The key difference in this
restricted game is that the worth of the union of say Bj ∪Bkequals the worth of the
sum v(Bj)+v(Bk) according to the original characteristic function v. Given that there
are no links between some player in j and some player in k they don’t get the benefits
derived from the union of the coalitions in question according to v. If the game is
strictly super-additive then for all k and j, where j 6= k, v (Bj ∪Bk) > v(Bj)+v(Bk).
Let be given a coalitional game v withN as player set and g a graph whose vertices

are the players. For each player i and given the graph g and the characteristic function
v, the Myerson value φgi = φgi (v) is determined by the following axioms:
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Axiom 1. If a graph g is obtained from another graph h by adding a single link,
namely the one between players i and j, then i and j gain (or lose) equally by the
change; that is,

φgi − φhi = φgi − φhi
Axiom 2. If S is a connected component of g, then the sum of the values of the

players in S is the worth of S; that is,X
φgi (v) = v(S),

where a connected component of a graph is a maximal set of vertices of which any
two may be joined by a chain of linked vertices.
The Myerson value is unique and if v is superadditive, as our game is, then two

players who form a new link never lose by it: Note that the two sides of the equation
in Axiom 1 are nonnegative. Myerson also established the following practical method:
Given v and g, define a coalitional game vg by

vg(S) :=
X

vg(Sj),

where the sum ranges over the connected components Sg
j of the graph g|S (g

restricted to S). Then
φgi (v) = φi(v

g)
where φi denotes the ordinary Shapley value for player i.

3.1.2 The sequential link formation game

Given a coalitional game v with n players with no links, the game consists of pairs of
players being offered to form links according to some rule of order. Links are formed
when both parties agree; once it is formed, a link cannot be destroyed and all previous
proposals and rejections are known history (this game is of perfect information). The
crucial detail of the proposal procedure is that it leads to a finite game, and that
after the last link has been formed, each of the n(n−1)

2
pairs must be given a final

opportunity to form an additional link (as in bridge). At this point some cooperation
graph g has formed and the payoff to player i is then the Myerson Value and is
denoted by φgi (v).
Given that the game is of perfect information it has subgame perfect equilibriums

in pure strategies. Each such equilibrium is associated with a unique cooperation
graph g, namely the graph reached at the end of play. Any such g (for any choice
of the order on pairs) is called a natural structure for v (or a natural outcome of
the linking game). If all subgame perfect equilibriums of subgames (for any choice of
order) dictate that no additional links form, then g is called stable.
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3.2 Equilibrium Analysis

3.2.1 Equilibrium without liabilities and "zero" transaction costs

In this subsection we compute the Myerson values for different graphs and find the
subgameperfect equilibriums or Aumann-Myerson solutions (for an illustration see
last subsubsection).
The Myerson value for graph 1 is (3.5, 2, 5.5)
The Myerson value for graph 2 is (1, 4.5, 5.5)
The Myerson value for graph 3 is (3.5, 4.5, 4)
The Myerson value for graph 4 is (3, 4, 5)
The Myerson value for graph 5 is (21

6
, 54

6
, 41

6
)

The Myerson value for graph 6 is (44
6
, 31

6
, 41

6
)

The Myerson value for the complete graph is (3, 4, 5)
Claim 1: The endogenous game of link formation with the Myerson value as

fixed valuation has 3 natural subgame perfect equilibria where either coalition 13,
12 or 23 form but never the two or three-link graph (for a general proof see claim 2
below).
Proof: Suppose we are at a stage where there are 2 links. The players that

have not formed a link yet have an incentive to form one and the complete graph
forms. Therefore we can assume that from a 2 links graph the 3 links graph will form
inevitably.
Beginning with one link, say graph 1, (where the link is between players 1 and

3), player 3 would not like any other link because 5.5 is the maximum she can get;
as both players that propose a link next have to agree to get connected, it doesn’t
matter what player 2’s prospects are. However players 1 and 2 have an incentive to
form one, though thinking ahead player 1 won’t because she would get less after the
complete graph inevitably forms.
Imagine now we begin with graph 2; looking ahead players 2 and 3 would not like

to form a link with 1 because their payoffs would decrease after the complete graph
forms. We have an analogous result if we begin with graph 3 instead.
Beginning with no links, if we have the rule of order 12 13 23 (pairs of player

(1, 2), (1, 3), (2, 3) propose bilateral links in that order), provided that the first two
pairs refused, the last pair would get linked (otherwise they would get their individual
worths v(2) and v(3)). One stage backward if players in 12 have rejected agents in
13 get to propose. Player 3 is indifferent between accepting or rejecting because in
either case she gets 5.5. The other member of the proposed link, player 1, has as a
weakly dominant stage action to accept other wise she may be left out with only 1.in
payoff.
Thus at the first stage the optimal individual action will depend on what player

