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Abstract

Inspections for timely detection of illegal activity on a finite, closed time interval and
subject to first and second kind errors are modelled as a sequential, two-person game. The
utilities of the players, inspector and inspectee, are assumed to be linear in the detection
time with time-independent false alarm costs. Sets of Nash equilibria are obtained in
which the inspectee behaves illegally or legally with probability one.
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1 Introduction

There are various ways to model the detection capability of routine inspection
regimes. For instance one can choose objective functions which are dependent on
the time between an illegal activity and its detection, or ones which are simple
dichotomies based on some imposed critical detection time goal. One can assume
unobservable inspections such as might be associated with instrumental or remote
surveillance or, alternatively, that the inspections are observable so that the in-
spectee can make his actions conditional on those of the inspector. Furthermore,
statistical error probabilities may or may not be taken into account. Examples of
these approaches can be found in [2, 3, 4, 6].

The inspection game that we propose and analyze here is intended to describe
on-site (and thus observable) inspections, such as those carried out under treaties
on arms control, disarmament or non-proliferation. Utility functions are taken to
be linear in the time to detection and no a priori restrictions are placed on the time
at which an inspection can take place. Non-detection probabilities (second kind
errors) and associated false alarm probabilities (first kind errors) are included. The
inspectee can react flexibly to the observed activity of the inspector, choosing illegal
or legal behavior according to his own perceived self-interests. We seek the most
economical behavior, both for the inspector as well as for the inspectee.

This problem has not hitherto been treated. Diamond [4] investigated a similar
model for unobservable inspections, implying a non-sequential game with simulta-
neous choice of inspection and violation strategies. He also assumed zero-sum, thus
precluding the consideration of jointly adverse costs of false accusations. Moreover
the possibility of legal behavior was not taken into account. Rothenstein [6] ex-
tended Diamond’s model to include errors of the first and second kind, but only for
a single inspection and without associated costs of false alarms. He also considered
a sequential zero-sum game of error-free inspections, which is a special case of our
model, and obtained an equilibrium with randomized inspection strategies. Canty
et al. [2] solved a non-sequential inspection game with first and second kind errors
based on a fixed detection time goal and obtained some special solutions for the
sequential case.

Specifically, we consider a single inspected object, for example a nuclear or chem-
ical facility subject to verification in the framework of an international treaty, and a
reference period of one time unit (e.g. one calendar year). In order to separate the
timeliness aspect of routine inspection from the overall goal of detecting illegal activ-
ity, we assume that a thorough and unambiguous inspection takes place at the end
of the reference period which will detect an illegal activity with certainty if one has
occurred. In addition there are a number of less intensive and strategically placed
“Interim” inspections which are intended to reduce the time to detection below the
length of the reference period. An interim inspection will detect a preceding or co-
incident illegal activity, but with some lower probability. In keeping with common
notation, we call this probability 1 — 3, where 3 is the probability of an error of the



second kind, or non-detection probability. Associated with each interim inspection
which is not preceded by an illegal action is a corresponding probability of an error
of the first kind, the false alarm probability «.
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Figure 1: Sequence of inspections.

We assume that, by agreement, & interim inspections will occur within the ref-
erence period. For convenience we label the inspections backwards in time: prior
to an inspection at time ?; there are k unused interim inspections available, prior
to an inspection at time ¢y there is one interim inspection left and so on. It is also
convenient to label the beginning of the reference period t;;; and the end tg, so we
have 0 =111 < tp < ... <t <ty =1 as depicted in Figure 1.

The preferences of the protagonists (inspector, inspectee) are taken to be as
follows:

(0,0) for legal behavior over the reference time, and no false alarm,
(—le, —(f) legal behavior over the reference time, and ¢ false alarms, { = 1,. .. k,
(—aAt,dAt — b) for detection of illegal activity after elapsed time At > 0,

where
O<e<a, 0<f<b<d (1)

Thus the preferences are normalized to zero for legal behavior without false alarms,
and the loss(profit) to the inspector(inspectee) grows proportionally with the time
elapsed to detection of an illegal action. A false alarm is resolved unambiguously
with time independent costs —e to the inspector and —f to the inspectee, where-
upon the game continues. The quantity b is the cost to the inspectee of immediate
detection. Note that, if b > d, the inspectee will behave legally even if there are
no interim inspections at all. Since interim inspections introduce false alarm costs
for both parties, there would be no point in performing them. Note also that the
preferred outcome from the inspector’s point of view is legal behavior: his primary
aim is to deter the inspectee from behaving illegally.

