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Abstract

We consider an extension of the “permutation game” of Tijs et al (1984) in which
players are endowed with and ultimately wish to consume one unit of each of two
types of good (i.e., a house and a car). We present two examples. The first is a
case where even though the “corresponding linear program” (CLP) does not solve
with integers, the core of the market is not empty. The second example is a case
with additively separable preferences in which there is a core vector in the market
which does not correspond to any optimal dual solution of the CLP. Both examples
demonstrate possible behavior that is impossible in many of the “standard” matching
games. We show that in cases with additively separable preferences, the core-optimal
dual equivalence property is recovered if each component swapping game, one with
houses and the other with cars, is convex in the sense of Shapley (1971).

1. Introduction
One of the successes of mathematical economics has been the recent development of a
detailed theory of matching games. This started with the classic models of Gale-Shapley
[3], Shapley-Shubik [14], Shapley-Scarf [13], and Tijs et al [16]. These constructs are useful
because they are fundamental models of markets of indivisible goods.

In this note we are primarily concerned with the relationships between the core of
transferable-utility (TU) matching games1 and linear programming. It seems as if given
just about any TU matching game, it is possible to formulate a “corresponding linear pro-
gram” (CLP) in which a) the variables are bounded between 0 and 1, b) if integrality is also
required, the optimal objective function value is the “worth” V (N) of the grand coalition
N , and c) an optimal variable value of 1 (resp., 0) means that a corresponding “match”
is made (resp., not made) in the obtaining of V (N). Perhaps the best known example of
a model and its CLP is Shapley-Shubik’s assignment game, together with the “assignment
linear program” (ALP) which is used to analyze it. Shapley-Shubik’s fundamental result
was that the core of the assignment game is precisely the set of optimal solutions to the
dual of the ALP.2

1A game has transferable utility if there is a transferable resource (money), and all outcomes for all
players are evaluated in terms of this transferable resource. A matching game is a game in which a major
focus for players is the identity of coalition partners.

2For those operations researchers who are not specialists in game theory, one may think of this paper
as being based on the celebrated “assignment problem” (see e.g. Winston [17], p. 372). It is well-known
that this linear program always solves integrally, no matter what the coefficient matrix is. This fact is
instrumental in proving that a corresponding game, called the assignment game, has a nonempty core. In



Other researchers have continued in a similar vein. Quint [8] considers Kaneko and
Wooders’ [5] TU partitioning game, sets up a “partitioning linear program” as his CLP, and
proves that if the CLP solves integrally, one has a core-optimal dual solution equivalence.
In another paper, the same author [10] considers “restricted houseswapping3 games with
TU”, again sets up a CLP, and again proves a similar result. Finally, Curiel and Tijs [2]
and Quint [9] have considered the permutation game of Tijs et al [16]. The CLP here is
essentially identical to the ALP, except that the main result is that the core is equivalent
to the set of vectors one can obtain by adding pairs of optimal dual variables (representing
the “buyer role” and “seller role” of players). [For details, see section 2.]

From the above literature summary, we can see two types of results:
1) The core of a TU matching game is nonempty iff its corresponding CLP solves in-

tegrally. In the Shapley-Shubik [14], Curiel-Tijs [2], and Quint [9] papers above, the CLP
always solves integrally and so these models always have nonempty cores. In the other
two Quint papers [8,10] mentioned above, the CLP may solve non-integrally, and these are
precisely the cases where the core is empty.

2) If its CLP solves integrally, a TU matching game has a “core-optimal dual solution
equivalence,” i.e., the core of the game can be represented by the set of optimal solutions to
the dual of the CLP.4

In this note we are going to consider a natural extension of one of these basic models,
in which 1) and 2) do not hold. In particular, we consider a TU game in which there are
n players and two types of indivisible good (say, houses and cars). Each player is endowed
with exactly one house and one car, and wishes to consume precisely one house and one car.
Each player expresses his valuations of house-car bundles in terms of money, and is free to
swap houses and/or cars with other players in an effort to obtain a bundle more valuable
to himself. Hence, essentially what we have here is a permutation game, except with two
types of indivisible good.

