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Until now the fictitious play approach to optimization has only been demonstrated on a dynamic

traffic routing problem; therefore, it is necessary to apply this method to other problems in order to

demonstrate its effectiveness as a heuristic optimization method. We used the large scale situational

awareness simulation developed for the Multidisciplinary University Research Initiative (MURI)

on “Low-Energy Electronic Design for Mobile Platforms” to test the fictitious play approach, since

we already possessed bench mark solutions from a simulated annealing approach previously ap-

plied. We found that the fictitious play approach yielded similar solutions to simulated annealing

and required comparable computational effort, while they both outperformed pure random search.

This demonstrates the effectiveness of a fictitious play approach to optimization for the large scale

situational awareness simulation, providing additional evidence as to fictitious play’s value as an

optimization heuristic. (Programming: Integer: Heuristic ; Simulation; Military)

1. Introduction

While the concept of fictitious play has been around for some time (Brown 1951), its application

to optimization problems has just begun. Garcia et al. (2000) applied the fictitious play approach

to optimization on a large-scale dynamic traffic network and found favorable results. Lambert

et al. (2002) formalized this approach, calling itsampled fictitious playand providing a rigorous

theoretical foundation. Before any optimization heuristic can be considered successful it must be

tested on many real world problems.

In this paper we apply sampled fictitious play to the large scale situation awareness simula-

tion developed for the Multidisciplinary University Research Initiative (MURI) on “Low-Energy
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Electronic Design for Mobile Platforms”. Stark et al. (2002) approached this problem with simu-

lated annealing, the results of which were used as a benchmark for the solutions found by sampled

fictitious play. We also implemented pure random search in order to provide evidence supporting

the need for these heuristic methods within this problem. We found that sampled fictitious play

performed as well as simulated annealing, yielding similar results, while both simulated annealing

and sampled fictitious play outperformed pure random search by as much as25%. This provides

evidence of the effectiveness of the sampled fictitious play algorithm as an optimization heuristic.

2. Fictitious Play

Let Γ be a finite common interest game in strategic form with the set of playersN = {1, 2, . . . , n}.
We denote the finite set of strategies of playeri ∈ N by Y i, and letY = Y1 × Y2 × · · · × Yn.

Denote thepayoff functionby u : Y → R, whereR denotes the set of real numbers.

For i ∈ N , let ∆i be the set of mixed strategies of playeri. That is,

∆i =



f i : Y i → [0, 1] :

∑

yi∈Yi

f i(yi) = 1



 .

Eachf i ∈ ∆i can be viewed as an assignment of probabilities, orbeliefs, to the elements ofY i; in

particular, with a slight abuse of notation we identify the pure strategyyi ∈ Y i with the extreme

point of∆i which assigns a probability 1 toyi. Set∆ = ∆1 ×∆2 × · · ·∆n.

We extendu to be the payoff function in the mixed extension ofΓ. That is, for anyf ∈ ∆,

u(f) = u(f 1, f 2, . . . , fn) =
∑
y∈Y

u(y1, y2, . . . , yn)f 1(y1)f 2(y2) · · · fn(yn). (1)

Note that we have assumed players choose their strategies independently.

Let g ∈ ∆, and letε ≥ 0. We say thatg is anε-equilibrium if for eachi ∈ N

ui(g) ≥ ui(f i, g−i)− ε for all f i ∈ ∆i,

where(f i, g−i) = (g1, . . . , gi−1, f i, gi+1, . . . , gn). A Nash equilibriumis a0-equilibrium, and will

be simply referred to as anequilibrium.

Denote byK the set of all equilibria ofΓ, and denote by‖ · ‖ the Euclidean norm on the

Euclidean space that may be viewed as containing∆. Forδ > 0 set

Bδ(K) = {g ∈ ∆ : min
f∈K

‖g − f‖ < δ}.
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A belief pathis a sequence(f(t))∞t=1 in ∆. We say that the belief path(f(t))∞t=1 converges to

equilibrium if each accumulation point of(f(t))∞t=1 is an equilibrium point; that is, if for every

δ > 0 there exists an integerT such thatf(t) ∈ Bδ(K) for all t ≥ T . In other words, a belief path

that converges to equilibrium is eventually arbitrarily close to some equilibrium ofΓ.

A path in Y is a sequence(y(t))∞t=1 of elements ofY. To each path(y(t))∞t=1 we naturally

associate a belief path(fy(t))
∞
t=1 by letting

fy(t) =
1

t

t∑
s=1

y(s) for every t ≥ 1.

