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Abstract

The main purpose of this paper is to suggest a mechanism of coordi-
nation whereby concerns for high relative position might evolve endoge-
nously. A simple symmetric 2×2 strategic coordination game is analyzed
in an evolutionary environment where continua of bounded rational agents
are randomly matched against each other. The agents are assumed to have
the ability to make an imperfect observation on how their own status re-
lates to that of their opponent. These observations are then utilized as an
instrument for coordinating the strategies in the game by the conditioning
of the pure strategies on whether the opponent has a higher status or a
lower status. The outcome of the game is analyzed through a newly de-
fined evolutionary criterion as the agent’s observational skills come close
to the limit of being perfect. It is shown that there exists an endogenous
asymmetry in the model that results in just one of the conditioned strate-
gies in the pure strategy set being evolutionary stable. Moreover, it is
also shown that this strategy will prevail against strategies conditioned
through other personal characteristics, e.g. size, and gender.
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1 Introduction

The present paper takes position from observations made in ethology, where it

has long been known that animals tend to yield or give precedence for other

animals of higher status in terms of e.g. food and mating opportunities. This

behavioral pattern indicates that status might have some coordinating role in

various conflicting situations. The perhaps most intuitive explanation for the

behavior in this particular example would be that higher status often is associ-

ated with higher strength, so that any resistance from an animal of lower status
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would be futile or come at a very high price. In a more formal game theoretical

setting, it is obvious that the asymmetry stemming from the difference in the

retaliatory power would be reflected into the payoff-matrix, so that one agent

would suffer much more in case of a realized conflict. But let us look past any

asymmetry caused by differences in retaliatory power between the agents, and

ask if it is possible that status might serve as coordinator for a larger class of

symmetric games. That is, does there exist an inherent asymmetry in strategic

coordination games that benefits high status?

1.1 Background

1.1.1 Symmetric Games with Asymmetric Agents

The class of games mentioned above with heterogeneous agents was originally

investigated by Maynard Smith [12] as an extension of the now famous Hawk-

Dove model in his pioneering book Evolution and the Theory of Games. He

there demonstrates that symmetric Hawk-Dove games with asymmetric agents,

where the agents condition their strategies on the role of the opponent, reveals

two evolutionarily stable strategies, ESS, that in theory are equally plausible.

However, the analysis of these games was made under the crucial assumption

that the probability of an agent occupying a particular role is independent of

its strategy. Furthermore, it is stressed that this assumption is reasonable if the

agents participate only once in these games or if the outcome of the game does

not influence the role the agent will have in the next game. However, it is not

hard to foresee how the role of the agent could be dependent on the outcome.

The most obvious would be if the agents were to condition their strategies on

how well the opponent had done before, i.e. conditioning by position or status.

It is obvious that this type of conditioning would violate the assumption above.

1.1.2 Positional Concerns

The question of positional concerns has attracted attention from economists

since the beginning of economic literature and can be traced back to Adam

Smith [11, pp. 108 - 110] who questioned why individuals seem to work more

than required for their basic needs. Later, Veblen [14] claimed that the primary

2



purpose for consumption was to signal one’s status in the society, since societies

at every arbitrary developmental phase establish expectations on a consumption

pattern fitting to each level of status within a society.

Various attempts to explain and model positional concerns have emerged

since then. An approach that is closely related to that of status can be found in

the fairness literature. A basic difference between the two approaches, however,

is that fairness is often associated with a specific economic situation, whereas

status considers contextual factors such as the history of the individuals. But as

Roth [7, pp. 329 - 330] has noted, one would expect individuals to act differently

whether their opponent is a business tycoon or a manual laborer.

The status literature is difficult to survey due to the elusive character of the

concept status. Nevertheless, Weiss & Fershtman [15] makes an excellent effort

to capture this concept in the sociological literature.

Two major approaches can be identified in the literature of modeling status;

one that assumes that people have a direct preference for status, and another

that argues that the concerns for status are instrumental. However, the former

approach has been heavily criticized for being ambiguous in character since the

model might explain every imaginable action just by letting the individuals have

some positional concern, and thus not being able to explain anything ex ante.

For a more in-depth discussion see Postlewaite [8].

In the latter approach, it is often assumed that the status can be associ-

ated with some desirable ability of the individual, since the signaling of status

through different positional goods comes cheaper for individuals with this spe-

cific quality than for those without. Spence [13] seminal work of separable

equilibrium was the first to highlight this approach. He found that individuals

with a higher productivity were willing to “burn money” by overspending on

education in order to signal their abilities. Subsequently, Frank [5] showed that

people overspend relatively in positional goods compared with non-positional

goods in order to “Keep up with the Joneses”. In the same manner, Cole et al.

[2] shows that agents tend to oversave in a “Rat race of the rich”.

Rege [9] shows that positional goods such as Rolex watches and Armani suits

can serve as signals of non-observable abilities in complementary interactions.
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1.2 Outline of the Model

Consider a symmetric 2 × 2 game Γ (α,β) as depicted in the figure 1 below,
where α ∈ (0, 1) and β ∈ (0, 1).
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α

  H   D
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Figure 1: Symmetric 2× 2 strategic coordination game

This game constitutes a simple coordination game where at least one agent

has an interest in avoiding coordination failures. It can easily be verified that

there exists a unique EES where one part of the population would be playing

hawk, H, and another would be playing dove, D. But this will clearly result

in coordination failure when an agent encounters another agent with the same

strategy.

However, if the agents could find some way to successfully coordinate their

behavior in Γ this would clearly convey a much more efficient equilibrium. It is

easy to realize that the only feasible way for the agents to coordinate the actions

perfectly would be if they have the ability to somehow differentiate between the

various types of agents.

1.2.1 Conditioned Strategies

The pioneering work in studying this type of conditioning behavior on some

observable asymmetric variable was originally done by Maynard Smith [12].

Through a Hawk-Dove game it was shown that the conditioning of strategies in

an evolutionary setting by static variables such as, “owner & intruder”, “larger

& smaller”, and “older & younger” results in two conditioned ESS. This can

easily be verified in figure 2 below where a less general game (α = β) is rewritten

with conditioned strategies on whether the opponent is an owner meeting an

4



intruder or an intruder meeting an owner. Note that for simplicity the game is

given as the special case when the probability for being an intruder is equal to

being an owner.

Consider an agent that e.g. plays H if he is an owner meeting an intruder

and D if he is an intruder meeting an owner, i.e. (H:o,D:i). From the game in

figure 2 it can be seen that this agent will receive a higher payoff when meeting

another agent with the same strategy, than an agent with any of the other

strategies will receive when meeting an agent with this particular strategy. I.e.

π ((H:o,D:i) , (H:o,D:i)) > π (s, (H:o,D:i)) for s ∈ {H,D, (D:o,H:i)} , hence
it is an ESS.
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Figure 2: Owner & intruder game

The question that we will try to answer here is; does coordinating through

“high status & low status” convey a unique equilibrium? In other words, does

there exist some inherent asymmetry that benefits this strategy such that the

game will result in a single evolutionary equilibrium? Let us, for clarity, infor-

mally define the status of an agent in terms of how well the agent has done in

previous games; that is, a good track record is associated with a high status.
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1.2.2 Status as a Coordinator

Now consider a simple example Γ
¡
3
4 ,

3
4

¢
, as depicted below, were two agents

with high respectively low status (l & h) are met in a strategic coordination

game. The agents can choose between playing H, or D. From the game it is

obvious that two equilibria in conditioned pure strategies can be found.

The Villain equilibrium (H:h,D:l) where a low status agent yields for a

high status agent; that is, play H against an agent with lower status and play

D against an agent with higher status. Let this conditioned strategy henceforth

be called Villain strategy.

Secondly, there is the reversed Robin Hood equilibrium (D:h,H:l) where a

high status agent yields for a low status agent, i.e. play D against an agent

with lower status and play H against an agent with higher status. Let this

conditioned strategy henceforth be called Robin Hood strategy.
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There is obviously nothing in the game form that favors either of the two dif-

ferent equilibria. But could there exist another property, possibly dynamic, that

would explain why high status is favored in coordination games? It should be

noted that status has an interesting dynamic component, which is not included

in the variables tested by Maynard Smith. This implies that if a population,

in a tournament style contest, were to utilize the Villain strategy, this would,

given the informal definition above, result in an expansion in the distribution

of status since this strategy would favor agents that have been successful in

previous games. Consequently the Robin Hood strategy would result in a con-

traction of the status distribution, since a less successful past is favored by this

strategy. Moreover, since it would not be realistic to assume that the agents’

observational skills are perfect, the Robin Hood strategy would over time result

in more coordination failures that than Villain strategy.
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1.3 Outline of the Study

The main objective of this paper is to suggest a mechanism for endogenous

evolution of positional concerns from coordination in a class of symmetric 2× 2
games. This is done by a generalization of Maynard Smiths [12, pp. 94 - 96]

symmetric Hawk-Dove games with asymmetric agents, without the assumption

of independence between the agents’ role and strategy. It is assumed that the

agents have the ability to condition their strategies by whether the opponent

has a higher or lower status. Status is here defined as how well the agents have

done in previous games. We assume that the agents have limited observational

skill. The game is being played by a continuum of agents, where each agent is

matched to play the game with an opponent randomly drawn from the popula-

tion in each period. In order to avoid the difficulties associated with a complete

analysis of this complex process, we only investigate whereto this process con-

verges in the ultra long run. We define and characterize a criterion for stability

in distributions of status.

Since conditioned strategies enable heterogeneous payoff, there will subse-

quently be a need for a slight modification of the ESS concept. Three alternative

criteria for evolutionary stability are characterized, two within a population and

one between different populations.

Given our assumptions, we find that the evolutionary criteria within popula-

tions result in multiple equilibria, whereas the criteria for evolutionary stability

between populations display a unique equilibrium. This unique equilibrium will

be matched against strategies conditioned by an arbitrary static variable that

lacks the dynamic component of status; that is, every variable such that the role

of the agent is independent of its strategy. Moreover, this unique equilibrium is

also matched against conditioned hybrid strategies that comprises conditioning

through compounded variables both with and without any dynamic component.

Under our assumptions, we find that the unique equilibrium in status prevails

for the hybrid strategies included in our analysis.
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2 The Model

2.1 The Game

Consider a symmetric 2×2 game Γ (α,β) as described by the normal game form
in figure 1. For α ∈ (0, 1) and β ∈ (0, 1) we have a general class of symmetric
2× 2 coordination games that includes both Hawk-Dove games (α > β) as well

as Battle of the sexes (α→ 0). Let, as customary, the pure strategy set be given

by S = {H,D}. It is easy to verify that three Nash equilibria, NE, can be found
in this game: two in pure strategies, (si, s−i) = (H,D) and (si, s−i) = (D,H),

and one in mixed strategies Pr (H) = 1−α
1+β−α , Pr (D) =

β
1+β−α . If we were to

loosen the assumption of fully rational agents and instead perceive the game

from an evolutionary standpoint, the only remaining equilibrium (ESS) would

be the equivalence to the mixed strategy. That is, 1−α
1+β−α of the population

playing H, and the remaining β
1+β−α of the population playing D.

It should be noted that the ESS, as mentioned above, is associated with

a probability for coordination failure,
³

β
1+β−α

´2
+
³

1−α
1+β−α

´2
, that equals or

exceeds the probability for a successful coordination. Let us therefore assume

that the agents in addition to the pure strategy set also have the ability to

condition their strategies through status.

2.2 The Conditioned Strategy Set

Definition 1 (Status) Let the status of agent i at t , wti , be given by w
t
i ≡

ρπt−1i +(1− ρ)wt−1i where πt−1i is the expected payoff in the pervious period

given t ∈ Z and ρ ∈ (0, 1).

The status at the present period is identically given for every agent by some

convex combination between the payoff and status of previous period. It would

make for an improbable model to assume that the agents have the ability to

determine from what period t a certain payoff stems. Instead, we assume that

the agents observe a cumulative payoff. The status should thus primarily be

interpreted as a measure on how well agents have done on average in previous

games. Note that the status by this approach becomes equal to, or a very good

proxy for, the average payoff and thus also to some normalization of the relative

wealth.

8



For simplicity let henceforth, when there is not risk for confusion, wti be

denoted as wi. Furthermore, make the assumption that each agent in addition

to knowing their own status wi also have the ability to make an observation of

their opponent’s status w−i. Given that the observational skills of the agents can

be considered as imperfect, it is realistic to also assume that the probability for

coordination failures will increase as the distance between wi and w−i decreases.

However, there are two plausible ways to model the agents behavior as the

distance between their status level decreases. Either it can be assumed that

the agents adhere to their strategies in every given situation regardless of the

difference between their own status and that of their opponent, |wi − w−i|,
or that the agents at some point, when the distance in status is sufficiently

close, abandons the attempts to condition their strategies and instead use an

unconditioned strategy where Pr (H) = 1−α
1+β−α , Pr (D) =

β
1+β−α . For clarity, let

the standard unconditioned ESS in this particular game be called the Maynard

Smith solution and abbreviated MSS.