3 does in the second stage:
a)Suppose link 13 forms, then 1 will be indifferent between accepting or rejecting

the link with player 2 because in either case she gets 3.5. Player 2, has as a weakly
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dominant stage action to accept other wise she may be left out with only a payoff of
2. Hence there are two possible subgame perfect equilibriums depending on what 1
decides. Either 12 or 13 forms.
b)If 3 rejects 1 will have as dominant action to accept link with 2. Player 2 will

always reject because then 23 would finally form.
Hence depending on what 3 does in the second proposal there are possibility of 3

outcomes. In any case the complete network doesn’t form!.
In an analogous way, neither the two link or three-link graph form if we instead

have the rules of order 12 23 13.or 23 12 13. We can apply alternatively claim 2
below directly¥.
We state a result from Nieva (October 2002): An empty core is not sufficient for

the complete graph not to form if the game is superadditive. A counterexample is
given in the latter paper though the game is not strictly superadditive.
Claim 2:
Assume we have 3 person normalized superadditive games that are non-trivial

(i.e. value of 2 person coalitions are strictly positive) or where v(i) + v(j) < v(i+ j)
for i 6= j and i, j ∈ (1, 2, 3).
a) Only one link graphs form, iff for at least 1 link graph structure (graphs 1, 2

and 3 in our model) the Myerson values for the respective two players linked is strictly
greater than their Shapley values in the complete graph. If the above conditions hold
for graphs either i, or i and j, or i, j and k then graphs i, i or j, and i, or j or k form
respectively in equilibrium for i 6= j 6= k and i, j, k ∈ (1, 2, 3) in our model.
b) In contrast the complete graph forms iff the conditions in (a) do not hold.
Proof:
Claim 2a :Without loss of generality assume that the 13 link is associated to a

graph with such characteristics. Suppose three links or the complete graph form.
Then for some 2 link graph it is optimal for two players to propose the last link.
Also there is a one link graph that finds it optimal to accept a second link. If all links
would satisfy the assumptions of the claim then the complete graph would have a
deviation as a second link would not be accepted by neither of the players in the first
link to form. We focus then on the situation when at least there is one link among
23 and 12 that has not strictly higher Myerson values for both of their two members.
We will show that at least one of the members in the first link that was formed on
the path to the complete graph in the assumed equilibrium wants to deviate. Again
without loss of generality let us assume that the latter first link is 12. Thus (and
consistent with proposal procedure) the pair of players (1,3) are still out there to
propose in case 12 is rejected and maybe also the pair (2,3).
1st case: Assume players in 23 have Myerson values that are not both strictly

higher than their Shapley values in the complete graph. If player 1 accepts link 12
she gets her Shapley value in the complete graph by definition of equilibrium. If p1
rejects she gets her Myerson value in 13. She expects in one case p3 to reject a link
with p2 and accept a link with p3 if the rule of order mandates first pair (2,3) and
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second (1,3). In the other case, pair (1,3) is next and p1 would reject link 12 knowing
that player 3 would accept 13. If only 13 is left to propose the result is obviously the
same. Thus player 1 deviates.
2nd case: Assume instead that 23 has Myerson values that are both strictly higher

than their Shapley values in the complete graph. if p3’s Myerson value in 23 is strictly
lower than her’s in 13 then the same argument used in the 1st case holds. If the latter
Myerson value is strictly higher instead then p2 deviates. If p3’s Myerson value in 23
is equal to the one she gets in 13 then, depending on what p3 does, there would be
associated deviations. Note that in this 2nd case for sure both13 and 23 are still out
there to propose otherwise the game would have ended already.
Finally we need to check if the two link graph does not form (otherwise the grand

coalition forms though with an incomplete graph).By assumption v(i)+v(j) < v(i+j)
for i 6= j and i, j ∈ (1, 2, 3) So by definition of the Myerson value (see end of this
subsubsection for a related illustration), the players not linked form the third link as
their payoffs increase; thus there is a deviation.
Conversely without loss of generality assume that only one-link graph forms and

for no one-link graph the Myerson values for both associated two players linked is
strictly greater than their Shapley values in the complete graph. Let us take one-link
graphs. The players in this first link anticipate that a two link graph always lead to
the complete graph and hence it is optimal at least for one player to accept a second
link independently of the rule of order. This is a contradiction.
Given that this is a finite game of perfect information there is at least one sub-

gameperfect equilibrium in pure strategies. Thus the rest of claim 2a follows.
Claim 2b: Given that v(i) + v(j) < v(i + j) for i 6= j and i, j ∈ (1, 2, 3) a 2 link

graph never forms in any equilibrium thus only the complete graph forms¥.
The reader can check that in the example with production externalities given

above the assumptions of claim 2 hold.

