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1 Introduction

In 1977 Owen defined and axiomatized the coalitional value for games with

transferable utility, providing a generalization of the Shapley value to the coali-

tional framework, and later Hart and Kurz (1983) gave an alternative axioma-

tization by considering games with an infinite universe of players. On the other

hand Dubey, Neyman and Weber (1981) provided a different generalization of

the Shapley value by removing Efficiency from the classical axiomatization of

Shapley (1953).

The aim of this paper is twofold. First, we propose an alternative axiomatiza-

tion of the coalitional value by means of three axioms. Two of them, Carrier

and Additivity, were already used by Hart and Kurz (1983). The third one

can be seen as a modification of the well known axiom of Anonymity.

Second, as the title of the work already suggests, we marry the two generaliza-

tions of the Shapley value proposed by Owen (1977) and Dubey et al. (1981),

i.e. we define coalitional semivalues, providing a generalization of semivalues

to the coalitional context. We will follow the axiomatic procedure of Dubey et

al. (1981), i.e. we will take Efficiency out of the system proposed in the present

paper. In addition we will use the translations to the coalitional framework of

some axioms used also by Dubey et al. (1981), and we will require an addi-

tional axiom which is specific to the coalitional context and is satisfied by the

coalitional value.

As we will describe in the preliminaries, Owen (1977) defined the coalitional

value of a game by applying the Shapley value twice. First, the Shapley value

is employed at the level of the coalitions of the coalitional structure, to define
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a new game on each one of those coalitions. Subsequently, the Shapley value

is applied to these new games. This procedure yields precisely the coalitional

value of the original game. So, in certain sense we can say that the coalitional

value is obtained by means of a “composition” of the Shapley value with itself.

In this work we will show that the coalitional semivalues defined in this paper

can also be obtained by means of a “composition” of two arbitrary semivalues.

Furthermore, if one additional axiom is considered in the system proposed

here, the resulting coalitional semivalues are “compositions” of a semivalue

with itself. Finally, we point out that if we remove Efficiency from the system

proposed by Hart and Kurz (1983) we do not obtain all the “compositions”

of semivalues, but only those in which a semivalue is “composed” with the

Shapley value.

The paper is organized as follows. In Preliminaries we present notation, and

previous definitions and results which are needed in the course of the paper.

In Section 3 we provide the new characterization of the coalitional value. In

Section 4 we define coalitional semivalues and obtain an explicit formula for

them. In Section 5 we prove that coalitional semivalues are “compositions” of

semivalues.

2 Preliminaries

Let U be an infinite set which denotes the universe of players. A coalition is

a non-empty subset of U . A transferable utility game (a game for short) is a

function v : 2U → R such that v (∅) = 0, where 2U denotes the family of all

subsets of U . A set N ⊆ U is a carrier of v, if v (S ∩N) = v (S) for all S ⊆ U .

By G we denote the space of all games on U with finite carrier and by GN
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the subspace of G of games with carrier N . It is well known that a basis of G

(resp. GN) is formed by unanimity games uR, where R ⊂ U (resp. R ⊆ N) is

finite, defined by uR (S) = 1 if R ⊆ S, and uR (S) = 0 otherwise.

A game v is monotonic if v (S) ≤ v (T ) when S ⊆ T . A game v ∈ GN is

additive if for every i ∈ N there exists ai ∈ R such that v(S) =
∑
i∈N ai for

every S ⊆ N . By AG and AGN we denote respectively the subspaces of G

and GN formed by additive games.

Each finite partition B = {B1, . . . , Bh} of U is called a coalitional structure.

If N is a coalition, BN denotes the partition of N induced by B, i.e., BN =

{Bp ∩N : Bp ∩N 6= ∅, Bp ∈ B}. The set of all pairs (v,B), where v ∈ G, and

B is a coalitional structure is denoted by X; and XN denotes the subset of X

for which N is a carrier of v. If ψ is a mapping from X into AG, we denote

the restriction of ψ to XN by ψN .

