Computationally Efficient Coordination in Game Trees

Françoise Forges
THEMA, Université de Cergy-Pontoise, and Institut Universitaire de France
email: Francoise.Forges@eco.u-cergy.fr
Bernhard von Stengel
Department of Mathematics, London School of Economics
email: stengel@maths.lse.ac.uk

April 8, 2003

1 Introduction

Game theory is the formal study of conflict and cooperation. It provides a language to formulate, structure and analyze scenarios where the actions of several agents are interdependent. Gametheoretic concepts are a major tool in theoretical economics [19]. In theoretical computer science, two-player games are familiar in models of complexity [5], for proving lower bounds for randomized algorithms [34], and in the competitive analysis of online algorithms [4]. Game theory is also an essential ingredient in algorithmic mechanism design [22], which studies algorithmic behaviors of selfish agents in, for example, distributed optimization problems. Game theory is also recognized as a main tool for modeling and analyzing interactions on the internet. This is forcefully argued by Papadimitriou [24], who also notes significant computational questions posed by game theory, like the complexity of finding one Nash equilibrium of a two-player game in strategic form. (The strategic form is a table listing all actions of the players and their resulting payoffs; see Section 2 for further details.)

The contribution of this paper is a new concept of correlated equilibria for extensive games, which is polynomial-time computable for two-player games without chance. An extensive game is a detailed description of a game by means of a game tree, which incorporates chance, the moves of the players, and their partial information about the game state by means of information sets. The correlated equilibrium, due to Aumann [1], is a generalization of the central game-theoretic concept of Nash equilibrium in that it allows for correlation of the players' actions with the help of a mediating device. It describes the strategic possibilities of pre-play communication between the players [20]. Since this done implicitly in the solution concept, rather than by an explicitly modeled initial communication stage in the game, the game itself can be kept simpler. The basic framework of correlated equilibria, namely coordination, communication, and incentives, is pervasive in economic theory, in particular mechanism design [19, 22]. In game theory, the study of adapting equilibrium concepts to the dynamic game tree structure has a long history, both for Nash [29] and correlated equilibria [$9,18,11,27$].

Our new concept, which we call extensive form correlated equilibrium (EFCE), applies more naturally to the game tree structure since coordination is achieved by signals that are received "locally" at information sets. In contrast, the original strategic-form concept by Aumann "globally" recommends entire strategies in advance. (In an extensive game, a strategy specifies a move for every information set of the player.) The EFCE is different in withholding the recommended move
until the information set is reached. Because the players know less, the EFCE captures a larger set of possible equilibria.

A second, important feature of the EFCE is that it can be computed in polynomial time, in the size of the game tree, if the game has two players with perfect recall (meaning they do not forget what they knew or did earlier), and no chance moves. This is done by suitable linear equalities and inequalities that represent the set of all EFCE for the game. These linear constraints are polynomial in number, and are reminiscent of dynamic programming. They extend a similar construction for Nash equilibria of two-player extensive games known as the sequence form, due to [15,30] and, in retrospect, [25]. The sequence form allows to compute Nash equilibria of zero-sum two-player games in polynomial time (algorithms for general two-player games are surveyed in [32]).

The polynomial-time computability of EFCE for two-player games is not straightforward. The constraints defining an EFCE look natural, but in general are only necessary conditions. Interestingly, the problem of finding an EFCE (with maximum payoff sum, say) for two-player games with chance moves is already NP-hard. This had been established recently [6] for the classic strategic-form correlated equilibrium. Even for two-player, perfect-recall extensive games without chance moves, it is NP-hard to find a strategic-form correlated equilibrium with maximum payoff sum [31] (an own result that we omit from the present paper due to space constraints). The computational tractability, at least for two-player games and no chance, is one motivation for introducing the EFCE concept. The EFCE also seems to be the first case of a game-theoretic concept where the introduction of chance moves marks the transition from polynomial-time solvable to NP-hard problems.

2 Game-theoretic background and related work

A basic model studied in noncooperative game theory is the strategic form (also called normal form). A game in strategic form is given by a set of strategies for each player, and specifies the payoff for each player resulting from each strategy profile (a strategy profile is a combination of strategies, one for each player). The game is played simultaneously by each player choosing a strategy, unaware of the choices of the other players, whereupon the players receive their payoffs.

The predominant solution concept for strategic-form games is the Nash equilibrium [21]. This is a strategy profile such that no player can improve his payoff by unilaterally changing his strategy. In order for Nash equilibria to exist, it may be necessary that players use mixed strategies. A mixed strategy of a player is given by a randomization over the given set of "pure" strategies of that player. A mixed strategy profile is a Nash equilibrium if no player can get a better expected payoff, assuming that the strategies of the other players stay fixed.