It turns out that there is an intuitive formulation of the CLP of this game. However, we
present an example where the CLP does not solve integrally, but where the core is nonempty.
Hence, no theorem of the type of 1) above may hold in this economy.

We then consider another example in which each player has additively separable prefer-
ences. This means that he/she has a monetary evaluation of each house and each car, and
the cardinal utility derived from any house-car bundle is just his/her monetary evaluation
of the house plus his/her monetary evaluation of the car. It is known that this condition
causes the CLP to solve integrally, and so the core is nonempty. However, we show that
there is a core payoff which cannot be formed as a sum of optimal dual variables in the

fact, the core coincides with the set of optimal solutions to the dual of the assignment problem.
We can then try to duplicate this analysis for generalizations of the assignment problem/game. If we start

with a transportation problem (with integer “right-hand-sides”), again the linear program always solves with
integers. The corresponding “transportation game” therefore again has a nonempty core, except this time
the core does not coincide with the set of dual solutions to the transportation problem.

In this paper we consider a different generalization of the assignment problem. There are now two types
of sink, and each source is assigned to one sink of each type. This time the “corresponding linear program”
(CLP) does not necessarily solve with integers – however, we present an example to show that even in
cases where the CLP does not solve with integers, the core can still be nonempty. And we present another
example which shows that we again do not necessarily have a core-optimal dual solution coincidence in this
model.

3Regarding the word “houseswapping”: in some of Shapley’s unpublished undergraduate lecture notes,
the well-known Shapley-Scarf [13] model is referred to as “the houseswapping game”.

4Of course, we qualify this statement depending on cases. For the permutation game, for example, the
equivalence is between core vectors and sums of optimal dual variables (see Section 2).



natural way. Hence, no theorem of type 2) above may hold in this economy either.
At this point, let us remark on two types of model for which similar counterexamples

(to “type 2 theorems”) have been found. One is the linear production game of Owen [7].
Linear production games are not true “matching games” in the sense that there are no
indivisible goods in the model; however there is a “CLP” for which a) the optimal objective
function value is V (N), and b) optimal dual variables can be added together in a natural
way to get core vectors. However, not all core vectors can be obtained this way. The other
type is certain two-sided TU market games, featuring buyers and sellers of multiple units of
indivisible good. Examples here include the generalized assignment game of Kaneko [4], the
exchange market game of Ma [6]5, and the “transportation game” of Sánchez-Soriano, López,
and Garćia-Jurado [11]. Again one may find a core vector by setting up an appropriate CLP,
but core-optimal dual solution equivalence does not necessarily hold.6 Hence our game,
which is a one-sided market with two types of indivisible good (and additively separable
preferences), represents a third such model type.7

It would be interesting if one could identify some common characteristic of linear pro-
duction games, transportation games and our games, which causes this non-equivalence of
core and optimal dual solution set. For our house and car swapping games with additive
separability, we will see (in Section 4) that the non-equivalence occurs only if the core of
the house swapping game “added to” the core of the car swapping game does not coincide
with the core of the whole game of house and car swapping.

2. Background: The Permutation Game
We begin with a review of Tijs et al’s permutation game [16]. Let N = {1, ..., n} be the
player set. Each player is originally endowed with a house, with “house i ” meaning the
house originally owned by player i. The players also place nonnegative monetary valuations
upon each of the houses – so we define the n × n matrix A in which aij represents the
monetary valuation that player i has for house j. We also assume that players desire to
consume exactly one house, i.e., the utility to player i for a bundle of two or more houses is
just the maximum of the aij’s over the houses j in the bundle.

The allowable moves for the players are to swap houses and transfer monetary utility
amongst themselves. A redistribution of the houses is thus described by a permutation of
N , i.e., a bijection π : N → N , with π(i) = j meaning that player i receives house j. Let Π
be the set of permutations of N. If π ∈ Π and S ⊆ N , the notation π(S) means ∪i∈Sπ(i).

