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1 Introduction

Game theory is the formal study of conflict and cooperation. It provides a language to formulate,
structure and analyze scenarios where the actions of several agents are interdependent. Game-
theoretic concepts are a major tool in theoretical economics [19]. In theoretical computer science,
two-player games are familiar in models of complexity [5], for proving lower bounds for random-
ized algorithms [34], and in the competitive analysis of online algorithms [4]. Game theory is
also an essential ingredient inalgorithmic mechanism design[22], which studies algorithmic be-
haviors of selfish agents in, for example, distributed optimization problems. Game theory is also
recognized as a main tool for modeling and analyzing interactions on the internet. This is force-
fully argued by Papadimitriou [24], who also notes significant computational questions posed by
game theory, like the complexity of finding one Nash equilibrium of a two-player game in strategic
form. (The strategic form is a table listing all actions of the players and their resulting payoffs; see
Section 2 for further details.)

The contribution of this paper is a new concept ofcorrelated equilibria for extensive games,
which ispolynomial-time computablefor two-player games without chance. An extensive game
is a detailed description of a game by means of a gametree, which incorporates chance, the moves
of the players, and their partial information about the game state by means ofinformation sets.
The correlated equilibrium, due to Aumann [1], is a generalization of the central game-theoretic
concept of Nash equilibrium in that it allows for correlation of the players’ actions with the help
of a mediating device. It describes the strategic possibilities ofpre-play communicationbetween
the players [20]. Since this done implicitly in the solution concept, rather than by an explicitly
modeled initial communication stage in the game, the game itself can be kept simpler. The basic
framework of correlated equilibria, namely coordination, communication, and incentives, is per-
vasive in economic theory, in particular mechanism design [19, 22]. In game theory, the study of
adapting equilibrium concepts to the dynamic game tree structure has a long history, both for Nash
[29] and correlated equilibria [9, 18, 11, 27].

Our new concept, which we callextensive form correlated equilibrium(EFCE), applies more
naturally to the game tree structure since coordination is achieved by signals that are received “lo-
cally” at information sets. In contrast, the original strategic-form concept by Aumann “globally”
recommends entire strategies in advance. (In an extensive game, a strategy specifies a move for
every information set of the player.) The EFCE is different in withholding the recommended move
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until the information set is reached. Because the players know less, the EFCE captures a larger set
of possible equilibria.

A second, important feature of the EFCE is that it can be computed in polynomial time, in the
size of the game tree, if the game has two players with perfect recall (meaning they do not forget
what they knew or did earlier), and no chance moves. This is done by suitable linear equalities and
inequalities that represent the set of all EFCE for the game. These linear constraints are polynomial
in number, and are reminiscent of dynamic programming. They extend a similar construction for
Nash equilibria of two-player extensive games known as thesequence form, due to [15, 30] and,
in retrospect, [25]. The sequence form allows to compute Nash equilibria of zero-sum two-player
games in polynomial time (algorithms for general two-player games are surveyed in [32]).

The polynomial-time computability of EFCE for two-player games isnotstraightforward. The
constraints defining an EFCE look natural, but in general are only necessary conditions. Interest-
ingly, the problem of finding an EFCE (with maximum payoff sum, say) for two-player games
with chance moves is already NP-hard. This had been established recently [6] for the classic
strategic-form correlated equilibrium. Even for two-player, perfect-recall extensive gameswithout
chance moves, it is NP-hard to find astrategic-form correlated equilibriumwith maximum payoff
sum [31] (an own result that we omit from the present paper due to space constraints). The compu-
tational tractability, at least for two-player games and no chance, is one motivation for introducing
the EFCE concept. The EFCE also seems to be the first case of a game-theoretic concept where
the introduction of chance moves marks the transition from polynomial-time solvable to NP-hard
problems.

2 Game-theoretic background and related work

A basic model studied in noncooperative game theory is thestrategic form(also called normal
form). A game in strategic form is given by a set of strategies for each player, and specifies the
payoff for each player resulting from eachstrategy profile(a strategy profile is a combination of
strategies, one for each player). The game is playedsimultaneouslyby each player choosing a
strategy, unaware of the choices of the other players, whereupon the players receive their payoffs.