Any finite strategic-form game has a Nash equilibrium in mixed strategies [21]. The known constructive proofs, however, lead at best to exponential-time algorithms for finding one equilibrium. The problem of finding a single Nash equilibrium is considered as one of the most important concrete open questions on the boundary of P today [24].

The set of all Nash equilibria of a game is disconnected and computationally difficult in the sense that maximizing a linear function of the payoffs of the players is NP-hard [13]. The concept of correlated equilibrium [1], which generalizes Nash equilibrium, however, is computationally more tractable since the set of correlated equilibria of a game is a convex polytope. It differs from a Nash equilibrium in that it allows for coordinated random choices of the players. A commonly known joint distribution on strategy profiles is used to select one of these profiles, whereupon each player is told only his strategy in that profile. The selection of the profile requires some
device or mediator. (The mediator can be made unnecessary by using private pairwise message exchanges [2, 3], or suitable cryptographic protocols [8, 28].) After the players have learned their recommended strategy, each has a posterior conditional distribution on what the other players have been recommended to do. Assuming they follow this recommendation, the equilibrium condition states that the player must have no incentive to deviate from the own recommended strategy. These incentive constraints can be described by linear inequalities, derived from the payoffs, with the joint probabilities for the strategy profiles as variables (see (1) below). They compare any two strategies of a player and are hence quadratic in the size of the game. The set of correlated equilibria is therefore a polyhedron defined by a polynomial number of linear inequalities. A correlated equilibrium with maximum payoff sum, for example, can therefore [14] be found in polynomial time [13].

A game tree or extensive game is much more detailed than the strategic form. Tree nodes represent game states and tree edges the players' moves. Nodes may also belong to chance selecting the next node according to known probabilities. A game play starts at the root and ends at a leaf of the tree, where each player receives a payoff. Partial information in an extensive game is modeled by information sets [17]. An information set is a set of nodes that all have the same player to move and the same choices (denoted by labels on tree edges) at each of those nodes. A player is informed only about the information set she is at but not at which node, and her move is by definition the same at each of these nodes. In a game of perfect information (like chess), all information sets are singletons and can be identified with the players' decision nodes.

A strategy in an extensive game is defined as a tuple of moves, one for each information set of the player. The strategic form of the game is obtained by listing the payoffs, or expected payoffs if there are chance moves, that result in the tree for any strategy profile. Standard methods for finding Nash equilibria apply to the strategic form of the extensive game. If the game tree is the input, this is computationally very inefficient since the number of strategies is clearly exponential in the number of information sets of a player, and hence typically exponential in the size of the game tree. A strategic description of linear size in the size of the game tree is the sequence form of an extensive game [25, 15, 30]. It is based on sequences of moves, which are the moves of a particular player along a path in the game tree. The sequences are played according to certain "realization" probabilities, which are characterized by linear equations, one for each information set of a player (see equations (2) below). The resulting realization plans are the analog of mixed strategies for the sequence form. They can be translated to behavior strategies [17], which describe how to randomly choose moves at an information set. It is this "local" randomization of a behavior strategy that reduces the complexity from exponential to linear, as opposed to the "global", and very redundant, description by a mixed strategy that first picks one of the exponentially many pure strategies which is then used by the player in the tree. With the sequence form, zero-sum game trees can be solved in polynomial time.

Is there a "sequence form" to compute correlated equilibria of extensive games efficiently? The answer is negative when considering two-player extensive games with perfect recall and chance moves: Chu and Halpern [6] recently established that finding a maximum-payoff-sum correlated equilibrium for such games is NP-hard to compute, even if the players have identical payoffs. The set of correlated equilibria can therefore not be characterized by a polynomial number of inequalities in the size of the game tree, unless $\mathrm{P}=\mathrm{NP}$. The proof of this result converts a SAT instance to an extensive game ([6] actually uses a "possible worlds" model) where the strategic form is similar to a truth table for the SAT formula, with a chance move picking one of the clauses. The chance move can be replaced by an active randomization of one of the players, using an initial
generalized "rock-scissors-paper" game, to show that even without chance moves, strategic-form correlated equilibria with maximum payoff sum are NP-hard to compute [31].

The exponential number of pure strategies in an extensive game seems to be unavoidable when considering correlated equilibria, as long as these are defined in terms of the strategic form. Our EFCE concept is an alternative definition of correlated equilibrium for extensive games. It is similar to the known strategic-form correlated equilibrium in that it generates recommendations of moves before the game starts. However, a player receives the signal with the recommended move when reaching an information set, as if in a "sealed envelope" that she can open then, but not earlier.