The above gives rise to a TU game GP = (N, V ), called a permutation game, in which
the characteristic function V : 2N → R is defined by V (∅) = 0 and

V (S) = max
π∈Π s.t. π(S)=S

Σ
i∈S

aiπ(i) for all S ∈ 2N \ {∅}.

In words, the worth V (S) of coalition S is just the maximum of the surpluses generated
over all ways in which the players in S swap their own houses amongst themselves.

The core of GP is the set of payoff vectors x ∈ Rn such that (a) x(N) ≡ Σi∈Nxi = V (N)

5Ma’s main result is that in the model of Bikhchandani and Mamer [1], competitive equilibrium solutions
always correspond to dual solutions of a CLP. He also constructs an example with core vectors which don’t
correspond to any such dual solution. Now Bikhchandani and Mamer’s model certainly contains much more
than just “two-sided” games; however, Ma’s example of core/dual solution nonequivalence is essentially an
instance of a two-sided game.

6Kaneko [4] gave a sufficient condition for core-optimal dual solution equivalence in his model, which
requires that each active seller has at least one competitor.

7A two-sided matching game is a game with two types of players (usually buyers and sellers), whereas a
one-sided game has only one type of player (who usually plays the role of both buyer and seller).



and (b) x(S) ≡ Σi∈Sxi ≥ V (S) for all S ⊆ N . Hence the core is the set of feasible payoff
vectors which exhibit a certain kind of stability. It can be characterized by considering the
“corresponding linear program” (CLP):

m = max
p

Σ
i∈N

Σ
j∈N

aijpij (P )

s.t. Σ
i∈N

pij = 1 for all j ∈ N,

Σ
j∈N

pij = 1 for all i ∈ N,

pij ≥ 0 for all (i, j) ∈ N2,

and its dual:

m = min
u,v

Σ
i∈N

(ui + vi) (D)

s.t. ui + vj ≥ aij for all (i, j) ∈ N2.

Theorem 2.1 (Curiel and Tijs [2] and Quint [9]).8 Let GP be any permutation game. Then
x is a core vector of GP ⇐⇒ x = u+v, where (u, v) is an optimal solution to linear program
(D).

Curiel and Tijs interpreted this result as follows: We think of each player as being
composed of a “buyer part” and a “seller part”. Then, for player i, a core payoff xi consists
of the payoff that he/she obtains as a buyer (ui) plus that obtained as a seller (vi). Under
this interpretation, it is natural that the vector v is also an equilibrium price vector (cf.
Quint [9]).

It should be noted that a proof of the theorem above depends heavily upon the fact that
linear program (P ) must solve integrally, no matter what the matrix A is. This also implies
that both optimal objective function values m and m of (P ) and (D) are equal to V (N),
the worth of the grand coalition.

3. A TU House and Car Swapping Game

We now present an extension of the permutation game, which is a market game with two
types of good. Let us call these types houses and cars. The player set is again N = {1, ..., n}.
Each player i is endowed with one house and one car, denoted by “house i” and “car i”,
respectively.

The allowable moves for the players are to exchange houses and cars, and to transfer
monetary utility amongst themselves. Similarly to the permutation game, we assume that
each player’s utility functions are such that he/she would always wish to consume precisely
one house and one car. Hence, the important redistributions of the indivisible goods, called
allocations, are those in which each player receives one house and one car. Formally, an
allocation is a function π : N → N×N with the property that there exist two permutations
π1 and π2 of the set N with π(i) = (π1(i), π2(i)) for all i ∈ N . So π(i) = (j, k) means that
player i ends up with house j and car k. Let Π be the set of all allocations.

The players evaluate all possible house-car bundles in terms of money. Specifically, dijk

represents player i’s monetary valuation of the bundle of house j and car k. These valuations
are denoted by the three-dimensional n× n× n matrix D = (dijk).

8Curiel and Tijs proved this theorem in the ⇐= direction, while Quint proved the converse.



