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1 Introduction

Game theory is the formal study of conflict and cooperation. It provides a language to formulate,
structure and analyze scenarios where the actions of several agents are interdependent. Game-
theoretic concepts are a major tool in theoretical economics [19]. In theoretical computer science,
two-player games are familiar in models of complexity [5], for proving lower bounds for random-
ized algorithms [34], and in the competitive analysis of online algorithms [4]. Game theory is
also an essential ingredientafgorithmic mechanism desig@2], which studies algorithmic be-
haviors of selfish agents in, for example, distributed optimization problems. Game theory is also
recognized as a main tool for modeling and analyzing interactions on the internet. This is force-
fully argued by Papadimitriou [24], who also notes significant computational questions posed by
game theory, like the complexity of finding one Nash equilibrium of a two-player game in strategic
form. (The strategic form is a table listing all actions of the players and their resulting payoffs; see
Section 2 for further details.)

The contribution of this paper is a hew conceptofrelated equilibria for extensive games
which is polynomial-time computabl®r two-player games without chance. An extensive game
is a detailed description of a game by means of a gaeegwhich incorporates chance, the moves
of the players, and their partial information about the game state by meam®whation sets
The correlated equilibrium, due to Aumann [1], is a generalization of the central game-theoretic
concept of Nash equilibrium in that it allows for correlation of the players’ actions with the help
of a mediating device. It describes the strategic possibilitigg@fplay communicatiobetween
the players [20]. Since this done implicitly in the solution concept, rather than by an explicitly
modeled initial communication stage in the game, the game itself can be kept simpler. The basic
framework of correlated equilibria, namely coordination, communication, and incentives, is per-
vasive in economic theory, in particular mechanism design [19, 22]. In game theory, the study of
adapting equilibrium concepts to the dynamic game tree structure has a long history, both for Nash
[29] and correlated equilibria [9, 18, 11, 27].

Our new concept, which we caktensive form correlated equilibriu(BFCE), applies more
naturally to the game tree structure since coordination is achieved by signals that are received “lo-
cally” at information sets. In contrast, the original strategic-form concept by Aumann “globally”
recommends entire strategies in advance. (In an extensive game, a strategy specifies a move for
every information set of the player.) The EFCE is different in withholding the recommended move



until the information set is reached. Because the players know less, the EFCE captures a larger set
of possible equilibria.

A second, important feature of the EFCE is that it can be computed in polynomial time, in the
size of the game tred the game has two players with perfect recall (meaning they do not forget
what they knew or did earlier), and no chance moves. This is done by suitable linear equalities and
inequalities that represent the set of all EFCE for the game. These linear constraints are polynomial
in number, and are reminiscent of dynamic programming. They extend a similar construction for
Nash equilibria of two-player extensive games known astwience forpdue to [15, 30] and,
in retrospect, [25]. The sequence form allows to compute Nash equilibria of zero-sum two-player
games in polynomial time (algorithms for general two-player games are surveyed in [32]).

The polynomial-time computability of EFCE for two-player gamesadsstraightforward. The
constraints defining an EFCE look natural, but in general are only necessary conditions. Interest-
ingly, the problem of finding an EFCE (with maximum payoff sum, say) for two-player games
with chance moves is already NP-hard. This had been established recently [6] for the classic
strategic-form correlated equilibrium. Even for two-player, perfect-recall extensive geithesit
chance moves, it is NP-hard to findtategic-form correlated equilibriurwith maximum payoff
sum [31] (an own result that we omit from the present paper due to space constraints). The compu-
tational tractability, at least for two-player games and no chance, is one motivation for introducing
the EFCE concept. The EFCE also seems to be the first case of a game-theoretic concept where
the introduction of chance moves marks the transition from polynomial-time solvable to NP-hard
problems.

2 Game-theoretic background and related work

A basic model studied in noncooperative game theory issttaegic form(also called normal
form). A game in strategic form is given by a set of strategies for each player, and specifies the
payoff for each player resulting from eastrategy profile(a strategy profile is a combination of
strategies, one for each player). The game is plapediltaneoushby each player choosing a
strategy, unaware of the choices of the other players, whereupon the players receive their payoffs.