The main result of this paper is the derivation of closed forms for the equilibrium
inspection strategies and payoffs of inspector and inspectee for any number &k of
interim inspections and, with them, the conditions which must be met in order
to induce legal behavior on the part of the inspectee. In addition we examine
“saturated” equilibria which arise when false alarm costs become excessive, and
recommend a procedure to avoid them.



2 One interim inspection

The game for a single interim inspection is shown in Figure 2 in extensive form. The
subgames beginning at the chance nodes can be simplified easily. In particular, the
situations at the inspectee’s decision points labeled u; and ) are equivalent, since
all payoffs following u} are reduced by the same amounts e resp. f relative to u;.
We obtain the reduced extensive form game shown in Figure 3.

Inspectee

0(t2) ((tz)
C/K I \/Y\) Inspector
t ty

Chance Chance
1-p3 J&;
—a(ty —t3) —a(l —13)
‘d(tl —t2)_b‘ ‘d(l—tz)—b‘ Inspectee
(1)
—a(l —t1) 0 —e—a(l—1t) —e
d(1—t)=b] O] [=f+d(l—t;)=b] |~f

Figure 2: Extensive form of the sequential inspection game with one interim inspec-
tion. ((t) denotes legal behavior, () illegal behavior at time t.

Since the interim inspection is observable, the inspectee will either act illegally
at the beginning of the reference period, time t,, in which case a false alarm is
excluded, or delay his decision until the interim inspection at time ¢;. In the former
case, the expected payoffs are

(—af(ty —t2)(1 = B) + (1 —12)B], d[(ts —t2)(1 = B) + (1 = t2)B] = b). (2

It he waits for the interim inspection at ¢; and then acts illegally immediately after-
ward, the expected payoffs are

(—ea+d(1 —t1), —fa+d(l —t;) —b). (3)
Finally, he can behave legally at time t; as well, with expected payoffs (—ea, — fa).
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Inspectee

U(tz) ((t2)
C/K I >.\) Inspector
t ty

Uy

‘ —a((1 = B)(ty — ta) + B(1 — t2)) ‘
d((1=8)(t1 —ta) + B(1 = t2)) = b

Inspectee
((t1) {(t1)
—ea —a(l —t) —ea
—fa+d(l—1t)-b —fa

Figure 3: Reduced extensive form of the sequential inspection game with one interim
inspection.

Theorem 1 For unbiased inspection procedures, i.e. for o+ 3 < 1, Nash equilibria
of the inspection game represented in extensive form in Figure 3 are given as follows.
Let {t1 | t < t1 < 1} be the set of (pure) strategies of the inspector, and the
probabilities g» and g1 to start an illegal action at time ty resp. t; be the (mived)
behavior strategies of the inspectee at his decision points uy resp. uy. Let V(1) and
W5(tz) be the equilibrium payoffs to inspector and inspectee, respectively. Under the
assumption

b 1 Ja

the inspectee acts illegally; equilibrium payoffs and strategies are
‘é*(tz) = —CLAQ(l — tz) — €OéB2

W;(tg) == dA2(1 — tz) — fOéBQ —b

=t = (1= A1 = 1) = S (1= )4 °

g; = A27 gf = 17
where Ay and By are given by

1 1-3
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Under the assumption

b

- > L 7

b, )
the inspectee acts legally; payoffs and inspector strateqy are given by

Vilte) = —ea, Wy(ly) = —fa (8)

and by the cone of deterrence [5]

b .1 (b fa

Proof: Given the three pure strategies of the inspectee, namely to violate imme-
diately at ¢5, to violate at 1, or to behave legally throughout the reference period,
his Nash equilibrium conditions are, with (2) and (3),

W3(t2) 2 d((1 = B)(t] —t2) + B(1 = 12)) — b
Wity) > —fa+d(1 — ) — b (10)

whereas those of the inspector are

Viy: Vi(t) = gy[—a((1 = B)(t — t2) + B(1 — 1))

(1= g5)(—ea—a(l — 1)) (1)

in case of illegal behavior, and
Vi(ty) > —ea (12)

otherwise.