The description above gives rise to a TU game GHC = (N, V ), whose characteristic
function V is defined by V (∅) = 0 and

V (S) = max
π∈Π:π1(S)=π2(S)=S

Σ
i∈S

diπ1(i)π2(i) for all S ∈ 2N�{∅}.

So now V (S) is just the maximum of the surpluses generated over all ways in which the
players in S swap their own houses and cars amongst themselves. The core of game GHC

is again the set of vectors x ∈ Rn with x(N) = V (N) and x(S) ≥ V (S) for all S ⊆ N .
The CLP for a game GHC is

mHC = max
p

Σ
i∈N

Σ
j∈N

Σ
k∈N

dijkpijk, (P2)

s. t. Σ
i∈N

Σ
j∈N

pijk = 1 for all k ∈ N,

Σ
i∈N

Σ
k∈N

pijk = 1 for all j ∈ N,

Σ
j∈N

Σ
k∈N

pijk = 1 for all i ∈ N,

pijk ≥ 0 for all (i, j, k) ∈ N3.

We note two things. First, unlike in the permutation game, it is possible for CLP (P2)
of a game GHC to solve non-integrally (see Example 3.1 below). Second, by the result of
Bikhchandani and Mamer [1], if (P2) does solve integrally, then core of game GHC must
be nonempty.9 However, as the following example shows, it is possible for (P2) to solve
non-integrally but still have the core be nonempty:

Example 3.1. N = {1, 2}, d111 = d122 = d212 = d221 = 1, d112 = d121 = d211 = d222 = 0.

It is relatively straightforward to see that with this particular D = (dijk), CLP (P2) has
a unique non-integral solution, namely p111 = p122 = p212 = p221 = 1

2
and p112 = p121 =

p211 = p222 = 0. Yet the characteristic function of the resulting TU game is V ({1}) = 1,
V ({2}) = 0, and V ({1, 2}) = 1, which clearly has the core point (1, 0).10

One condition for guaranteeing the integrality of CLP (P2) is additive separability
of matrix D. Additive separability means that there exist two n×n matrices A = (aij) and
B = (bik) such that dijk = aij + bik for all (i, j, k) ∈ N3. The interpretation here is that aij

9Bikhchandani and Mamer actually proved that the assumption of integral solution is equivalent to the
set of competitive equilibrium allocations being nonempty, but this in turn implies that the core is nonempty,
since the core contains the set of competitive equilibrium allocations.

Alternatively, we can directly prove core nonemptiness as follows. Let p∗ = (p∗ijk) be an optimal integral
solution to (P2). Then there exist two permutations π1 and π2 of N such that π1(i) = j and π2(i) = k
iff pijk = 1. Let (u∗, v∗, w∗) be an optimal solution to the dual LP of (P2) (program (D2) in the text),
and define vector x∗ by x∗i = u∗i + v∗i + w∗

i for i = 1, ..., n. Since V (N) = mHC = Σi∈Ndiπ1(i)π2(i) = mHC ,
we have x∗(N) = V (N). We also have x∗(S) ≥ V (S) for each S ⊆ N . This is because, letting µ1 and
µ2 be permutations of S with V (S) = Σi∈Sdiµ1(i)µ2(i), we have x∗(S) = Σi∈S(u∗i + v∗µ1(i)

+ w∗
µ2(i)

) ≥
Σi∈Sdiµ1(i)µ2(i) = V (S). Thus x∗ is a core vector, and so the core is nonempty.

In some TU matching models (e.g. Shapley-Shubik [14] or Tijs et al [16]), the Birkhoff-Von Neumann
theorem (BVNT) can be used to show that the CLP must solve integrally, and this in turn is used to show
core nonemptiness. In our model, Curiel-Tijs [2] have already pointed out that we can never hope to use
this technique to show core nonemptiness, because the BVNT theorem doesn’t generalize in the right way.
But that doesn’t seem to be as relevant here, because Example 3.1 shows that the CLP solving integrally
is not equivalent to core nonemptiness.