Let us simplify the calculations by approximating this assumption with a

step-function in the following manner; if |wi − w−i| ≥ δ the agents will coor-

dinate the game perfectly whereas when |wi − w−i| < δ the agents will use a

strategy γ ≡ λH+(1− λ)D were λ ∈ (0, 1), alternatively λ play H and (1− λ)

play D. This approach should thereby comprise both when the agents assign

equal probability to the strategies as a result of coordination failures, and when

they due to lack of information adapt their strategies according to MSS. Note

that this is consistent with MSS as well as with the mixed strategy which both

reveal the same payoff. However, there is a qualitative difference between MSS,

where the agents are playing a pure strategy, and the case where the agents ran-

domize their strategies by assigning equal probability to both strategies. The

former is obviously a pure strategy whereas the later is a mixed strategy.

Moreover, since the agents are assumed to observe the cumulative payoff,

this implies that even though the distance in status is constant, the absolute

difference in wealth will grow larger by time.

Assumption 1 δ → 0.

Note that this assumption implies that the approximation above will not

change any of the results qualitatively at the limit, as δ ≈ 0.
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The agents should, given the assumptions above, consequently be free to con-

dition their strategies on the relation between their own and opponent’s status.

Hence, the pure strategy set S has to be enriched such that it also comprises

the conditioned strategies. There are of course an innumerable amount of dif-

ferent ways to condition the pure strategies on the relation between the agents’

own status and that of their opponent. But in this study we will restrict our

attention to the case when an arbitrary agent i conditions the strategies on the

relation between his own and opponent’s status through either of two contingent

strategy plans.1

Robin Hood

strategy:
Ri =


sh = H if wi ≤ w−i − δ

sl = D if wi ≥ w−i + δ

su = λH+ (1− λ)D if w−i + δ > wi > w−i − δ

Villain strategy: Vi =


sh = D if wi ≤ w−i − δ

sl = H if wi ≥ w−i + δ

su = λH+ (1− λ)D if w−i + δ > wi > w−i − δ

Hence, the enriched pure strategy set is given by:

S = {H,D,R,V} (1)

2.3 Playing the Game

Imagine a continuum of agents I where each individual agent is assumed to

adhere to some pure strategy s from the enriched pure strategy set S, s ∈ S.
Let the strategy mix in the population, consistent with the behavior of the

population, be denoted s and henceforth called the incumbent strategy. Formally

s is a convex combination of the pure strategies s, s ∈ S, that is given by the
distribution of strategies in the population. In other words, s is a a point in the

strategy simplex ∆ such that ∆ =
©
s ∈ R4+ |

P
s∈S ss = 1

ª
.

However, in this study we restrict our investigation to when the incumbent

strategy s initially is in either of verticesR and V, i.e. a homogenous population
where every single agent acts according to one pure conditioned strategy, or at

1This way of conditioning the pure strategies on the status is identical with how Maynard

Smith originally defined this class of asymmetric games (see Maynard Smith [12]).
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either of two points along the convex combination between the two remaining

vertices H and D. The points on this line include both MSS and the case when

the agents assign equal probability to the unconditioned strategies H and D.

That is, just a part of the hull of the strategy simplex ∆ is considered.

Let each agent be matched to play Γ with an opponent randomly drawn

from the population I at every time t. At the end of each time period when

all the agents have been matched, the status is updated according to definition

1. Note that this treatment reveals an identical expected payoff to the more

traditional tournament-style contest, where each agent in a single tournament

is matched with each remaining agent exactly once, which is a property of an

infinite number of agents. Let the expected payoff for agent i at period t be

denoted πti.

The outcome for a single agent, thus also the entire game, is at any given

time t not only dependent on the behavior of that agent, but also on how the

population is distributed and where this agent can be found in the distribu-

tion. Since we already have assumed that every agent i ∈ I is associated with
a status wi, let us now instead focus our attention on how the status is dis-

tributed in the population and thereby perhaps clarify some of the dynamics

of the game. Therefore, let wi ∈ W for ∀i ∈ I. Hence at any given time t we
have that W ∼ Fs, i.e. the status in the population is distributed according
to F (W ; s). The payoff of an arbitrary agent i could consequently be charac-

terized by πti (s, w
t
i ; s, F ). Since we have assumed the incumbent strategy to be

homogenous, let us for now simplify the expression by denoting the payoff as

πi (w
t
i ; s, F ).

The outcome of the game can be perceived from three time perspectives:

short, medium and long term.

First consider what happens with status of an agent in the short term at

time t+1. If the payoff from the previous period t is e.g. lower than the status

this will result in a lower status in period t + 1, πi (wti ; s, F ) < wti ⇒ wt+1i <

wti . Either way, if πi (w
t
i ; s, F ) 6= wti for any i ∈ I the distribution F

will be different in the period t + 1 and thus almost always reveal a differ-

ent payoff for the agents at this period. If not in this period, the payoff will

eventually change in the medium term.
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This process will continue as the distribution eventually converges to what

hopefully is a stabile distribution in the long term. Let us circumvent the

difficulties of calculating the outcome in the short and medium term and solely

focus on whereto the distributions of strategies converge in the long term and

investigate under what conditions these can be considered as stable in some

sense.

2.4 Characterizing Stable Distributions in Status

A necessary condition for stability in the long term would be that the payoff of

every agent πi for status wi ∈ suppF is constant over time a given incumbent

strategy s and distribution of status F in the population I (Condition 1 ). This

can formally be expressed as πi (wi; s, F ) = wi. Since this is a property that has

to be valid for ∀i ∈ I, the notation can be simplified by rewriting the condition
as π (w; s, F ) = w.

However, this particular subset of every feasible distribution also includes

distributions that would diverge from its support by an infinitesimal tremble in

the status level. Since it would make for an unrealistic model if all mistakes

were to be ruled out, distributions that are vulnerable for infinitesimal trembles

should be considered as unstable. Moreover, additional perturbations in the

payoff should be expected from the actual realizations of each matching, since

the status here is defined through the average payoff.

Let us therefore exclude these distributions by adding a second condition; for

every discrete point in status levels that satisfies Condition 1 there must exist a

surrounding by this point, such that every status level in a close neighborhood

of this point converges back to the point (Condition 2 ). Let henceforth the

subset points in the support that fulfills these conditions be denoted as local

attraction points.
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F

An example of a distribution with three local attraction points.

Let us formally define a stable distribution;

Definition 2 (Stability) Every distribution F (W ; s) such that:

Condition 1: π (w; s, F ) = w

Condition 2a: If ∃x0 < w where (x0, w) ∩ suppF = ∅ ⇒
∃x00 < w such that π (w∗; s, F ) > w∗,∀w∗ ∈ (x00, w)

Condition 2b: If ∃z0 > w where (w, z0) ∩ suppF = ∅ ⇒
∃z00 > w such that π (w∗; s, F ) < w∗,∀w∗ ∈ (w, z00)

⇔
w ∈ suppF

is stable

Every discrete distribution belonging to the set of stable distributions of the

incumbent strategy s could consequently be characterized as a distribution with

support at every local attraction point, such that any given support in the dis-

tribution prevails over minute perturbations. Henceforth, let any distribution,

discrete or continuous, that is stable according to definition 2 be denoted as

F ∈ Fs.
However, it should be fair to assume that the agents are engaged in other

economic activities than exclusively the coordination game described above. If
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this is the case, it might prove difficult for the agents to determine which part

of the cumulative payoff are stemming from a coordination game and which

part originates in other economic activities. It should moreover be considered

as highly unlikely that the payoff distributions from other economical activities

exactly mirror those of the coordination game. Hence, each distribution should

repeatedly be subjected to exogenous perturbations of different magnitudes; i.e.

the agents could due to these perturbations drift away from the support even

though the support is a local attraction point.

Consider two adjacent points in the support such that

w0, w00 ∈ suppF and (w0, w00) ∩ suppF = ∅

where F ∈ Fs. Moreover, define the size of the upper attraction basin of w0 as
A+ (w0) ≡ |w0 − x| such that

x = sup {w∗ ∈ (w0, w00) | π (w∗; s, F ) < w∗,∀w∗ ∈ (w0, w∗)} .

In the same manner; define the size of the lower attraction basin of w00 as

A− (w00) ≡ |x− w00| such that

x = inf {w∗ ∈ (w0, w00) | π (w∗; s, F ) > w∗,∀w∗ ∈ (w∗, w00)} ,

see figure 3.

''w

( )'wA+

'w

( )''wA−

x

Figure 3: The attraction basins between two points in the support

There should exist a positive probability that agents in w0 due to exogenous

perturbations will divert away and out of A+ (w0) into A− (w00). This probabil-

ity will be proportional to the probability mass of agents that can divert and

inversely proportional to how far they have to divert in order not to converge
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back to the support. The same reasoning also applies for w00. The process of

agents diverting away from the support will clearly never stop, but the distribu-

tion itself will asymptotically converge to a “stable” state, given some δ, where

the expected mass of agents loss and gain, in each time period, at every support

is balanced.

Even though this is the state whereat every discrete distribution eventually

will converge as t → ∞, it imposes a very harsh restriction on the stability
of distributions since it could take an infinite time before it converges. On

the other hand, it should be noted that the conditions for stability stated in

definition 2 result in a set of stable distributions that includes distributions

with an extremely large net flow between two adjacent points in the support,

(see figure 4). Since any discrete distribution F such that F ∈ Fs will become
less stable the higher the net flow gets, it would be desirable to exclude the

distributions with the most extreme net flow.

+w−w

( )+− wA( )−+ wA

Figure 4: Example on a F ∈ F where A− (w+) >> A+ (w−).

Another rationale can be found if the distribution is viewed from an evolu-

tionary perspective. In an evolutionary environment it is a standard assumption

that a higher payoff is associated with a higher growth and vice versa. From

the case in figure 4, we should consequently expect the population to grow in a

higher rate at w+ than in w−. Depending on the density of each support, we

should expect the evolutionary forces to affect the distribution in possible two

ways. If the density of the support at w+ is higher than at w−, the density

at w− will eventually diminish and become close to zero as t → ∞. In the
opposite case when the density at w− is higher than at w+, we should expect

the support to gradually move towards w−. At some point this distribution will
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become unstable according to definition 2 by the emergence of a stable point

above w+.

Let us therefore introduce a fix K such that K ∈ (1,∞) and define a slightly
more restrictive form of stability.

Definition 3 (K-Stability) Every distribution F (W ; s) where F ∈ Fs such
that:

Condition 3a: If ∃w0 ∈ suppF such that (w0, w) ∩ suppF = ∅ ⇒
max(A+(w0),A−(w))
min(A+(w0),A−(w)) < K

Condition 3b: If ∃w00 ∈ suppF such that (w,w00) ∩ suppF = ∅ ⇒
max(A+(w),A−(w00))
min(A+(w),A−(w00)) < K

⇔

w ∈ suppF

is K-stable for some given K such that K ∈ (1,∞).

In other words, the set of K-stable distributions of the incumbent strategy s

(henceforth denoted as FsK ) is a subset of the set of stable distribution FsK ⊆ Fs,
where every K-stable distributions F (W ; s) ∈ FsK is characterized by that the
ratio between the attraction basins in between two adjacent points in the support

is upward bounded.

2.5 Stable Distributions in Status

In order to simplify the analysis of the model, let us begin to investigate if there

exists some general quality associated with the stable distributions in status.

Moreover let w− ≡ inf suppF and w+ ≡ sup suppF ; also let γ0 ≡ 1+α+β
4 and

γ∗ ≡ β
1+β−α .

Two qualitatively different cases can be found whereto the distribution of

status in the population converges, when γ = γ∗and γ = γ0.

2.5.1 Stable Distributions of status given β > γ + δ

For the case of β > γ + δ, it can be shown that two adjacent points belonging

to the support of a stable distribution will have a distance of at least δ. Hence,

no continuous distribution can belong to the set of stable distributions.
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Claim 1 The distance between two adjacent points in the support is character-

ized by
¯̄
wj − wj+1¯̄ ≥ δ ∀F such that F ∈ Fs given β > γ + δ .

Proof. See Appendix

Corollary 1 There does not exist any continuous distribution F such that F ∈
Fs for β > γ + δ .

From definition 3 it follows that for any given pair (δ,K) there exists a

maximum distance between two adjacent points in the support. Let this distance

be denoted as d such that
¯̄
wj − wj+1 ¯̄ ≡ d. It follows directly from the definition

that the maximum distance d is increasing by δ. Since the upper support w+ in

any stable distribution will be w+ > 1− δ for Villain strategy and w+ > β − δ

for Robin Hood strategy, the probability mass p in the support will decrease as

δ decreases.

Claim 2 ∂d
∂δ > 0.