The EFCE generalizes Nash equilibria in behavior strategies, and is closer in spirit to the dynamic description of the game by a tree than the strategic-form correlated equilibrium. At the same time, the game is altered minimally since the mediator generates the signals at the beginning of the game. Other extensions of correlated equilibrium have been proposed for specific classes of games, like Bayesian games [10, 26, 7, 11] or multi-stage games [9, 18]. In contrast, our concept seems to be the first that applies to general extensive games. For instance, "autonomous" correlated equilibria $[9,27]$ and "communication equilibria" $[9,18]$ are only defined for multistage games, as they rely on devices which give private recommendations to each player at every stage the game. In the case of communication equilibria, the players can send messages to the device at every stage. Even more general communication equilibria are considered in [27] where the device can also base recommendations on past play.

Any strategic-form correlated equilibrium is an EFCE, but the set of EFCE is in general larger. This is known in special cases [18, Fig. 2] and unsurprising since in an EFCE the players have less information and so incentives can be more easily met. In multistage games, any autonomous correlated equilibrium is an EFCE. However, the converse is not true unless further assumptions are made on the players' information [27]. It is easy to see that there is no inclusive relationship between communication equilibria and EFCE.

3 Example of an extensive-form correlated equilibrium

Figure 1 shows an example of an extensive game. Player 1, a student, chooses a good (G) or bad (B) education, which defines his "type". Afterwards, he applies for a summer research job with a professor, player 2. Player 1 sends a signal X or Y (we add primes as in X^{\prime} and Y^{\prime} only to make choices at different information sets distinct). The professor can distinguish the signals but not the type of player 1, as shown by her two information sets. She can either let the student work with her (l) or refuse to do so (r). Move r always gives payoffs $(0,1)$ to players 1 and 2 , but l results in $(2,3)$ for G versus $(3,0)$ for B.

In games of incomplete information, the type is normally chosen by a chance move, not the player himself. However, larger games of this sort are not easy to solve in general, so that this game without chance moves demonstrates better our EFCE concept.

The Nash equilibria of this game are given as follows. Player 2 refuses to work with the student, with the strategy $\left(r, r^{\prime}\right)$, since any positive probability for l or l^{\prime} would induce player 1 to choose B along with the appropriate signal X or Y, which is better than G. Then l or l^{\prime} is certainly not optimal for player 2. Hence the choice of B or G and of the signal for player 1 do not matter (he gets payoff 0 anyhow), as long as in no information set of player 2, the probability for G versus B is high enough to make her switch to l.

Figure 1

This "economically inefficient" outcome of the game could be avoided if player 1 could choose G and signal this appropriately, without being able to mimic this when he is of type B. This requires coordination between the two players, as offered by a correlated equilibrium. However, it is not possible with any such concept based on the strategic form, or multiple stages [9, 18], where player 1 gets the recommendations for both types G and B. An EFCE, however, gives this possibility: Suppose the reduced pure strategy profiles $\left((G, X, *),\left(l, r^{\prime}\right)\right)$ and $\left((G, Y, *),\left(r, l^{\prime}\right)\right)$ are chosen with probability $1 / 2$ each. The moves in these profiles are revealed to the players when reaching their respective information sets. Player 1 is not recommended to play B and hence gets no signal X^{\prime} or Y^{\prime}, indicated by " $*$ ". After G, he knows that he will get a signal X or Y that is perfectly correlated with player 2's choice l or l^{\prime} to let him work with her, giving him payoff 2 . When deviating and choosing B, however, the signal will be not revealed, and X^{\prime} and Y^{\prime} will both have probability $1 / 2$ for the response r or r^{\prime}, giving the expected payoff $3 / 2$ which is less than 2 when following the recommendation, so player 1 indeed follows it. Player 2 gets recommendation l or l^{\prime} and knows that player 1 is of the good type G when following his recommendation, so l and l^{\prime} are also optimal for player 2.

4 Consistency constraints

Throughout, we consider an extensive two-person game with perfect recall and no chance moves. We will show that the set of EFCE for such a game can be described by a small number (polynomial in the size of the game tree) of linear constraints. The linear constraints will be consistency constraints that describe the possible probability distributions on profiles of moves to be recommended to the players, and additional incentive constraints, described in the next section, that assert when it is optimal for the players to follow these recommendations. As a prerequisite, we first review correlated equilibria for a two-player game in strategic form, and subsequently the sequence form of an extensive game as used for finding Nash equilibria.

A correlated equilibrium of a strategic-form two-player game can be defined as follows [1, 20]. Let i and j stand for strategies of player 1 and 2, respectively, with resulting payoffs $a_{i j}$ and $b_{i j}$. A correlated equilibrium is a distribution on strategy pairs. When a strategy pair (i, j) is drawn according to this distribution, player 1 is told i and player 2 is told j. The probabilities $Z_{i j}$ are nonnegative and sum up to one, which defines the consistency constraints. Furthermore, for all
strategies i and k of player 1 and all strategies j and l of player 2 ,

$$
\begin{equation*}
\sum_{j} Z_{i j} a_{i j} \geq \sum_{j} Z_{i j} a_{k j}, \quad \sum_{i} Z_{i j} b_{i j} \geq \sum_{i} Z_{i j} b_{i l} \tag{1}
\end{equation*}
$$

The incentive constraints (1) state that player 1 , when recommended to play i, has no incentive to switch from i to k, given (up to normalization) the conditional probabilities $Z_{i j}$ on opponent strategies j. Analogously, the second inequalities in (1) state that player 2 , when recommended to play j, has no incentive to switch to l.