10Alternatively (following the comment of Curiel-Tijs [2] p. 330) we could note that we have a superad-
ditive two-person game, and therefore the core is nonempty.



and bik represent player i’s monetary evaluations for house j and car k, respectively. Thus
dijk = aij + bik means that i’s evaluation of the house-car bundle (j, k) is just his evaluation
aij of house j added to his evaluation bik of car k. It is easily seen that Example 3.1 does
not satisfy additive separability.

If matrix D satisfies additive separability, then CLP (P2) decomposes into two linear
programs of type (P ), one with matrix A and the other with matrix B. Both of these will
solve integrally, and so (P2) will also solve integrally. Thus the optimal value mHC of CLP
(P2) becomes V (N) of game GHC . This in turn implies that the core is nonempty.11 But
we then have a question:

Is there a coincidence between core vectors and optimal solutions to the dual of
(P2), as in Theorem 2.1 for the permutation game?

The answer to this question is negative, even under the assumption of additive separa-
bility. We show this by the example below, but first let us write down the dual of (P2):

mHC = min
u,v,w

Σ
i∈N

(ui + vi + wi) (D2)

s. t. ui + vj + wk ≥ dijk for all (i, j, k) ∈ N3.

Readers will note the similarity between this linear program and program (D) in the
previous section.

Example 3.2. N = {1, 2, 3} and

A = (aij) j = 1 j = 2 j = 3
i = 1 0 20 15
i = 2 15 0 20
i = 3 20 15 0

B = (bik) k = 1 k = 2 k = 3
i = 1 5 20 0
i = 2 0 5 20
i = 3 20 0 5

Hence D = (dijk) is as follows:

d1jk k = 1 k = 2 k = 3
j = 1 5 20 0
j = 2 25 40 20
j = 3 20 35 15

d2jk k = 1 k = 2 k = 3
j = 1 15 20 35
j = 2 0 5 20
j = 3 20 25 40

d3jk k = 1 k = 2 k = 3
j = 1 40 20 25
j = 2 35 15 20
j = 3 20 0 5

This example gives a TU game GHC
0 with the following characteristic function:

V (∅) = 0, V ({1}) = V ({2}) = V ({3}) = 5,
V ({12}) = d122 + d211 = 55, V ({23}) = d233 + d322 = 55,

V ({13}) = d133 + d311 = 55,
V (N) = d122 + d233 + d311 = 120.

Since D is additively separable, CLP (P2) for this example must solve integrally, and so
the optimal objective function value must be equal to V (N). Indeed, it is easy to see that

11We remark that Curiel and Tijs [2] were the first to prove nonemptiness of the core of our game, in the
case of additive separability.



an optimal solution to (P2) is p∗122 = p∗233 = p∗311 = 1 and all other p∗ijk’s equal to zero, and
mHC = mHC = V (N) = 120.

For any given game GHC associated with an additively separable D, it is easy to prove
that for any optimal solution (u∗, v∗, w∗) to (D2), the vector x∗ given by x∗ = u∗+v∗+w∗ is
in the core.12 So the analogue of Theorem 2.1 in the “backwards direction” holds. However,
the “forward direction” is not necessarily true. Indeed,

Claim: Consider game GHC
0 , which is associated with an additively separable matrix. Then

a) x = (10, 55, 55) is in the core of GHC
0 , but b) x cannot be represented as a sum

u + v + w for any optimal solution (u, v, w) to (D2).

Proof. First, it is easy to verify that x is in the core of GHC
0 . Now suppose that there exists

an optimal solution (u, v, w) to (D2) with

u1 + v1 + w1 = 10, (3.1)

u2 + v2 + w2 = 55, (3.2)

u3 + v3 + w3 = 55. (3.3)

Then this implies that dual program (D2) solves with mHC = Σi∈N(ui + vi + wi) = 120,
and thus we must have

u1 + v2 + w2 = d122 = 40, (3.4)

u2 + v3 + w3 = d233 = 40, (3.5)

u3 + v1 + w1 = d311 = 40. (3.6)

Adding equations (3.4) and (3.6), and then subtracting (3.1) gives

u3 + v2 + w2 = 70. (3.7)

On the other hand, since (u, v, w) is a solution to (D2), it must be that u1 + v3 + w1 ≥
d131 = 20 and u2 + v1 + w3 ≥ d213 = 35. These inequalities in conjunction with Σi∈N(ui +
vi + wi) = 120 imply that u3 + v2 + w2 ≤ 65. This contradicts (3.7), and so the proof of the
claim is completed. �

4. Discussion
In this section we will examine a condition which guarantees the “core-optimal dual solution”
equivalence discussed in the last section. Needless to say, this condition does not hold in
Example 3.2.