Proof. See Appendix

Corollary 2 ∂p
∂δ > 0,∀p

¡
wj
¢ ∈ suppF such that F ∈ FsK .

Now consider the stable distributions by the conditioned strategies.

Definition 4 Let bδ be the distance between adjacent points in the support such
that δ ≤ bδ ≤ d given β > γ + δ .

Stable Distributions of Robin Hoods In a population where the agents

condition their strategies according to the Robin Hood strategy, the following

relation has to be fulfilled in order for the distribution to be K-stable:

π
¡
wj+1;R, F¢− π

¡
wj ;R, F¢ = bδ (2)

This can be rewritten as:
βp
¡
wj
¢
+ γp

¡
wj+1

¢− γp
¡
wj
¢− p ¡wj+1¢ = bδ

⇔
p
¡
wj
¢
(β − γ)− p ¡wj+1¢ (1− γ) = bδ

⇔
p
¡
wj
¢
= p

¡
wj+1

¢
1−γ
β−γ +

bδ
β−γ
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Thus, the probability mass p in each support is decreasing in the argument

wj of the distribution.

Claim 3 p
¡
wj
¢
> p

¡
wj+1

¢
,∀F ∈ FsK given (s, F ) such that s = R.

Proof. See Appendix

Since the probability mass is decreasing exponentially in the support, it

follows that the probability mass at w− must exceed 1−β
1−γ for every bδ > 0.

Claim 4 p (w−) > 1−β
1−γ for F (w;R) ∈ FsK .

Proof. See Appendix

Also note that the probability mass at upper support p (w+)→ 0 as δ → 0.

Claim 5 ∀F ∈ FsK for (s, F ) such that s = RÃ 0 < p (w+) ≤ δ
1−γ .

Proof. See Appendix

Stable Distributions of Villains In a population where the agents condi-

tion strategies according to the Villain strategy, the following relation has to be

fulfilled:

π
¡
wj+1;V, F¢− π

¡
wj ;V, F¢ = bδ (3)

This expression implies p
¡
wj
¢
+γp

¡
wj+1

¢−γp ¡wj¢−βp ¡wj+1¢ = bδ which
can be rewritten as p

¡
wj
¢
= p

¡
wj+1

¢
β−γ
1−γ +

bδ
1−γ , which in turn implies that the

probability mass p is increasing in the argument of the distribution as δ → 0.

However from definition 2 it follows that the probability mass at the upper

support p (w+) has to fulfill 0 < p (w+) ≤ δ
1−γ for any stable distribution, hence

also every K-stable distribution. Thus it follows directly that the probability

mass p (w)→ 0 at every support that belongs to the distribution as δ → 0.

Claim 6 p
¡
wj
¢
< p

¡
wj+1

¢
,∀F ∈ FsK given (s, F ) such that s = V when δ → 0

for β > γ + δ.

Proof. See Appendix

Claim 7 ∀F ∈ FsK for (s, F ) such that s = V Ã 0 < p (w+) ≤ δ
1−γ .
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Proof. See Appendix

Corollary 3 lim
δ→0

p (w) = 0,∀w ∈ suppF such that F (w;V) ∈ FsK for β > γ+δ.

From the claims above, the following property follows directly.

Property 1 π (R, F ) < π (V, F ) given β > γ + δ and F ∈ FsK as δ → 0.

2.5.2 Stable Distributions of status given β ≤ γ + δ

When β ≤ γ+δ, every distribution in which all agents condition their strategies

according to the Robin Hood strategy will end up as a one-point distribution.

Property 2 The only F ∈ Fs for the pair (s, F ) such that s = R and β ≤ γ+δ

is a one-point distribution at w = γ.

If the agents instead were to condition their strategies according to the

Villain strategy it follows directly that a one-point distribution is not stable

according to definition 2. It can also be shown that there are no stable con-

tinuous distributions in existence with this strategy. However the population

can, as shown below, converge to discrete distributions where the distance be-

tween two arbitrary adjacent points belonging to the support is arbitrarily small.

Consider two adjacent points wj and wj+1 such that wj, wj+1 ∈ suppF and¡
wj , wj+1

¢ ∩ suppF = ∅ and wj , wj+1 6= w−, w+. Then consider the following
distances between these two adjacent points:

• ¯̄wj+1 − wj ¯̄ > 2δ
This can obviously not be a stable distribution, since a there exist a point

w such that wj + δ < w < wj+1 − δ where π (w) = w.

• δ ≤ ¯̄wj+1 − wj ¯̄ ≤ 2δ
In this case, there might for a given (α,β) exist a point w such that wj+1−δ <

w < wj + δ where π (w) = w.

• ¯̄wj+1 − wj ¯̄ < δ
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The agents in wj+1 and wj are unable to identify each others status, why

the difference in expected payoff stems from having wj+1 unable to identify

some w > wj+1, whereas wj can, and/or that wj+1 is able identify some w <

wj , whereas wj is not. It follows directly that every adjacent support can be

arbitrarily close; hence the following property.

Property 3 The distance between two adjacent points in the support is char-

acterized by
¯̄
wj+1 − wj ¯̄ > 0 ∀F such that F ∈ Fs given β ≤ γ + δ .

Since the probability mass is determined in the same way as when β >

γ + δ, i.e. π
¡
wj+1;V, F¢− π

¡
wj ;V, F¢ = p ¡wj−n¢+ γp

¡
wj+n

¢− γp
¡
wj−n

¢−
βp
¡
wj+n

¢
, we know that p

¡
wj−n

¢
< p

¡
wj+n

¢
Ã p

¡
wj
¢
< p

¡
w j+1

¢
. Conse-

quently we could make the same conclusion as in claim 3, leading to the following

property:

Property 4 lim
δ→0

p (w) = 0,∀w ∈ suppF such that F (w;V) ∈ FsK .

Any stable distribution in status by this population must have a larger sup-

port distributed over (β, 1). The expected payoff by a stable distribution in

a population with agents exclusively conditioning their strategies according to

the Robin Hood strategy is less than in any population with agents exclusively

conditioning their strategies through the Villain strategy.

Property 5 π (R, F ) < π (V, F ) given β ≤ γ + δ and F ∈ Fs.

3 Evolutionary Criteria

The question whether a strategy could be invaded becomes harder to determine

in this type of modeling, than in models with exclusively non-conditioned strate-

gies. Note that the rationale behind the equilibrium concept of the standard

ESS model, as defined by Maynard Smith, is built on the following assumption:

agents associated with a strategy that reveals a higher expected payoff are more

frequent in the population next period than agents with strategies that reveals

a lower payoff. The implementation of this idea is not as straightforward in

the model described above as in the standard ESS model. The added diffi-

culty stems from that the strategy in this model is usually associated with a
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heterogeneous payoff, which leaves the question for how the population grows

indeterminate.

Consequently, this unfortunate circumstance makes the standard ESS model

indeterminate as to whether invasions are possible in cases where a mutant

strategy reveals a higher payoff against some fraction of the incumbent strategy

in the population, and lower payoff against the remaining fraction. There will

be a need for a modified ESS concept, both in relation to the growth of the

population and in relation to when a mutant strategy invades the incumbent

strategy, in order for it to be applicable to this type of modeling.

3.1 Restrictions

In contrast to the standard evolutionary model, there are three simultaneous

dynamic processes in this model: growth of the population, mutations, and the

distribution of the population.

3.1.1 Growth of the Population

Let us begin by making the following crucial assumption.

Assumption 2 The growth in every support of the distribution is proportional

to payoff.

3.1.2 Mutations

Let us assume that the incumbent distribution of strategies at each period with

probability µ is subjected to a minor invasion of a mutant strategy m, and

that with a probability (1− µ) the agent’s behavior stays fixed. In case of

invasion, let ε of the population change their behavior and instead play the

game according to some other strategy m from the enriched pure strategy set

S, and 1− ε of the population remain with the incumbent strategy.

Moreover, if two different strategies are resulting in the same realized behav-

ior and thus same payoff, it should be more likely that the less complex strategy

is used since a more complex strategy should be considered as more costly.

Assumption 3 Ifm is less complex thanm0 and π (m,w; s, F ) = π (m0, w; s, F )

will the agents use the m strategy.
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A conditioned strategy is regarded as more complex than an unconditioned

strategy; a mixed strategy is regarded as a more complex than a pure strategy.

3.1.3 Distribution of the Population

Let µ be so small that growth in the population, due to differences in expected

payoff, affects the distribution to a much higher degree than mutations do. For

simplicity, assume that the populations will converge into a K-stable distribution

before any mutations take place.

Assumption 4 The adjustment process of the distribution is much faster than

the growth process, which in turn is much faster than the process of mutations.

3.2 Single Support Mutations

A criterion for evolutionary stability, which comprises the concept of ESS, would

be that there does not exist any alternative strategy m ∈ S\s that will do just
as well or better than any support w ∈ suppF (s) of the incumbent strategy s.
That is:

Definition 5 (Criterion A) The pair (s, F ) where F ∈ Fs will meet criterion
A for surviving a mutant strategy, m ∈ S\s ⇔

π (m,w; s, F ) < w for ∀w ≥ w− (4)

Let such pairs henceforth be denoted as (s, F ) ∈ FAs .

If there exists any alternative strategym ∈ S\s such π (m,w; s, F ) ≥ π (s,w; s, F ),

it can be assumed that the agents through the evolutionary process in assump-

tion 4, by mutation adjust their behavior until criterion A is fulfilled.

3.3 Cluster Mutations

An alternative approach on how to compare a mutated strategy with the incum-

bent strategy would be to examine how an arbitrarily small randomly drawn

proportion ε would perform on average against the initial population; i.e. to see

how well the agents would do on average in a given distribution if they were to

mutate.
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Assumption 5 The mutations are identically distributed as the incumbent strat-

egy

Given that other economic engagements and coordination failures combined

bring about enough perturbations to the support of F , F can be seen to have

a dual interpretation. Besides from being a description of how the status is

“stably” distributed in a continuum of identical agents, it can also be interpreted

as the probability over time whereto an arbitrary agent will be converging when

playing this coordination game.

It follows that the probability for an arbitrary agent, playing the game ac-

cording to the incumbent strategy mix s, to converge to w ∈ suppF at any

given time is equal to p (s, w; s, F ).

Definition 6 Let p (s, w; s, F ) be the probability mass at w given a stable dis-

tributed population exclusively using the incumbent strategy s.

Consequently, the average payoff over time should be a highly relevant factor

given that mutations are events that occur very seldom in comparison with

exogenous economic events. The average payoff over time for the incumbent

strategy can be denoted as:

π (s; s, F ) =
R w+
w=w− p (s,w; s, F )π (s, w; s, F ) (5)

It is also necessary to take into account that an agent with a mutant strategy

m might divert to a different stable status level than an agent with the incum-

bent strategy s, also when they initially enter the game at the same status

level.

Definition 7 Let p (m,w; s, F ) be the probability mass at w for an infinitesi-

mal part ε of the population using a mutant strategy m in a stable distributed

population that is exclusively using strategy s.

The average payoff over time for a mutant strategy would be:

π (m; s, F ) =
R w+
w=w− p (m,w; s, F )π (m,w; s, F ) (6)
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Definition 8 (Criterion B) The pair (s, F ) where F ∈ Fs will meet criterion
B for surviving a mutant strategy, m ⇔

π (m; s, F ) < π (s; s, F ) (7)

Let such pairs henceforth be denoted as (s, F ) ∈ FBs .

3.4 Group Evolution

Yet another possible evolutionary selection process can be found when stable

distributions of strategies that fulfill criterion A evolve separately in different

isolated populations. For now, assume that the feasible distributions that are

stable according to criterion A, are uniformly distributed over the different iso-

lated populations. In addition to the conventional assumption that a higher

payoff implies a larger growth, it can also be assumed that a higher average

payoff is associated with a larger growth of the population. One can imagine

that these different isolated populations, as they grow larger, sooner or later will

come in contact with each other. When they do, they are immediately united

into one pooled population. It is proposed that the probability for a population

of encountering another population will be proportional to its’ growth rate.

The fusion of these populations will converge to a stable distribution Fs0 (s0) ,

Fs00 (s
00) Ã F (s0s00) where F ∈ FsK and (s0, Fs0) , (s00, Fs00) ∈ FAs . For simplic-

ity, let s belong to the incumbent strategy s ∀t. According to assumption 4,
the pooled distribution converges to a stable distribution before any growth

of the population takes place, whereafter the agents adjust their behavior if

π (s, w; s,F) ≤ π (m,w; s,F), for s ∈ S,m ∈ S\s. Let the resulting distribu-
tion where @ (s,w) ∈ suppF such that π (s,w; s,F) ≤ π (m,w; s,F) be called

strategically stable and denoted eF.
Definition 9 (Criterion C) The pair

³
s, eF´ where eF ∈ FsK will meet crite-

rion C for surviving an alternative strategy, m ∈ S\s ⇔
maxπ

³
m, ·; s, eF´ ≤ minπ ³s, ·; s, eF´ < maxπ ³s, ·; s, eF´

Note that criterion C in essence is criterion A applied twice; first within a

population and then between populations.
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4 Evolutionary Stability

Let us now investigate whether some combination from the enriched pure strat-

egy set S fulfills any of the criteria defined above, as δ → 0. It should be noted

that when γ = γ0, i.e. when the agents use a mixed strategy where they assign

equal probability to H and D, we exclude the possibility that the agents can

use any equilibrium strategy when |wi − w−i| < δ.