3.2.2 The Role of Marginal Productivity in Pollution Production: An
Illustration of The Myerson Value

It is intuitively clear that if adding one more agent to a two agent coalition adds
enough worth then the assumptions of claim 2a do not hold anymore and the complete
graph that implies the grand coalition forms. In an environment with production
externalities, if production of externalities exhibits high enough marginal productivity
in production of pollution (see definition in section 2) then the assumptions of claim
2a might be satisfied even though adding one more agent to a two agent coalition
adds enough worth. We explain the latter assertion by illustrating the use of the
Myerson value in what follows:
We focus on the Shapley value and the Myerson value of player 1 when the only

link corresponds to the one between players 1 and 3.
By definition, the Shapley value for player 1 for a 3-person game is:
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φ1 =
1
6
(123 + 132 + 213 + 231 + 312 + 321), where

123 = v(1)
132 = v(1)
213 = v(21)− v(1)
231 = v(123)− v(23)
312 = v(13)− v(3)
321 = v(123)− v(23)
The triplets stand for the extra addition to the total worth if player 1 "gets in"

depending on different orderings. The Myerson value for player 1 if only graph 1
forms or there is only one link, i.e. the link corresponds to the one between players
1 and 3, can be computed as follows:

φg=11 = 1
6
(123 + 132 + 213 + 231 + 312 + 321), where

123 = v(1)
132 = v(1)
213 = [v(2) + v(1)]− v(1) = v(2)
231 = [v(13) + v(2)]− [v(2) + v(3)] = v(13)− v(3)
312 = v(13)− v(3)
321 = [v(13) + v(2)]− [v(2) + v(3)] = v(13)− v(3)
We are interested in:
φ1−φg=11 = [v(21)− v(1)]+2 [v(123)− v(23)]+[v(13)− v(3)]−v(2)−3 [v(13)− v(3)]
= [v(21)− v(1)] + 2 [v(123)− v(23)]− v(2)− 2 [v(13)− v(3)] ,
after rearranging,
= [v(21)− v(1)]− v(2) + 2 [v(123)− v(23)]− 2 [v(13)− v(3)]
If the v(123) is high enough then ceteris paribus φ1 > φg=11 . After picking v(123)∗

such that the conditions hold for claim 2b, then the complete graph will form. That
means v(123)∗ (ceteris paribus) has to be high enough so that at least for all players
in one-link graphs it is the case that their Myerson value is lower or equal than
her Shapley value in the complete graph. An increase in marginal productivity in
production of pollution will produce an increase in v(123). but it also increases
[v(13)− v(3)] , thus the effect is undetermined. It would be worth while to have
explicit functional forms for the referred marginal productivity as for the following
argument. Suppose firms 1 and 2 are identical and don’t pollute each other and that
there is a "parallel shift" up in the marginal productivity in production of pollution.
Then the last two terms in the previous equation cancel each other out and we have
a constant term:

φ1 − φg=11 = [v(21)− v(1)]− v(2) > 0,
by strict superadditivity. Hence we have no effect. It would be also interesting

to relax the assumption that the 2 firms do not pollute each other. In this the latter
result does not need to hold.
We could also check under which conditions an increase in the referred marginal

productivity increases the difference φ1 − φg=11 . The same exercise should be done
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for all possible one-link graphs and their respective two members so that the condi-
tions for claim 2a do not hold . Only then we could analyze properly the role of the
marginal productivity in production of pollution in the formation of the grand coali-
tion. Summarizing, we can claim that marginal pollution productivity of pollution is
not necessarily a determinant in the formation of the complete graph.

3.2.3 Equilibrium with liabilities

We state Aviazian and Callen’s (1981) result. If players 1 and 2 are liable for the
pollution damages to player 3 it is obvious that the grand coalition solution must
obtain and 1 nor 2 will be allowed to produce. Here it is assumed that this is the
most efficient outcome. Otherwise we would have to specify each firm’s production
function, or equivalently, a level of output for each level of pollution; Aviazian and
Callen claim that the results would not change in this latter case.

4 Conclusions

The complete graph that implies the grand coalition will form if firms are liable. In
the case they are not, neither the complete graph and nor the incomplete two-link
graph (both implying the grand coalition) will form. Hence the Aumann and Myerson
solution has to be excluded for a proper formulation of the Coase theorem. For
example as Hurwicz (1996) argues, solution concepts with nonempty sets of solutions
(at least in common real world examples ) that are both efficient and individually
rational (PO-IR) should be used.
Our conclusion could be questioned though if the bargaining procedure, as long

as it leads to an inefficient equilibrium outcome, is considered a transaction cost.
Note however that the cost of forming links is zero or we could say that we have zero
transactions costs. The important point is that it is not that negotiations are not
possible. Instead two players decide voluntarily and it is in their best self interest not
to choose to form additional links or coalitions because of the induced consequences.
In the latter sense this richer negotiation framework (endogenous networks) allows
in a rigorous way the distinction between impossibility to negotiate (in which case
we could properly say there is indeed a transaction cost; for example if links were
costly) and not willingness to cooperate. It is our opinion that the latter case could
not be properly called a transaction cost. The punchline for short would be in a very
informal way that the Coase theorem doesn’t hold even with perfect information.
Finally ex-ante, before any pair is called to propose, we could argue instead that

the rule of order of pairs called upon to propose induces a transaction cost. We
think that a better word would be historical path dependence as a way of illustrating
North’s argument (1991).
Thus we have ambiguity and the importance of this paper for policy issues in

terms of identifying the determinants of inefficient outcomes other than transaction
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costs provided that the Aumann-Myerson solution is a reasonable ways of predicting
negotiations in the real world3.
With respect to the conditions for the grand coalition not to form we have two

claims:

1. Only 1 link graphs form, iff for at least 1 link graph structures (1, 2 and 3 in our
model) theMyerson values for the respective two players linked is strictly greater
than their Shapley values in the complete graph. Thus the grand coalition never
forms. For related results see Nieva (October 2002).

2. In an environment with production externalities, even if the production of ex-
ternalities exhibits high enough marginal pollution productivity (see definition
in section 2) the complete graph does not form necessarily.

5 Appendix: Externalities in Production and in
Coalition Formation

In contrast to Aviazan and Callen (1987), allowing for spillovers in coalition formation
when we have unilateral externalities of 2 producers again a third one may induce the
grand coalition to form as the unique equilibrium outcome. The latter will happen
if the collution of two polluter firms decreases enough the payoff of the third firm in
comparison to the case where all firms operate separately. As solution concepts, we
use the extended Shapley value in Partition function form (Myerson 1977) and the
link formation game of Aumann and Myerson (1988).

5.0.4 Environment

Let us assume that what coalitions can achieve depends on sets of links (or graphs
as in Aumann and Myerson(1988) or Jackson and Wolinsky (1996)) among players
and on the coalition structure following the partition function approach in which
spillovers in coalition formation are possible(see Bloch (1996) Ray and Vohra (1996)
and Myerson(1977b)). Loosely speaking, the extended Myerson value that allows
externalities in coalition formation is a extended Shapley value or weighted average
of contributions of players to coalitions taking into account also the corresponding
contributions in different coalition structures. We assume that utility is transferable.
Before we describe the relationship between coalitions worth and links and coali-

tions structures, let N be a finite set of players. Given N , let CL be the set of all
coalitions(nonempty subsets) of N ,

CL = {S|S ⊆ N,S 6= ∅}
3In Nieva (October 2002) it is shown that the latter solution concept may be very useful to

explain the existence of property rights and the difficulty of institutional change in enforcer games
with empty cores for the case of Latin America.
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Let PT the set of partitions of N , so
{S1, ..., Sl} ∈ PT iff:
U l
i=1S

i = N, ∀j Sj 6= ∅,∀kSj ∩ Sk = ∅ if k 6= j.
Let ECL be the set of embedded coalitions, that is the set of coalitions with

specifications as to how the other player are aligned. Formally:
ECL = {(S,Q)|S ∈ Q ∈ PT}
For any finite set L, let RL denote the set of real vectors indexed on the members

of L.
In our case for three players we will begin with the complete graph gN or, equiv-

alently, with the original game where everyone is linked:
3

/ \
1––2
graph N

For this graph we will have a game in partition function form that would corre-
spond to a vector in wg=N ∈ RECL. For any such wN ∈ RECL and any embedded
coalition (S,Q) ∈ ECL, wN

S,Q, the (S,Q) component of w
N is interpreted as the

wealth, measured in units of transferable utility, which the coalition S would have
to divide among its members if all the players were aligned into the coalitions of
partition Q.
We will have, for the example, as in Aviazian and Callen (1987)for the partition

that consists of {{1}, {2}, {3}}:
wN
{1},{{1},{2},{3}} = 1

wN
{2},{{1},{2},{3}} = 2

wN
{3},{{1},{2},{3}} = 3
If polluters collude then we have in contrast to Aviazan and Callen:
wN
{1,2},{{1,2},{3}} = 8

wN
{3},{{1,2},{3}} = 0
Thus, we have externalities in coalition formation as 0 = wN

{3},{{12},{3}} 6= wN
{3},{{1},{2},{3}} =

3, i.e. the value of player 3 acting alone is dependent on the coalition structure.
If polluter 1 colludes with pollutee 3 we have
wN
{1,3},{{1,3},{2}} = 9

wN
{2},{{1,3},{2}} = 2
If polluter 2 colludes with pollutee 3 we have
wN
{2,3},{{2,3},{1}} = 10

wN
{1},{{2,3},{1}} = 1
The last partition, the grand coalition has one element, itself that is worth 12.
wN
{1,2,3},{{1,2,3}} = 12
Let Φ1(wN) be the extended Shapley value for games with externalities in coalition

formation for player 1 for the complete graph N . Following Myerson (1977b) we have:
Φ1(w

N) = 1
3
wN
{1,2,3},{{1,2,3}}
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+1
6
wN
{1,2},{{1,2},{3}} − 1