Let (N, V HC) be a TU house-and-car swapping game (or “HCS game”) with valuation
matrix D = (dijk). Throughout this section we assume that matrix D is additively separable,
and let A = (aij) and B = (bik) be valuation matrices for houses and cars with dijk = aij+bik

for all i, j, k ∈ N. We define (N, V H) and (N, V C) to be the component permutation games
associated with matrices A and B, respectively. Let C(V ) denote the core of a given game
(N, V ).

12In our example one optimal solution to (D2) is (u∗1, u
∗
2, u

∗
3, v∗1 , v∗2 , v∗3 , w∗

1 , w∗
2 , w∗

3) = (25, 0, 25, 5, 0, 10,
10, 15, 30). Forming the vector x∗ = u∗ + v∗ + w∗, we have x∗ = (40, 15, 65). Indeed, x∗ is in the core of
GHC

0 .
In general, one may interpret the optimal dual variables u∗, v∗, and w∗ as the shadow prices of the players’

“matching abilities”. In this sense the result that “x∗ = u∗ + v∗ +w∗ is in the core” means that if one gives
the players “what they deserve in terms of matching ability”, the result is a core vector. However, Example
3.2 shows that not all core vectors can necessarily be formed this way.



From the additive separability of matrix D, we have V HC(S) = V H(S)+V C(S) for each
S ⊆ N. However, this additivity of characteristic functions does not imply the additivity-
of-cores property, i.e., it is not necessarily true that

C(V H) + C(V C) = C(V H + V C).

Here, C(V H + V C) = {x ∈ RN |x(N) = V H(N) + V C(N) = V HC(N), and x(S) ≥ V H(S) +
V C(S) = V HC(S) for all S ⊆ N}. In other words, C(V H + V C) = C(V HC). On the other
hand, the sum C(V H) + C(V C) means {x + y|x ∈ C(V H) and y ∈ C(V C)}. It is clear
that C(V H) + C(V C) ⊆ C(V H + V C). However, it is possible for there to be vectors in
C(V H + V C) which are not in C(V H) + C(V C).

Finally, we say that the HCS game has the core-optimal dual solution equivalence
(CODSE) property if every element of C(V HC) can be written as u+v+w, where (u, v, w)
is an optimal solution to program (D2) of Section 3.

Proposition 4.1. Suppose (N, V HC) is an HCS game with (additively separable) valuation
matrix D = (dijk). Then if the game has the additivity-of-cores property, it has the CODSE
property.

Proof. As defined by (D2) in Section 3, the dual of the CLP of game (N, V HC) is

mHC = min
u,v,w

Σ
i∈N

(ui + vi + wi) (4.1)

s.t. ui + vj + wk ≥ dijk for all (i, j, k) ∈ N3.

Let z ∈ C(V HC). The proposition is proved if we show that there exists an optimal solution
(u, v, w) to dual CLP (4.1) such that

zi = ui + vi + wi for all i ∈ N.

To show this, we first note that since matrix D is additively separable, the primal CLP of
(N, V HC) solves integrally; its optimal objective function value is V HC(N); and V HC(N) =
V H(N) + V C(N). Thus, by the duality theorem of linear programming

V H(N) + V C(N) = V HC(N) = mHC . (4.2)

Next, since C(V H) + C(V C) = C(V HC), there exist core vectors x ∈ C(V H) and y ∈
C(V C) with z = x + y. Let A = (aij) and B = (bik) be valuation matrices that define
component permutaion games (N, V H) and (N, V C), respectively. As defined by (D) in
section 2, the dual CLP’s of (N, V H) and (N, V C) are as follows:

mH = min
u,v

Σ
i∈N

(ui + vi) (4.3)

s.t. ui + vj ≥ aij for all (i, j) ∈ N2,

mC = min
u,w

Σ
i∈N

(ui + wi) (4.4)

s.t. ui + wk ≥ bik for all (i, k) ∈ N2.