4.1 Stable Strategies in Single Mutations

In relation to different distributions and combination of strategies for which

stability according to criterion A in definition 5 can be found, a cumbersome

process of going through any feasible combination of strategies and distributions

can be foreseen. Instead, consider the following: in this study we try to inves-

tigate whereto a population playing the game in 1above converges in the long

term. It would be fair to assume that basic behaviors are developed over ex-

tremely long periods; i.e. from the creation of a population until the population

eventually becomes very large or almost infinite.

Initially, at the creation of a population, we should expect (given the restric-

tions above) that the agents behavior converge rapidly towards some equilib-

rium; either to an unconditioned equilibrium, MSS, or to a close neighborhood

of a homogenous population at a conditioned equilibrium as defined in criterion

A. Any other distribution of behavior than the above mentioned would lead to

a redistribution in the relative proportion of strategies and should consequently

not be regarded as K-stable.

In order to capture the full dynamic of this process correctly, we would have

to model the agents through a discrete model. However, since we have in this

model (in order to simplify the calculations) assumed a continuum of agents,

we are compelled to make a conjecture.

Conjecture 1 The only feasible K-stable distributions of behavior that could

satisfy criterion A, are populations that evolve from either the unconditioned

equilibrium, MSS, or a homogenous population utilizing one pure conditioned

strategy.
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Hence it will be sufficient to investigate the cases when the incumbent strat-

egy consists of a homogenous conditioned strategy and when we have a convex

combination of unconditioned strategies such as MSS.

4.1.1 Robin Hood Strategy as Incumbent Strategy

Case: β > γ0 + δ

It is easy to verify that the Robin Hood strategy is vulnerable for invasion

when β > γ0 + δ.

Claim 8 R is according to criterion A vulnerable for invasion ∀α,β ∈ (0, 1) ,
given β > γ + δ for γ = γ0.

Proof. See Appendix

Note that any invasion is restricted to either a D invasion at the upper

support w+, or an H invasion at the lower support w−. It can be shown there

exists a slightly corrupted population of the homogenous Robin Hood strategy,

denotedRc, that consists almost exclusively of agents conditioning the strategies
according to Robin Hood strategy besides from either the upper w+ or lower

support w− at the distribution and that this population cannot be invaded by

any other strategies.

Claim 9 ∃Rc such that this population according to criterion A is not vulner-
able for any invasion, given β > γ0 + δ at the limit when δ → 0.

Proof. See Appendix

Case: β > γ∗+δ

Assume that the population uses the MSS instead of an equal randomization

between the strategies when |wi − w−i| < δ. We find that even though the

Robin Hood strategy can be invaded, there exists a Rc with an identical realized
behavior of each agent as when the entire population condition through Robin

Hood strategy, that are not vulnerable for invasion.

Claim 10 R is according to criterion A vulnerable for invasion by MSS, given

β > γ + δ for γ = γ∗.
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Proof. See Appendix

Consider a population where the agents are conditioning the game according

to Robin Hood strategy in every support except for w− and w+. Assume that
1−α

1+β−α of the agents in w
− are playing Hawk, and β

1+β−α of the agents in w
+

are playing Dove. It then follows that every agent in this population will behave

identical to the Robin Hood strategy, but this distribution will not be vulnerable

for invasion by any mutant strategy.

Claim 11 ∃Rc with identical realized behavior as R, that according to criterion
A is not vulnerable for invasion, given β > γ + δ for γ = γ∗.

Proof. See Appendix

Case: β ≤ γ + δ

From claim 2 we know that if the incumbent strategy is a homogenous popu-

lation coordinating according to Robin Hood strategy, then the distribution will

converge towards a single point.

If γ = γ0, it follows directly according to definition 5 that this distribution

can be partly invaded byMSS. Furthermore from assumption 3 it follows that it

can also be completely invaded since the pure strategies have lower complexity

than a randomized strategy.

In the case of γ = γ∗ it follows from assumption 3 that this strategy will be

completely invaded byMSS since a conditioned strategy has a higher complexity

than a pure strategy.

Property 6 R is according to criterion A vulnerable for complete invasion by

MSS, given β ≤ γ + δ when γ = γ∗and γ = γ0.

4.1.2 Villain Strategy as Incumbent Strategy

Case: γ = γ0

Similar to the case above with the Robin Hood strategy, it is easy to see that

also the Villain strategy is vulnerable for invasion when γ = γ0.

Claim 12 V is according to criterion A vulnerable for invasion ∀α,β ∈ (0, 1) ,
given γ = γ0.
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Proof. See Appendix

Neither the Villain strategy can be completely invaded by mutant strategies,

since any invasion is restricted to either an H invasion at the upper, or a D

invasion at the lower support. Hence there exists a slightly corrupted population

of the homogenous Villain strategy, denoted Vc, that cannot be invaded by any
other strategies.

Claim 13 ∃Vc such that this population according to criterion A is not vulner-
able for any invasion, given γ = γ0 when δ → 0.

Proof. See Appendix

Case: γ = γ∗

Now consider the case when a population uses the MSS instead of an equal

randomization between the strategies when |wi − w−i| < δ.

Claim 14 V is according to criterion A vulnerable for invasion by MSS, given
γ = γ∗.

Proof. See Appendix

Just as in the case above with the Robin Hood strategy, consider a population

where the agents are conditioning the game exclusively according to Villain

strategy in every support except for w− and w+. Assume that β
1+β−α of the

agents in w− is playing Dove and 1−α
1+β−α of the agents in w

+ is playing Hawk.

It then follows that every agent in this population will behave identically to the

Villain strategy , but this distribution will not be vulnerable for invasion by any

mutant strategy.

Claim 15 ∃Vc with identical realized behavior as V, that according to criterion
A is not vulnerable for invasion, given γ = γ∗.

Proof. See Appendix

That is, even though the Villain strategy can be invaded, there exists a

slightly corrupted population of the homogenous Villain strategy, Vc, with an
identical realized behavior as the homogenous Villain strategy, that is not vul-

nerable for invasion.
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4.1.3 MSS as incumbent strategy

Since MSS is one-point distributed, and there does not exist a mix of strategies

from the enriched pure strategy set S that reveals a higher payoff, it follows

directly from assumption 3 that it is not vulnerable for invasion.

Property 7 MSS is according to criterion A not vulnerable for invasion.

4.2 Stable Strategies in Cluster Mutations

4.2.1 Robin Hood Strategy as Incumbent Strategy

Case: β > γ0+δ

Since any invasion of the Robin Hood strategy according to criterion A is

restricted to either the upper support or the lower support, it can be showed

that this strategy is fulfill criterion B in definition 8 for evolutionary stability.

Claim 16 R is according to criterion B not vulnerable for invasion by any

convex combination of pure strategies or mixed strategies for any F as δ → 0,

given β > γ0 + δ.

Proof. See Appendix

Corollary 4 Rc is according to criterion B not vulnerable for invasion by any

convex combination of pure strategies or mixed strategies for any F as δ → 0,

given β > γ0 + δ.

Case: β > γ∗+δ

In this case too, we have that invasions are restricted to either the upper

support or the lower support why the Robin Hood strategy fulfills criterion B

for evolutionary stability.

Claim 17 R is according to criterion B not vulnerable for invasion by any

convex combination of pure strategies or mixed strategies for any F , given β >

γ∗ + δ.

Proof. See Appendix
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Corollary 5 Rc is according to criterion B not vulnerable for invasion by any

convex combination of pure strategies or mixed strategies for any F as δ → 0,

given β > γ∗ + δ.

Case: β ≤ γ + δ

Since Robin Hood strategy in this case is one point distributed we have that it

could be invaded by e.g. Villain strategy. Moreover, since there exists a strategy

mix with less complex pure strategies that reveals equal or higher payoff, it

follows directly from assumption 3 that the Robin Hood strategy is vulnerable

for invasion.

Property 8 R is according to criterion B vulnerable for invasion by some

strategy, given β ≤ γ + δ for both γ0 and γ∗.

4.2.2 Villain Strategy as Incumbent Strategy

In analogy with 4.2.1, we find that any invasion of the Villain strategy according

to criterion A is restricted to the upper support and/or the lower support. Thus

it can be shown that the Villain strategy fulfills criterion B in definition 5 for

evolutionary stability.

Case: γ = γ0

Claim 18 V is according to criterion B not vulnerable for invasion by any

convex combination of pure strategies or mixed strategies for any F as δ → 0,

given γ = γ0.

Proof. See Appendix

Corollary 6 Vc is according to criterion B not vulnerable for invasion by any

convex combination of pure strategies or mixed strategies for any F as δ → 0,

given γ = γ0.

Case: γ = γ∗

Claim 19 V is according to criterion B not vulnerable for invasion by any

convex combination of pure strategies or mixed strategies for any F , given γ =

γ∗.
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Proof. See Appendix

Corollary 7 Vc is according to criterion B not vulnerable for invasion by any

convex combination of pure strategies or mixed strategies for any F as δ → 0,

given γ = γ∗.

4.2.3 MSS as incumbent strategy

Since MSS according to property 7 fulfills criterion A for evolutionary stability,

then property 9 follows directly.

Property 9 MSS is according to criterionB not vulnerable for invasion ∀α,β ∈
(0, 1) , given γ = γ∗.

4.3 Stable Strategies through Group Evolution

Now let us examine how two isolated populations, both stable according to

criterion A but at different equilibria, would perform when they eventually come

in contact with each other. Note that in this section, and henceforth, we just

examine for when γ = γ∗. However the results for γ = γ0 are analogue.

4.3.1 Robin Hood Strategy versus MSS

Case: β > γ∗+δ

Proposition 1 R is according to criterion C not vulnerable for invasion by

MSS, given β > γ∗+δ as δ → 0.

Proof. See Appendix

4.3.2 Villain Strategy versus MSS

Case: γ = γ∗

Proposition 2 V is according to criterion C not vulnerable for invasion by

MSS, given γ = γ∗ as δ → 0.

Proof. See Appendix
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4.3.3 Villain Strategy versus Robin Hood Strategy

Case: β > γ∗+δ

Proposition 3 V is according to criterion C not vulnerable for invasion by R,
given β > γ∗+δ as δ → 0.

Proof. See Appendix

Corollary 8 V is the only strategy not vulnerable for invasion under criterion
C for m ∈ S\V, given γ = γ∗ as δ → 0.

4.4 Conclusions

As shown above, we can find three qualitatively different equilibria as defined

by criterion A. This set of equilibria is immeasurable with the standard ESS

concept since the contents are of different dimensions. Moreover, the set of

equilibria as defined in criterion A is a subset of the larger set of equilibria as

defined by criterion B.

Property 10 FAs ⊆ FBs

However, since criterion B implies weaker restrictions than criterion A, and

since we have already have found that no unique equilibrium exists by criterion

A alone, criterion B should only be regarded to have a marginal interest.

Criterion C, on the other hand, results in a unique equilibrium strategy, given

that the players are given choice to condition their strategies through status as

an alternative to the unconditioned strategies. Since criterion C is only crite-

rion A applied twice (first within a population and then between populations),

property 11 follows directly.

Property 11 FAs ⊇ FCs

5 Coordination through Characteristics

5.1 The Basic Framework

In the previous chapter, a mechanism was suggested that will eventually result

in that every agent will utilize the villain strategy in the general coordination
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game Γ (α,β), depicted in figure 1, given that they have the option to condition

their strategies through status. However, so far we have not presented anything

that will exclude the possibility that the agents might coordinate the game by

e.g. the size or any other static variable.

Let us therefore construct a framework such that the strategies can be con-

ditioned a general class of variables, including the static variables originally

examined by Maynard Smith. Assume that every player i possesses a profile of

characteristics Ci such that status is just one element in this set.

Ci =
©
c1i , c

2
i , c

3
i , ...

ª
(8)

For convenience sake, let cni and c
n
j represent the same characteristic n for

∀i, j ∈ I. The different characteristics c in the profile C could of course be of

a great variety. In addition to status we could imagine e.g., gender, weight,

wealth, and length. Clearly, any subset of the characteristics-profile y ⊆ C

could, in principle, be utilized for conditioning of strategies.

Definition 10 Let a static variable ys be a subset of the characteristics-profile

that does not include any of the status-bearing characteristics yd, ys ⊆ C\yd,
such that the “value” of the characteristics is independent of the payoff in the

game.