The predominant solution concept for strategic-form games is theNash equilibrium[21]. This
is a strategy profile such that no player can improve his payoff by unilaterally changing his strategy.
In order for Nash equilibria to exist, it may be necessary that players usemixed strategies. A
mixed strategy of a player is given by a randomization over the given set of “pure” strategies of
that player. A mixed strategy profile is a Nash equilibrium if no player can get a betterexpected
payoff, assuming that the strategies of the other players stay fixed.

Any finite strategic-form game has a Nash equilibrium in mixed strategies [21]. The known
constructive proofs, however, lead at best to exponential-time algorithms for finding one equilib-
rium. The problem of finding a single Nash equilibrium is considered as one of the most important
concrete open questions on the boundary of P today [24].

The set ofall Nash equilibria of a game is disconnected and computationally difficult in the
sense that maximizing a linear function of the payoffs of the players is NP-hard [13]. The concept
of correlated equilibrium[1], which generalizes Nash equilibrium, however, is computationally
more tractable since the set of correlated equilibria of a game is a convex polytope. It differs from
a Nash equilibrium in that it allows for coordinated random choices of the players. A commonly
known joint distribution on strategy profiles is used to select one of these profiles, whereupon
each player is told only his strategy in that profile. The selection of the profile requires some
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device ormediator. (The mediator can be made unnecessary by using private pairwise message
exchanges [2, 3], or suitable cryptographic protocols [8, 28].) After the players have learned their
recommended strategy, each has a posterior conditional distribution on what the other players have
been recommended to do. Assuming they follow this recommendation, the equilibrium condition
states that the player must have no incentive to deviate from the own recommended strategy.
Theseincentive constraintscan be described by linear inequalities, derived from the payoffs, with
the joint probabilities for the strategy profiles as variables (see (1) below). They compare any
two strategies of a player and are hence quadratic in the size of the game. The set of correlated
equilibria is therefore a polyhedron defined by a polynomial number of linear inequalities. A
correlated equilibrium with maximum payoff sum, for example, can therefore [14] be found in
polynomial time [13].

A game tree orextensive gameis much more detailed than the strategic form. Tree nodes
represent game states and tree edges the players’ moves. Nodes may also belong tochancese-
lecting the next node according to known probabilities. A game play starts at the root and ends at
a leaf of the tree, where each player receives a payoff.Partial informationin an extensive game
is modeled byinformation sets[17]. An information set is a set of nodes that all have the same
player to move and the same choices (denoted by labels on tree edges) at each of those nodes. A
player is informed only about the information set she is at but not at which node, and her move
is by definition the same at each of these nodes. In a game of perfect information (like chess), all
information sets are singletons and can be identified with the players’ decision nodes.

A strategyin an extensive game is defined as a tuple of moves, one for each information set of
the player. The strategic form of the game is obtained by listing the payoffs, or expected payoffs
if there are chance moves, that result in the tree for any strategy profile. Standard methods for
finding Nash equilibria apply to the strategic form of the extensive game. If the game tree is the
input, this is computationally very inefficient since the number of strategies is clearlyexponential
in the number of information sets of a player, and hence typically exponential in the size of the
game tree. A strategic description oflinear sizein the size of the game tree is thesequence form
of an extensive game [25, 15, 30]. It is based on sequences of moves, which are the moves of
a particular player along a path in the game tree. The sequences are played according to certain
“realization” probabilities, which are characterized by linear equations, one for each information
set of a player (see equations (2) below). The resultingrealization plansare the analog of mixed
strategies for the sequence form. They can be translated tobehavior strategies[17], which describe
how to randomly choose moves at an information set. It is this “local” randomization of a behavior
strategy that reduces the complexity from exponential to linear, as opposed to the “global”, and
very redundant, description by a mixed strategy that first picks one of the exponentially many pure
strategies which is then used by the player in the tree. With the sequence form, zero-sum game
trees can be solved in polynomial time.

Is there a “sequence form” to compute correlated equilibria of extensive games efficiently? The
answer isnegativewhen considering two-player extensive games with perfect recall and chance
moves: Chu and Halpern [6] recently established that finding a maximum-payoff-sum correlated
equilibrium for such games is NP-hard to compute, even if the players have identical payoffs.
The set of correlated equilibria can therefore not be characterized by a polynomial number of
inequalities in the size of the game tree, unless P= NP. The proof of this result converts a SAT
instance to an extensive game ([6] actually uses a “possible worlds” model) where the strategic
form is similar to a truth table for the SAT formula, with a chance move picking one of the clauses.
The chance move can be replaced by an active randomization of one of the players, using an initial
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generalized “rock–scissors–paper” game, to show that evenwithoutchance moves, strategic-form
correlated equilibria with maximum payoff sum are NP-hard to compute [31].