Let us consider the illegal behavior equilibrium as given by (5) and (6). We
see immediately that here the following indifference conditions are fulfilled for all
interim inspections t; and for the two pure illegal strategies of the inspectee,

Vi (t2) = gal—a((1 = B)(ts — t2) + B(1 = 12))] + (L — g3)[—ea —a(l —1y)] (13
Wi(ta) = d((1 = B)(1; —t2) + B(1 = 12)) —=b = —fa+d(1 —17) —b. (14)
Since, furthermore,
W3(ty) = dAy(l —t3) — faBy —b> —fa

is equivalent to (4), Nash conditions (10) and (11) are fulfilled. The unbiased test
procedure condition guarantees 7 as given by (5) to be larger than zero.

In the case of the legal behavior equilibrium, the first two Nash conditions in (10)
are just equivalent to (9), whereas the third condition in (10) as well as condition
(12) are trivial. Condition (7), finally, guarantees that the cone of deterrence (9) is
not empty. L]



Remarks on Theorem 1:

1. For the equilibrium strategy ¢7 of the inspector given in (5), the first two
inequalities in (10) are fulfilled as equalities. Therefore the strategy 7 in (5)
also satisfies (9). This is important for practical applications.

2. The inspector’s equilibrium strategy is unmixed. It could be replaced by a
randomized strategy (as for example in [6]) with expected value ¢, but there
would be no advantage in doing so.

3. The inspectee’s equilibrium behavior strategy depends only on the error prob-
abilities a and (3, not on the utility parameters ¢ and e of the inspector.

3 Two interim inspections

The game with two interim inspections beginning at time ¢35 is shown in extensive
form in Figure 4. Note that, in the event of a false alarm after the inspector’s first
inspection at ?5, the inspector knows that the inspectee behaved legally at time 5.
If there is no false alarm, he doesn’t have this information. This is reflected in his
information sets in the figure. The game is shown in reduced form in Figure 5. We
present first of all a solution which will be generalized to arbitrarily many interim
inspections in the next Section, and then consider some special solutions.

Theorem 2 For unbiased inspection procedures, i.e. for o+ 3 < 1, Nash equilibria
of the inspection game represented graphically in Figure 5 are given as follows. Let
{ta,t1 | t3 <ty < 11 < 1} be the set of (pure) strategies of the inspector, and the
probabilities g3, g2 and g1 be the behavior strategies of the inspectee at his decision
points us, uy and uy, respectively. Let V[ (ts) and W (ts3) be the respective equilibrium
payoffs to inspector and inspectee. Under the assumption

b 1 fa .
3<3_2ﬂ(1—t3—|—7(3—ﬁ))—.L3 (15)

the inspectee behaves illegally. For
Jo 1—p

16
dl—1y) ~3-35+ (16)
equiltbrium payoffs to inspector and inspectee are, respectively,
‘/S*(tg) = —ClAg(l — tg) — €OéB3 (17)
W;(tg) == dAg(l — tg) — fOéBg — b.
An equilibrium strateqy for the inspector is
* fOé
ty—ts= (1 = B)As(1 —ts) = —((1 = §)Bs + §)
(18)

= (- AA0 - 1)~ 21— )B4 )

8



Inspectee
ﬁ(tS)////%ii\\\\\\f(tS)

Inspector

____________________

Inspectee

‘ —alty — t3) ‘ :
((t2)

d(ty —t3) — b

Inspector

Chance

_____________________

Inspectee

‘ —e—a(l—1t) H—e
()~ b| -
Figure 4: FExtensive form of the game with two interim inspections. The proper

subgame in the dashed box is identical to the game of Figure 3, except that all
payoffs to the inspector and inspectee are reduced by amounts ¢ and f, respectively.




Inspector

Chance

‘d(_a(lt2 _)tg)b N + V(o)
tg —13) — 7 —e (2

) |

2 I \/.{ Inspector
131 (51 t1

—af(1 = B)(ty — t3) + B(1 — t3)] ‘
di(1-p8)(t1 —t3)+ B(1 —t3)] = b u1 (Q_Inspectee

‘ —a[(1 = B)(ty — t2) + (1 — t3)] ‘ (

dl(1—8)(t1 —t2) + B(1 —t2)] = b

—ca—a(l—t) | |-va
‘—fOHrd(l—tl)—b‘ ‘—fa

Figure 5: Reduced extensive form of the game of Figure 4.