3
wN
{3},{{1,2},{3}}

+1
6
wN
{1,3},{{1,3},{2}} − 1

3
wN
{2},{{1,3},{2}}

+2
3
wN
{1},{{2,3},{1}} − 1

3
wN
{2,3},{{2,3},{1}}

+1
6
wN
{2},{{1},{2},{3}} +

1
6
wN
{3},{{1},{2},{3}}

−1
3
wN
{1},{{1},{2},{3}}

Plugging in values we get:
Φ1(w

N) = 1
3
12 + 1

6
8− 1

3
0 + 1

6
9− 1

3
2 + 2

3
1− 1

3
10 + 1

6
2 + 1

6
3− 1

3
1 = 4

Similarly for Φ2(wN), we get:
Φ2(w

N) = 1
3
wN
{1,2,3},{{1,2,3}}

+1
6
wN
{1,2},{{1,2},{3}} − 1

3
wN
{3},{{1,2},{3}}

+1
6
wN
{2,3},{{2,3},{1}} − 1

3
wN
{1},{{2,3},{1}}

+2
3
wN
{2},{{1,3},{2}} − 1

3
wN
{1,3},{{1,3},{2}}

+1
6
wN
{1},{{1},{2},{3}} +

1
6
wN
{3},{{1},{2},{3}}

−1
3
wN
{2},{{1},{2},{3}}

Φ2(w
N) = 1

3
12 + 1

6
8− 1

3
0 + 1

6
10− 1

3
1 + 2

3
2− 1

3
9 + 1

6
1 + 1

6
3− 1

3
2 = 5

Finally for Φ3(wN) we have:
Φ3(w

N) = 1
3
wN
{1,2,3},{{1,2,3}}

+1
6
wN
{1,3},{{1,3},{2}} − 1

3
wN
{2},{{1,3},{2}}

+1
6
wN
{2,3},{{2,3},{1}} − 1

3
wN
{1},{{2,3},{1}}

+2
3
wN
{3},{{1,2},{3}} − 1

3
wN
{1,2},{{1,2},{3}}

+1
6
wN
{1},{{1},{2},{3}} +

1
6
wN
{2},{{1},{2},{3}}

−1
3
wN
{3},{{1},{2},{3}}

Thus:
Φ3(w

N) = 1
3
12 + 1

6
9− 1

3
2 + 1

6
10− 1

3
1 + 2

3
0− 1

3
8 + 1

6
1 + 1

6
2− 1

3
3 = 3

Summarizing: ΦN=Φ(wN) = (4, 5, 3)
We want to calculate the corresponding Shapley values for different graph struc-

tures. First, for one link graphs we have:
3 3 3

/ \
1 2 1 2 1––2
graph 1 graph 2 graph 3

For graph 1 we will have a game in partition function form that would correspond
to a vector in wg=1 ∈ RECL.
We will have in our example for the partition that consists of {{1}, {2}, {3}}:
w1{1},{{1},{2},{3}} = 1
w1{2},{{1},{2},{3}} = 2
w1{3},{{1},{2},{3}} = 3
If polluters collude:
w1{1,2},{{1,2},{3}} = 3
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w1{3},{{12},{3}} = 3
We don’t have externalities in coalition formation as (3 = w1{3},{{12},{3}} = w1{3},{{1},{2},{3}} =

3) players 1 and 2 are not linked.
If polluter 1 colludes with pollutee 3 we have
w1{1,3},{{1,3},{2}} = 9
w1{2},{{1,3},{2}} = 2
If polluter 2 colludes with pollutee 3 we have
w1{2,3},{{2,3},{1}} = 5
w1{1},{{2,3},{1}} = 1
The last partition, the grand coalition has one element, itself that is worth 12.
w1{1,2,3},{{1,2,3}} = 11
Now we compute the extended Myerson values for graph 1:
Φ1(w