The exponential number of pure strategies in an extensive game seems to be unavoidable when
considering correlated equilibria, as long as these are defined in terms of the strategic form. Our
EFCE concept is analternative definitionof correlated equilibrium for extensive games. It is
similar to the known strategic-form correlated equilibrium in that it generates recommendations
of movesbeforethe game starts. However, a player receives the signal with the recommended
movewhen reaching an information set, as if in a “sealed envelope” that she can open then, but
not earlier.

The EFCE generalizes Nash equilibria in behavior strategies, and is closer in spirit to the
dynamic description of the game by a tree than the strategic-form correlated equilibrium. At the
same time, the game is altered minimally since the mediator generates the signals at the beginning
of the game. Other extensions of correlated equilibrium have been proposed forspecificclasses
of games, like Bayesian games [10, 26, 7, 11] or multi-stage games [9, 18]. In contrast, our
concept seems to be the first that applies togeneralextensive games. For instance, “autonomous”
correlated equilibria [9, 27] and “communication equilibria” [9, 18] are only defined for multistage
games, as they rely on devices which give private recommendations to each player at every stage
the game. In the case of communication equilibria, the players can send messages to the device at
every stage. Even more general communication equilibria are considered in [27] where the device
can also base recommendations on past play.

Any strategic-form correlated equilibrium is an EFCE, but the set of EFCE is in general larger.
This is known in special cases [18, Fig. 2] and unsurprising since in an EFCE the players have
less information and so incentives can be more easily met. In multistage games, any autonomous
correlated equilibrium is an EFCE. However, the converse is not true unless further assumptions
are made on the players’ information [27]. It is easy to see that there is no inclusive relationship
between communication equilibria and EFCE.

3 Example of an extensive-form correlated equilibrium

Figure 1 shows an example of an extensive game. Player 1, a student, chooses a good (G) or bad
(B) education, which defines his “type”. Afterwards, he applies for a summer research job with a
professor, player 2. Player 1 sends a signalX or Y (we add primes as inX′ andY′ only to make
choices at different information sets distinct). The professor can distinguish the signals but not the
type of player 1, as shown by her two information sets. She can either let the student work with
her (l ) or refuse to do so (r). Move r always gives payoffs(0,1) to players 1 and 2, butl results in
(2,3) for G versus(3,0) for B.

In games of incomplete information, the type is normally chosen by a chance move, not the
player himself. However, larger games of this sort are not easy to solve in general, so that this
game without chance moves demonstrates better our EFCE concept.

The Nash equilibria of this game are given as follows. Player 2 refuses to work with the
student, with the strategy(r, r ′), since any positive probability forl or l ′ would induce player 1 to
chooseB along with the appropriate signalX orY, which is better thanG. Thenl or l ′ is certainly
not optimal for player 2. Hence the choice ofB or G and of the signal for player 1 do not matter
(he gets payoff 0 anyhow), as long as in no information set of player 2, the probability forG versus
B is high enough to make her switch tol .
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This “economically inefficient” outcome of the game could be avoided if player 1 could choose
G and signal this appropriately, without being able to mimic this when he is of typeB. This
requires coordination between the two players, as offered by a correlated equilibrium. However,
it is not possible with any such concept based on the strategic form, or multiple stages [9, 18],
where player 1 gets the recommendations for both typesG andB. An EFCE, however, gives this
possibility: Suppose the reduced pure strategy profiles((G,X,∗),(l , r ′)) and((G,Y,∗),(r, l ′)) are
chosen with probability 1/2 each. The moves in these profiles are revealed to the players when
reaching their respective information sets. Player 1 is not recommended to playB and hence gets
no signalX′ or Y′, indicated by “∗”. After G, he knows that he will get a signalX or Y that is
perfectly correlated with player 2’s choicel or l ′ to let him work with her, giving him payoff 2.
When deviating and choosingB, however, the signal will be not revealed, andX′ andY′ will both
have probability 1/2 for the responser or r ′, giving the expected payoff 3/2 which is less than 2
when following the recommendation, so player 1 indeed follows it. Player 2 gets recommendation
l or l ′ and knows that player 1 is of the good typeG when following his recommendation, sol
andl ′ are also optimal for player 2.