The strategic-form description of an EFCE is computationally disadvantageous because the number of pure strategies is exponential in the size of the game tree. For finding Nash equilibria, the sequence form is of linear size. However, its randomized strategies, called "realization plans", are more complicated to describe than mixed strategies. Similarly, our characterization of EFCE with sequences will require more complicated consistency constraints than the strategic form.

We use a standard notation for extensive games [33]. The non-terminal decision nodes of the game tree are partitioned into information sets. Each information set belongs to exactly one player i. The set of all information sets of player i is denoted H_{i}. The set of choices or moves at an information set h is denoted C_{h}. Each node in h has $\left|C_{h}\right|$ outgoing edges, which are labeled with the moves in C_{h}. Choice sets C_{h} and C_{k} for $h \neq k$ are disjoint. The sequence form uses sequences of moves of a particular player as encountered along the path from the root to any node in the game tree. By definition, player i has perfect recall if all nodes in an information set h in H_{i} define the same sequence σ_{h} of moves for player i. Hence, any move c at h is the last move of a unique sequence $\sigma_{h} c$. This defines all possible sequences of a player except for the empty sequence \emptyset. The set of sequences of player i is denoted S_{i}, so

$$
S_{i}=\{\emptyset\} \cup\left\{\sigma_{h} c \mid h \in H_{i}, c \in C_{h}\right\} .
$$

For brevity, we also denote sequences of player 1 by σ and sequences of player 2 by τ, and the sequence leading to an information set h of player 2 by τ_{h}.

The sequence form is applied to Nash equilibria as follows [15, 30, 33]. Sequences are played randomly according to realization plans. A realization plan x for player 1 is given by nonnegative real numbers $x(\sigma)$ for $\sigma \in S_{1}$, a realization plan y for player 2 by nonnegative numbers $y(\tau)$ for $\tau \in S_{2}$. These denote the realization probabilities for the sequences σ and τ when the players use certain mixed strategies. For player 1, such a realization plan is characterized by the equations

$$
\begin{equation*}
x(\emptyset)=1, \quad \sum_{c \in C_{h}} x\left(\sigma_{h} c\right)=x\left(\sigma_{h}\right) \quad\left(h \in H_{1}\right) \tag{2}
\end{equation*}
$$

and analogously for player 2 with y and H_{2} instead of x and H_{1}. Equations (2) hold naturally when player 1 uses a behavior strategy, in particular a pure strategy, and hence also for a mixed strategy which is a convex combination of pure strategies. A realization plan x fulfilling (2) results from a behavior strategy that chooses move c at an information set $h \in H_{1}$ with probability $x\left(\sigma_{h} c\right) / x\left(\sigma_{h}\right)$ if $x\left(\sigma_{h}\right)>0$ and arbitrarily if $x\left(\sigma_{h}\right)=0$. This yields a canonical proof of Kuhn's theorem [17] that asserts that a player with perfect recall can replace any mixed strategy by an equivalent behavior strategy. The behavior at h is unspecified if $x\left(\sigma_{h}\right)=0$, which means that h is unreachable due to an earlier own move. Not specifying the behavior at such information sets is exactly what is done in the reduced strategic form.

Because the game has no chance moves, any leaf of the game tree defines a unique pair (σ, τ) of sequences of the two players. Let $a(\sigma, \tau)$ and $b(\sigma, \tau)$ denote the respective payoffs to the players
at that leaf. Then if the two players use the realization plans x and y, their expected payoffs are given by the bilinear expressions

$$
\begin{equation*}
\sum_{\sigma, \tau} x(\sigma) y(\tau) a(\sigma, \tau), \quad \sum_{\sigma, \tau} x(\sigma) y(\tau) b(\sigma, \tau) \tag{3}
\end{equation*}
$$

respectively. The expressions in (3) represent the sum, over all leaves, of the payoffs, multiplied by the probabilities of reaching the leaves. The sums in (3) may be taken over all $\sigma \in S_{1}$ and $\tau \in S_{2}$ by assuming that $a(\sigma, \tau)=b(\sigma, \tau)=0$ whenever the sequence pair (σ, τ) does not lead to a leaf. This is useful when using matrix notation, where the payoffs in the sequence form are entries $a(\sigma, \tau)$ and $b(\sigma, \tau)$ of sparse $\left|S_{1}\right| \times\left|S_{2}\right|$ payoff matrices and x and y are regarded as vectors. Using linear programming duality, conditions for Nash equilibria can then be written in terms of payoffs and transposed constraints (2) which require one equation and one dual variable for each information set $[15,30]$. This results into a small linear program for zero-sum payoffs, and a small linear complementarity problem for non-zero-sum payoffs [16].

