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1. Introduction

Imagine a city in the form of the circle S (see Fig. 1) with population distributed
in it with some density function f(x, y). We consider a non-zero-sum location game
with two players (Firms) I and II which are located in some different points P1 and
P2 inside the circle. The objective of the players is to determine the optimal prices
for the same goods in dependence of their position on the plane. Let the radius of
the circle be equal to 1.
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Fig. 1.

Suppose that the firms I and II declare the prices for the goods as p1 and p2. We
will use here the Hotelling’s model to determine which firm will be more attractive
for a customer who is located in the point P ∈ S. The customer compares the cost
functions F (pi, ρ(P, Pi)) with arguments pi (price) and ρ(P, Pi) (distance from his
location point P to the firm point Pi), i = 1, 2, and prefers the firm with minimal
value. So, all customers in S are divided for two parts S1 and S2 respectively their
preferences to firms I and II. So, the gains of the firms I and II can be determined
by functions

H1(p1, p2) = p1µ(S1), H2(p1, p2) = p2µ(S2), (1)

where µ(S) =
∫
S

f(x, y)dxdy is the probability measure of the set S. Mainly, we

analyze here a problem with F = p + ρ2. Our objective is to find the equilibrium
prices in this game and the equilibrium allocation of the players on the plane.

The location problem, firstly, installed by Hotelling (1927) as a problem of Nash
equilibrium of competitive facilities on a linear market, afterwards was considered
in linear variant in the articles of D’Aspremont et al.(1979), Kats (1987), Bester
et al. (1996), Zhang et al. (1998), Sakaguchi (2001). Dresner (1982) and Hakimi
(1983) consider the location problem as a Stackelberg equilibrium problem on the
plane and a network, respectively.

In this paper we analyse Nash equilibrium location problem on the plane. At
the begining (Section 2) we find Nash equilibrium in the pricing game model with
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a population uniformly distributed in the circle. Notice, that in the uniform case
(1) will take the following form

H1(p1, p2) = p1

[
1
π

∫

S1

dxdy

]
, H2(p1, p2) = p2

[
1
π

∫

S2

dxdy

]
.

Then, in Section 3 a non-uniform case is analyzed and the equilibrium prices are
derived. In Section 4 we consider the problem of the equilibrium points for allocation
of players on the plane. Different versions of non-uniform distribution are compared
in Section 5. Final remarks and a possibility of another cost functions are presented
in the Conclusion.

2. Solution for Uniform Distribution

Turn over the circle S that points P1 and P2 become have the same ordinate y (see
Fig. 2). Denote the the coordinates of P1 and P2 on the axis Ox as x1 and x2

respectively. Without loss of generality suppose that x1 ≥ x2.
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Fig. 2.

According to Hotelling’s scheme the regions S1 and S2 are distiguished by the
line

p1 + (x− x1)2 = p2 + (x− x2)2,
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which is a parallel for the axis Oy with coordinate

x =
1
2
(x1 + x2) +

p1 − p2

2(x1 − x2)
. (2)

So, according to (1) the payoffs of the players in this game are

H1(p1, p2) = p1

(
arccosx− x

√
1− x2

)
/π (3)

H2(p1, p2) = p2

(
π − arccosx + x

√
1− x2

)
/π, (4)

with x satisfied (2). We find the equilibrium prices from the equation ∂H1
∂p1

= ∂H2
∂p2

=
0.

Find the derivative of (3) in p1.

π
∂H1

∂p1
= arccos x− x

√
1− x2 + p1

[
− 1√

1− x2

1
2(x1 − x2)

−
√

1− x2
1

2(x1 − x2)

+
2x2

2
√

1− x2

1
2(x1 − x2)

]
.

Having it equal to zero we obtain

p1 = (x1 − x2)
[

arccos x√
1− x2

− x

]
(5)

Analogously, from ∂H2
∂p2

= 0 it follows that

p2 = (x1 − x2)
[
x +

π − arccosx√
1− x2

]
(6)

Finally, using (2), (5), (6) the equilibrium prices can be represented in the form

p1 =
x1 − x2

2

[
π√

1− x2
− 2

(
x1 + x2

2
− x

)]
(7)

p2 =
x1 − x2

2

[
π√

1− x2
+ 2

(
x1 + x2

2
− x

)]
(8)

with

x =
x1 + x2

4
− π/2− arccosx

2
√

1− x2
. (9)

Remark 2.1. If x1 + x2 = 0 then x = 0 by (2), and, consequently, p1 = p2 = πx1,
by (5)-(6), and H1 = H2 = πx1/2 by (3)-(4). Hence, the maximal equilibrium
prices are reached with x1 = 1 and x2 = −1 and equal to p1 = p2 = π. The optimal
payoffs are equal to H1 = H2 = π/2 ≈ 1.570. So, if customers locate uniformly
in the unit circle, then the two firms should locate as far as possible on a same
diameter.