The predominant solution concept for strategic-form games islgst equilibriunf21]. This
is a strategy profile such that no player can improve his payoff by unilaterally changing his strategy.
In order for Nash equilibria to exist, it may be necessary that playersnijsed strategies A
mixed strategy of a player is given by a randomization over the given set of “pure” strategies of
that player. A mixed strategy profile is a Nash equilibrium if no player can get a lesipected
payoff, assuming that the strategies of the other players stay fixed.

Any finite strategic-form game has a Nash equilibrium in mixed strategies [21]. The known
constructive proofs, however, lead at best to exponential-time algorithms for finding one equilib-
rium. The problem of finding a single Nash equilibrium is considered as one of the most important
concrete open questions on the boundary of P today [24].

The set ofall Nash equilibria of a game is disconnected and computationally difficult in the
sense that maximizing a linear function of the payoffs of the players is NP-hard [13]. The concept
of correlated equilibrium[1], which generalizes Nash equilibrium, however, is computationally
more tractable since the set of correlated equilibria of a game is a convex polytope. It differs from
a Nash equilibrium in that it allows for coordinated random choices of the players. A commonly
known joint distribution on strategy profiles is used to select one of these profiles, whereupon
each player is told only his strategy in that profile. The selection of the profile requires some



device ormediator (The mediator can be made unnecessary by using private pairwise message
exchanges [2, 3], or suitable cryptographic protocols [8, 28].) After the players have learned their
recommended strategy, each has a posterior conditional distribution on what the other players have
been recommended to do. Assuming they follow this recommendation, the equilibrium condition
states that the player must have no incentive to deviate from the own recommended strategy.
Thesencentive constraintsan be described by linear inequalities, derived from the payoffs, with
the joint probabilities for the strategy profiles as variables (see (1) below). They compare any
two strategies of a player and are hence quadratic in the size of the game. The set of correlated
equilibria is therefore a polyhedron defined by a polynomial number of linear inequalities. A
correlated equilibrium with maximum payoff sum, for example, can therefore [14] be found in
polynomial time [13].

A game tree oextensive gami&s much more detailed than the strategic form. Tree nodes
represent game states and tree edges the players’ moves. Nodes may also bethamgdse-
lecting the next node according to known probabilities. A game play starts at the root and ends at
a leaf of the tree, where each player receives a payrafitial informationin an extensive game
is modeled byinformation set417]. An information set is a set of nodes that all have the same
player to move and the same choices (denoted by labels on tree edges) at each of those nodes. A
player is informed only about the information set she is at but not at which node, and her move
is by definition the same at each of these nodes. In a game of perfect information (like chess), all
information sets are singletons and can be identified with the players’ decision nodes.

A strategyin an extensive game is defined as a tuple of moves, one for each information set of
the player. The strategic form of the game is obtained by listing the payoffs, or expected payoffs
if there are chance moves, that result in the tree for any strategy profile. Standard methods for
finding Nash equilibria apply to the strategic form of the extensive game. If the game tree is the
input, this is computationally very inefficient since the number of strategies is clegrbnential
in the number of information sets of a player, and hence typically exponential in the size of the
game tree. A strategic descriptionlofear sizein the size of the game tree is teequence form
of an extensive game [25, 15, 30]. It is based on sequences of moves, which are the moves of
a particular player along a path in the game tree. The sequences are played according to certain
“realization” probabilities, which are characterized by linear equations, one for each information
set of a player (see equations (2) below). The resuliadjzation plansare the analog of mixed
strategies for the sequence form. They can be translatezhiavior strategiefl 7], which describe
how to randomly choose moves at an information set. Itis this “local” randomization of a behavior
strategy that reduces the complexity from exponential to linear, as opposed to the “global”, and
very redundant, description by a mixed strategy that first picks one of the exponentially many pure
strategies which is then used by the player in the tree. With the sequence form, zero-sum game
trees can be solved in polynomial time.