In order to describe an EFCE, the product $x(\sigma) y(\tau)$ in (3) of the realization probabilities for σ in S_{1} and τ in S_{2} will be replaced by a more general joint realization probability $z(\sigma, \tau)$ that the pair of sequences (σ, τ) will be recommended to the two players, as far as this probability is relevant. These probabilities $z(\sigma, \tau)$ define what we call a correlation plan for the game.

In an EFCE, a player gets a move recommendation when reaching an information set. The move corresponds uniquely to a sequence ending in that move. For player 1, say, the sequence denotes a row of the $\left|S_{1}\right| \times\left|S_{2}\right|$ correlation plan matrix. From this row, player 1 should have a posterior distribution on the recommendations to player 2. This behavior of player 2 must be specified not only when player 1 follows a recommendation, but also when player 1 deviates, so that player 1 can decide if the own recommendation is optimal. The recommendations to player 2 off the equilibrium path are therefore important. Otherwise, one could simply choose a distribution on the leaves of the tree (with a correlation plan that is sparse like the payoff matrix), and merely recommend to the players the pair of sequences corresponding to the selected leaf. This does not suffice, since an EFCE must recommend strategies to the players.

Our first approach is therefore to define a correlation plan z as a full matrix. Up to normalization (which is not needed in (1) either), a column of this matrix should be a realization plan of player 1 and a row a realization plan of player 2. Omitting the normalizing first equation in (2), this means that for all $\tau \in S_{2}, h \in H_{1}, \sigma \in S_{1}$, and $k \in H_{2}$,

$$
\begin{equation*}
\sum_{c \in C_{h}} z\left(\sigma_{h} c, \tau\right)=z\left(\sigma_{h}, \tau\right), \quad \sum_{d \in C_{k}} z\left(\boldsymbol{\sigma}, \tau_{k} d\right)=z\left(\sigma, \tau_{k}\right) . \tag{4}
\end{equation*}
$$

Furthermore, the pair (\emptyset, \emptyset) of empty sequences is selected with certainty, and the probabilities are nonnegative, which adds the trivial consistency constraints

$$
\begin{equation*}
z(\emptyset, \emptyset)=1, \quad z(\sigma, \tau) \geq 0 \quad\left(\sigma \in S_{1}, \tau \in S_{2}\right) \tag{5}
\end{equation*}
$$

The constraints (4) and (5) hold for the special case $z(\sigma, \tau)=x(\sigma) y(\tau)$ where x and y are realization plans. With properly defined incentive constraints, such a correlation plan of rank one should define a Nash equilibrium, just as a strategic-form correlated equilibrium with a rank-one matrix Z in (1) is a Nash equilibrium. In particular, if x and y stand for pure strategies, where each sequence σ or τ is chosen with probability zero or one, then the probabilities $z(\sigma, \tau)=x(\sigma) y(\tau)$ are also zero or one. For any convex combination of pure strategies, as in an EFCE, (4) and (5) therefore hold as well, so these are necessary conditions for a correlation plan.

Figure 2

	\emptyset	l	r	l^{\prime}	r^{\prime}
\emptyset	1	1/2	1/2	1/2	1/2
X	1/2	$1 / 2$	0	1/2	0
Y	1/2	0	1/2	0	1/2
X^{\prime}	1/2	0	1/2	1/2	0
Y^{\prime}	1/2	1/2	0	0	1/2

Figure 3

Figure 2 shows a correlation plan arising from a pure strategy pair, for the game in Figure 1 when the first move of player 1 is replaced by a chance move. Figure 3 shows a possible assignment of probabilities $z(\sigma, \tau)$ that fulfills (4) and (5). These probabilities are "locally consistent" in the sense that the marginal probability of each move is $1 / 2$. However, they cannot be obtained as a convex combination of pure strategy pairs as in Figure 2. Otherwise, one such pair would have to recommend move X to player 1 and move l to player 2 to account for the respective entry $1 / 2$. In that pure strategy pair, given that player 2 is recommended move l, the recommendation to player 1 at the other information set must be Y^{\prime} since the move combination $\left(X^{\prime}, l\right)$ has probability zero. Similarly, move X requires that move l^{\prime} is recommended to player 2. This pure strategy pair is thus $\left(\left(X, Y^{\prime}\right),\left(l, l^{\prime}\right)\right)$ as in Figure 2, but that also selects $\left(Y^{\prime}, l^{\prime}\right)$, contradicting Figure 3. This shows that (4) and (5) do not suffice to characterize the convex hull of pure strategy profiles. For a game with chance moves, the NP-hardness proved in [31] shows that this convex set cannot be characterized by a polynomial number of linear inequalities, unless $\mathrm{P}=\mathrm{NP}$.