1) = 1
3
w1{1,2,3},{{1,2,3}}

+1
6
w1{1,2},{{1,2},{3}} − 1

3
w1{3},{{1,2},{3}}

+1
6
w1{1,3},{{1,3},{2}} − 1

3
w1{2},{{1,3},{2}}

+2
3
w1{1},{{2,3},{1}} − 1

3
w1{2,3},{{2,3},{1}}

+1
6
w1{2},{{1},{2},{3}} +

1
6
w1{3},{{1},{2},{3}}

−1
3
w1{1},{{1},{2},{3}}

Φ1(w
1) = 1

3
11 + 1

6
3− 1

3
3 + 1

6
9− 1

3
2 + 2

3
1− 1

3
5 + 1

6
2 + 1

6
3− 1

3
1 = 7

2

Similarly for Φ2(w1), we get:
Φ2(w

1) = 1
3
w1{1,2,3},{{1,2,3}}

+1
6
w1{1,2},{{1,2},{3}} − 1

3
w1{3},{{1,2},{3}}

+1
6
w1{2,3},{{2,3},{1}} − 1

3
w1{1},{{2,3},{1}}

+2
3
w1{2},{{1,3},{2}} − 1

3
w1{1,3},{{1,3},{2}}

+1
6
w1{1},{{1},{2},{3}} +

1
6
w1{3},{{1},{2},{3}}

−1
3
w1{2},{{1},{2},{3}}

Φ2(w
1) = 1

3
11 + 1

6
3− 1

3
3 + 1

6
5− 1

3
1 + 2

3
2− 1

3
9 + 1

6
1 + 1

6
3− 1

3
2 = 2

Finally for Φ3(w1) we have:
Φ3(w

1) = 1
3
w1{1,2,3},{{1,2,3}}

+1
6
w1{1,3},{{1,3},{2}} − 1

3
w1{2},{{1,3},{2}}

+1
6
w1{2,3},{{2,3},{1}} − 1

3
w1{1},{{2,3},{1}}

+2
3
w1{3},{{1,2},{3}} − 1

3
w1{1,2},{{1,2},{3}}

+1
6
w1{1},{{1},{2},{3}} +

1
6
w1{2},{{1},{2},{3}}

−1
3
w1{3},{{1},{2},{3}}

Thus:
Φ3(w

1) = 1
3
11 + 1

6
9− 1

3
2 + 1

6
5− 1

3
1 + 2

3
3− 1

3
3 + 1

6
1 + 1

6
2− 1

3
3 = 11

2

Summarizing: Φ1=Φ(w1) = (31
2
, 2, 51

2
)

For graph 2 we will have a game in partition function form that would correspond
to a vector in wg=2 ∈ RECL.
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We will have in our example for the partition that consists of {{1}, {2}, {3}}:
w2{1},{{1},{2},{3}} = 1
w2{2},{{1},{2},{3}} = 2
w2{3},{{1},{2},{3}} = 3
If polluters collude:
w2{1,2},{{1,2},{3}} = 3
w2{3},{{12},{3}} = 3
We don’t have externalities in coalition formation as (3 = wN

{3},{{12},{3}} = wN
{3},{{1},{2},{3}} =

3) players 1 and 2 are not linked.
If polluter 1 colludes with pollutee 3 we have
w2{1,3},{{1,3},{2}} = 4
w2{2},{{1,3},{2}} = 2
If polluter 2 colludes with pollutee 3 we have
w2{2,3},{{2,3},{1}} = 10
w2{1},{{2,3},{1}} = 1
The last partition, the grand coalition has one element, itself that is worth 12.
w2{1,2,3},{{1,2,3}} = 11
Now we compute the extended Myerson values for graph 2:
Φ1(w

2) = 1
3
w2{1,2,3},{{1,2,3}}

+1
6
w2{1,2},{{1,2},{3}} − 1

3
w2{3},{{1,2},{3}}

+1
6
w2{1,3},{{1,3},{2}} − 1

3
w2{2},{{1,3},{2}}

+2
3
w2{1},{{2,3},{1}} − 1

3
w2{2,3},{{2,3},{1}}

+1
6
w2{2},{{1},{2},{3}} +

1
6
w2{3},{{1},{2},{3}}

−1
3
w2{1},{{1},{2},{3}}

Φ1(w
2) = 1

3
11 + 1

6
3− 1

3
3 + 1

6
4− 1

3
2 + 2

3
1− 1

3
10 + 1

6
2 + 1

6
3− 1

3
1 = 1

Similarly for Φ2(w2), we get:
Φ2(w

2) = 1
3
w2{1,2,3},{{1,2,3}}

+1
6
w2{1,2},{{1,2},{3}} − 1

3
w2{3},{{1,2},{3}}

+1
6
w2{2,3},{{2,3},{1}} − 1

3
w2{1},{{2,3},{1}}

+2
3
w2{2},{{1,3},{2}} − 1

3
w2{1,3},{{1,3},{2}}

+1
6
w2{1},{{1},{2},{3}} +

1
6
w2{3},{{1},{2},{3}}

−1
3
w2{2},{{1},{2},{3}}

Φ2(w
2) = 1

3
11 + 1

6
3− 1

3
3 + 1

6
10− 1

3
1 + 2

3
2− 1

3
4 + 1

6
1 + 1

6
3− 1

3
2 = 9

2

Finally for Φ3(w2) we have:
Φ3(w

2) = 1
3
w2{1,2,3},{{1,2,3}}

+1
6
w2{1,3},{{1,3},{2}} − 1

3
w2{2},{{1,3},{2}}

+1
6
w2{2,3},{{2,3},{1}} − 1

3
w2{1},{{2,3},{1}}

+2
3
w2{3},{{1,2},{3}} − 1

3
w2{1,2},{{1,2},{3}}

+1
6
w2{1},{{1},{2},{3}} +

1
6
w2{2},{{1},{2},{3}}
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−1
3
w2{3},{{1},{2},{3}}