The inspectee’s equilibrium behavior strategies at his decision nodes usz, uy and u;
are, respectively,

21l —a) = p3

A =1 1
2(1 _ Q{) 27 gl ( 9)

g; = A37 g; =

The quantities As and Bz are given by
A 1

Az = =
I+ (1—=p)Ay 3-—25 (20)
_ B+ (-84 3(1-5)
I+ (1-p)4A, 3-28
Under the assumption
g > L3 (21)



the inspectee behaves legally; the equilibrium payoffs and the equilibrium strategies
of the inspector are given by

Vi(ts) = —2eq, Wilts) = —2fa, (22)
b - s ) B0 )
b fOé * * *
G 2 (=B - 5) + AL 1) (23)
b >1 -t
d

The complement of (16) is treated in Theorem 3 below.

Proof: The pure behavior strategies of the inspectee are {g3 = 1,92 = g1 = 0},
{95 = 0,00 = L,g1 = 0}, {gs = 9o = 0,1 = 1} and {g5 = ¢» = g1 = 0}. His
corresponding Nash equilibrium conditions are
Wi(ts) = d(1 = B)(t; — 1s) + dB((1 = B)(1] — 1s) + S(1 —15)) = b
Wi(ts) = (1 = a)(d(l = B)(17 = 13) + dB(1 —13) = b) + a(—f + W (13))
Wi(ts) 2 (1 —a)(=fa+d(1 =) = b) + a(=f + W;(£3))

Wi(ts) = (1 = a)(=fa) + a(=f + W(13)).
First of all we note that, in the event of legal behavior at t3 and false alarm, the
inspectee will behave illegally in the subsequent proper subgame, since we have

with (15)
1 L fay b

so that illegal behavior condition (4) in Theorem 1 is satisfied. With (14), (17) and
(18) the first 3 conditions in (24) are easily seen to be satisfied as equality and the
last to be equivalent to (15). Condition (16) guarantees that 3 — 3 > 0.

The Nash equilibrium condition for the inspector in case of illegal behavior is

(24)

Vhta Vi(ts) 2 g3(=a) (1= B){tz 1) + B((1 = B){ts — 1) + (1 — ts))]
+ =)0 =)= = B — )+ 50 1) (25)
+ (1= g5)(—ca = all - )] + al—e + V; (1)
Substituting for V;(£;) as given by (5), the coefficient of £, in this expression is

al=g3(1 = B) + (1 — g3)(1 — a)g; + (1 — g5)aAs],

which vanishes by virtue of (19). Similarly, the coefficient of #; is
al=gz38(1 = ) = (1 = gz)((1 = a)(1 = B)g; + (1 = a)(1 = g3))]

11
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Figure 6: Graphical representation of (6) and (15).

which again vanishes. Therefore the right hand side of (25) is, with (5),
gaB(—aAs —eaBy + ats) + (1 — g3)(—aAy — ea — eaBy) = V5 (t3)

as given by (17). Therefore the condition (25) is fulfilled as equality.

Finally, let us consider the solution (21)-(23). The Nash equilibrium condition
for the inspector is fulfilled as equality. The first three conditions in (24) for the
inspectee are just equivalent to the “cone of deterrence”, i.e. inequalities (23). The
last condition in (24) is fulfilled as equality. L]

Remarks on Theorem 2:

1. Given condition (16), condition (15) with #5 = 0 is a smaller bound for b/d
than (4) with ¢ = 0, so that we have the situation shown in Figure 6 for the
k=1 and k£ = 2 games each played over the full reference period.

2. According to (18) the inspector’s behavior strategy at his information set [y is
the same as his equilibrium strategy in the game with one interim inspection,
Eq. (5). On the other hand we see from (19) that this is not the case for the
inspectee at his decision point u,. This phenomenon is a consequence of the
game’s information structure, as has been observed in another context by von

Stengel [7].

Next we consider some special solutions which arise when condition (16) in Theo-
rem 2 is not fulfilled. Since these solutions will not be required for the generalization
to follow, we will set ¢35 = 0 for convenience.