Is there a “sequence form” to compute correlated equilibria of extensive games efficiently? The
answer isnegativewhen considering two-player extensive games with perfect recall and chance
moves: Chu and Halpern [6] recently established that finding a maximum-payoff-sum correlated
equilibrium for such games is NP-hard to compute, even if the players have identical payoffs.
The set of correlated equilibria can therefore not be characterized by a polynomial number of
inequalities in the size of the game tree, unless RP. The proof of this result converts a SAT
instance to an extensive game ([6] actually uses a “possible worlds” model) where the strategic
form is similar to a truth table for the SAT formula, with a chance move picking one of the clauses.
The chance move can be replaced by an active randomization of one of the players, using an initial



generalized “rock—scissors—paper” game, to show thatwitboutchance moves, strategic-form
correlated equilibria with maximum payoff sum are NP-hard to compute [31].

The exponential number of pure strategies in an extensive game seems to be unavoidable when
considering correlated equilibria, as long as these are defined in terms of the strategic form. Our
EFCE concept is aalternative definitionof correlated equilibrium for extensive games. It is
similar to the known strategic-form correlated equilibrium in that it generates recommendations
of movesbeforethe game starts. However, a player receives the signal with the recommended
movewhen reaching an information seds if in a “sealed envelope” that she can open then, but
not earlier.

The EFCE generalizes Nash equilibria in behavior strategies, and is closer in spirit to the
dynamic description of the game by a tree than the strategic-form correlated equilibrium. At the
same time, the game is altered minimally since the mediator generates the signals at the beginning
of the game. Other extensions of correlated equilibrium have been proposgukfificclasses
of games, like Bayesian games [10, 26, 7, 11] or multi-stage games [9, 18]. In contrast, our
concept seems to be the first that applieggneralextensive games. For instance, “autonomous”
correlated equilibria [9, 27] and “communication equilibria” [9, 18] are only defined for multistage
games, as they rely on devices which give private recommendations to each player at every stage
the game. In the case of communication equilibria, the players can send messages to the device at
every stage. Even more general communication equilibria are considered in [27] where the device
can also base recommendations on past play.

Any strategic-form correlated equilibrium is an EFCE, but the set of EFCE is in general larger.
This is known in special cases [18, Fig. 2] and unsurprising since in an EFCE the players have
less information and so incentives can be more easily met. In multistage games, any autonomous
correlated equilibrium is an EFCE. However, the converse is not true unless further assumptions
are made on the players’ information [27]. It is easy to see that there is no inclusive relationship
between communication equilibria and EFCE.

3 Example of an extensive-form correlated equilibrium

Figure 1 shows an example of an extensive game. Player 1, a student, chooses@) godzhd

(B) education, which defines his “type”. Afterwards, he applies for a summer research job with a
professor, player 2. Player 1 sends a sighalr Y (we add primes as iX’ andY’ only to make
choices at different information sets distinct). The professor can distinguish the signals but not the
type of player 1, as shown by her two information sets. She can either let the student work with
her () or refuse to do sarf. Mover always gives payoff§0, 1) to players 1 and 2, butresults in

(2,3) for G versus(3,0) for B.

In games of incomplete information, the type is normally chosen by a chance move, not the
player himself. However, larger games of this sort are not easy to solve in general, so that this
game without chance moves demonstrates better our EFCE concept.

The Nash equilibria of this game are given as follows. Player 2 refuses to work with the
student, with the stratedy,r’), since any positive probability fdror I’ would induce player 1 to
chooseB along with the appropriate sign#lorY, which is better tha. Thenl orl’ is certainly
not optimal for player 2. Hence the choice®br G and of the signal for player 1 do not matter
(he gets payoff 0 anyhow), as long as in no information set of player 2, the probabil@wensus
B is high enough to make her switchlto



FIGURE 1

This “economically inefficient” outcome of the game could be avoided if player 1 could choose
G and signal this appropriately, without being able to mimic this when he is of Byp@his
requires coordination between the two players, as offered by a correlated equilibrium. However,
it is not possible with any such concept based on the strategic form, or multiple stages [9, 18],
where player 1 gets the recommendations for both tgpaadB. An EFCE, however, gives this
possibility: Suppose the reduced pure strategy profil€sX, ), (I,r")) and((G,Y, ), (r,I")) are
chosen with probability 1/2 each. The moves in these profiles are revealed to the players when
reaching their respective information sets. Player 1 is not recommended tB altayhence gets
no signalX’ or Y’, indicated by %”. After G, he knows that he will get a signXl or Y that is
perfectly correlated with player 2’'s choiteor I’ to let him work with her, giving him payoff 2.
When deviating and choosirg) however, the signal will be not revealed, aidandY’ will both
have probability 1/2 for the responser r’, giving the expected payoff 3/2 which is less than 2
when following the recommendation, so player 1 indeed follows it. Player 2 gets recommendation
| or|” and knows that player 1 is of the good tyewhen following his recommendation, $o
andl’ are also optimal for player 2.