For a two-player game without chance moves, however, this problem can be resolved by specifying only correlations of moves at "connected" information sets where decisions can affect each other during play. Call any two information sets h and k (even of the same player) connected if there is a path from the root to a leaf containing a node of h and a node of k. If the node in h comes earlier on the path, then h is said to precede k. The following lemma states that the two-player games without chance moves considered here have a weak "temporal" structure in the sense that a player can always tell if he is to move before or after the other player.

Lemma 4.1. For any two information sets h and k, if h precedes k, then k does not precede h.
Amending our first approach, we define a correlation plan $z: S_{1} \times S_{2} \rightarrow \mathbb{R}$ as follows. First, there is a joint probability distribution on the set of reduced pure strategy pairs $\left(\pi_{1}, \pi_{2}\right)$ of the two players so that $z(\sigma, \tau)$ is the combined probability of the strategy pairs $\left(\pi_{1}, \pi_{2}\right)$ where π_{1} agrees with σ (that is, chooses all the moves in σ) and π_{2} agrees with τ. Second, z is a partial function where $z(\sigma, \tau)$ is specified only for "relevant" sequence pairs (σ, τ). The pair (σ, τ) in $S_{1} \times S_{2}$ is called relevant if σ or τ is the empty sequence, or if $\sigma=\sigma_{h} c$ and $\tau=\tau_{k} d$ for connected information sets h and k, where $h \in H_{1}, c \in C_{h}, k \in H_{2}, d \in C_{k}$. Note that the information sets are connected where the respective last move in σ and τ is made. It is not necessary that the sequences themselves share a path. We specify correlations of moves at connected information sets, not just
of moves sharing a path, since a player may consider deviations from the recommended moves. The following shows that equations (4) can be sensibly restricted to relevant sequence pairs.

Lemma 4.2. If the pair (σ, τ) of sequences is relevant, and σ^{\prime} is a prefix of σ and τ^{\prime} is a prefix of τ, then $\left(\sigma^{\prime}, \tau^{\prime}\right)$ is relevant.

In this way, we obtain the consistency constraints for correlation plans. The correlation plan itself can also be used to generate, as a random variable, a pair of strategies to be recommended to the two players. For a proof outline of the following theorem, see [12].

Theorem 4.3. In a two-player, perfect-recall extensive game without chance moves, z is a correlation plan if and only if it fulfills (5), and (4) whenever $\left(\sigma_{h} c, \tau\right)$ and $\left(\sigma, \tau_{k} d\right)$ are relevant, for any $c \in C_{h}$ and $d \in C_{k}$. A corresponding joint probability distribution on pairs of reduced pure strategies can be generated directly from z.

5 Incentive constraints

In an EFCE, a player gets a move recommendation when reaching an information set. This recommendation induces a posterior distribution on the recommendations given to the other player. For past moves, this induces a certain distribution on where the player is in the information set. For future moves, it expresses the subsequently expected play. Both are represented by the eventual distribution on the leaves of the game tree. The players want to optimize the expected payoffs which they receive at the leaves, assuming the other player follows her recommendations.

The incentive constraints in an EFCE express that it is optimal to follow any move recommendation, under two assumptions about the player's own behavior: When following the recommended move, the player considers the expected payoff when following recommendations in the future. When deviating from the recommended move, the player optimizes his payoff, given the current knowledge about the other player's behavior. Any recommendations given after a deviation are ignored, and are in fact not given, since an EFCE only generates a pair of reduced strategies: When a player deviates, he subsequently only reaches own information sets that would be unreachable when following the original move in the strategy, so these later moves are left unspecified in a reduced strategy.

The sequence form only allows specifications of reduced strategies. Assume that a pair of reduced strategies is generated according to a correlation plan as in Theorem 4.3. Suppose that player 1 , say, gets a recommendation for move c at an information set h, corresponding to the sequence $\sigma=\sigma_{h} c$. For the sequences τ of player 2 , the row entries $z(\sigma, \tau)$ of the correlation plan z define, up to normalization, a realization plan that describes player 2's conditional behavior. This is only given for information sets connected to h, where (σ, τ) is relevant, which suffices for any decision of player 1 at this point.