Theorem 3 For the game of Figure 5 with t3 =0, if
1 fa
—— 1+ = = L 26
the inspectee behaves illegally. For

1-p fa (Q1-8)2—a+p8-p%)
35 331 B2 d - I—a—23 ) (27)

o

12



equiltbrium payoffs are given by

tatf—p (28)
A2 —a—8) - fa(l = B)(4 - a - 28)
5(0) = FA — b.
w5(0) = s el — o)
Equilibrium strategies are
;=0
o Wi(0) + b dp? (29)
' dp(1— )
P F=0, gi=1 (30)
g3_1—0z—|—ﬂ—ﬂ27 =Y, gy =1
For . ) ,
d 4—a—203
equiltbrium payoffs and strategies are given by
Vi(0) = 5
Wi(0) = 3*d — b
o 32
L=1=0

95=1, 95=0, ¢ =0
Proof: The pure behavior strategies of the inspectee are, as before, {g3 = 1,92 =
91 =0}, {93 =0,90 = 1,91 =0}, {93 =92 = 0,91 = 1} and {g3 = 9o = g1 = 0}. His
corresponding Nash equilibrium conditions are
W3(0) = dB((1— B)t] + B(1 —13)) — b
W5 (0) = (1 = a)(d(1 = B)7 +dB = b) + a(=f + W5(0))
W3(0) = (I —a)(=fa+d(l —1]) = b) + a(—f + W(0))
W3(0) 2 (1 —a)(—fa) + a(—f + W;(0)),
where W3 (0) is given by (5) with 3 = 0.
Consider first the case in which (27) is satisfied. With (28) and substituting

for t7 from (29), we see that the first and third conditions are fulfilled as equality,
whereas the second condition is equivalent to the left-hand inequality in (27). The

(33)

fourth condition, after some algebra, is equivalent to

o b
0 a2 (Lot g P29 ta 23— 5"

Replacing b/d on the right hand side of the above inequality with its maximum value
L as given in (26) we obtain the condition

Ja 18

d = 3-3313%

13



which is again the left-hand inequality in (27). The Nash equilibrium condition for
the inspector in case of illegal behavior is

Vi(0) 2 gi(—a)[(1 = Bt + A1 = A)ts + )
=g —a)lgi(—a)(1 - At — 1)+ B0 1)) (34)
+ (1= gi)(—ea —a(l = )] +al—e + V5 (1]

Substituting from (30), the coefficient of #; in the above expression vanishes. For
any ty, the inspector’s payoff is maximized for ¢; = 0, since the inspectee does not
violate at t5. Setting t; = 0 in (34) we see that it is satisfied as equality. Finally,
the right-hand inequality in (27) guarantees that ¢7 is positive.

Next consider the case in which (31) is satisfied. With (32) the first condition in
(33) is satisfied as equality. The third condition is exactly equivalent to (31) while
the second condition is equivalent to

fo _ (1= B)(a(l= 8) + 82— )

d = 2—fB+a(l—p) ’ (35)

which is also fulfilled by (31) since
1-8)2—-—a+p-p") (1=pF)a(l—5)+5(2- 7))

4—a—283 a 2— 0B+ a(l-p)
_ (1—a)(2 =38+ 5%)? S

2+a(l =8)=B)4—a—20)

The fourth condition, after some algebra, is equivalent to

Blu—amomze-n(i-af-#)+a

Replacing b/d on the right hand side of the above inequality with its maximum value
L, as given in (26) we obtain the condition

Ja 1= g2 4)
d — 3—-28 7
which is also fulfilled by virtue of (31) since

L=B@2-atpf-p) 1-802-F) _ (1-a2-HU-B"_

1—a—283 3 - 283 (3—283)(4 —a—2p3)

Finally, t5 = 5 = 0 are obviously best replies to the inspectee’s equilibrium strategy

g3 = 1. O

14



Remarks on Theorem 3:

1. The equilibrium payoffs (28) are quite complicated. The analytical solutions
were in fact obtained by brute force using vertex enumeration of the convex
polyhedra associated with an equivalent bimatrix game, programmed on a
computer-algebra system [1].

2. When condition (26) is not fulfilled the inspectee behaves legally in the proper
subgame which arises after a false alarm, but not necessarily in the rest of
the game tree. The solutions can also be computed, but as we argue at the
beginning of the next section, these situations are of less interest and will
therefore not be pursued further.