Thus:
Φ3(w

2) = 1
3
11 + 1

6
4− 1

3
2 + 1

6
10− 1

3
1 + 2

3
3− 1

3
3 + 1

6
1 + 1

6
2− 1

3
3 = 11

2

Summarizing: Φ2=Φ(w2) = (1, 41
2
, 51

2
)

For graph 3 we will have a game in partition function form that would correspond
to a vector in wg=3 ∈ RECL.
We will have in our example for the partition that consists of {{1}, {2}, {3}}:
w3{1},{{1},{2},{3}} = 1
w3{2},{{1},{2},{3}} = 2
w3{3},{{1},{2},{3}} = 3
If polluters collude:
w3{1,2},{{1,2},{3}} = 8
w3{3},{{12},{3}} = 0
Thus, we have externalities in coalition formation as 0 = w3{3},{{12},{3}} 6= w3{3},{{1},{2},{3}} =

3, i.e. the value of player 3 acting alone is dependent on the coalition structure be-
cause 1 and 2 are linked.
If polluter 1 colludes with pollutee 3 we have
w3{1,3},{{1,3},{2}} = 4
w3{2},{{1,3},{2}} = 2
If polluter 2 colludes with pollutee 3 we have
w3{2,3},{{2,3},{1}} = 5
w3{1},{{2,3},{1}} = 1
The last partition, the grand coalition has one element, itself that is worth 12.
w3{1,2,3},{{1,2,3}} = 8
Now we compute the extended Myerson values for graph 3:
Φ1(w

3) = 1
3
w3{1,2,3},{{1,2,3}}

+1
6
w3{1,2},{{1,2},{3}} − 1

3
w3{3},{{1,2},{3}}

+1
6
w3{1,3},{{1,3},{2}} − 1

3
w3{2},{{1,3},{2}}

+2
3
w3{1},{{2,3},{1}} − 1

3
w3{2,3},{{2,3},{1}}

+1
6
w3{2},{{1},{2},{3}} +

1
6
w3{3},{{1},{2},{3}}

−1
3
w3{1},{{1},{2},{3}}

Φ1(w
3) = 1

3
8 + 1

6
8− 1

3
0 + 1

6
4− 1

3
2 + 2

3
1− 1

3
5 + 1

6
2 + 1

6
3− 1

3
1 = 7

2

Similarly for Φ2(w3), we get:
Φ2(w

3) = 1
3
w3{1,2,3},{{1,2,3}}

+1
6
w3{1,2},{{1,2},{3}} − 1

3
w3{3},{{1,2},{3}}

+1
6
w3{2,3},{{2,3},{1}} − 1

3
w3{1},{{2,3},{1}}

+2
3
w3{2},{{1,3},{2}} − 1

3
w3{1,3},{{1,3},{2}}

+1
6
w3{1},{{1},{2},{3}} +

1
6
w3{3},{{1},{2},{3}}

−1
3
w3{2},{{1},{2},{3}}

20



Φ2(w
3) = 1

3
8 + 1

6
8− 1

3
0 + 1

6
5− 1

3
1 + 2

3
2− 1

3
4 + 1

6
1 + 1

6
3− 1

3
2 = 9

2

Finally for Φ3(w2) we have:
Φ3(w

3) = 1
3
w3{1,2,3},{{1,2,3}}

+1
6
w3{1,3},{{1,3},{2}} − 1

3
w2{2},{{1,3},{2}}

+1
6
w3{2,3},{{2,3},{1}} − 1

3
w2{1},{{2,3},{1}}

+2
3
w3{3},{{1,2},{3}} − 1

3
w2{1,2},{{1,2},{3}}

+1
6
w3{1},{{1},{2},{3}} +

1
6
w3{2},{{1},{2},{3}}

−1
3
w3{3},{{1},{2},{3}}

Thus:
Φ3(w

3) = 1
3
8 + 1

6
4− 1

3
2 + 1

6
5− 1

3
1 + 2

3
0− 1

3
8 + 1

6
1 + 1

6
2− 1

3
3 = 0

Summarizing: Φ3=Φ(w3) = (31
2
, 41

2
, 0)

Analogously we could compute the extended Myerson value for the next three
two-link types of graphs (for our results in next section we don’t need to compute the
latter ones)

3 3 3
/ \ \ /
1 2 1–—2 1––2
graph 4 graph 5 graph 6

For graph 4 we will have a game in partition function form that would correspond
to a vector in wg=4 ∈ RECL.
We will have in our example for the partition that consists of {{1}, {2}, {3}}:
w4{1},{{1},{2},{3}} = 1
w4{2},{{1},{2},{3}} = 2
w4{3},{{1},{2},{3}} = 3
If polluters collude:
w4{1,2},{{1,2},{3}} = 3
w4{3},{{12},{3}} = 3
We don’t have externalities in coalition formation as (3 = w4{3},{{12},{3}} = w4{3},{{1},{2},{3}} =