4 Consistency constraints

Throughout, we consider an extensive two-person game with perfect recall and no chance moves.
We will show that the set of EFCE for such a game can be described by asmallnumber (polyno-
mial in the size of the game tree) of linear constraints. The linear constraints will beconsistency
constraintsthat describe the possible probability distributions on profiles of moves to be recom-
mended to the players, and additionalincentive constraints, described in the next section, that
assert when it is optimal for the players to follow these recommendations. As a prerequisite, we
first review correlated equilibria for a two-player game in strategic form, and subsequently the
sequence form of an extensive game as used for finding Nash equilibria.

A correlated equilibrium of a strategic-form two-player game can be defined as follows [1, 20].
Let i and j stand for strategies of player 1 and 2, respectively, with resulting payoffsai j andbi j .
A correlated equilibrium is a distribution on strategy pairs. When a strategy pair(i, j) is drawn
according to this distribution, player 1 is toldi and player 2 is toldj. The probabilitiesZi j are
nonnegative and sum up to one, which defines theconsistency constraints. Furthermore, for all
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strategiesi andk of player 1 and all strategiesj andl of player 2,

∑
j

Zi j ai j ≥∑
j

Zi j ak j , ∑
i

Zi j bi j ≥∑
i

Zi j bil . (1)

The incentive constraints(1) state that player 1, when recommended to playi, has no incentive
to switch fromi to k, given (up to normalization) the conditional probabilitiesZi j on opponent
strategiesj. Analogously, the second inequalities in (1) state that player 2, when recommended to
play j, has no incentive to switch tol .

The strategic-form description of an EFCE is computationally disadvantageous because the
number of pure strategies is exponential in the size of the game tree. For finding Nash equilibria,
the sequence form is of linear size. However, its randomized strategies, called “realization plans”,
are more complicated to describe than mixed strategies. Similarly, our characterization of EFCE
with sequences will require more complicated consistency constraints than the strategic form.

We use a standard notation for extensive games [33]. The non-terminaldecisionnodes of
the game tree are partitioned intoinformation sets. Each information set belongs to exactly one
playeri. The set of all information sets of playeri is denotedHi . The set of choices or moves at an
information seth is denotedCh. Each node inh has|Ch| outgoing edges, which are labeled with
the moves inCh. Choice setsCh andCk for h 6= k are disjoint. Thesequence formuses sequences
of moves of a particular player as encountered along the path from the root to any node in the
game tree. By definition, playeri hasperfect recallif all nodes in an information seth in Hi define
the same sequenceσh of moves for playeri. Hence, any movec at h is the last move of a unique
sequenceσhc. This defines all possible sequences of a player except for the empty sequence/0.
The set of sequences of playeri is denotedSi , so

Si = { /0} ∪ {σhc | h∈ Hi , c∈Ch}.
For brevity, we also denote sequences of player 1 byσ and sequences of player 2 byτ, and the
sequence leading to an information seth of player 2 byτh.

The sequence form is applied to Nash equilibria as follows [15, 30, 33]. Sequences are played
randomly according torealization plans. A realization planx for player 1 is given by nonnegative
real numbersx(σ) for σ ∈ S1, a realization plany for player 2 by nonnegative numbersy(τ) for
τ ∈ S2. These denote the realization probabilities for the sequencesσ andτ when the players use
certain mixed strategies. For player 1, such a realization plan is characterized by the equations

x( /0) = 1, ∑
c∈Ch

x(σhc) = x(σh) (h∈ H1) , (2)

and analogously for player 2 withy andH2 instead ofx andH1. Equations (2) hold naturally when
player 1 uses a behavior strategy, in particular a pure strategy, and hence also for a mixed strategy
which is a convex combination of pure strategies. A realization planx fulfilling (2) results from a
behavior strategy that chooses movec at an information seth∈ H1 with probabilityx(σhc)/x(σh)
if x(σh) > 0 and arbitrarily ifx(σh) = 0. This yields a canonical proof of Kuhn’s theorem [17] that
asserts that a player with perfect recall can replace any mixed strategy by an equivalent behavior
strategy. The behavior ath is unspecified ifx(σh) = 0, which means thath is unreachable due to
an earlier own move. Not specifying the behavior at such information sets is exactly what is done
in the reduced strategic form.