4 Consistency constraints

Throughout, we consider an extensive two-person game with perfect recall and no chance moves.
We will show that the set of EFCE for such a game can be describegimatinumber (polyno-
mial in the size of the game tree) of linear constraints. The linear constraints vatirsstency
constraintsthat describe the possible probability distributions on profiles of moves to be recom-
mended to the players, and additiomatentive constraintsdescribed in the next section, that
assert when it is optimal for the players to follow these recommendations. As a prerequisite, we
first review correlated equilibria for a two-player game in strategic form, and subsequently the
sequence form of an extensive game as used for finding Nash equilibria.

A correlated equilibrium of a strategic-form two-player game can be defined as follows [1, 20].
Leti and | stand for strategies of player 1 and 2, respectively, with resulting pagofésdb;;.
A correlated equilibrium is a distribution on strategy pairs. When a strategy(ip@jiris drawn
according to this distribution, player 1 is tolcand player 2 is told. The probabilitiesZ;; are
nonnegative and sum up to one, which definescibresistency constraintd~urthermore, for all



strategies andk of player 1 and all strategigsand| of player 2,
Zzij aj = zzij &;j, Zzij bij > Zzij by . (1)
J J I ]

Theincentive constraint§l) state that player 1, when recommended to pldyas no incentive
to switch fromi to k, given (up to normalization) the conditional probabilitis on opponent
strategieg. Analogously, the second inequalities in (1) state that player 2, when recommended to
play j, has no incentive to switch 1o
The strategic-form description of an EFCE is computationally disadvantageous because the
number of pure strategies is exponential in the size of the game tree. For finding Nash equilibria,
the sequence form is of linear size. However, its randomized strategies, called “realization plans”,
are more complicated to describe than mixed strategies. Similarly, our characterization of EFCE
with sequences will require more complicated consistency constraints than the strategic form.
We use a standard notation for extensive games [33]. The non-terdéneionnodes of
the game tree are partitioned intdormation sets Each information set belongs to exactly one
playeri. The set of all information sets of playeis denoted;. The set of choices or moves at an
information seth is denotedC,. Each node irh has|C;,| outgoing edges, which are labeled with
the moves irC;,,. Choice set€y, andCy for h # k are disjoint. Thesequence formses sequences
of moves of a particular player as encountered along the path from the root to any node in the
game tree. By definition, playéhasperfect recallif all nodes in an information sétin H; define
the same sequenog of moves for playei. Hence, any move ath is the last move of a unique
sequencenc. This defines all possible sequences of a player except for the empty se@uence
The set of sequences of playas denoteds, so

S={0} U {onc|heHceCy}.

For brevity, we also denote sequences of player bland sequences of player 2 byand the
sequence leading to an information ketf player 2 byty,.

The sequence form is applied to Nash equilibria as follows [15, 30, 33]. Sequences are played
randomly according teealization plans A realization plarx for player 1 is given by nonnegative
real numberx(o) for o € S, a realization plary for player 2 by nonnegative numbey&r) for
T € $. These denote the realization probabilities for the sequemesesit when the players use
certain mixed strategies. For player 1, such a realization plan is characterized by the equations

x(0) =1, Z X(onc) = X(On) (heHy), (2)

and analogously for player 2 withandH, instead o andH;. Equations (2) hold naturally when
player 1 uses a behavior strategy, in particular a pure strategy, and hence also for a mixed strategy
which is a convex combination of pure strategies. A realization plafilling (2) results from a
behavior strategy that chooses manat an information sét € H; with probabilityx(onc) /X(oh)
if x(on) > 0 and arbitrarily ifx(on) = 0. This yields a canonical proof of Kuhn’s theorem [17] that
asserts that a player with perfect recall can replace any mixed strategy by an equivalent behavior
strategy. The behavior atis unspecified ik(o) = 0, which means that is unreachable due to
an earlier own move. Not specifying the behavior at such information sets is exactly what is done
in the reduced strategic form.