Let π : U → U be a mapping. If v ∈ G, denote by πv the game de-

fined by πv(S) = v (π−1S). If B is a coalitional structure, denote πB =

{πBp : Bp ∈ B}. Notice that πB is not necessarily a coalitional structure. De-

note Bπ = πB ∪ {U\πU} if πU 6= U and Bπ = πB otherwise. Notice that

Bπ is a coalitional structure if and only if πBq ∩ πBr = ∅ whenever q 6= r.

In 1977 Owen defined the coalitional value for TU games in the following way.

Let v ∈ GN , and B = {B1, . . . , Bh} be a coalitional structure, and let Bp ∈ B

be fixed. For every S ⊆ Bp ∩N , let

B (S) = {B1, . . . , Bp−1, S, Bp+1, . . . , Bh} (1)
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and vB(S) the game on B (S) defined by

vB(S) (T ) = v
( ⋃
t∈T

t
)
, for each T ⊆ B (S) , (2)

that is, vB(S) is the game v restricted to the field generated by B (S) (i.e.,

considering B (S) as set of players.)

Now consider a new game vB
p ∈ GBp∩N defined for every S ⊆ Bp ∩N by

vB
p (S) = ShS

(
vB(S)

)
,

where Sh denotes the Shapley value; i.e., vB
p (S) is the Shapley value of

“player” S in the game vB(S).

Owen (1977) defined the coalitional value of player i ∈ Bp ∩ N , which we

denote by φi (v,B), as the Shapley value of player i in game vB
p . Formally,

φi (v,B) = Shi
(
vB
p

)
, for all i ∈ Bp ∩N.

Owen (1977) characterized this value and gave the following explicit formula.

Proposition 1 (Owen, 1977). If (v,B) ∈ XN , and i ∈ Bp, then

φi (v,B) =
∑

T⊆BN\{Bp∩N}
S⊆Bp∩N\{i}

|T |! · (|BN | − |T | − 1)!

|BN |!
· |S|! · (|Bp ∩N | − |S| − 1)!

|Bp ∩N |!
·

[
v
(
AT ∪ S ∪ {i}

)
− v (AT ∪ S)

]
,

where AT =
⋃
Bq∈T Bq ∩N .

Remark 2 The coalitional value φi (v,B) is independent of the carrier N

considered for game v. Actually, Owen (1977) only considered games on a

finite set of players when he defined and characterized this value.
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Alternatively, Hart and Kurz (1983) characterized the coalitional value by

using the following axioms. Let ψ : X → AG.

Carrier : If N is a carrier of v then

(i)
∑
i∈N ψi (v,B) = v(N).

(ii) B1
N = B2

N implies ψ (v,B1) = ψ (v,B2) .

Additivity : ψ (v + w,B) = ψ (v,B) + ψ (w,B) .

Anonymity : If π : U → U is one-to-one, then for all i ∈ U it holds that

ψi (v,B) = ψπi (πv,B
π).

Inessential Game: If v
(⋃

Bp∈T Bp

)
=
∑
Bp∈T v (Bp), for every T ⊆ B, then∑

i∈Bp
ψi (v,B) = v (Bp), for every Bp ∈ B

Theorem 3 (Hart and Kurz, 1983) There is a unique mapping ψ : X → AG

satisfying Carrier, Additivity, Anonymity, and Inessential Game, and it is the

coalitional value φ.

On the other hand, Dubey et al. (1981) defined the semivalues for TU games

as those mappings ψ : G→ AG that satisfy the following properties.

(P1) ψ is linear;

(P2) If π : U → U is one-to-one, then for each i ∈ U it holds that ψπi(πv) =

ψi(v);

(P3) If v ∈ G is monotonic, then ψ (v) is monotonic;

(P4) If v ∈ AG, then ψ (v) = v.

These axioms are commonly referred to as Linearity, Symmetry, Monotoni-
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city and Projection axioms, see e.g. Aumann and Shapley (1974), but here we

reserve these names for the corresponding axioms in the coalitional context.