4 Any number of interim inspections

The special equilibria of Theorem 3 are of questionable practical value, since plac-
ing interim inspections at the beginning of the reference period is a contradiction
in terms. In solution (32) for example, the comparatively large false alarm costs to
the inspectee (condition (31)) compel him to violate immediately in order to avoid
false alarms altogether, and the inspector must react by also inspecting immedi-
ately. Although justifiable from the theoretical point of view, this is not likely to
be an acceptable inspection strategy in real situations. By reducing the number of
inspections by one the chance of a false alarm is reduced, leading to solution (5)
with a “genuine” interim inspection. In the sequel, we take the point of view that
the number of interim inspections should always be chosen such that, given the in-
spectee’s utilities d, f and error probabilities «, 3, the equilibrium inspection times
are positive. For unbiased inspection procedures the number of interim inspections
satisfying this requirement will never be less than one, see Theorem 1. We shall
therefore generalize only the “unsaturated” equilibria (Theorems 1 and 2) to an
arbitrary number of interim inspections. Condition (36) in the following theorem
guarantees that ¢, > 0.

Theorem 4 For unbiased inspection procedures, Nash equilibria of the inspection
game with k interim inspections, the extensive form of which is a straightforward
generalization of Figure 5, are given as follows: Let

{thy oo 1 | 0=tp <t < ...<t3 <1}

be the set of pure strategies for the inspector and giiq,...,q1 the inspectee’s corre-
sponding behavior strategies.
Under the assumption

A
Jo o Aen - (36)
d Bk-|—1 + 13

15



provided

b e
E < Ak-l—l — %(Bk-l—l — k) =: Lk-l—l (37)
the inspectee behaves illegally. Equilibrium payoffs to inspector and inspectee are,
respectively,
Vit (tegr) = —aApi (1 — trq1) — eaBrp (35)
Wit (trt1) = dApa (1 — tpqa) — faBry — b
A (positive) equilibrium strategy of the inspector is given by
=t = (1= B)Ajn(l - tj-|—1) - 7((1 — B)Bj41 + 5) (39)
forjg=1,....k and t;, = 0. The inspectee’s equilibrium strategy is given by
= A < = A, =1,....k 40
Yrt1 k+1, g] ](1 —Oé) iy J 3 y vy ( )
where A; and B; are given by
A= L Bl—j(l Aj), 1=1,2 (41)
]_1_|_(]_1)(1_6)7 ]_2 ]7]_77““
Provided ;
p > Ly (42)
the inspectee behaves legally with payoff
Wit (tepr) = —kfa. (43)

The equilibrium strateqy of the inspector is determined by the cone of deterrence, as
given by (with the convention Y, = 0)

1

fa k— . ,
(teics = thojg1) B+ (1 = 1) B4, (44)

b {y
- >k=-1)—/—+(1-
forj=0,....k, with (39) being an element of this cone. His equilibrium payoff is

Vit (tpy1) = —kea. (45)

16



Proof: In terms of his undominated pure strategies, the inspectee’s Nash equi-
librium conditions are determined by the following set of inequalities:

Wk*-|-1(tk+1) > d[(l - 5)@2 - tk-l—l) + 5[(1 - 5)@2_1 - tk+1)‘|‘
Bl(1 = BY(ey — tigs) + -+ B(1 —tk+1)]..” )
Winlten) = —fa+d|(1 = 8)(ti —10) + [0 = Bt — 1)+

(46)
Bl(1=B)(tis— 1) + ..+ B(L —t;)]...]] iy

Wk*+1 (tk )

) > —kfa+d(l—t)—b
Wk*-|-1(tk+1)

>
> —kfa.

Let us consider first the illegal equilibrium. There the last inequality of (46) is
satisfied by virtue of (37). We show by induction that all other inequalities are
satisfied as equalities. For k = 2 we have proved this in Theorem 2. Now assume
that for & — 1 interim inspections the set of inequalities corresponding to (46) holds
as a set of equalities. Then we can write (46) as follows:

Wi (thyr) = BW(t3) + d(t], — tepr) — (1 — B)b
Wi (thyr) = —fa+ Wi(17)
Wk*+1 (thyr) = —2fa + Wi (L) (47)

W) 2 —(k = 1) fa+d(1 - £5) b
with WZ(¢7) given by

Wr(t2) = dAj(1 — ) — faB; — b (48)

J

and t¥ — 1%, given by (39) for j = 1,...,k + 1. Now we have with (39), for

J

i=2, .kt 1,

—fa+ W, (t;_ ) = —fa+dA; (1 -1;_)) — faB; 1 —b
= dA (1= 1) — dAA(Fy —17) — fa(Bjy +1) — b
=dA; (1= (1= 8)4;)(1 —1])
—fo(=A;(1=P)B;+ 8)+ Bj.a + 1) — b
= dA;(1— %) — faB; — b
= Wi(t5),