Because the game has no chance moves, any leaf of the game tree defines a unigue) pair
of sequences of the two players. laét, 1) andb(o, 1) denote the respective payoffs to the players

6



at that leaf. Then if the two players use the realization plaasdy, their expected payoffs are
given by the bilinear expressions

Y X(0)y(ma(o,1), > x(0)y(r)b(a,1), (3)

respectively. The expressions in (3) represent the sum, over all leaves, of the payoffs, multiplied
by the probabilities of reaching the leaves. The sums in (3) may be taken oweedl and

T € $ by assuming thaa(o, 1) = b(o,1) = 0 whenever the sequence péir, 1) does not lead to

a leaf. This is useful when using matrix notation, where the payoffs in the sequence form are
entriesa(o,T) andb(o, 1) of sparsgS; | x |S| payoff matrices and andy are regarded as vectors.
Using linear programming duality, conditions for Nash equilibria can then be written in terms of
payoffs and transposed constraints (2) which require one equation and one dual variable for each
information set [15, 30]. This results into a small linear program for zero-sum payoffs, and a small
linear complementarity problem for non-zero-sum payoffs [16].

In order to describe an EFCE, the produgt) y(1) in (3) of the realization probabilities far
in §; andt in S will be replaced by a more genejaint realization probability(o, 1) that the pair
of sequenceéo, 1) will be recommended to the two players, as far as this probability is relevant.
These probabilitieg(o, 1) define what we call aorrelation planfor the game.

In an EFCE, a player gets a move recommendation when reaching an information set. The
move corresponds uniguely to a sequence ending in that move. For player 1, say, the sequence
denotes a row of thé5 | x || correlation plan matrix. From this row, player 1 should have a
posterior distribution on the recommendations to player 2. This behavior of player 2 must be
specified not only when player 1 follows a recommendation, but also when player 1 deviates, so
that player 1 can decide if the own recommendation is optimal. The recommendations to player 2
off the equilibrium path are therefore important. Otherwise, one could simply choose a distribution
on the leaves of the tree (with a correlation plan that is sparse like the payoff matrix), and merely
recommend to the players the pair of sequences corresponding to the selected leaf. This does not
suffice, since an EFCE must recommestichtegiedo the players.

Ouir first approach is therefore to define a correlation glas a full matrix. Up to normal-
ization (which is not needed in (1) either), a column of this matrix should be a realization plan of
player 1 and a row a realization plan of player 2. Omitting the normalizing first equation in (2),
this means thatforal€¢ S, he Hy, 0 € §, andk € Hy,

%z(ohc,r) = z(0p, 1), z z(o,1¢d) = z(0,Tk). 4)
ce deCy

Furthermore, the paii0, 0) of empty sequences is selected with certainty, and the probabilities are
nonnegative, which adds the trivial consistency constraints

2(0,0) =1, z(o,1) >0 (0eS,T€S). (5)

The constraints (4) and (5) hold for the special c#eet) = x(0)y(T) wherex andy are realization
plans. With properly defined incentive constraints, such a correlation plan of rank one should
define a Nash equilibrium, just as a strategic-form correlated equilibrium with a rank-one matrix

in (1) is a Nash equilibrium. In particular,xfandy stand for pure strategies, where each sequence
o or T is chosen with probability zero or one, then the probabilitiest) = x(0)y(t) are also zero

or one. For angonvex combinatioof pure strategies, as in an EFCE, (4) and (5) therefore hold
as well, so these arecessargonditions for a correlation plan.
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0 I r | r’ 0 | r |/ r’