3) players 1 and 2 are not linked.
If polluter 1 colludes with pollutee 3 we have
w4{1,3},{{1,3},{2}} = 9
w4{2},{{1,3},{2}} = 2
If polluter 2 colludes with pollutee 3 we have
w4{2,3},{{2,3},{1}} = 10
w4{1},{{2,3},{1}} = 1
The last partition, the grand coalition has one element, itself that is worth 12

because now everyone is directly or indirectly linked
w4{1,2,3},{{1,2,3}} = 12
For graph 5 we will have a game in partition function form that would correspond

to a vector in wg=5 ∈ RECL.
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We will have in our example for the partition that consists of {{1}, {2}, {3}}:
w5{1},{{1},{2},{3}} = 1
w5{2},{{1},{2},{3}} = 2
w5{3},{{1},{2},{3}} = 3
If polluters collude:
w5{1,2},{{1,2},{3}} = 8
w5{3},{{12},{3}} = 0
Thus, we have externalities in coalition formation as 0 = w5{3},{{12},{3}} 6= w5{3},{{1},{2},{3}} =

3, i.e. the value of player 3 acting alone is dependent on the coalition structure be-
cause 1 and 2 are linked.
If polluter 1 colludes with pollutee 3 we have
w5{1,3},{{1,3},{2}} = 4
w5{2},{{1,3},{2}} = 2
If polluter 2 colludes with pollutee 3 we have
w5{2,3},{{2,3},{1}} = 10
w5{1},{{2,3},{1}} = 1
The last partition, the grand coalition has one element, itself that is worth 12.
w5{1,2,3},{{1,2,3}} = 12
For graph 6 we will have a game in partition function form that would correspond

to a vector in wg=6 ∈ RECL.
We will have in our example for the partition that consists of {{1}, {2}, {3}}:
w6{1},{{1},{2},{3}} = 1
w6{2},{{1},{2},{3}} = 2
w6{3},{{1},{2},{3}} = 3
If polluters collude:
w6{1,2},{{1,2},{3}} = 8
w6{3},{{12},{3}} = 0
Thus, we have externalities in coalition formation as 0 = w6{3},{{12},{3}} 6= w6{3},{{1},{2},{3}} =

3, i.e. the value of player 3 acting alone is dependent on the coalition structure be-
cause 1 and 2 are linked.
If polluter 1 colludes with pollutee 3 we have
w6{1,3},{{1,3},{2}} = 9
w6{2},{{1,3},{2}} = 2
If polluter 2 colludes with pollutee 3 we have
w6{2,3},{{2,3},{1}} = 5
w6{1},{{2,3},{1}} = 1
The last partition, the grand coalition has one element, itself that is worth 12.
w6{1,2,3},{{1,2,3}} = 12
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5.1 A formal model of endogenous networks with Spillovers

Allowing for externalities in coalition formation doesn’t affect the link formation game

5.1.1 Equilibrium Analysis

A simple application with the ExtendedMyerson Value(1977b) If we would
have the Myerson value for all graphs, we could check for the subgame perfect equi-
libria. But there is a shorter way. Given that from 2 links graphs the players not
linked find it optimal to link (see that the Myerson values goes up for both of them if
they accept to form a new link (if externalities would be positive that would not be
necessarily true) the theorem from the companion paper holds, i.e. it is necessary and
sufficient for the grand coalition or complete graph to form if the Myerson values of
the three types of one-link graphs are strictly lower than the corresponding Myerson
values of the complete graph. For this example the latter holds as:
The myerson value for graph 1 is (31

2
, 2, 51

2
)

The Myerson value for graph 2 is (1, 41
2
, 51

2
)

The Myerson value for graph 3 is(31
2
, 41

2
, 0)

The Myerson value for graph 4 is
The Myerson value for graph 5 is
The Myerson value for graph 6 is
The Myerson value for the complete graph is (4, 5, 3)
In contrast we have for Aviazan and Callen’s example:
The Myerson value for graph 1 is (3.5, 2, 5.5)
The Myerson value for graph 2 is (1, 4.5, 5.5)
The Myerson value for graph 3 is (3.5, 4.5, 4)
The Myerson value for graph 4 is (3, 4, 5)
The Myerson value for graph 5 is (21

6
, 54

6
, 41

6
)

The Myerson value for graph 6 is (44
6
, 31

6
, 41

6
)

The Myerson value for the complete graph is (3, 4, 5)
Conclusion:
The assumption of not externalities in coalition formation in Aviazan and Callen

(1987) is not innocuous.
The intuition is that the two polluters colluded have more outside option in the

complete graph because of the negative externality by joining them together and
thus can extract more of the efficient outcome in the grand coalition. Recall that this
was not possible in the original Aviazan and Callen’s (1987) example because of the
induced lower bargaining power in the grand coalition
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