From this definition we can conclude that the dynamic variable yd should

consist of characteristics that are correlated to the payoff, e.g. type of living,

car, and vacation habits.

Definition 11 Let FC (y) denote the proportion of the population that has a

characteristics-profile that reveals a lower expected payoff.

As previous, let Fy (w) denote the proportion of the population that reveals

a lower expected payoff. Also assume that every population conditioning their

strategies by some variable y is stable according to definition 2, i.e. Fy ∈ Fs.

Conclusion 1 Fy ∈ Fs ⇒ Fy (w) = FC (y) ,∀i ∈ I.

That is, a characteristics-profile associated with an expected high payoff is

also associated with a high status.
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5.1.1 Conditioning through Static Variables

The conditioning of the strategies can be performed by a static variable through

a single characteristic such as “larger & smaller” or “longer & shorter” and also

through a multiple characteristic such as first condition by “male & female”.

When two of the same gender meet, then condition by “larger & smaller”.

That is, the population first conditions their strategies by one characteristic. If

both agents are unable to coordinate they instead condition their strategies by

another characteristic. If that fails, they try yet another characteristic, and so

on ad infinitum.

The output of the model is of course dependent on what order the different

characteristics are used to condition the strategies of the by. Let y henceforth

denote any arbitrary static variable whether it is a singleton or an ordered

vector of characteristics. Denote the two conditioned strategies by static variable

through a single characteristic cn for B and P.

Example 1 If the variable consists of a single characteristic cn that is gender;

let e.g. B stand for playing D against females and H against males, whereas P
stands for playing H against females and D against males.

Example 2 If the variable consists of a single characteristic cn that is size; let

e.g. B stand for playing D against opponents with a higher value yni ≤ yn−i− δn

and H against agents with lower value yni ≥ yn−i+δn, where δn is the limitation of
the agents observational skills by this particular characteristic cn. Consequently

let the P stand for the mirrored strategy.

5.1.2 Growth of the Population

Consider the growth in a population which is conditioning its’ strategies by some

static variable. In the previous chapter, we have assumed that δ → 0 since the

variable the agents’ are observing is the cumulative payoff. This implies that

even though the distance in status is constant, the absolute difference in status

between the agents increses by time. This is not the case when it comes to static

variables. Even though we could assume that the observational skills become

better by time, we would still find that a population conditioning their strategies

by status is better at identifying their opponents.
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Another possibility is that a population conditions the strategies by multiple

characteristics so that the static variable y consists of a large ordered vector of

characteristics. In this case, the proportion of coordination failures will grad-

ually become smaller in the population as the ordered vector becomes larger.

However, it should be fair to assume that such complex conditioning-rules come

at a price. Hence we have:

Assumption 6 π (y; y, Fy) < π (V;V, FV)

5.2 Evolutionary Stability of Static Variables

Now let us consider strategies conditioned through an arbitrary static variable

ys and investigate whether some (s, Fy) ∈ FAs is also stable according to criterion
C.

Assumption 7 ∀c ∈ y is i.i.d. in every population.

Claim 20 π (B;B, Fy) = π (P;P, Fy).

Proof. See Appendix

Corollary 9 Any permutation of B and P by any arbitrary static variable y,

such that y is an ordered vector of characteristics, reveals the same average

payoff.

Since any completely or partially mirrored conditioning-rule by the static

variable ys has the same average payoff, it should suffice to investigate whether

an arbitrary conditioning-rule of some arbitrary static variable ys will be stable

according to criterion C when encountering a population coordinating according

to the Villain strategy. Let this arbitrary conditioning-rule be denoted Z.

Proposition 4 Vc is according to criterion C not vulnerable for invasion by
any strategy conditioned on any static variable ys, given γ = γ∗ as δ → 0.

Proof. See Appendix
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5.3 Evolutionary Stability of Hybrid Variables

Consider a population that conditions its’ strategies through both static and

dynamic variables as described above. That is, ∀y ⊆ C. Let us denote this

strategy as Z.

Proposition 5 Vc is according to criterion C not vulnerable for invasion by
any strategy conditioned on any variable y ⊆ C, given γ = γ∗ as δ → 0.

Proof. Analogous to Proposition 4.

However, it should be noted that the results above are driven by lemma 9,

and that this lemma is powerless in some cases of time inconsistent strategies.

It is possible to envision strategies conditioned on a set of variables y (t) such

that a new condition rule is implemented at each time period. In such cases, the

conditions for lemma 9 would not be satisfied. The question whether strategies

like this might invade, is considered to reflect an unlikely scenario and is left

unanswered.

6 Summary

“Beggars cannot be choosers about the source of their signal, or about

its attractiveness compared with others that they can only wish were as

conspicuous.” Schelling [10]

6.1 Concluding Remarks

As it has been demonstrated above, there exist mechanisms that favor the Vil-

lain strategy over any other, conditioned or unconditioned, time consistent strat-

egy. One can ask; are the results presented above not intuitively expected? In

fact, the study does not aim to just demonstrate that the Villain strategy is the

only evolutionarily stable strategy by some newly defined criteria, but rather

emphasize the consequences hereof. First notice that in a setting where the

status is partially private information, it should be in the agents interest to

signal high status through e.g. consumption to ensure that their status is visi-

ble for every feasible opponent. It should be noted that this is consistent with

the ideas of Veblen [14] who argued that the primary purpose for consumption
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was to signal one’s rank in the society. Since no profound behavioral reason

was mentioned for why agents should show rank, this model could, along with

different variations of Spence’s model, serve as a rationale for such behavior.

Secondly, and perhaps of even greater significance, the study shows that if

the agents were to utilize the Villain strategy in simple coordination games, it

is evolutionary favorable for an arbitrary agent to also have concerns for high

status in other economic activities besides simple coordination games, given

that this class of games has a positive probability to occur. In other words, in

any strategic game the agents would have to maximize their own outcome at

the same time as they minimized that of their opponent since the opponents

outcome might affect the agents own outcome in a future coordination game.

The concern for high status would clearly also enter other economic situations

without a strategic component, such as in the choice of lottery. In a lottery, it

would in the long run be favorable to consider the status effect from the different

outcomes of the lottery, since it would have an effect on the agents outcome in a

possible coordination game later. The qualitative difference between this model

and models based on Spence’s idea should be noted; the agents concerns for high

status evolves endogenously in this model, whereas variations of Spence’s model

assume that high status comes cheaper for some individuals that are associated

with some desirable quality.

In almost every economic analysis of the agents decision-making, there is

an implicit assumption often made about independence between the situation

analyzed and other activities. However, this study suggests that the concern

for high status could, under realistic circumstances, evolve endogenously from

the model and thus bring about dependence between different economic events.

In order to avoid an inconsistent model in an evolutionary setting, we would

thus either have to assume that the game in figure 1 never is played, or that

the agents do not have the ability to condition their strategies in the game by

personal characteristics. A third possible way to circumvent the making of an

inconsistent model would be to assume that the effect of concern for high status

is negligible, i.e. that the occurrence of coordination games as in figure 1, are

very rare.
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6.2 Suggested Further Studies

6.2.1 Evolutionarily Stable Mappings

In the present study, the agents are restricted to coordination of the game by one

particular mapping as first suggested by Maynard Smith [12]. Even though this

is a very natural way to condition strategies upon, the formal proof, showing that

there does not exist any other evolutionary feasible mappings, is still lacking.

Such proof would of course strengthen these findings considerably.

6.2.2 Discrete Model

A discrete model would make a more realistic model and would thus be prefer-

able. It would provide a more adequate way of modeling the given situation,

and would also provide an even greater spillover effect between the coordination

game and other economic events than the continuous model, especially in small

populations. With two agents meeting in a strategic game, the conflict between

the agents is sharpened due to the fact that they at a later stage might be

matched against each other in a coordination game as described above. Hence

it would be in both agents’ interest to not only maximize their own payoff but

also make sure that the opposing agent receives a low payoff in a higher degree

than in a large population.

6.2.3 Choosing Opponents in Games

In the modeling of economics it is often assumed that the agents are randomly

matched with each other. But what would be the consequences if they could

choose their opponent? The main framework of the present model could also

be used in the analysis of how agents choose with whom the want to engage

in a game. It would be evolutionarily stable for every agent to make sure that

they are matched up with the agent that reveals the highest payoff for them.

It is likely that this situation demands two contextual variables, status and

reputation. A high status agent would, according to the model described above,

demand more than a low status agent would. However, it should also be vital

for the agent to have someone to interact with. If they fail to do so, they will

eventually get a lower status.
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7 Proofs

Claim 1 The distance between two adjacent points in the support is character-

ized by
¯̄
wj − wj+1¯̄ ≥ δ ∀F such that F ∈ Fs given β > γ + δ .

Proof. Let F ∈ Fs. By definition we have that w− ∈ suppF .

1. Compare the associated payoff for w− and w∗ ∈ (w−, w− + δ). The asso-

ciated payoff for the different status levels are equal except against oppo-

nents in the interval [w− + δ, w∗ + δ) where an agent with status w− in

contrast to w∗ will be able to coordinate the game and consequently receive

a higher payoff. Hence we have that π (w−) ≥ π (w∗)Ã w∗ /∈ suppF , i.e.

(w−, w− + δ) /∈ suppF (9)

2. Now compare the associated payoff for w0 ∈ suppF and (w−, w0)∩suppF =
∅ and w∗ ∈ (w0, w0 + δ). The only difference in the associated payoff for

the different status levels is that the agent with status w0 in contrast to

w∗ will be able to coordinate the game in the interval [w0 + δ, w∗ + δ)

and consequently receive a higher payoff. That is we have that π (w0) ≥
π (w∗)⇒ w∗ /∈ suppF , i.e.

(w0, w0 + δ) /∈ suppF (10)

3. Finally compare the associated payoffs for wj+1 ∈ suppF and ¡wj , wj+1¢∩
suppF = ∅ and w∗ ∈ ¡wj+1, wj+1 + δ

¢
. In the same manner as above we

find that the only difference in the associated payoff between the agents is

in the interval
£
wj+1 + δ, w∗ + δ

¢
where agent with status wj+1 in contrast

to w∗ will be able to coordinate the game in the interval
£
wj+1 + δ, w∗ + δ

¢
and consequently receive a higher payoff. That is we have that π

¡
wj+1

¢ ≥
π (w∗)⇒ w∗ /∈ suppF , i.e.

¡
wj+1, wj+1 + δ

¢
/∈ suppF (11)

Claim 1 follows by induction.

Claim 2 ∂d
∂δ > 0.
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Proof. Follows from min (A+ (w) , A− (w00)) = δ

Claim 3 p
¡
wj
¢
> p

¡
wj+1

¢
,∀F ∈ FsK given (s, F ) such that s = R.

Proof. We have that p
¡
wj
¢
= p

¡
wj+1

¢
1−γ
β−γ+

bδ
β−γ Ã max

¡
p
¡
wj+1

¢ | p ¡wj¢¢
is given by the pair (supβ, inf α). But (supβ − inf γ) < (1− inf γ)⇒ p

¡
wj
¢
>

p
¡
wj+1

¢
,∀bδ > 0

Claim 4 p (w−) > 1−β
1−γ for F (w;R) ∈ FsK .

Proof. We know that π (w−;R, F ) = γp (w−) + (1− p (w−)),
and π (w+;R, F ) > π (w−;R, F ). min p (w−) is given by supπ (w−;R, F ).
min p (w−) is given by supπ (w+;R, F ) > supπ (w−;R, F )⇔

β > supπ (w−;R, F )Ã β − 1 > γp (w−)− p (w−)⇔ 1−β
1−γ < p (w

−).

Claim 5 ∀F ∈ FsK for (s, F ) such that s = RÃ 0 < p (w+) ≤ δ
1−γ .

Proof. From definition 3 it follows that the probability mass of the rich-

est cluster must fulfill p (w+) (β − γ) ≤ δ in order to be the richest cluster.

Rewriting this expression gives us 0 < p (w+) ≤ δ
β−γ

Claim 6 p
¡
wj
¢
< p

¡
wj+1

¢
,∀F ∈ FsK given (s, F ) such that s = V when δ → 0

for β > γ + δ.

Proof. π
¡
wj+1;V, F¢− π

¡
wj ;V, F¢ = bδ

⇒
p
¡
wj
¢
+ γp

¡
wj+1

¢− γp
¡
wj
¢− βp

¡
wj+1

¢
= bδ

⇔
p
¡
wj
¢
(1− γ)− p ¡wj+1¢ (β − γ) = bδ

⇔
p
¡
wj
¢
= p

¡
wj+1

¢
β−γ
1−γ +

bδ
1−γ

From claim 2 we have that δ → 0 ⇒ bδ → 0. Since β−γ
1−γ < 1 Ã p

¡
wj
¢
<

p
¡
wj+1

¢
.

Claim 7 ∀F ∈ FsK for (s, F ) such that s = V Ã 0 < p (w+) ≤ δ
1−γ .