Dubey et al. (1981) gave an explicit formula for semivalues. Consider a family

of vectors p = (pn)n∈N, where pn =
(
pn0 , . . . , p

n
n−1

)
∈ Rn, such that

n−1∑
s=0

(
n− 1

s

)
· pns = 1, (3)

pns ≥ 0, 0 ≤ s ≤ n− 1, (4)

and

pns = pn+1
s + pn+1

s+1 , 0 ≤ s ≤ n− 1. (5)

Denote by φp the mapping from G into AG defined for each v ∈ GN and every

i ∈ U by

φpi (v) =
∑

S⊆N\{i}
pns ·

[
v
(
S ∪ {i}

)
− v (S)

]
, (6)

where s = |S| and n = |N |. One can easily check that φp is well defined, that

is, φpi (v) does not depend on the carrier N chosen for v.

Theorem 4 (Dubey et al., 1981) A mapping ψ : G → AG is a semivalue if

and only if there exists a collection of vectors p = (pn)n∈N, where pn ∈ Rn,

satisfying (3), (4) and (5) for every n ∈ N, such that ψ = φp. Moreover, the

correspondence p→ φp is one-to-one.

3 A characterization of the coalitional value

In this section we are going to characterize the coalitional value by replacing

Anonymity and Inessential Game axioms in Theorem 3, by the following one.

Let ψ : X → AG.
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Rearrangement : Let π : U → U such that πBq ∩ πBr = ∅ whenever q 6= r. If

π : Bp → πBp is one-to-one, then

ψπi (πv,B
π) = ψi (v,B) for all i ∈ Bp.

This axiom is a stronger version of the Anonymity axiom. Notice that if π were

restricted to beeing one-to-one, Rearrangement becomes the Anonymity axiom

of Hart and Kurz (1983). But in Rearrangement we let π be any mapping. In

this way, this new axiom can also be seen as a kind of consistency property.

Indeed, what π does, apart from renaming players in U , is to maintain the

size of Bp and to reduce (or maintain) the size of other coalitions in B, as if

some of the players belonging to other members of the coalitional structure

had decided to act really as a single player. Thus Rearrangement requires that

the value of a player in Bp should not be affected after renaming players in U

and/or reducing (or maintaining) the sizes of the other coalitions in B.

Theorem 5 There is a unique mapping ψ : X → AG that satisfies Carrier,

Additivity and Rearrangement, and it is the coalitional value φ.

PROOF. First let us see that φ verifies the above axioms. By Theorem 3,

it only remains to prove that φ satisfies Rearrangement. So let (v,B) ∈ XN ,

and π : U → U such that πBq ∩ πBr = ∅ if q 6= r, and π : Bp → πBp is

one-to-one. By Proposition 1 if i ∈ Bp it holds that

φπi (πv,B
π) =

∑
T⊆Bπ

πN\{πBp∩πN}
S⊆(πBp∩πN)\{πi}

|T |! ·
(
|Bπ

πN | − |T | − 1
)
!

|Bπ
πN |!

·

|S|! ·
(
|πBp ∩ πN | − |S| − 1

)
!

|πBp ∩ πN |!
·
[
v
(
AT ∪ S ∪ {i}

)
− v(AT ∪ S)

]
,
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where AT =
⋃
πBq∈T (πBq ∩ πN). Since π : Bp → πBp is one-to-one, the second

term in this equality is equal to

∑
T⊆BN\{Bp∩N}
S⊆(Bp∩N)\{i}

|T |! ·
(
|BN | − |T | − 1

)
!

|BN |!
·
|S|! ·

(
|Bp ∩N | − |S| − 1

)
!

|Bp ∩N |!
·

[
v
(
CT ∪ S ∪ {i}

)
− v(CT ∪ S)

]
,

where CT =
⋃
Bq∈T Bq ∩N . But this summation is precisely φi (v,B).

Next we prove that these three axioms fully determine φ.