0 1 1 0 1 0 0 1 |12 1/2)1/2 1/2

X 1 1 0 1 0 X 12112 0 |12 O

Y 0 0 0 0 0 Y /2| 0 1/2| 0 1/2

X’ 0 0 0 0 0 X 112 0 12|12 0

\4 1 1 0 1 0 Y 12|12 0 0 172
FIGURE 2 FIGURE 3

Figure 2 shows a correlation plan arising from a pure strategy pair, for the game in Figure 1
when the first move of player 1 is replaced by a chance move. Figure 3 shows a possible assign-
ment of probabilitiegz(o, 1) that fulfills (4) and (5). These probabilities are “locally consistent”
in the sense that the marginal probability of each move is 1/2. Howeverc#motbe obtained
as a convex combination of pure strategy pairs as in Figure 2. Otherwise, one such pair would
have to recommend mové€to player 1 and moveto player 2 to account for the respective entry
1/2. In that pure strategy pair, given that player 2 is recommended mtheerecommendation to
player 1 at the other information set mustfesince the move combinatiqiX’,|) has probability
zero. Similarly, moveX requires that movE is recommended to player 2. This pure strategy pair
is thus((X,Y"),(I,1")) as in Figure 2, but that also sele¢¥,!’), contradicting Figure 3. This
shows that (4) and (5) do not suffice to characterize the convex hull of pure strategy profiles. For
a game with chance moves, the NP-hardness proved in [31] shows that this convex set cannot be
characterized by a polynomial number of linear inequalities, unles\P.

For a two-player game without chance moves, however, this problem can be resolved by spec-
ifying only correlations of moves at “connected” information sets where decisions can affect each
other during play. Call any two information sdtandk (even of the same playecpnnectedf
there is a path from the root to a leaf containing a nodearid a node of. If the node inh comes
earlier on the path, thelnis said toprecedek. The following lemma states that the two-player
games without chance moves considered here have a weak “temporal” structure in the sense that
a player can always tell if he is to move before or after the other player.

Lemma 4.1. For any two information setsandk, if h precede&, thenk does not precede

Amending our first approach, we definearrelation planz. S x S, — R as follows. First,
there is a joint probability distribution on the set of reduced pure strategy rairs) of the
two players so thar(o,T1) is the combined probability of the strategy pairg, ) wheremy
agrees witho (that is, chooses all the movesd) and 1, agrees witht. Secondgz is a partial
function wherez(o,T1) is specified only for “relevant” sequence pais1). The pair(o,T) in
S x & is calledrelevantif o or 1 is the empty sequence, ordf= onc andt = 14d for connected
information set$ andk, whereh € Hq, c € Cy,, k € Hy, d € Ci. Note that thenformation setsare
connected where the respective last move andt is made. It is not necessary that the sequences
themselves share a path. We specify correlations of moves at connected information sets, not just



of moves sharing a path, since a player may consider deviations from the recommended moves.
The following shows that equations (4) can be sensibly restricted to relevant sequence pairs.

Lemma 4.2. If the pair(o,T) of sequences is relevant, aadis a prefix ofc andt’ is a prefix
of 1, then(d’,1') is relevant.

In this way, we obtain the consistency constraints for correlation plans. The correlation plan
itself can also be used to generate, as a random variable, a pair of strategies to be recommended to
the two players. For a proof outline of the following theorem, see [12].

Theorem 4.3. In a two-player, perfect-recall extensive game without chance mavesa cor-
relation plan if and only if it fulfills(5), and(4) whenever(onc,1) and(o,1¢d) are relevant, for
anyc € C, andd € C¢. A corresponding joint probability distribution on pairs of reduced pure
Strategies can be generated directly from

5 Incentive constraints

In an EFCE, a player gets a move recommendation when reaching an information set. This recom-
mendation induces a posterior distribution on the recommendations given to the other player. For
past moves, this induces a certain distribution on where the player is in the information set. For
future moves, it expresses the subsequently expected play. Both are represented by the eventual
distribution on the leaves of the game tree. The players want to optimize the expected payoffs
which they receive at the leaves, assuming the other player follows her recommendations.

Theincentive constraintsy an EFCE express that it is optimal to follow any move recommen-
dation, under two assumptions about the play@vabehavior: Wherfollowingthe recommended
move, the player considers tiegpectedpayoff when following recommendations in the future.
Whendeviatingfrom the recommended move, the plapg@timizeshis payoff, given the current
knowledge about the other player’s behavior. Any recommendations gftexra deviation are ig-
nored, and are in fact not given, since an EFCE only generates a paduafed strategiesVhen
a player deviates, he subsequently only reaches own information sets that would be unreachable
when following the original move in the strategy, so these later moves are left unspecified in a
reduced strategy.