It follows from Theorem 2.1 that there exist optimal solutions (u′, v′) to dual CLP (4.3) and
(u′′, w′′) to (4.4) such that x = u′ + v′ and y = u′′ + w′′.



Define (u∗, v∗, w∗) to be a 3n-dimensional vector with u∗i = u′i +u′′i , v∗i = v′i, and w∗
i = w′′

i

for all i ∈ N . Since the optimal objective function value of the CLP of a permutation game
(N, V ) is V (N), we have mH = V H(N) and mC = V C(N). This, together with (4.2), implies
that Σi∈N(u∗i + v∗i + w∗

i ) = Σi∈N(u′i + v′i) + Σi∈N(u′′i + w′′
i ) = mH + mC = mHC .

Finally, since dijk = aij + bik for all i, j, k ∈ N, and since (u′, v′) and (u′′, w′′) are feasible
solutions to (4.3) and (4.4), respectively, it holds that u∗i +v∗j +w∗

k = (u′i +v′j)+(u′′i +w′′
k) ≥

aij + bik = dijk for all (i, j, k) ∈ N3. Hence (u∗, v∗, w∗) is an optimal solution to dual CLP
(4.1) with the property that zi = u∗i + v∗i + w∗

i for all i ∈ N. The proof is complete.�

Proposition 4.1 shows that core-optimal dual solution equivalence holds for a HCS game
if the game has the additivity-of-cores property. However, we feel it is rather rare for HCS
games to have such additivity. A typical case is Example 3.2, where we demonstrated
there was no core-optimal dual solution equivalence, and so there is no additivity-of-cores
property.13

It should be noted, however, that there is a well-known class of TU games whose cores
have the additivity. These are the convex games, first studied by Shapley [12]. A TU
game (N, V ) is convex if V (∅) = 0 and V (S) + V (T ) ≤ V (S ∪ T ) + V (S ∩ T ) for any
S, T ∈ 2N\{∅}. For each π ∈ Π, define Sπ,k = {i ∈ N |π(i) ≤ k} for all k ∈ N , and
let aπ = (aπ

i )i∈N be the payoff vector with aπ
i = V (Sπ,π(i)) − V (Sπ,π(i)−1) for all i ∈ N .

We imagine the players “entering a room” according to ordering π, with aπ
i being player

i’s contribution when he/she joins coalition Sπ,π(i)−1. Shapley [12] proved that the cores of
convex games have a nice geometric property.

Theorem 4.2 (Shapley [12]).14 For any convex game (N, V ), the core is nonempty, and it
is the convex hull of {aπ|π ∈ Π}.

Given two convex games (N, V 1) and (N, V 2), the sum game (N, V ) with V (S) =
V 1(S) + V 2(S) for all S ⊆ N is also convex. This, together with Theorem 4.2, implies
the following proposition.

Proposition 4.2. For any two convex games (N, V 1) and (N, V 2),

C(V 1) + C(V 2) = C(V 1 + V 2).

Proof. It is clear from the definition of cores that C(V 1)+C(V 2) ⊆ C(V 1 +V 2). We show
that C(V 1 + V 2) ⊆ C(V 1) + C(V 2).

Let z ∈ C(V 1 + V 2). Let (N, V ) be the game with V (S) = V 1(S) + V 2(S) for all
S ⊆ N . For each permutation π ∈ Π, define payoff vectors dπ = (dπ

i )i∈N , aπ = (aπ
i )i∈N

and bπ = (bπ
i )i∈N by dπ

i = V (Si,π(i)) − V (Si,π(i)−1), aπ
i = V 1(Si,π(i)) − V 1(Si,π(i)−1), and

bπ
i = V 2(Si,π(i)) − V 2(Si,π(i)−1) for each i ∈ N. We note that dπ = aπ + bπ for all π ∈ Π.