Because the game has no chance moves, any leaf of the game tree defines a unique pair(σ,τ)
of sequences of the two players. Leta(σ,τ) andb(σ,τ) denote the respective payoffs to the players
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at that leaf. Then if the two players use the realization plansx andy, their expected payoffs are
given by the bilinear expressions

∑
σ,τ

x(σ)y(τ)a(σ,τ) , ∑
σ,τ

x(σ)y(τ)b(σ,τ) , (3)

respectively. The expressions in (3) represent the sum, over all leaves, of the payoffs, multiplied
by the probabilities of reaching the leaves. The sums in (3) may be taken over allσ ∈ S1 and
τ ∈ S2 by assuming thata(σ,τ) = b(σ,τ) = 0 whenever the sequence pair(σ,τ) does not lead to
a leaf. This is useful when using matrix notation, where the payoffs in the sequence form are
entriesa(σ,τ) andb(σ,τ) of sparse|S1|× |S2| payoff matrices andx andy are regarded as vectors.
Using linear programming duality, conditions for Nash equilibria can then be written in terms of
payoffs and transposed constraints (2) which require one equation and one dual variable for each
information set [15, 30]. This results into a small linear program for zero-sum payoffs, and a small
linear complementarity problem for non-zero-sum payoffs [16].

In order to describe an EFCE, the productx(σ)y(τ) in (3) of the realization probabilities forσ
in S1 andτ in S2 will be replaced by a more generaljoint realization probabilityz(σ,τ) that the pair
of sequences(σ,τ) will be recommended to the two players, as far as this probability is relevant.
These probabilitiesz(σ,τ) define what we call acorrelation planfor the game.

In an EFCE, a player gets a move recommendation when reaching an information set. The
move corresponds uniquely to a sequence ending in that move. For player 1, say, the sequence
denotes a row of the|S1| × |S2| correlation plan matrix. From this row, player 1 should have a
posterior distribution on the recommendations to player 2. This behavior of player 2 must be
specified not only when player 1 follows a recommendation, but also when player 1 deviates, so
that player 1 can decide if the own recommendation is optimal. The recommendations to player 2
off the equilibrium path are therefore important. Otherwise, one could simply choose a distribution
on the leaves of the tree (with a correlation plan that is sparse like the payoff matrix), and merely
recommend to the players the pair of sequences corresponding to the selected leaf. This does not
suffice, since an EFCE must recommendstrategiesto the players.

Our first approach is therefore to define a correlation planz as a full matrix. Up to normal-
ization (which is not needed in (1) either), a column of this matrix should be a realization plan of
player 1 and a row a realization plan of player 2. Omitting the normalizing first equation in (2),
this means that for allτ ∈ S2, h∈ H1, σ ∈ S1, andk∈ H2,

∑
c∈Ch

z(σhc,τ) = z(σh,τ), ∑
d∈Ck

z(σ,τkd) = z(σ,τk). (4)

Furthermore, the pair( /0, /0) of empty sequences is selected with certainty, and the probabilities are
nonnegative, which adds the trivial consistency constraints

z( /0, /0) = 1, z(σ,τ)≥ 0 (σ ∈ S1,τ ∈ S2). (5)