Some numerical values are presented in the Table 1.
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Table 1. The equilibrium prices for various x1 and x2.

x2 = 0.6 0.4 0.2 0 −0.2 -0.4 −0.6 −0.8 −1
p1 0.228 0.480 0.755 1.054 1.378 1.729 2.106 2.513 2.949

x1 = p2 0.416 0.801 1.156 1.481 1.778 2.049 2.293 2.513 2.708
0.8 H1 0.081 0.179 0.298 0.438 0.601 0.791 1.008 1.256 1.536

H2 0.268 0.501 0.699 0.865 1.002 1.111 1.195 1.256 1.296
x 0.230 0.198 0.165 0.132 0.099 0.066 0.033 0 −0.033
p1 0.251 0.527 0.827 1.152 1.504 1.884 2.293 2.732

x1 = p2 0.385 0.740 1.067 1.366 1.638 1.884 2.106 2.305
0.6 H1 0.099 0.219 0.360 0.527 0.720 0.942 1.195 1.481

H2 0.233 0.432 0.601 0.740 0.853 0.942 1.008 1.054
x 0.165 0.132 0.099 0.066 0.033 0 −0.033 −0.066

3. Solution in Non-uniform Case

Suppose that customer’s distribution is not uniform. Consider here the case when
the density be

f(r, θ) = 3(1− r)/π, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π. (11)

It corresponds to the case with customers which are concentrated closer to the
center of the city.

Notice, that it is sufficient to consider here only the case with x1 + x2 ≥ 0,
otherwise, we obtain the solution changing the signs of x1, x2. Then the expected
rewards (1) to the players are

H1(p1, p2) =
6
π

p1A(x), H2(p1, p2) = p2(1− 6
π

A(x)), (12)

where

A(x) =

1∫

x

r(1− r) arccos(
x

r
)dr =

1
6

[
arccosx− x

√
1− x2 − 2x

1∫

x

√
r2 − x2dr

]

=
1
6

[
arccos x− 2x

√
1− x2 − x3 log x + x3 log(1 +

√
1− x2)

]

so that

π

6
∂H1

∂p1
= A(x) + p1A

′(x)
∂x

∂p1
= A(x)− p1

2(x1 − x2)

1∫

x

√
r2 − x2dr,

∂H2

∂p2
= 1− 6

π
A(x)− p2

6
π

A′(x)
∂x

∂p2
= 1− 6

π
A(x)− 6

π

p2

2(x1 − x2)

1∫

x

√
r2 − x2dr,

since

A′(x) = −
1∫

x

r(1− r)√
r2 − x2

dr = −
1∫

x

√
r2 − x2dr. (13)
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Fig. 3.

The conditions ∂H1
∂p1

= ∂H2
∂p2

= 0 yield

p1 = 2(x1 − x2)A(x)/

1∫

x

√
r2 − x2dr, (14)

p2 = 2(x1 − x2)
(

π

6
−A(x)

)
/

1∫

x

√
r2 − x2dr. (15)

Substituting these p1 and p2 into

x =
1
2
(x1 + x2) +

p1 − p2

2(x1 − x2)
(2′)

we obtain

x− 1
2
(x1 + x2) = (2A(x)− π/6)/

1∫

x

√
r2 − x2dr. (16)
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Remark 3.1. It follows from (13) that A(x) is convex, decreasing with A(0) = π/12
and A(1) = 0. The right side of (16) is negative, hence,

x ≤ (x1 + x2)/2.

Let us show that the equation (16) has the unique solution. Rewrite it in the form

B(x) = −[x− 1
2
(x1 + x2)]A′(x)− (2A(x)− π/6) = 0. (17)

Derivative of the function B(x) staying at the left side of the equation (17)

B′(x) = −3A′(x)−A′′(x)(x− x1 + x2

2
)

=

1∫

x

[
3
√

r2 − x2 +
x√

r2 − x2
(
x1 + x2

2
− x)

]
dr

is positive, so B(x) increases in the interval [0, x1+x2
2 ], and B(0) = −x1+x2

4 < 0 and
B(x1+x2

2 ) = π/6− 2A(x1+x2
2 ) ≥ 0.