In the previous equation, they(s) should be viewed as elements of∆.

We now formally define a fictitious play process. Fori ∈ N and forf ∈ ∆, let

vi(f) = max{ui(gi, f−i) : gi ∈ ∆i}.

That is,vi(f) is the value of playeri’s best response to the other players’ strategiesf−i. Notice

from the definition ofui(f), that vi(f) can always be attained by an extreme point of∆, i.e.,

max{ui(gi, f−i) : gi ∈ ∆i} = max{ui(yi, f−i) : yi ∈ Y i}. A path(y(t))∞t=1 is afictitious play

processif for every i ∈ N ,

ui(yi(t + 1), f−i
y (t)) = vi(fy(t)) for every t ≥ 1. (2)

Notice that, as defined by (2),yi(t + 1) is a best response of playeri to the mixed strategies of the

other players, as represented by the beliefsf−i
y (t).

We define the function̄U i
k(·, f−i

y (t)) : Y i → R by

Ū i
k(y

i, f−i
y (t)) =

k∑
j=1

ui(yi, Y −i
j (t))

k
(3)

where theY −i
j (t) are iid random vectors drawn from the distribution given byf−i

y (t). Then

Ū i
k(y

i, f−i
y (t)) is a sample mean (with sample sizek) of player i’s utility when playing or us-

ing yi. Let ūi
kt

(yi, f−i
y (t)) denote the realization of̄U i

kt
(yi, f−i

y (t)). If the “best response” of each

player is chosen based on sample means instead of the actual means, i.e.,yi(t+1) is chosen so that

yi(t+1) ∈ argmax{ūi
kt

(yi, f−i
y (t)) : yi ∈ Y i} for somekt ∈ {1, 2, . . .}, we will call the stochastic

process(y(t))∞t=1 asampled fictitious play process.

Sampled Fictitious Play Algorithm

3



Initialization: Sett = 1 and selecty(1) ∈ Y = Y1×Y2× . . .×Yn arbitrarily; setfy(1) = y(1).

Iteration t ≥ 1: Givenfy(t), find

yi(t + 1) ∈ argmax
yi∈Yi

{ūi
kt

(yi, f−i
y (t))}, i = 1, . . . , n, (4)

whereūi
kt

(yi, f−i
y (t)) is the realization of̄U i

kt
(yi, f−i

y (t)) as defined by (3). Setfy(t + 1) =

fy(t) + 1
t+1

(y(t + 1)− fy(t)), incrementt by 1 .

The following theorem guarantees that the previous algorithm will generate a Nash equilibrium of

the game.

Theorem 1 Let Γ be a finite game in strategic form with identical payoff functions. Then ev-

ery sampled fictitious play processy(t) with sample sizeskt = dCtβe for β > 1
2

andC > 0, will

converge in beliefs to equilibrium with probability 1.

Proof: See Lambert et al. (2002).

By applying the sampled fictitious play algorithm we will generate a Nash Equilibrium of the

game, this being our surrogate for the optimal solution to the optimization problem.

3. Situation Awareness Problem Description

In the Multidisciplinary University Research Initiative (MURI) on “Low-Energy Electronic Design

for Mobile Platforms,” we try to solve a situational awareness problem. In this problem, a number

of mobile nodes desire to keep track of the location of each other over some time duration. The

nodes operate with batteries and thus have a finite energy constraint. The transmission of informa-

tion by a node requires a certain amount of energy, as does the processing of any received signal.

The goal of the design is to minimize the mean absolute error of the position estimates. There is

a plethora of parameters that could be considered for optimization, but in order to develop a sys-

tematic and computationally tractable design methodology, we divide the problem into interacting

design layers, namely, device layer, processing layer, and network layer as illustrated in Figure 3,

and perform the optimization over a small set of parameters.

3.1 Device Layer

At the device layer, we assume each node has an omni-directional dipole antenna and a small

power amplifier. We capture the operation of the amplifier and the coupling among the device
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layer and other higher layers through three parameters: the total consumed powerPtotal, the output

powerPout, and the AM-to-AM voltage characteristics (Borich et al. 1998). We characterize the

relation between the average amplifier output power and the energy constraintEct for transmitting

a packet by

Pout = g1(Ect). (5)

This relation is tabulated for use by higher layers. In certain situations it is possible that the actual

consumed energy at the transmitter,Eta, is less than the constraint on the consumed energy at the

transmitter. In this case we define a function

Eta = g2(Ect) (6)

that maps the energy constraint to the actual energy.