The constraints (4) and (5) hold for the special casez(σ,τ) = x(σ)y(τ) wherex andy are realization
plans. With properly defined incentive constraints, such a correlation plan of rank one should
define a Nash equilibrium, just as a strategic-form correlated equilibrium with a rank-one matrixZ
in (1) is a Nash equilibrium. In particular, ifx andy stand for pure strategies, where each sequence
σ or τ is chosen with probability zero or one, then the probabilitiesz(σ,τ) = x(σ)y(τ) are also zero
or one. For anyconvex combinationof pure strategies, as in an EFCE, (4) and (5) therefore hold
as well, so these arenecessaryconditions for a correlation plan.
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Figure 2 shows a correlation plan arising from a pure strategy pair, for the game in Figure 1
when the first move of player 1 is replaced by a chance move. Figure 3 shows a possible assign-
ment of probabilitiesz(σ,τ) that fulfills (4) and (5). These probabilities are “locally consistent”
in the sense that the marginal probability of each move is 1/2. However, theycannotbe obtained
as a convex combination of pure strategy pairs as in Figure 2. Otherwise, one such pair would
have to recommend moveX to player 1 and movel to player 2 to account for the respective entry
1/2. In that pure strategy pair, given that player 2 is recommended movel , the recommendation to
player 1 at the other information set must beY′ since the move combination(X′, l) has probability
zero. Similarly, moveX requires that movel ′ is recommended to player 2. This pure strategy pair
is thus((X,Y′),(l , l ′)) as in Figure 2, but that also selects(Y′, l ′), contradicting Figure 3. This
shows that (4) and (5) do not suffice to characterize the convex hull of pure strategy profiles. For
a game with chance moves, the NP-hardness proved in [31] shows that this convex set cannot be
characterized by a polynomial number of linear inequalities, unless P= NP.

For a two-player game without chance moves, however, this problem can be resolved by spec-
ifying only correlations of moves at “connected” information sets where decisions can affect each
other during play. Call any two information setsh andk (even of the same player)connectedif
there is a path from the root to a leaf containing a node ofh and a node ofk. If the node inh comes
earlier on the path, thenh is said toprecedek. The following lemma states that the two-player
games without chance moves considered here have a weak “temporal” structure in the sense that
a player can always tell if he is to move before or after the other player.

Lemma 4.1. For any two information setsh andk, if h precedesk, thenk does not precedeh.

Amending our first approach, we define acorrelation planz:S1×S2 → R as follows. First,
there is a joint probability distribution on the set of reduced pure strategy pairs(π1,π2) of the
two players so thatz(σ,τ) is the combined probability of the strategy pairs(π1,π2) whereπ1

agrees withσ (that is, chooses all the moves inσ) andπ2 agrees withτ. Second,z is a partial
function wherez(σ,τ) is specified only for “relevant” sequence pairs(σ,τ). The pair(σ,τ) in
S1×S2 is calledrelevantif σ or τ is the empty sequence, or ifσ = σhc andτ = τkd for connected
information setsh andk, whereh∈ H1, c∈Ch, k∈ H2, d ∈Ck. Note that theinformation setsare
connected where the respective last move inσ andτ is made. It is not necessary that the sequences
themselves share a path. We specify correlations of moves at connected information sets, not just
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of moves sharing a path, since a player may consider deviations from the recommended moves.
The following shows that equations (4) can be sensibly restricted to relevant sequence pairs.

Lemma 4.2. If the pair (σ,τ) of sequences is relevant, andσ′ is a prefix ofσ andτ′ is a prefix
of τ, then(σ′,τ′) is relevant.

In this way, we obtain the consistency constraints for correlation plans. The correlation plan
itself can also be used to generate, as a random variable, a pair of strategies to be recommended to
the two players. For a proof outline of the following theorem, see [12].

Theorem 4.3. In a two-player, perfect-recall extensive game without chance moves,z is a cor-
relation plan if and only if it fulfills(5), and(4) whenever(σhc,τ) and(σ,τkd) are relevant, for
any c ∈Ch andd ∈Ck. A corresponding joint probability distribution on pairs of reduced pure
strategies can be generated directly fromz.

5 Incentive constraints

In an EFCE, a player gets a move recommendation when reaching an information set. This recom-
mendation induces a posterior distribution on the recommendations given to the other player. For
past moves, this induces a certain distribution on where the player is in the information set. For
future moves, it expresses the subsequently expected play. Both are represented by the eventual
distribution on the leaves of the game tree. The players want to optimize the expected payoffs
which they receive at the leaves, assuming the other player follows her recommendations.

Theincentive constraintsin an EFCE express that it is optimal to follow any move recommen-
dation, under two assumptions about the player’sownbehavior: Whenfollowingthe recommended
move, the player considers theexpectedpayoff when following recommendations in the future.
Whendeviatingfrom the recommended move, the playeroptimizeshis payoff, given the current
knowledge about the other player’s behavior. Any recommendations givenaftera deviation are ig-
nored, and are in fact not given, since an EFCE only generates a pair ofreduced strategies: When
a player deviates, he subsequently only reaches own information sets that would be unreachable
when following the original move in the strategy, so these later moves are left unspecified in a
reduced strategy.