If x1 + x2 = 0, then x = 0 satisfies the equation (16) and, p1 = p2 = 2
3πx1

by (14)-(15), and H1 = H2 = 1
3πx1, by (12). For x1 = 1, x2 = −1 we have

p1 = p2 = 2
3π ≈ 2.094 and H1 = H2 = 1

3π ≈ 1.047. In Table 2 the results of
numerical calculations are presented.

Table 2. The equilibrium prices for various x1 and x2.

x2 = 0.6 0.4 0.2 0 −0.2 -0.4 −0.6 −0.8 −1
p1 0.131 0.281 0.449 0.639 0.852 1.091 1.362 1.675 2.046

x1 = p2 0.383 0.700 0.962 1.175 1.347 1.484 1.591 1.675 1.751
0.8 H1 0.033 0.080 0.143 0.225 0.330 0.462 0.628 0.837 1.102

H2 0.285 0.500 0.655 0.761 0.825 0.855 0.857 0.837 0.807
x 0.275 0.236 0.198 0.159 0.120 0.080 0.040 0 −0.040
p1 0.149 0.319 0.511 0.727 0.972 1.256 1.591 1.979

x1 = p2 0.320 0.587 0.808 0.989 1.136 1.256 1.362 1.454
0.6 H1 0.047 0.112 0.198 0.308 0.448 0.628 0.857 1.140

H2 0.218 0.380 0.495 0.570 0.612 0.628 0.628 0.616
x 0.198 0.159 0.120 0.080 0.040 0 −0.040 −0.080

4. Equilibrium Points for Location

From previous considerations we saw that if the points of player’s location P1 and
P2 are fixed then there are some equilibrium prices p1 and p2. So, we have p1, p2 as
a function of x1, x2. Now, we can install the problem: are there equilibrium points
x∗1, x

∗
2 for the location of players. This problem often appeares when we plan some

infrastructure for the socio-economical regional systems. Let us consider this model
for the non-uniform case considered in Section 3.

Assume that the player II selects the point for location x2 < 0. The objective of
player I is to find the point x1 which maximizes his reward H1(p1, p2). Let us find
the solution of the equation ∂H1

∂x1
= 0. By (12)

π

6
∂H1

∂x1
=

∂p1

∂x1
A(x) + p1A

′(x)
∂x

∂x1
= 0. (18)
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Differentiating (14) and (17) in x1 we obtain

1
2

∂p1

∂x1
= − A(x)

A′(x)
− (x1 − x2)

[
1− A′(x)A′′(x)

[A′(x)]2

]
∂x

∂x1
, (19)

and

−
(

∂x

∂x1
− 1

2

)
A′(x)− [x− 1

2
(x1 + x2)]A′′(x)

∂x

∂x1
− 2A′(x)

∂x

∂x1
= 0,

and, consequently,

∂x

∂x1
= A′(x)

[
6A′(x) + 2(x− x1 + x2

2
)A′′(x)

]−1

. (20)

The equation (18)-(20) can be used to find the optimal response x1 of player I.
Notice, that from symmetry of the problem it follows that if the equilibrium

exists then it must be among collections of the form (x1, x2 = −x1). In this case
x = 0, A(0) = π/12, A′(0) = −1/2, A′′(0) = 0. From (20) we receive

∂x

∂x1
= (−1/2)/(−3 + 0) = 1/6,

and from (19)
∂p1

∂x1
=

π

3
− 2

3
x1.

Substituting it into (18) we obtain
(

π

3
− 2

3
x1

)
π

12
+

(
2
3
πx1

)
· (−1

2
) · 1

6
= 0,

and, finally,
x∗1 =

π

4
.

So, the optimal points for location of the players are x∗1 = π/4, x∗2 = −π/4, with
equilibrium prices p1 = p2 = π2/6 and rewards H1 = H2 = π2/12.

Remark 4.1. Revisiting to the uniform distribution case (Section 2), the similar
calculation made in Section 4 proceeds as follows:

From (3), (7) and (9), we get

π
∂H1

∂x1
=

∂p1

∂x1

(
arccosx− x

√
1− x2

)
− 2p1

√
1− x2

∂x

∂x1
,

∂p1

∂x1
=

π

2
√

1− x2
+ x− x1 +

x1 − x2

2

(
2 + πx(1− x2)−3/2

)
∂x

∂x1
,

∂x

∂x1
=

1
4

[
1 +

1
2(1− x2)

+
x

2(1− x2)3/2

(
π

2
− arccosx

)]−1

,
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and hence

π

[
∂H1

∂x1

]

x=0

=
[

∂p1

∂x1

]

x=0

π

2
− 2[p1]x=0

[
∂x

∂x1

]

x=0

=
(

π

2
− 2x1

3

)
π

2
− 2πx1

1
6

=
π

4

(
π − 8

3
x1

)
> 0, ∀x1 ∈ (0, 1).