Proof. From definition 3 it follows that the probability mass of the rich-

est cluster must fulfill p (w+) (1− γ) ≤ δ in order to be the richest cluster.

Rewriting this expression gives us 0 < p (w+) ≤ δ
1−γ
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Lemma 1 R is according to criterion A vulnerable for invasion by the H, given

γ = γ0and α+ β ≤ 1.

Proof. 1
2 ≥ γ0 ⇒ π (H, w−;R, F ) ≥ π (R, w−;R, F )

1
2 ≥ γ0 ⇔ 1

2 ≥ 1+α+β
4 ⇔ 1 ≥ α+ β

Lemma 2 R is according to criterion A vulnerable for invasion by the D, given

γ = γ0and 1 ≤ α+ β.

Proof. α+β
2 ≥ γ0 ⇒ π (D, w+;R, F ) ≥ π (R, w+;R, F )

α+β
2 ≥ γ0 ⇔ 1 ≤ α+ β

Claim 8 R is according to criterion A vulnerable for invasion ∀α,β ∈ (0, 1) ,
given β > γ + δ for γ = γ0.

Proof. Follows directly from lemmae 1 and 2.

Claim 9 ∃Rc such that this population according to criterion A is not vulner-
able for any invasion, given β > γ0 + δ at the limit when δ → 0.

Proof. From lemmae 1 and 2 it follows that the Robin Hood strategy is

vulnerable for invasion at the extreme supports.

• 1 ≥ α+ β

An invasion by the Hawk strategy is limited to

max
³
0, 1−α

1+β−α − 1
2

´
in w− for 1 ≥ α+ β.

To see this, consider the second lowest support w2 and compare the payoff

of the Robin Hood strategy with an Hawk invader

π
¡R, w2;Rc, F¢− π

¡
H, w2;Rc, F

¢
=

βp (w−) +
¡
γ − 1

2

¢
p
¡
w2
¢

From claim 4 we have that p (w−) > 1−β
1−γ Ã

βp (w−) +
¡
γ0 − 1

2

¢
p
¡
w2
¢
>

β 1−β1−γ +
¡
γ0 − 1

2

¢
1−β
1−γ

³
β−γ0
1−γ0 − δ

1−γ0
´
>

β 1−β1−γ +
³
α+β−1

4

´
1−β
1−γ0 =³

α+5β−1
4

´
1−β
1−γ0 > 0

since β > γ0 + δ ⇒ β > γ0 ⇔ β > 1+α+β
4 ⇔ 3β − α > 1⇒ α+ 5β − 1 > 0
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Hence we have that π
¡R, w2;Rc, F

¢ − π
¡
H, w2;Rc, F

¢
> 0. It follows

directly that we have π
¡R, wj ;Rc, F

¢− π
¡
H, wj ;Rc, F

¢
> 0,∀j ≥ 2

Note that no other strategy can invade this population.

— Dove strategy will do worse against opponents within the support

where it invades and equal (iff invasion at w+) or worse against op-

ponents outside the support. Hence, Rc is not vulnerable for invasion
by the Dove strategy.

— Villain strategy will do just as well against opponents within the

support where it invades but will fail to coordinate against any op-

ponents outside the support and thus earn much less. Hence, Rc is
not vulnerable for invasion by the Villain strategy.

• 1 ≤ α+ β

In the upper supports, we have that the invasion by the Dove strategy is

limited to max
³
0, β

1+β−α − 1
2

´
in each support w ∈ suppF.

If R is to be invaded at wj by D then we have that:

π
¡
D, wj ;Rc, F¢− π

¡R, wj ;Rc, F¢ ≥ 0
(α− 1)F ¡wj−1¢+ ³α+β2 − γ0

´
p
¡
wj
¢
+ (γ∗ − γ∗)

¡
1− F ¡wj¢¢ ≥ 0

(α− 1)F ¡wj−1¢+ ³α−1+β4

´
p
¡
wj
¢ ≥ 0

(1− α)F
¡
wj−1

¢
+
³
1−α−β

4

´
p
¡
wj
¢
< 0

1
4

³
β

(1−α) − 1
´
≥ F(wj−1)

p(wj)

Note that if 14

³
β

(1−α) − 1
´
< 0 then we have that just w+ can be invaded.

Also note that:

sup 14

³
β

(1−α) − 1
´
subject to

 β > γ0 + δ ⇒ β > 1+α
3

1 ≤ α+ β

Ã sup 14

³
β

(1−α) − 1
´
= 1

2 for limβ = 1, limα = 2
3

i.e. π
¡R, wj ;Rc, F

¢− π
¡
D, wj ;Rc, F¢ > 0⇒ F

¡
wj−1

¢
< 1

2p
¡
wj
¢

That is, half the probability mass of the support has to exceed the cumu-

lative density below the support.

But since we know that p
¡
wj
¢
= p

¡
wj+1

¢
1−γ
β−γ +

bδ
β−γ , i.e. that the prob-

ability mass is decreasing exponentially by β−γ
1−γ in the support as δ → 0,
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there cannot be any invasion at the adjacent support to w+. Hence, it

follows that the invasion is limited to w+.

Finally note that no other strategy can invade this population.

— Hawk strategy will do worse against opponents within the support

where it invades and equal (iff invasion at w−) or worse against op-

ponents outside the support. Hence, Rc is not vulnerable for invasion
by the Hawk strategy.

— Villain strategy will do just as good against opponents within the

support where it invades but will fail to coordinate against any op-

ponents outside the support and thus earn much less. Hence, Rc is
not vulnerable for invasion by the Villain strategy.

Claim 10 R is according to criterion A vulnerable for invasion by MSS, given

β > γ + δ for γ = γ∗.

Proof. R can be invaded by both H at w− and D at w+ according to

assumption 3 as they mimic the behavior of the incumbent strategy at these

supports and they are of less complexity. Note that this invasion is limited to
1−α

1+β−αp (w
−) in w− and β

1+β−αp (w
+) in w+.

Claim 11 ∃Rc with identical realized behavior as R, that according to criterion
A is not vulnerable for invasion, given β > γ + δ for γ = γ∗.

Proof. Consider a population where the agents are conditioning the game

according to the Robin Hood strategy in every support but in w− and w+ where

the 1−α
1+β−α of the agents in w

− are playing the Hawk strategy and β
1+β−α of the

agents in w+ are playing the Dove strategy.

It follows directly that no invasion is possible since every agent behaves op-

timally within every support and is perfectly coordinated between the supports.

• Villain strategy will do just as well against opponents within the support
where it invades but will fail to coordinate against any opponents outside

the support and thus earn much less. Hence, Rc is not vulnerable for
invasion by the Villain strategy.
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• Hawk strategy will do worse against some opponents within the support.
This strategy will coordinate against opponents where wi + δ ≤ w−i but
will fail to coordinate against opponents where wi − δ ≥ w−i. Hence, Rc
is not vulnerable for invasion by the Hawk strategy, ∀w ∈ suppF \ w−.

• Dove strategy will do worse against some opponents within the support.
This strategy will coordinate against opponents where wi − δ ≥ w−i but
will fail to coordinate against opponents where wi + δ ≤ w−i. Hence, Rc
is not vulnerable for invasion by the Dove strategy, ∀w ∈ suppF \ w+.

Lemma 3 V is according to criterion A vulnerable for invasion by the D, given
γ = γ0and α+ β ≥ 1.

Proof. α+β
2 ≥ γ0 ⇒ π (D, w−;V, F ) ≥ π (V, w−;V, F )

α+β
2 ≥ γ0 ⇔ 1 ≤ α+ β

Lemma 4 V is according to criterion A vulnerable for invasion by the H, given
γ = γ0and α+ β ≤ 1.

Proof. 1
2 ≥ γ0 ⇒ π (H, w+;V, F ) ≥ π (V, w+;V, F )

1
2 ≥ γ0 ⇔ 1

2 ≥ 1+α+β
4 ⇔ 1 ≥ α+ β

Claim 12 V is according to criterion A vulnerable for invasion ∀α,β ∈ (0, 1) ,
given γ = γ0.

Proof. Follows directly from lemmae 3 and 4.

Lemma 5 ∃Vc such that this population according to criterion A is not vul-

nerable for any invasion, given β > γ0 + δ when δ → 0.

Proof. From lemmae 3 and 4 it follows that the Villain strategy is vulnerable

for invasion at the extreme supports.

• α+ β ≥ 1
An invasion by the Dove strategy is limited to

max
³
0, β

1+β−α − 1
2

´
in w− for α + β ≥ 1. The question is how far up in

the supports the invasion is possible.
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If V is to be invaded at wj by D then we have that:
π
¡
D, wj ;Vc, F¢− π

¡V, wj ;Vc, F¢ ≥ 0
(γ∗ − γ∗)F

¡
wj−1

¢
+
³
α+β
2 − γ0

´
p
¡
wj
¢
+ (α− 1) ¡1− F ¡wj¢¢ ≥ 0³

α−1+β
4

´
p
¡
wj
¢
+ (α− 1) ¡1− F ¡wj¢¢ ≥ 0³

1−α−β
4

´
p
¡
wj
¢
+ (1− α)

¡
1− F ¡wj¢¢ < 0

1
4

³
β

(1−α) − 1
´
≥ (1−F(w

j))
p(wj)

First note if 14

³
β

(1−α) − 1
´
< 0 then we have that just w− can be invaded.

Then note that:

sup 14

³
β

(1−α) − 1
´
subject to

 β > γ0 + δ ⇒ β > 1+α
3

1 ≤ α+ β

Ã sup 14

³
β

(1−α) − 1
´
= 1

2 for limβ = 1, limα = 2
3

i.e. 12p
¡
wj
¢ ≥ ¡1− F ¡wj¢¢

From property 4 we know that p
¡
wj
¢ → 0 as δ → 0 Ã

¡
1− F ¡wj¢¢ >

1
2p
¡
wj
¢
. Hence, Vc is not vulnerable for invasion by the Dove strategy

outside w−.

Note that no other strategy can invade this population.

— Hawk strategy will do worse against opponents within the support

where it invades and equal (iff invasion at w+) or worse against op-

ponents outside the support. Hence, Vc is not vulnerable for invasion
by the Hawk strategy.

— Robin Hood strategy will do just as well against opponents within

the support where it invades but will fail to coordinate against any

opponents outside the support and thus earn much less. Hence, Vc
is not vulnerable for invasion by the Robin Hood strategy.

• α+ β ≤ 1

In the upper supports, we have that the invasion by the Hawk strategy is

limited to max
³
0, 1−α

1+β−α − 1
2

´
in each support w ∈ suppF.

If V is to be invaded at wj by H then we have that:
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π
¡
H, wj ;Vc, F¢− π

¡V, wj ;Vc, F¢ ≥ 0
(1− 1)F ¡wj−1¢+ ¡12 − γ0

¢
p
¡
wj
¢
+ (0− β)

¡
1− F ¡wj¢¢ ≥ 0¡

1
2 − γ

¢
p
¡
wj
¢
+ (0− β)

¡
1− F ¡wj¢¢ ≥ 0³

1−α−β
4

´
p
¡
wj
¢ ≥ β

¡
1− F ¡wj¢¢

1
4

³
1−α
β − 1

´
≥ (1−F(w

j))
p(wj)

As before note that:

sup 14

³
1−α
β − 1

´
subject to

 β > γ0 + δ ⇒ β > 1+α
3

1 ≥ α+ β

Ã sup 14

³
1−α
β − 1

´
= 1

2 for limβ = 1
3 , limα = 0

1
2p
¡
wj
¢ ≥ ¡1− F ¡wj¢¢

From property 4 we know that p
¡
wj
¢ → 0 as δ → 0 Ã

¡
1− F ¡wj¢¢ >

1
2p
¡
wj
¢
. Hence, Vc is not vulnerable for invasion by the Hawk strategy

outside w+.

Note that no other strategy can invade this population.

— Dove strategy will do worse against opponents within the support

where it invades and equal (iff invasion at w−) or worse against op-

ponents outside the support. Hence, Vc is not vulnerable for invasion
by the Dove strategy.

— Robin Hood strategy will do just as well against opponents within

the support where it invades but will fail to coordinate against any

opponents outside the support and thus earn much less. Hence, Vc
is not vulnerable for invasion by the Robin Hood strategy.

Lemma 6 ∃Vc such that this population according to criterion A is not vul-

nerable for any invasion, given β ≤ γ0+δ when δ → 0.

Proof. From lemmae 3 and 4 it follows that the Villain strategy is vulnerable

for invasion at the extreme supports.

• α+ β ≥ 1
An invasion by the Dove strategy is limited to

max
³
0, β

1+β−α − 1
2

´
in w− for α + β ≥ 1. The question is how far up in

the supports the invasion is possible.
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If V is to be invaded at wj by D then we have that
π
¡
D, wj ;Vc, F¢− π

¡V, wj ;Vc, F¢ ≥ 0
⇒

1
4

³
β

(1−α) − 1
´
≥ (1−F(w

j))
p(wj)

First note if 14

³
β

(1−α) − 1
´
< 0 then we have that just w− can be invaded.