The sequence form only allows specifications of reduced strategies. Assume that a pair of
reduced strategies is generated according to a correlation plan as in Theorem 4.3. Suppose that
player 1, say, gets a recommendation for movec at an information seth, corresponding to the
sequenceσ = σhc. For the sequencesτ of player 2, the row entriesz(σ,τ) of the correlation planz
define, up to normalization, a realization plan that describes player 2’s conditional behavior. This
is only given for information sets connected toh, where(σ,τ) is relevant, which suffices for any
decision of player 1 at this point.

We first introduce auxiliary variablesu(σ) for any σ ∈ S1 (and, throughout, analogously for
player 2). These denote the expected payoff contribution ofσ (that is, of all strategies agreeing
with σ) when player 1 follows recommendations. They are given by

u(σ) = ∑
τ

z(σ,τ)a(σ,τ)+ ∑
k∈H1:σk=σ

∑
d∈Ck

u(σkd) . (6)

In (6), a(σ,τ) is the payoff to player 1 at the leaf defining the sequence pair(σ,τ), which is then
obviously a relevant pair; if there is no such leaf,a(σ,τ) = 0. The first sum in (6) captures the

9



expected payoff contribution whereσ and suitable sequencesτ of player 2 are defined by leaves.
The second, double sum in (6) concerns the information setsk of player 1 reached byσ. The sum
of the payoff contributionsu(σkd) for d ∈ Ck is the expected payoff when player 1 follows the
recommendation to choosed atk, given the new posterior information obtained there.

Applying (6) recursively, starting with the longest sequences, gives for the empty sequence
u( /0) = ∑σ,τ z(σ,τ)a(σ,τ). This denotes the overall payoff for player 1 under the correlation planz
(and similarly for player 2), which generalizes (3).

The payoffu(σ) when following the recommended movec in σ = σhc must be compared
with the possible payoff when deviating fromc. This is described by an optimization against the
behavior of player 2 in rowσhc of z, by considering the other moves ath, as well as moves at
information setsk that are reached later on. By optimizing in this way, the payoff contribution at
an information setk of player 1 is denoted byv(k,σhc). The parameterσhc indicates the given
row of the correlation planzagainst which player 1 optimizes. Fork = h, we define

v(h,σhc) = u(σhc). (7)

The recommended movec should be optimal ath. This incentive constraint is expressed by the
following inequalities, for any information setk in H1 with k = h or h precedingk, and all moves
d atk:

v(k,σhc)≥∑
τ

z(σhc,τ)a(σkd,τ)+ ∑
l∈H1:σl =σkd

v(l ,σhc) (d ∈Ck). (8)

The first sum in (8) is well defined, since when(σkd,τ) leads to a leaf, then(σhc,τ) is relevant
becauseσh is a prefix ofσkd. If there are no further information setsl andk = h, then (8) is
analogous to (1), with movesc,d instead of strategiesi,k. Here as there, the posterior distribution
from the given recommendationσhc is used for the comparison with other choices. In general,
a moved at k can lead to further information setsl , also preceded byh, where the best possible
payoff contribution is computed asv(l ,σhc). This variable is based on thesamebehavior of
player 2 given by rowσhc of z.

The number of variablesv(k,σhc) is quadratic in the number of sequences of player 1 because
they are indexed by the information setsk and the sequencesσhc. The latter reflect the conditional
behavior of the other player, which varies in a correlated equilibrium. In a Nash equilibrium,
it would be fixed, andz(σhc,τ) is replaced byy(τ) for an unconditional realization plany of
player 2. Furthermore, the variablesv(k,σhc) are replaced by single variablesv(k), one for each
information setk of player 1. Then the inequalities (8) are exactly those expressing the Nash
equilibrium condition, withdualvariablesv(k). These dual variables also represent, like here, the
optimization by “dynamic programming” [30, p. 239].

Together with the consistency constraints, the incentive constraints above characterize an
EFCE. We summarize our main result as follows. For a proof outline, see [12].

Theorem 5.1. In a two-player, perfect-recall extensive game without chance moves, a correlation
planz as in Theorem 4.3 that fulfills the incentive constraints (6), (7), (8) defines an EFCE. The
number of variables and constraints is polynomial in the size of the game tree, so that an EFCE is
polynomial-time computable.
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