So we conclude that the expected reward attains at its maximum at x∗1 = −x∗2 = 1.
And this location gives, from (3) and (7),

p∗i = π ≈ 3.1415 and H∗
i = π/2 ≈ 1.5708, i = 1, 2. (21)

5. Another Non-uniform Case

Suppose that the customer’s distribution has the density

f(r, θ) = a +
3
2

(
π−1 − a

)
r, (0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π) (22)

where a > 0 is chosen such that f(r, θ) ≥ 0,∀r and θ. The adequate choice of a
will be explicitely given later. Also, equation (22) reduces to the uniform case if
a = π−1.

The expected rewards to the players for the price-pair (p1, p2) are

H1(p1, p2) = p1J(x), (23)

H2(p1, p2) = p2(1− J(x)), (24)

where x satisfies the equation (2), and

J(x) ≡ a(arccosx− x
√

1− x2) +
3
π

(1− πa)

1∫

x

r2 arccos
x

r
dr. (25)

Note that

J ′(x) = 3(π−1 − a)

1∫

x

√
r2 − x2dr − (3π−1 − a)

√
1− x2,

J ′′(x) = x

[
(3π−1 − a)(1− x2)−1/2 − 3(π−1 − a)

1∫

x

dr√
r2 − x2

]
,

and hence

J(x) J ′(x) J ′′(x)

x = 0 1/2 − 1
2
(3π−1 + a) 0

x = 1 0 0 +∞
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which will be used later.
The condition ∂H1

∂p1
= ∂H2

∂p2
= 0 yields

p1 = 2(x1 − x2)J(x)/(−J ′(x)), (26)

p2 = 2(x1 − x2)(1− J(x))/(−J ′(x)). (27)

Substituting these prices into (2), we obtain

1
2
(x1 + x2)− x =

2J(x)− 1
J ′(x)

. (28)

The right side of (28) for x ≥ 0 is an increasing and non-negative function with
2J(0)−1

J ′(0) = 0 and 2J(1)−1
J ′(1) = ∞. Therefore, the solution of the equation (28) exists

and is unique, and satisfies x ≤ x1+x2
2 .

If x1 + x2 = 0, then x = 0 satisfies (28), and, from (26)–(27),

p1 = p2 = 4x1/(3π−1 + a) (29)

H1 = H2 = 2x1/(3π−1 + a). (30)

Now we repeat the procedure employed in Section 4. From (23), (26) and (28), we
get

∂H1

∂x1
=

∂p1

∂x1
J(x) + p1J

′(x)
∂x

∂x1
,

−1
2

∂p1

∂x1
=

J(x)
J ′(x)

+ (x1 − x2)
{

1− J(x)J ′′(x)(J ′(x))−2

}
∂x

∂x1
,

∂x

∂x1
=

1/2
3 + (1− 2J(x))J ′′(x)(J ′(x))−2

,

and hence, using the values of J(0), J ′(0) and J ′′(0),
[
∂H1

∂x1

]

x=0

=
1
2

[
∂p1

∂x1

]

x=0

− 1
2
(3π−1 + a)[p1]x=0 ·

[
∂x

∂x1

]

x=0

= (3π−1 + a)−1 − 2
3
x1,

since [
∂x

∂x1

]

x=0

=
1
6

[
∂p1

∂x1

]

x=0

= 2(3π−1 + a)−1 − 2
3
x1

[
p1

]

x=0

= 4(3π−1 + a)−1x1.

Therefore, the condition
[

∂H1
∂x1

]

x=0

= 0 gives

x∗1 =
3π

2(3 + πa)
. (31)
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If we choose a > 3
2 (1− 2π−1) ≈ 0.5451, then x∗1 ∈ (0, 1). So, if we choose a such

that
3
2
(1− 2π−1) ≈ 0.5451 < a < 3π−1 ≈ 0.9549,

then x∗1 = 3π
2(3+πa) ∈ (0, 1), and f(r, θ) = a + 3

2 (π−1 − a)r > 0, ∀r : 0 ≤ r ≤ 1.

For example, for a = 0.6

x∗1 = 0.9647, and f(r, θ) = 0.6− 0.4225r. (32)

Remark 5.1. Comparing the three types of customer’s distribution, we obtain
Table 3, and the result is consistent with our reasonable intuition.