Then note that:

sup 14

³
β

(1−α) − 1
´
subject to

 β ≤ γ0 + δ ⇒ β ≤ 1+α
3

1 ≤ α+ β

Ã sup 14

³
β

(1−α) − 1
´
=∞ for limα = 1

However from property 4 we know that p
¡
wj
¢→ 0 as δ → 0Ã ∃δ,∀ (α,β)

such that 12p
¡
wj
¢
¤
¡
1− F ¡wj¢¢. Hence, Vc is not vulnerable for invasion

by the Dove strategy outside w−.

Note that no other strategy can invade this population.

— Hawk strategy will do worse against opponents within the support

where it invades and equal (iff invasion at w+) or worse against op-

ponents outside the support. Hence, Vc is not vulnerable for invasion
by the Hawk strategy.

— Robin Hood strategy will do just as well against opponents within

the support where it invades but will fail to coordinate against any

opponents outside the support and thus earn much less. Hence, Vc
is not vulnerable for invasion by the Robin Hood strategy.

• α+ β ≤ 1

In the upper supports, we have that he invasion by the Hawk strategy is

limited to max
³
0, 1−α

1+β−α − 1
2

´
in each support w ∈ suppF.

If V is to be invaded at wj by H then we have that:
π
¡
H, wj ;Vc, F¢− π

¡V, wj ;Vc, F¢ ≥ 0
⇒

1
4

³
1−α
β − 1

´
≥ (1−F(w

j))
p(wj)

As before note that:
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sup 14

³
1−α
β − 1

´
subject to

 β > γ0 + δ ⇒ β > 1+α
3

1 ≥ α+ β

Ã sup 14

³
1−α
β − 1

´
=∞ for limβ = 0

Just as above, we know that p
¡
wj
¢→ 0 as δ → 0Ã ∃δ,∀ (α,β) such that

1
2p
¡
wj
¢
¤
¡
1− F ¡wj¢¢. Hence, Vc is not vulnerable for invasion by the

Hawk strategy outside w+.

Note that no other strategy can invade this population.

— Dove strategy will do worse against opponents within the support

where it invades and equal (iff invasion at w−) or worse against op-

ponents outside the support. Hence, Vc is not vulnerable for invasion
by the Dove strategy.

— Robin Hood strategy will do just as well against opponents within

the support where it invades but will fail to coordinate against any

opponents outside the support and thus earn much less. Hence, Vc
is not vulnerable for invasion by the Robin Hood strategy.

Claim 13 ∃Vc such that this population according to criterion A is not vulner-
able for any invasion, given γ = γ0 when δ → 0.

Proof. Follows directly from lemmae 5 and 6.

Claim 14 V is according to criterion A vulnerable for invasion by MSS, given
γ = γ∗.

Proof. Similar to the case above we find that V can be invaded by both D
at w− and H at w+ according to assumption 3 as they mimic the incumbent

strategy at these supports and they are of less complexity. Here too is invasion

is limited to β
1+β−αp (w

−) in w− and 1−α
1+β−αp (w

+) in w+.

Claim 15 ∃Vc with identical realized behavior as V, that according to criterion
A is not vulnerable for invasion, given γ = γ∗.

Proof. Consider a population where the agents are conditioning the game

according to the Villain strategy in every support but in w− and w+ where the
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β
1+β−α of the agents in w− are playing the Dove strategy and 1−α

1+β−α of the

agents in w+ are playing the Hawk strategy.

It follows directly that no invasion is possible since every agent behaves opti-

mally within every support and are perfectly coordinated between the supports.

• Robin Hood Strategy will do just as well against opponents within the
support where it invade but will fail to coordinate against any opponents

outside the support and thus earn much less. Hence, Vc is not vulnerable
for invasion by the Robin Hood Strategy.

• Hawk strategy will do worse against some opponents within the support.
This strategy will coordinate against opponents where wi − δ ≥ w−i but
will fail to coordinate against opponents where wi + δ ≤ w−i. Hence, Vc
is not vulnerable for invasion by the Hawk strategy, ∀w ∈ suppF \ w+.

• Dove strategy will do worse against some opponents within the support.
This strategy will coordinate against opponents where wi + δ ≤ w−i but
will fail to coordinate against opponents where wi − δ ≥ w−i. Hence, Vc
is not vulnerable for invasion by the Dove strategy, ∀w ∈ suppF \ w−.

Claim 16 R is according to criterion B not vulnerable for invasion by any

convex combination of pure strategies or mixed strategies for any F as δ → 0,

given β > γ0 + δ.

Proof. Consider the following invaders:

Case D : If α + β ≥ 1 ⇒ π (D, w+;R, F ) > π (R, w+;R, F ) and π (D, w;R, F ) <
π (R, w;R, F )

,∀w ∈ suppF \ w+ ⇒ π (D;R, F ) < π (R;R, F )

Case H : If α + β ≤ 1 ⇒ π (H, w−;R, F ) > π (R, w−;R, F ) and π (H, w;R, F ) <
π (R, w;R, F )

,∀w ∈ suppF \ w− ⇒ π (H;R, F ) < π (R;R, F )

Case V: π (V, w;R, F ) < π (R, w;R, F ) ,∀w ∈ suppF ⇒ π (V;R, F ) < π (R;R, F )
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Claim 17 R is according to criterion B not vulnerable for invasion by any

convex combination of pure strategies or mixed strategies for any F , given β >

γ∗ + δ.

Proof. Consider the following invaders:

Case H : π (H, w+;R, F ) = π (R, w+;R, F ) and π (H, w;R, F ) < π (R, w;R, F )

,∀w ∈ suppF \ w+ ⇒ π (H;R, F ) < π (R;R, F )

Case D : π (D, w−;R, F ) = π (R, w−;R, F ) and π (D, w;R, F ) < π (R, w;R, F )

,∀w ∈ suppF \ w− ⇒ π (D;R, F ) < π (R;R, F )

Case V: π (V, w;R, F ) < π (R, w;R, F ) ,∀w ∈ suppF ⇒ π (V;R, F ) < π (R;R, F )

Claim 18 V is according to criterion B not vulnerable for invasion by any

convex combination of pure strategies or mixed strategies for any F as δ → 0,

given γ = γ0.

Proof. Consider the following invaders:

Case D : If α + β ≥ 1 ⇒ π (D, w−;V, F ) > π (V, w−;V, F ) and π (D, w;V, F ) <
π (V, w;V, F ) ,∀w ∈ suppF \ w− ⇒ π (D;V, F ) < π (V;V, F )

Case H : If α + β ≤ 1 ⇒ π (H, w+;V, F ) > π (V, w+;V, F ) and π (H, w;V, F ) <
π (V, w;V, F ) ,∀w ∈ suppF \ w+ ⇒ π (H;V, F ) < π (V;V, F )

Case R: π (R, w;V, F ) < π (V, w;V, F ) ,∀w ∈ suppF ⇒ π (R;V, F ) < π (V;V, F )

Claim 19 V is according to criterion B not vulnerable for invasion by any

convex combination of pure strategies or mixed strategies for any F , given γ =

γ∗.

Proof. Consider the following invaders:
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Case D : π (D, w−;V, F ) = π (V, w−;V, F ) and π (D, w;V, F ) < π (V, w;V, F ) ,∀w ∈
suppF \ w+ ⇒ π (D;V, F ) < π (V;V, F )

Case H : π (H, w+;V, F ) = π (V, w+;V, F ) and π (H, w;V, F ) < π (V, w;V, F ) ,∀w ∈
suppF \ w− ⇒ π (H;V, F ) < π (V;V, F )

Case R: π (R, w;V, F ) < π (V, w;V, F ) ,∀w ∈ suppF ⇒ π (R;V, F ) < π (V;V, F )

Lemma 7 β > γ∗ ⇔ α < γ∗.

Proof. β > γ∗ ⇔ β > β
1+β−α ⇒ β > α

α < γ∗ ⇔ α > β
1+β−α ⇔ α (β −α)> β −α and α ∈ (0, 1)

Proposition 1 Rc is according to criterion C not vulnerable for invasion by
MSS, given β > γ∗+δ as δ → 0.

Proof. Assume that the size of the population using MSS, denoted γ, at the

time of the fusion is λ, and Rc is 1− λ. Since π (γ; γ, Fγ) < π (Rc;Rc, FRc)Ã
λ < 1

2 . Note that γ consist of
1−α

1+β−αλ with H and
β

1+β−αλ with D.

• Now consider when the populations meet; FRc (Rc) , Fγ (γ)→ F (Rcγ)

— The payoff before the fusion are:

π (H, ·; γ, Fγ) = β
1+β−αλ

π (D, ·; γ, Fγ) = β
1+β−αλ

π (Rc, w−;Rc, FRc) =
³
p (w−) β

1+β−α + (1− p (w−))
´
(1− λ)

π (Rc, w+;Rc, FRc) =
³
p (w+) β

1+β−α + (1− p (w+))
´
β (1− λ)

Ã π (H, ·; γ, Fγ) = π (D, ·; γ, Fγ) < π (Rc, w−;Rc, FRc)

— The payoff immediately after the time of the fusion, but before the

distribution has become stable, are:

π (H, wH ;Rcγ, ·) = (1− λ) + β
1+β−αλ

π (D, wD ;Rcγ, ·) = α (1− λ) + β
1+β−αλ
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π
¡Rc, w−Rc ;Rcγ, ·¢ =³
p
¡
w−Rc

¢
β

1+β−α +
¡
1− p ¡w−Rc

¢¢´
(1− λ) + β

1+β−αλ

π
¡Rc, w+Rc ;Rcγ, ·¢ =³
p
¡
w+Rc

¢
β

1+β−α +
¡
1− p ¡w+Rc

¢¢´
β (1− λ) + β

1+β−αλ

From lemma 7 and above, it follows that:

π (D, wD ;Rcγ,F) < π
¡Rc, w−Rc ;Rcγ,F

¢
.

Furthermore it is easy to see that π
¡Rc, w−Rc ;Rcγ,F

¢
< π (H, wH ;Rcγ,F).

Note that initially is wH = wD , and wH < w
−
Rc .

However, as the (H, wH ;Rcγ, ·) moves up in the distribution into w−Rc they

will face (1− λ) p
¡
w−Rc

¢
1−α

1+β−α playing H and (1− λ) p
¡
w−Rc

¢
β

1+β−α play-

ing D. As (H, wH ;Rcγ,F) mergers with
¡Rc, w−Rc ;Rcγ,F

¢
will p

¡
w−Rc

¢
grow to bp ¡ ew−Rc

¢
.

Note, from claim 11 we have that:

π
¡Rc : su = H, w−Rc ;Rcγ, ·

¢
= π

¡Rc : s = H, w−Rc ;Rcγ, ·¢
That is, (1− λ) 1−α

1+β−α of the agents in w
−
Rc will be utilizing H.

— The payoff in the critical areas immediately after the time of the

merger between wH , w
−
Rc → ew−Rc are:

π
¡Rc : s = H, ew−Rc ;Rcγ, ·¢ =

(1− λ)
³bp ¡ ew−Rc

¢
β

1+β−α +
¡
1− bp ¡ ew−Rc

¢¢´
+ αβ

1+β−αλ

π
¡Rc : su = D, ew−Rc ;Rcγ, ·

¢
=

(1− λ)
³bp ¡ ew−Rc

¢
β

1+β−α +
¡
1− bp ¡ ew−Rc

¢¢´
+ β

1+β−αλ

π
¡
H, ew−Rc ;Rcγ, ·¢ =

(1− λ)
³bp ¡ ew−Rc

¢
β

1+β−α +
¡
1− bp ¡ ew−Rc

¢¢´
+ β

1+β−αλ

Thus, we have that the payoff relates as follows:

π
¡
H, ew−Rc ;Rcγ,F

¢
= π

¡Rc : s = H, ew−Rc ;Rcγ,F
¢

π
¡Rc : s = H, ew−Rc ;Rcγ,F

¢
< π

¡Rc : su = D, ew−Rc ;Rcγ,F
¢

This implies that π (H, w;Rcγ,F) < π (Rc, w;Rcγ,F) ,∀w > ew−Rc where

w ∈ suppF.
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• Mutation

Note that @m ∈ S \ Rc such that π (Rc, w;Rcγ,F) < π (m,w;Rcγ,F).

Thus, we have that the strategies open for successful mutations, y, are

(γ, ·;Rcγ,F), and (Rc : su = D, ·;Rcγ,F).