The sequence form only allows specifications of reduced strategies. Assume that a pair of
reduced strategies is generated according to a correlation plan as in Theorem 4.3. Suppose that
player 1, say, gets a recommendation for mow an information seh, corresponding to the
sequenc® = opc. For the sequencaf player 2, the row entrieg o, 1) of the correlation plaz
define, up to normalization, a realization plan that describes player 2's conditional behavior. This
is only given for information sets connecteditowhere(o, 1) is relevant, which suffices for any
decision of player 1 at this point.

We first introduce auxiliary variableg o) for anyo € S (and, throughout, analogously for
player 2). These denote the expected payoff contributiom @hat is, of all strategies agreeing
with o) when player 1 follows recommendations. They are given by

u(o) = Z z(o,1)a(o,1) + keHl:sz:c d;k u(okd). (6)

In (6), a(o,1) is the payoff to player 1 at the leaf defining the sequence(pair), which is then
obviously a relevant pair; if there is no such leafg, 1) = 0. The first sum in (6) captures the



expected payoff contribution wheteand suitable sequence®f player 2 are defined by leaves.
The second, double sum in (6) concerns the informationksetplayer 1 reached by. The sum

of the payoff contributionsi(oid) for d € Ci is the expected payoff when player 1 follows the
recommendation to chooskatk, given the new posterior information obtained there.

Applying (6) recursively, starting with the longest sequences, gives for the empty sequence
u(@) = y 5 z(o,1)a(o,1). This denotes the overall payoff for player 1 under the correlationzlan
(and similarly for player 2), which generalizes (3).

The payoffu(o) when following the recommended moeen o = o,c must be compared
with the possible payoff when deviating fron This is described by an optimization against the
behavior of player 2 in rovo,c of z, by considering the other movestatas well as moves at
information setk that are reached later on. By optimizing in this way, the payoff contribution at
an information sek of player 1 is denoted by(k,onc). The parameteonc indicates the given
row of the correlation plaz against which player 1 optimizes. Hoe h, we define

v(h,01c) = u(ane). (7)

The recommended mowveshould be optimal alh. This incentive constraint is expressed by the
following inequalities, for any information sk&tin Hy with k = h or h precedingk, and all moves
d atk:
v(k,onc) > Zz(ohc,r)a(ckd,T) + z v(l,onc) (deCy). (8)
T leH;:01=0d

The first sum in (8) is well defined, since whémyd, 1) leads to a leaf, thefo,c, 1) is relevant
becauseny, is a prefix ofoxd. If there are no further information seltsandk = h, then (8) is
analogous to (1), with movesd instead of strategidsk. Here as there, the posterior distribution
from the given recommendatiasyc is used for the comparison with other choices. In general,
a moved atk can lead to further information setsalso preceded bly, where the best possible
payoff contribution is computed agl,onc). This variable is based on treamebehavior of
player 2 given by rowoc of z

The number of variablegk, o,,c) is quadratic in the number of sequences of player 1 because
they are indexed by the information sktand the sequencesc. The latter reflect the conditional
behavior of the other player, which varies in a correlated equilibrium. In a Nash equilibrium,
it would be fixed, andz(onc,T) is replaced byy(t) for an unconditional realization play of
player 2. Furthermore, the variable, onc) are replaced by single variableg), one for each
information setk of player 1. Then the inequalities (8) are exactly those expressing the Nash
equilibrium condition, withdual variablesv(k). These dual variables also represent, like here, the
optimization by “dynamic programming” [30, p. 239].

Together with the consistency constraints, the incentive constraints above characterize an
EFCE. We summarize our main result as follows. For a proof outline, see [12].

Theorem 5.1. In a two-player, perfect-recall extensive game without chance moves, a correlation
planz as in Theorem 4.3 that fulfills the incentive constraints (6), (7), (8) defines an EFCE. The
number of variables and constraints is polynomial in the size of the game tree, so that an EFCE is
polynomial-time computable.
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