We first introduce auxiliary variables $u(\sigma)$ for any $\sigma \in S_{1}$ (and, throughout, analogously for player 2). These denote the expected payoff contribution of σ (that is, of all strategies agreeing with σ) when player 1 follows recommendations. They are given by

$$
\begin{equation*}
u(\sigma)=\sum_{\tau} z(\sigma, \tau) a(\sigma, \tau)+\sum_{k \in H_{1}: \sigma_{k}=\sigma} \sum_{d \in C_{k}} u\left(\sigma_{k} d\right) . \tag{6}
\end{equation*}
$$

In (6), $a(\sigma, \tau)$ is the payoff to player 1 at the leaf defining the sequence pair (σ, τ), which is then obviously a relevant pair; if there is no such leaf, $a(\sigma, \tau)=0$. The first sum in (6) captures the
expected payoff contribution where σ and suitable sequences τ of player 2 are defined by leaves. The second, double sum in (6) concerns the information sets k of player 1 reached by σ. The sum of the payoff contributions $u\left(\sigma_{k} d\right)$ for $d \in C_{k}$ is the expected payoff when player 1 follows the recommendation to choose d at k, given the new posterior information obtained there.

Applying (6) recursively, starting with the longest sequences, gives for the empty sequence $u(\emptyset)=\sum_{\sigma, \tau} z(\sigma, \tau) a(\sigma, \tau)$. This denotes the overall payoff for player 1 under the correlation plan z (and similarly for player 2), which generalizes (3).

The payoff $u(\sigma)$ when following the recommended move c in $\sigma=\sigma_{h} c$ must be compared with the possible payoff when deviating from c. This is described by an optimization against the behavior of player 2 in row $\sigma_{h} c$ of z, by considering the other moves at h, as well as moves at information sets k that are reached later on. By optimizing in this way, the payoff contribution at an information set k of player 1 is denoted by $v\left(k, \sigma_{h} c\right)$. The parameter $\sigma_{h} c$ indicates the given row of the correlation plan z against which player 1 optimizes. For $k=h$, we define

$$
\begin{equation*}
v\left(h, \sigma_{h} c\right)=u\left(\sigma_{h} c\right) . \tag{7}
\end{equation*}
$$

The recommended move c should be optimal at h. This incentive constraint is expressed by the following inequalities, for any information set k in H_{1} with $k=h$ or h preceding k, and all moves d at k :

$$
\begin{equation*}
v\left(k, \sigma_{h} c\right) \geq \sum_{\tau} z\left(\sigma_{h} c, \tau\right) a\left(\sigma_{k} d, \tau\right)+\sum_{l \in H_{1}: \sigma_{l}=\sigma_{k} d} v\left(l, \sigma_{h} c\right) \quad\left(d \in C_{k}\right) . \tag{8}
\end{equation*}
$$

The first sum in (8) is well defined, since when $\left(\sigma_{k} d, \tau\right)$ leads to a leaf, then $\left(\sigma_{h} c, \tau\right)$ is relevant because σ_{h} is a prefix of $\sigma_{k} d$. If there are no further information sets l and $k=h$, then (8) is analogous to (1), with moves c, d instead of strategies i, k. Here as there, the posterior distribution from the given recommendation $\sigma_{h} c$ is used for the comparison with other choices. In general, a move d at k can lead to further information sets l, also preceded by h, where the best possible payoff contribution is computed as $v\left(l, \sigma_{h} c\right)$. This variable is based on the same behavior of player 2 given by row $\sigma_{h} c$ of z.

The number of variables $v\left(k, \sigma_{h} c\right)$ is quadratic in the number of sequences of player 1 because they are indexed by the information sets k and the sequences $\sigma_{h} c$. The latter reflect the conditional behavior of the other player, which varies in a correlated equilibrium. In a Nash equilibrium, it would be fixed, and $z\left(\sigma_{h} c, \tau\right)$ is replaced by $y(\tau)$ for an unconditional realization plan y of player 2. Furthermore, the variables $v\left(k, \sigma_{h} c\right)$ are replaced by single variables $v(k)$, one for each information set k of player 1 . Then the inequalities (8) are exactly those expressing the Nash equilibrium condition, with dual variables $v(k)$. These dual variables also represent, like here, the optimization by "dynamic programming" [30, p. 239].

Together with the consistency constraints, the incentive constraints above characterize an EFCE. We summarize our main result as follows. For a proof outline, see [12].
Theorem 5.1. In a two-player, perfect-recall extensive game without chance moves, a correlation plan z as in Theorem 4.3 that fulfills the incentive constraints (6), (7), (8) defines an EFCE. The number of variables and constraints is polynomial in the size of the game tree, so that an EFCE is polynomial-time computable.