Table 3. Solution for three types of customer’s distribution.

”Center” ”Center and Seaside” ”Uniform”

6J
J

J
J

J
JJ









−1 10

3
π

6

HHHHH©©©©©

−1 10

0.6
6

−1 10

1
π

x∗1 π/4 ≈ 0.7854 0.9647 1
p∗1 π2/6 ≈ 1.6450 2.4815 π ≈ 3.1415
H∗

1 π2/12 ≈ 0.8225 1.2408 π/2 ≈ 1.5708
Based on Section 3 Eq. (32) Eq. (21) in Remark 4.1

We observe that the optimal location approaches the center of the circle, as much
as the customer’s distribution concentrates at the center. It is interesting to notice
that the equilibrium prices and the optimal rewards for the players become smaller.
So, ”small profits and quick returns” is true, even in the competition situation.

6. Conclusion

We considered above the location model with the cost function of the form F1 =
p + ρ2. The same approach can be used for the analysis of the game with another
cost functions, for instance, F2 = p2 + ρ2 and F3 = p + ρ.

Consider, for example, the location model with F = p2 + ρ2 where the roles of
the price and the distance for the customer are equal. In this case, the regions S1

and S2 are determined by the line

p2
1 + (x− x1)2 = p2

2 + (x− x2)2,

which is a parallel for the axis Oy with coordinate

x =
x1 + x2

2
+

p2
1 − p2

2

2(x1 − x2)
, (33)
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and the payoffs of the players will have the same form (3)-(4). Demanding that the
prices (p1, p2) satisfy the equilibrium conditions we obtain the formulas:

p2
1 =

x1 − x2

2

[
arccos x√

1− x2
− x

]
(34)

and

p2
2 =

x1 − x2

2

[
x +

π − arccosx√
1− x2

]
. (35)

With (33) we can represent it in the form

p1 = (x1 − x2)1/2

[
π

4
√

1− x2
−

(
x1 + x2

2
− x

)]1/2

p2 = (x1 − x2)1/2

[
π

4
√

1− x2
+

(
x1 + x2

2
− x

)]1/2

with

x =
x1 + x2

3
− π/2− arccosx

3
√

1− x2
. (36)

The results of numerical calculations are presented in the Table 4.

Table 4. The equilibrium prices for various x1 and x2.

x2 = 0.6 0.4 0.2 0 −0.2 -0.4 −0.6 −0.8 −1
p1 0.309 0.454 0.578 0.692 0.802 0.909 1.015 1.121 1.227

x1 = p2 0.488 0.671 0.798 0.895 0.972 1.033 1.082 1.121 1.151
0.8 H1 0.088 0.143 0.199 0.259 0.325 0.397 0.475 0.560 0.652

H2 0.348 0.460 0.523 0.560 0.578 0.582 0.575 0.560 0.538
x 0.342 0.295 0.247 0.198 0.149 0.099 0.049 0 −0.049
p1 0.334 0.489 0.621 0.742 0.858 0.970 1.082 1.190

x1 = p2 0.461 0.633 0.752 0.843 0.914 0.970 1.015 1.050
0.6 H1 0.114 0.183 0.251 0.324 0.401 0.485 0.575 0.672

H2 0.302 0.396 0.447 0.475 0.486 0.485 0.475 0.458
x 0.247 0.198 0.149 0.099 0.049 0 −0.049 −0.099

The optimal location of the players can be found in the same way as in Sections
4 and 5. By (34), (36)

2p1
∂p1

∂x1
=

1
2

[
arccosx√

1− x2
− x

]
+

x1 − x2

2

[
− 1

1− x2
+

x arccosx

(1− x2)3/2
− 1

]
∂x

∂x1
,

∂x

∂x1
=

[
3 + (1− x2)−1 + x(π/2− arccosx)(1− x2)−3/2

]−1

,

and, consequently, (see, also, Remark 4.1)

π

[
∂H1

∂x1

]

x=0

=
π

2

[
∂p1

∂x1

]

x=0

− 2[p1]x=0 ·
[

∂x

∂x1

]

x=0

=
π

2
π − 2x1

4
√

2πx1
− 2

√
πx1/2

1
4
.
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Therefore, the condition
[

∂H1
∂x1

]

x=0

= 0 gives us the optimal location for this case

x∗1 =
π

6
≈ 0.5253.

Comparing with the uniform case considered in Section 2, where the optimal loca-
tion was x∗1 = 1, we can conclude that the choice of the cost function influences
strongly on the solution.
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