(49)

17



since the A; and B; as given by (41) satisfy the recursive relations

Aja Bii+1—-58A;,4

S W Ty P A s v

Therefore we see that the second inequality in (47) is fulfilled as equality. Further-
more using (49) for j = k we see that the third inequality in (47) in identical to the
one preceding it and therefore again fulfilled as equality. Similarly the remaining
inequalities in (47) are shown to hold as equalities. It remains to demonstrate that
the first inequality in (47) also holds as equality. This claim is, together with the

second equality, equivalent to
% % 1 %
Wity) = m(d(tk — 1) + fo) — b

With (48), however, this is equivalent to ¢ — t;41 as given by (39) for j = k and
1541 = thgr, and with Wi (t441) given by (38). Finally, condition (36) guarantees
that ¢; > 0.

Turning to the legal equilibrium, we see immediately that (43) and (44) satisfy
the Nash equilibrium conditions (46).

Ui+l
B B
\ U(tj41 Nl)
e 7

(tj41)
V3 *1)2

Figure 7: The inspector’s information set /; and his payoffs involving ¢;.

To show the Nash condition is satisfied for the inspector, consider the inspector’s
information set I; and the edges leading to and from it as shown in Figure 7. The
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terminal nodes are labeled with the inspector’s payoff. The symbol (*) denotes the
continuation in which the inspector’s payofl is a function of ¢;. It corresponds to
payoff

—al (1= B)(tja = 45) + Bl(1 = B) (s = 15) + AL+ BL=15)] ... ] ]

where the number of square bracket pairs is equal to 7 and where the combined
coefficient of ¢; is simply +a.

For k£ = 2 interim inspections it was proved in Theorem 2 that the equilibrium
behavior strategy of the inspectee makes the inspector indifferent to his choice of #,
and t; and that his equilibrium payoff is

‘/2*(t2) = —GA2(1 - tz) —eaB,.

We shall therefore assume inductively that for k—1 interim inspections the inspector
is indifferent with respect to his choiceof ¢;, 7 = k—1,...,1, and that his equilibrium
payoff in any proper subgame beginning at time ¢; is

Vl*(t]‘) = —ClAj(l — t]‘) — €OéB]‘ j = k — 1, ceey 1 (50)

J

At equilibrium, the realization probabilities pgyi1(v;) of the decision points v; in [
fore=1,...,k+ 2 —j are given by
Pt (Vrjre) = Appr f577
pk+1(vi):: (1 —'/4k+1)(1 _'QZ)"'(l _‘9;+j)9;+j—1(1 “(l)k_i_j+25i_27
t=k—g34+1,...,2
prrr(vr) = (1 = Appa)(1 —g) - (1 _‘9;+1)(1 “(X)k_j-

(51)
From Figure 7 and making use of (50), the coefficient of ¢; in the inspector’s expected
payoff is
k—j+2
—a(1 = B) > pera(vi) +a[(1 — a)gi + aAj]prir (o).
=2

If this coeflicient vanishes, then the inspector is indifferent as to his choice of ¢;. We
therefore wish to demonstrate that

k—j+2
(1= a)g; + aAjlprea(vi) = (1= B) Y prsr(vi). (52)
i=2
According to the induction assumption, we have
b—j+1
[(1—a)g; + adjlpr(v) = (L= 8) > pulve). (53)
=2
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We can write (51) in the form
prp1(Vkmjy) = Appr pH7
prr1(Vk—jan) = (1= App)gi(1 — a) g™ (54)

1—A
——— (1 =g —a)pu(v), i =k — ... L
1 — A,

Thus (52) is equivalent to

pry1(vi) =

k—7+2
Appa

[(1 —a)g; + a4, ]_7&(1 —gr)(1 — a)pi(vy) = Z Prt1(03),

or to

1—A
(1 —a)g; + ad;)——H

1 — Ag

(1-5) A 857 + (1 — Agy1)gr(l — a)ﬂk—jﬂ

(1= gp)(1 = a)p(vr) =

1 — Ak-l—l k—j+1
+ﬁ(1— (1 —a) Zpk ) = pr(vr—jr1) | |-
With the induction assumption (53) this becomes
I — Apq