3.2 Processing Layer

Figure 1 shows the basic block diagram of the processing layer. The channel encoder adds redun-

dancy to a block of input information to protect it from channel errors. The output of the channel

encoder is interleaved, modulated, and spread in bandwidth. The resulting signal is amplified by

a power amplifier (PA) and transmitted. At the receiver the inverse operations are performed to

recover the block of information. Even though each of these operations consumes power, we focus

on the energy being consumed by the power amplifier, the demodulator, and the channel decoder

because these elements consume much more energy than other elements in the system. We have

covered the performance-energy tradeoff of the amplifier in Section 3.1; therefore, we emphasize

the tradeoff between the demodulator and decoder in detail here.

Channel
Encoder

Interleaver Modulator Spreader PA

Channel
Decoder

Deinterleaver Demodulator

Channel

Despreader

Pcc
Pmod

PDeint Pdemod

Pamp

Pdespread

Pspread

Pcd

PInt

Figure 1: Processing layer block diagram
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The amount of energy consumed while performing coding and modulation operations depends

on the number of bits used to represent the data. The larger the number of bits used, the better the

performance. However, the more bits used in the representation, the more energy consumed by the

demodulator and decoder (Rabaey 1995). We letNE denote the number of quantization bits used

in the demodulator for data and coefficients, andND denote the number of quantization bits used

in the decoder.

The performance measure that couples the processing layer with the network layer is the packet

error probability,Pe. In general,Pe depends on the energy constraintEct for the transmitter to send

a packet, the energy constraintEcr for the receiver to process a packet, the received signal-to-noise

ratio SNR, the number of bits of quantization used in the demodulatorNE, and the number bits

of quantization used in the decoderND. SinceNE andND affect only the performance of the

processing layer, we locally optimizePe with respect toNE andND for givenEct, Ecr, andSNR

Pe = min
ND,NE

f(ND, NE, SNR, Ect, Ecr) = g3(SNR,Ect, Ecr). (7)

We therefore generate a parameterized version ofPe with respect toEct, Ecr, andSNR, and build

a performance table for these parameterized versions ofPe. In addition, in order to calculate the

actual energy needed to demodulate and decode signals, we model each individual algorithm using

digital circuits (Hong et al. 1999, 2000). Because of the integer constraint on quantization bits used

in the demodulator and decoder, the actual energy consumed by the receiver,Era, may be less than

the constraint on energyEcr. Let N∗
E(SNR, Ect, Ecr) andN∗

D(SNR, Ect, Ecr) be the optimum

number of quantization bits in the demodulator and decoder respectively. Thus the actual energy

consumed by the receiver is a function of the constraint on the energy and signal-to-noise ratio,

Era = g(N∗
E, N∗

D) = g4(SNR,Ect, Ecr). (8)

The network layer (and global optimization) utilizes the table ofPe as a function ofEct, Ecr, and

SNR for calculating its own global performance.

3.3 Network Layer

We consider a network of nine nodes moving according to a specific mobility model. Each node

attempts to keep track of the positions of all the other nodes by means of communication and

estimation. We present the mobility models, the propagation models, the communication protocols,

and the estimation schemes used by the nodes.
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For the mobility model, we consider a region of size6 km× 6 km and a group of nine nodes

initially deployed in a zone as shown in Figure 2. Each node in the network moves to a new

location at the end of everyTm seconds, whereTm = 1. All nodes travel at average speedv m/s,

wherev = 1, toward the common destination located atG = (6000, 6000) m. At each step, each

node’s motion is subject to a random disturbance inx andy coordinates.

Goal

node

1 m

1 m

6 km

6 km
1 km

1 km

1 m/s

 

Figure 2: Mobility Model

The transmitted signal from each node experiences propagation loss and fading. We assume a

two-path propagation model from the transmitter to the receiver, which consists of a direct path and

a path reflected off the ground with180 degree phase change at the reflection point. The cumulative

effect of this model resulted in an attenuationA between received power and transmitted power,

which is usually proportional to the fourth power of the distance between the transmitter and the

receiver.