References

[1] Aumann, R. J. (1974), Subjectivity and correlation in randomized strategies. Journal of Mathematical Economics 1, 67-96.
[2] Bárány, I. (1987), Fair distribution protocols or how the players replace fortune. Mathematics of Operations Research 17, 327-340.
[3] Ben-Porath, E. (1998), Correlation without mediation: expanding the set of equilibrium outcomes by "cheap" pre-play procedures. Journal of Economic Theory 80, 108-122.
[4] Borodin, A. and R. El-Yaniv (1998), Online Computation and Competitive Analysis. Cambridge Univ. Press, Cambridge.
[5] Chandra, A. K., D. C. Kozen, and L. J. Stockmeyer (1981), Alternation. J. ACM 28, 114-133.
[6] Chu, F. and J. Halpern (2001), On the NP-completeness of finding an optimal strategy in games with common payoffs. International Journal of Game Theory 30, 99-106.
[7] Cotter, K. (1991), Correlated equilibrium in games with type-dependent strategies. Journal of Economic Theory 54, 48-68.
[8] Dodis, Y., S. Halevi, and T. Rabin (2000), A cryptographic solution to a game theoretic problem. In: Proc. Crypto 2000, Springer LNCS 1880, 112-130.
[9] Forges, F. (1986), An approach to communication equilibria. Econometrica 54, 1375-1385.
[10] Forges, F. (1986), Correlated equilibria in repeated games with lack of information on one side: a model with verifiable types. International Journal of Game Theory 15, 65-82.
[11] Forges, F. (1993), Five legitimate definitions of correlated equilibrium in games with incomplete information. Theory and Decision 35, 277-310.
[12] Forges, F. and B. von Stengel (2002), Computationally efficient coordination in game trees. CDAM Research Report LSE-CDAM-2002-02.
[13] Gilboa, I. and E. Zemel (1989), Nash and correlated equilibria: some complexity considerations. Games and Economic Behavior 1, 80-93.
[14] M. Grötschel, L. Lovász, and A. Schrijver (1993), Geometric Algorithms and Combinatorial Optimization, 2nd ed. Springer-Verlag, Berlin.
[15] Koller, D., N. Megiddo, and B. von Stengel (1994), Fast algorithms for finding randomized strategies in game trees. In: Proc. 26th STOC, 750-759.
[16] Koller, D., N. Megiddo, and B. von Stengel (1996), Efficient computation of equilibria for extensive two-person games. Games and Economic Behavior 14, 247-259.
[17] Kuhn, H. W. (1953), Extensive games and the problem of information. In: Contributions to the Theory of Games II, eds. H. W. Kuhn and A. W. Tucker, Annals of Mathematics Studies 28, Princeton Univ. Press, Princeton, 193-216.
[18] Myerson, R. B. (1986), Multistage games with communication. Econometrica 54, 323-358.
[19] Myerson, R. B. (1991), Game Theory - Analysis of Conflict. Harvard Univ. Press, Cambridge, Mass.
[20] Myerson, R. B. (1994), Communication, correlated equilibria and incentive compatibility. In: Handbook of Game Theory, Vol. 2, eds. R. J. Aumann and S. Hart, Elsevier, Amsterdam, 827-847.
[21] Nash, J. F. (1951), Non-cooperative games. Annals of Mathematics 54, 286-295.
[22] Nisan, N. and A. Ronen (2001) Algorithmic mechanism design. Games and Economic Behavior 35, 166-196. [Extended Abstract in Proc. 31st STOC (1999), 129-140.]
[23] Papadimitriou, C. H. (1994), On the complexity of the parity argument and other inefficient proofs of existence. Journal of Computer and System Sciences 48, 498-532.
[24] Papadimitriou, C. H. (2001), Algorithms, games, and the internet. In: Proc. 33rd STOC, 749-753.
[25] Romanovskii, I. V. (1962), Reduction of a game with complete memory to a matrix game. Doklady Akademii Nauk SSSR 144, 62-64 [English translation: Soviet Mathematics 3, 678-681].
[26] Samuelson, L., and J. Zhang (1989), Correlated equilibria and mediated equilibria in games with incomplete information. Mimeo, Penn State University.
[27] Solan, E. (2001), Characterization of correlated equilibria in stochastic games. International Journal of Game Theory 30, 259-277.
[28] Urbano, A., and J. E. Vila (2002), Computational complexity and communication: coordination in two-player games. Econometrica 70, 1893-1927.
[29] van Damme, E. (1987), Stability and Perfection of Nash Equilibria. Springer, Berlin.
[30] von Stengel, B. (1996), Efficient computation of behavior strategies. Games and Economic Behavior 14, 220-246.
[31] von Stengel, B. (2001), Computational complexity of correlated equilibria for extensive games. CDAM Research Report LSE-CDAM-2001-03.
[32] von Stengel, B. (2002), Computing equilibria for two-person games. Chapter 45, Handbook of Game Theory, Vol. 3, eds. R. J. Aumann and S. Hart, North-Holland, Amsterdam, 1723-1759.
[33] von Stengel, B., A. H. van den Elzen, and A. J. J. Talman (2002), Computing normal form perfect equilibria for extensive two-person games. Econometrica 70, 693-715.
[34] Yao, A. C. (1977), Probabilistic computation: Towards a unified measure of complexity. In Proc. 18th FOCS, 222-227, 1977.