— (D, ·;Rcγ,F)y (H, ·;Rcγ,F) , (Rc : su = D, ·;Rcγ,F)

— (H, ·;Rcγ,F)y (Rc : su = D, ·;Rcγ,F)

and eventually

— (Rc : su = D, ·;Rcγ,F)y (Rc : su = H, ·;Rcγ,F)

As the evolution proceeds, will the remainingRc grow in accordance to as-
sumption 2 and 4. Thus as t→∞ we will, through growth and mutations,

have that maxπ
³
m, ·; s, eF´ ≤ minπ ³Rc, ·; s, eF´ < maxπ ³Rc, ·; s, eF´for

m ∈ S\Rc.

Proposition 2 Vc is according to criterion C not vulnerable for invasion by
MSS, given γ = γ∗ as δ → 0.

Proof. Assume that the size of the population using MSS, denoted γ, at

the time of the fusion is λ and Vc is 1−λ. Since π (γ; γ, Fγ) < π (Vc;Vc, FVc)Ã
λ < 1

2 .

• Now consider when the populations meet; FVc (Vc) , Fγ (γ)→ F (Vcγ)

— The payoff before the fusion are:

π (H, ·; γ, Fγ) = β
1+β−αλ

π (D, ·; γ, Fγ) = β
1+β−αλ

π (Vc, w−;Vc, FVc) =
³
p (w−) β

1+β−α + (1− p (w−))
´
β (1− λ)

π (Vc, w+;Vc, FVc) =
³
p (w+) β

1+β−α + (1− p (w+))
´
(1− λ)

— The payoff immediately after the time of the fusion, but before the

distribution has become stable, are:
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π (H, wH ;Vcγ, ·) = β
1+β−αλ

π (D, wD ;Vcγ, ·) = β (1− λ) + β
1+β−αλ

π
¡Vc, w−Vc ;Vcγ, ·¢ =³
p
¡
w−Vc

¢
β

1+β−α +
¡
1− p ¡w−Vc¢¢´β (1− λ) + β

1+β−αλ

π
¡Vc, w+Vc ;Vcγ, ·¢ =³
p
¡
w+Vc

¢
β

1+β−α +
¡
1− p ¡w+Vc¢¢´ (1− λ) + β

1+β−αλ

Note that initially is: wH = wD .

The payoff in the critical area relates as follows:

— If β > γ∗+δ ⇒ β > αÃ

π
¡Vc, w−Vc ;Vcγ,F¢ < π (D, wD ;Vcγ,F) < π

¡Vc, w+Vc ;Vcγ,F¢ ,∀wD ∈
suppF

π (H, wH ;Vcγ,F) < π
¡Vc, w−Vc ;Vcγ,F¢ ,∀wH ∈ suppF

— If β ≤ γ∗+δ ⇒ β < αÃ

π (H, wH ;Vcγ,F) < π
¡Vc, w−Vc ;Vcγ,F¢ ,∀wH ∈ suppF

π (D, wD ;Vcγ,F) = π
¡Vc, w−Vc ;Vcγ,F¢ ,∀wD ∈ suppF

• Mutation

Note that @m ∈ S \ Vc such that π (Vc, w;Vcγ,F) < π (m,w;Vcγ,F) for
w > wD ; also, @m ∈ S\Vc such that π (Vc, wD ;Vcγ,F) < π (m,w;Vcγ,F)
for w < wD . Assume that the entire population where w < wD will

begin to change their strategies to D. As the population of D will grow

in accordance to assumption 2 and 4, this will open for mutations where

pure D will begin to play H against other D at wD , i.e. (D, ·;Vcγ,F) y
(D : su = H, ·;Vcγ,F). Note that this mutation still will be playing D

against ∀w 6= wD . In either case, as the evolution proceeds, will the

remaining (Vc, w;Vcγ,F) , w > wD grow in accordance to assumption 2

and 4. Thus as t→∞ we will, through growth and mutations, have that

maxπ
³
m, ·; s, eF´ ≤ minπ ³Vc, ·; s, eF´ < maxπ ³Vc, ·; s, eF´for m ∈ S\Vc.

Proposition 3 Vc is according to criterion C not vulnerable for invasion by
Rc, given β > γ∗+δ as δ → 0.
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Proof. Assume that the size of the population coordinating the game ac-

cording byRc at the time of the fusion is λ and Vc is 1−λ. Since π (Rc;Rc, FRc) <

π (Vc;Vc, FVc)Ã λ < 1
2 .

• Now consider when the populations meet; FVc (Vc) , FRc (Rc)→ F (VcRc)

— The payoff in the critical area are:

π
¡Rc, w+Rc ;VcRc,F

¢
= βλ

π
¡Vc, w−Vc ;VcRc,F¢ = β (1− λ)

• Mutation
Note that both (Vc, wVc ;VcRc,F) and (Rc, wRc ;VcRc,F) are vulnerable
for invasion.

— (Rc, wRc ;VcRc,F)y (Vc, ·;VcRc,F)

— (Vc, wVc ;VcRc,F)y (D, ·;VcRcD,F)

Let the proportion playing Vc or Rc be denoted η and D be (1− η).

— The payoff in the critical area relates as follows:

π (D, wD ;VcRcD,F) = βηλ+ αη (1− λ) + α (1− η)

π
¡Vc, w+Vc ;VcRcD,F¢ = η (1− λ) + α (1− η)

Ã π
¡
D, wD ;VcRcD,F¢ ≥ π

¡Vc, w+Vc ;VcRcD,F
¢

⇔ βλ ≥ (1− α) (1− λ)

— If βλ < (1− α) (1− λ) then @m ∈ S \ Vc such that
π (Vc, w;VcRcD,F) < π (m,w;VcRcD,F) for w > wD as t → ∞,
and the proposition follows as in proposition 2.

— Now consider βλ ≥ (1− α) (1− λ).

Since π
¡Rc, w+Rc ;VcRc,F

¢
< π

¡Vc, w−Vc ;VcRc,F¢Ã λ→ 0 asymp-

totically

Similar π
¡Vc, w+Vc ;VcRcD,F¢ ≤ π (D, wD ;VcRcD,F) Ã η → 0 as-

ymptotically

As soon as η < 1, i.e. (Vc, wVc ;VcRc,F)y (D, ·;VcRcD,F), we have

that π (D, wD ;VcRcD,F) < π (D : su = H, wD ;VcRcD,F). That is
(D, wD ;VcRcD,F) are vulnerable for invasion.
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— (D, wD ;VcRcD,F)y (D : su = H, wD ;VcRcD,F)
However since we have assumed that mutation compared with growth

is slow Ã p (D : su = H, wD ) < 1−α
1+β−α . Let this mix at wD be de-

noted DH. Furthermore it follows from assumption 2 and 4, that ∃t
such that η > 0, where λ is small enough such that βλ = (1− α) (1− λ)

⇒ π (D, wDH ;VcRcDH,F) = π
¡Vc, w+Vc ;VcRcDH,F¢. However note

that π
¡Vc : su = H, w+Vc ;VcRcDH,F¢ > π (D, wDH ;VcRcDH,F). But

in difference to agents with (D : su = H) will (Vc : su = H) not con-
verge back to wDH but remain above at w

+
F .

As soon as (Vc : su = H) has established themselves above wDH , we
have that:

π
¡Vc : su = H, w+Vc ;VcRcDH,F¢ < π

¡Vc : su = D, w+Vc ;VcRcDH,F¢.
Hence we have that

¡Vc : su = H, w+Vc ;VcRcDH,F
¢
are vulnerable for

invasion.

—
¡Vc : su = H, w+F ;VcRcDH,F¢y ¡Vc : su = D, w+F ;VcRcDH,F¢
As λ becomes smaller more and more Vc will established them-
selves above wDH . Moreover, since the (Vc, w;Vcγ,F) , w > wD will
grow in accordance to assumption 2 and 4. Thus, as t → ∞ we

will, through growth and mutations, have that maxπ
³
Rc, ·; s, eF´ <

maxπ
³
DH, ·; s, eF´ ≤ minπ

³
Vc, ·; s, eF´ < maxπ

³
Vc, ·; s, eF´ and

thus alsomaxπ
³
m, ·; s, eF´ ≤ minπ ³Vc, ·; s, eF´ < maxπ ³Vc, ·; s, eF´

for m ∈ S\Vc.

Claim 20 π (B;B, Fy) = π (P;P, Fy).

Proof. Consider two arbitrary points in the distribution.¯̄
yni − yn−i

¯̄
< δn ⇒ π (·, yi; ·, Fy) = π (·, y−i; ·, Fy)¯̄

yni − yn−i
¯̄
> δn ⇒ π(·,yi;·,Fy)+π(·,y−i;·,Fy)

2 = 1+β
2

Lemma 8 ∃ (Vc, w, y) ∈ suppF (VcZ) such that
π (Vc, w;VcZ,F) ≮ π (Z, w;VcZ,F).

Proof.
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π (Vc, y, w;VcZ,F) =
(1− λ) (Fw + β (1− Fw)) + λ (FwFy + αFy (1− Fw) + β (1− Fw) (1− Fy))
Now let Vc y Z Ã

π (Z, y, w;VcZ,F) =
(1− λ) (FwFy + αFw (1− Fy) + β (1− Fw) (1− Fy)) + λ (Fy + β (1− Fy))
π (Vc, w;VcZ,F) < π (Z, w;VcZ,F)⇔
(1− λ) (Fw + β (1− Fw)) + λ (FwFy + αFy (1− Fw) + β (1− Fw) (1− Fy))
< (1− λ) (FwFy + αFw (1− Fy) + β (1− Fw) (1− Fy)) + λ (Fy + β (1− Fy))

π (Vc, w;VcZ,F) < π (Z, w;VcZ,F)
⇔

Fw (1− Fy) (1− α) + βFy (1− Fw) < λ (1− α+ β) (Fy (1− Fw) + Fw (1− Fy))

If v and w are i.i.d.⇒ ∃Fy, Fw,∀α,β such that
Fw (1− Fy) (1− α)+βFy (1− Fw) ≮ λ (1− α+ β) (Fy (1− Fw) + Fw (1− Fy))

Lemma 9 π (Z, w;VcZ,F) < π (Vc, w;VcZ,F) ,∀ (w,Z) ∈ suppF (VcZ).

Proof. Assume the opposite; ∃ (w,Z) ∈ suppF (VcZ) such that
π (Z, w;VcZ,F) ≥ π (Vc, w;VcZ,F) ,∀ (w,Z)

π (Z, y, w;VcZ,F) =
(1− λ) (FwFy + αFw (1− Fy) + β (1− Fw) (1− Fy)) + λ (Fy + β (1− Fy))
Now let Z y Vc Ã

π (Vc, y, w;VcZ,F) =
(1− λ) (Fw + β (1− Fw)) + λ (Fy + β (1− Fy))

π (Z, w;VcZ,F) ≥ π (Vc, w;VcZ,F) ,∀ (w,Z)
⇔

0 ≥ (1− α)Fw (1− Fy) + β (1− Fw)Fy
This is a contradiction, why the lemma should be proven.

Proposition 4 Vc is according to criterion C not vulnerable for invasion by
any strategy conditioned on any static variable ys, given γ = γ∗ as δ → 0.

Proof. Assume that the size of the population conditioning the strategies

according to Z at the time of the fusion is λ and Vc is 1− λ. From assumption

6 we have that π (y; y, Fy) = π (Z;Z, FZ) < π (Vc;Vc, FVc)Ã λ < 1
2 .
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• Now consider when the populations meet; FVc (Vc) , FZ (Z)→ F (VcZ)

• Mutation

FZ ∈ FAs leads to that the agents conditioning the strategies according
to Z will play H against w−i < wi and play D against w−i > wi,∀wi ∈
suppFZ (w;Z). Hence from lemma 9 we have that π (Z, w;VcZ,F) <
π (Vc, w;VcZ,F) ,∀ (w,Z) ∈ suppF (VcZ). That is, every agent condi-
tioning the game according to Z will receive a higher payoff if the strategy
is changed to Vc, since they then will be able to coordinate with the entire
population. Also note that these mutants initially will be able to coordi-

nate the game perfectly with each agent and thus receive a higher payoff

and subsequently rise to a higher status in the distribution. If the agent

would mutate back, he would receive a decrease in the payoff compared to

the original payoff. No further successful mutations are thus feasible once

the agent has mutated from Z to Vc.

Furthermore, from lemma 8 we know that there always ∃ (Vc, w, y) ∈
suppF (VcZ) such that π (Vc, w;VcZ,F) ≮ π (Z, w;VcZ,F). Neverthe-
less, any agent mutating from Vc to Z will, according to lemma 9, prefer

to change back from Z to Vc as soon as the new distribution has settled.

Finally note that λ < 1
2 ⇒ maxπ (Z, w;VcZ,F) < maxπ (Vc, w;VcZ,F)

Thus as t→∞ we will, through growth and mutation, have that

maxπ
³
Z, ·;Z, eF´ ≤ minπ ³Vc, ·;Vc, eF´ < maxπ ³Vc, ·;Vc, eF´
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