The transmission protocol is that each node transmits its position information packets everyT

seconds, whereT is a design parameter. The medium access control is Time Division Multiple

Access (TDMA), where each node is assigned a transmission slot of durationT/N , whereN =

9 in our case. The slot duration is much larger than a packet duration. In a given slot, each

packet transmission is followed, with probabilityq, by a retransmission, and so forth, until the slot

ends. The retransmission probabilityq is considered as a design parameter because more complex

automatic retransmission request (ARQ) schemes are not well-suited to the broadcast environment

under consideration. The energy used for each packet transmission or retransmission is upper

bounded byEct. The packet may be received by many other nodes, each of which consumes a

certain amount of energy to process the packet, which is upper bounded byEcr. When a node
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receives a packet, it does not send back any acknowledgment, nor does it forward the packet it

receives to other nodes. As a consequence, every packet in the transmission protocol travels only

one hop. In summary, we chooseT , q, Ect, andEcr as the design parameters at the network layer

that affect global performance.

Each node in the network estimates the other nodes’ positions everyTe seconds, whereTe = 2.

Since according to the mobility model the nodes move toward the goal in a straight line subject to

noise, the new estimate is the extrapolation toward the goal of the position contained in the packet

that was last received correctly, by an amount proportional to the product of velocity and time.

The estimation error of nodej’s position made by nodei at timekTe is defined as

e
(i,j)
k = w

(j)
k − ŵ

(i,j)
k , (9)

wherew
(j)
k is the actual position of nodej at timekTe, andŵ

(i,j)
k is the estimate of nodei on the

position of nodej at timekTe. For the purpose of optimization, we use mean absolute error as the

performance metric,

J (i) = E

[
1

K(I − 1)

I∑

j=1,j 6=i

K∑

k=1

∥∥∥e
(i,j)
k

∥∥∥
]

, (10)

whereKTe is the time horizon under consideration. In the above equation, the expectation is with

respect to the mobility, the noise in the receiver, and the randomness in retransmission. The overall

network performance measure is given by the average of the position estimation error contributed

by all the nodes in the network:

J =
1

I

I∑
i=1

J (i). (11)

The goal is to minimizeJ over the parameters that affect global performance subject to a constraint

on the energy used by each node. LetE(i) denote the energy used by nodei over the time horizon

KTe. The constraint on energy is

max
1≤i≤I

E(i) ≤ E. (12)

The objective is to determine the design parameters

[T ∗, q∗, E∗
ct, E

∗
cr] = arg min

[T,q,Ect,Ecr ]

max E(i)≤E

J(T, q, Ect, Ecr) (13)

and the corresponding performanceJ∗ = J(T ∗, q∗, E∗
ct, E

∗
cr).
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Figure 3: Coupling of different layers

4. Optimization Procedure

The parameters that describe the coupling among the layers are shown in Figure 3.

The optimization is, in part, simulation-based because we do not possess precise analytical

expressions for the local and global optimization criteria we employ. The optimization program

attempts to find the global minimum of the objective functionJ in equation (11).

The global optimization and simulation modules perform the following steps in attempting to

find the globally optimal solution:

Step 1.The “optimizer” module determines the (new) parameters[T, q, Ect, Ecr], for which the

network performance is to be evaluated.

Step 2.The “network simulator” module approximates the objective function in (11) for the

given [T, q, Ect, Ecr] using Monte-Carlo simulation techniques. It returns the average

position estimation error to the “optimizer” module.

Step 3.Steps 1 and 2 are repeated until a terminating condition is reached.

The “optimizer” module used in Step 1 is the sampled fictitious play algorithm, which has

been discussed in Section 2. In Step 2, we implement the “network simulator” module inOPNET,

a widely used network development and analysis tool (OPNET 2000). For the given parameters

and interacting variables, the “network simulator” calculates the objective function, i.e., average

position estimation error, through network simulation. As mentioned in Sections 3.1 and 3.2, the

performance of the processing layer and device layer and interacting parameters has been tabulated

offline so that the network layer can use them as function calls. In Step 3, the termination condition

that we chose for our experiments was to stop after 30 iterations.
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5. Results
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Figure 4: Comparison of optimization results

Figure 4 is a comparison of the results found using sampled fictitious play, withC = .01 and

β = .51, with the results found using simulated annealing and using random search. From the

results, we can see the performance of simulated annealing and fictitious play algorithms are close,

and they both outperform the random search algorithm by as much as 4-25%. The low percentage

improvement occurs when the battery capacity is low, where the performance generally has a

large variance. These results provide additional support to the usefulness of fictitious play as an

optimization heuristic.
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