0=App1 B+ (1= Appr)gr(l —a) — ﬁ(l

which is fulfilled by (40) and (41). Thus the inspector is indifferent to his choice of
ti,g=kF,...,1

Finally we determine inspector’s equilibrium payoff. Since he is indifferent as to
choiceof t;, g = k,..., 1, let 1 —e <1 <ty < ...ty <1 for e arbitrarily small.
Then, apart from terms involving e, the inspector’s payoft Vi1 is given by

Vigr = —aApgs + (1= Apgr) [o(—e + V7 (1) +
+ (1= a)(I = gp)lal=e + Viii (te1))+
+ ...
+ (1= a)(1 = g)(—ea)) - ]
It follows from Theorem 2 that V3 = V;(0). Therefore we assume inductively that
Vi = Vi2(0), (56)

(55)

or, equivalently, that
V*0)+aA y
B et Vi i)

1 — Ay
(1= a)(1 = gis) o= + Vi (temn) (57)

+ ...
(1= a)(l = g)(—ea)] -+ |
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Substituting this into (55), we have

Vigr = —aAp + (1 — Ausr) [a<—e vt + Lm0 ey aAk)]

which, with (34) and t; — 1, is equivalent to

Vi1 = —adApy — eafl — Agyq) [(1 —aBy) + 1= o)l = gZ)Bk] = Vi (0).

where the last equality follows from (40) and (41). L]

5 Discussion

For (39) to be an equilibrium we require t; — t;41 > 0, or equivalently,

R(k + 1) = Ak-l—l — f_Oé (Bk-l—l + i) > 0. (58)
d 1-p
We have R(k + 1) < R(k), so that an upper limit ky on the number of interim
inspections for the solution of Theorem 4 to be valid is given by R(ky) = 0. On the
other hand, the inspectee will behave legally for k£ < kg interim inspections given by
the condition

Witye) < —kfa. (59)

The situation is illustrated in Figure 8 for appropriate values of o, 5,0, d and f. Nu-
merical calculations indicate that &y > kg for reasonable values of these parameters.

It is interesting to compare the equilibria we have obtained with the situation
in which the inspections are unobservable. The game is then simultaneous rather
than sequential. Diamond [4] gives the solution for this case, but treated as a zero-
sum game in which the payoff to player 2 is the time to detection and o = g = 0.
However it is straightforward to generalize his solution to match the assumptions
of our nonzero sum model for the simplest case & = 1. The generalization is as
follows [9]:

An equilibrium strategy for the inspector is to choose his single interim inspection
time #; on an interval 0 <¢; < k < 1 according to the distribution function

— — By - fo
F(1y) = _ﬁ log ((1 il)_(lﬁ _% ! ) , (60)

where & is given by
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illegal—t«——1legal —

—kfa \

T

Figure 8: Legal and illegal behavior as determined by k.

The inspectee randomizes similarly, whereby his distribution function has an atom
at t = 0. His equilibrium payoff is

Wy =d(1 — k) — fa—b. (62)
For WQ* < —fa, or equivalently for

b

E >1—k (63)
the inspectee will behave legally. Thus, unlike the sequential illegal game, both
players play mixed (randomized) strategies. Comparing (62) with (5), we see that,
not surprisingly, the unobservability places the inspectee at a disadvantage. That
is, for a4+ # < 1 and f < d, we have

~ 1 1 o

Consistent with this, the limit for b/d to induce the inspectee to legal behavior is
lower in the non-sequential model.

An often-discussed proposal to reduce routine inspection effort while maintaining
the timeliness of an inspection regime is to replace scheduled inspections with a
smaller number of randomly chosen, unannounced inspections. The unpredictability
aspect of such measures is appealing, as they would seem to place the potential
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violator in a permanent state of uncertainty and thus serve to deter illegal activity.
In the context of routine verification under the Nuclear Weapons Non-Proliferation
Treaty, Sanborn [8] contrasts the intuitive attractiveness of unannounced, random
inspections with the substantial practical difficulties of implementing them and with
the burden to the inspected party in trying to accommodate them. Significantly, in
the model presented here, the inspector’s equilibrium strategy is not mixed. This
is a consequence of the modelling assumption that the inspections are observable
and that they can occur at any time on the reference interval. Thus the inspection
schedule can be common knowledge.
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