Since (N, V ) is convex, it follows from Theorem 4.2 that there exists a vector (pπ)π∈Π with
Σπ∈Π pπ = 1 and pπ ≥ 0 for all π ∈ Π such that z = Σπ∈Π pπdπ = Σπ∈Π pπaπ + Σπ∈Π pπbπ.
Let x = Σπ∈Π pπaπ and y = Σπ∈Π pπbπ. Since games (N, V 1) and (N, V 2) are also convex,
we have that x ∈ C(V 1) and y ∈ C(V 2). This means that C(V 1 + V 2) ⊆ C(V 1) + C(V 2).
Hence C(V 1) + C(V 2) = C(V 1 + V 2). �

13For Example 3.2, characteristic function V H is defined as V H({1}) = V H({2}) = V H({3}) = 0,
V H({1, 2}) = V H({1, 3}) = V H({2, 3}) = 35, V H(N) = 60. Characteristic function V C is defined as
V C({1}) = V C({2}) = V C({3}) = 5, V C({1, 2}) = V C({1, 3}) = V C({2, 3}) = 20, V C(N) = 60. We saw
the vector (10, 55, 55) is in the core of GHC

0 , i.e., C(V H + V C), but it cannot be written as y + z with
y ∈ C(V H) and z ∈ C(V C).

14This theorem follows from Shapley’s original theorems 3, 4, and 5 in his paper [12].



Propositions 4.1 and 4.2 imply that if the component permutation games of a given
HCS game are convex, then the HCS game has the CODSE property. However, not much
is known about sufficient conditions for convexity in permutation games.

Proposition 4.3. Let (N, V ) be a permutation game with valuation matrix A = (aij). If
there exists a permutation π ∈ Π such that

aiπ(i) ≥ 0 for all i ∈ N, (4.5)

aij = 0 for all i, j ∈ N with j 6= π(i),

then permutation game (N, V ) is convex.

Proof. Let (N, V ) be a permutation game with valuation matrix A = (aij) and permutation
π satisfying condition (4.5). Define MS = {i ∈ S|π(i) ∈ S} for S ∈ 2N\{∅}.

It is clear that the worth of any coalition is attained by matching as many of its members
as possible according to π. Hence,

V (S) = Σ
i∈MS

aiπ(i) for each S ∈ 2N\{∅}. (4.6)

We now show that game (N, V ) is convex. Let S and T be any nonempty coalitions. If
i ∈ MS∪MT , then both i and π(i) belong to S∪T. If i ∈ MS∩MT , then both i and π(i) belong
to S ∩ T. Thus MS ∪MT ⊆ MS∪T and MS ∩MT ⊆ MS∩T . It follows from these inclusions
that Σ

i∈MS

aiπ(i) + Σ
i∈MT

aiπ(i) = Σ
i∈MS∪MT

aiπ(i) + Σ
i∈MS∩MT

aiπ(i) ≤ Σ
i∈MS∪T

aiπ(i) + Σ
i∈MS∩T

aiπ(i). From

(4.6), this means that V (S) + V (T ) ≤ V (S ∪ T ) + V (S ∩ T ). �

Condition (4.5) is interpreted as follows: Each player i has at most one favorite house
π(i) with positive valuation and has no interest in any other house j. Moreover, each
player can obtain his/her favorite house (since π is a permutation). This seems like a very
restrictive sufficient condition. In fact, it is easy to see that it is not a necessary condition:
the valuation matrix B in Example 3.2 violates (4.5), but permutation game (N, V C) defined
by matrix B is convex (see endnote 13).

Solymosi and Raghavan [15] gave a necessary and sufficient condition for Shapley-
Shubik’s assignment games to be convex, similar to (4.5), which is also quite restrictive.
It would be interesting to identify a necessary and sufficient condition for permutation
games to be convex.
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