By Additivity it is sufficient to consider the games c · uR, where c ∈ R and

R ⊂ U is finite. Let B = {B1, . . . , Bh} be a coalitional structure of U .

Let i /∈ R. Since R ∪ {i} and R are carriers of c · uR, by Carrier (i)

∑
j∈R∪{i}

ψj (c · uR,B) = c · uR
(
R ∪ {i}

)
= c · uR (R) =

∑
j∈R

ψj (c · uR,B) .

Therefore, ψi (c · uR,B) = 0.

Now assume that BR = {B′
1, . . . , B

′
`}, and without loss of generality that∣∣∣B′

p

∣∣∣ ≤ ∣∣∣B′
q

∣∣∣ if p < q. To complete the proof it is enough to show that for each

i ∈ B′
p, 1 ≤ p ≤ `, it holds that

ψi (c · uR,B) =
c

` ·
∣∣∣B′

p

∣∣∣ .

Denote B′
`+1 = U\R. Thus, the set B′ =

{
B′
p : p = 1, . . . , `+ 1

}
is a coali-

tional structure of U .

Since BR = B
′
R, Carrier (ii) implies

ψi (c · uR,B) = ψi (c · uR,B′) for all i ∈ R. (7)

9



Let us consider a mapping π1 : U → U , such that π1B
′
q∩π1B

′
r = ∅ if q 6= r, and

such that π1i = i for every i ∈ B′
1, and

∣∣∣π1B
′
p

∣∣∣ = |B′
1|, for every p = 1, . . . , `.

Applying Rearrangement

ψi (c · uR,B′) = ψi
(
π1 (c · uR) ,B′π1

)
for all i ∈ B′

1. (8)

Now notice that π1R is a carrier of π1 (c · uR), and from Carrier (i) it follows

that ψj
(
π1 (c · uR) ,B′π1

)
= 0 for all j /∈ π1R. Notice also that players in π1R

are all identical (since all the π1B
′
p are of the same size, for all 1 ≤ p ≤ `).

Applying Carrier (i) and Rearrangement again (actually, its weaker version of

Anonymity) it holds that

ψi
(
π1 (c · uR) ,B′π1

)
=

c

` · |B′
1|
, for every i ∈ π1R, (9)

From (7), (8) and (9), we conclude that for every i ∈ B′
1 it holds that

ψi (c · uR,B) =
c

` · |B′
1|
.

Next consider k ≤ `, and, by induction, assume that

ψi (c · uR,B) =
c

` ·
∣∣∣B′

p

∣∣∣ for all i ∈ B′
p, and all p ∈ {1, . . . , k − 1} . (10)

Let πk : U → U such that πkB
′
q ∩ πkB′

r = ∅ if q 6= r, and such that πki = i for

every i ∈ B′
1 ∪ · · · ∪B′

k, and
∣∣∣πkB′

q

∣∣∣ = |B′
k| for q = k, . . . , `. By Rearrangement

ψi (c · uR,B′) = ψi
(
πk (c · uR) ,B′πk

)
for all i ∈ B′

1 ∪ . . . ∪B′
k. (11)

Since πkR is a carrier of πk (c · uR), it follows that ψj
(
πk (c · uR) ,B′πk

)
= 0

for all j /∈ πkR. Since all the πkB
′
p are of the same size, for p = k . . . , `,

it follows that all the players in πk (B′
k ∪ . . . ∪B′

`) are identical. Applying the
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induction hypothesis, Carrier (i) and Rearrangement (again its weaker version

of Anonymity) it holds that

ψi
(
πk (c · uR) ,B′πk

)
=

c

` · |B′
k|
, for every i ∈ πk (B′

k ∪ . . . ∪B′
`) . (12)

Finally by (7), (11), and (12), for all i ∈ B′
k it holds that

ψi (c · uR,B) =
c

` · |B′
k|
.

And the proof is complete. 2

Remark 6 In the characterization of Hart and Kurz (1983) an infinite pop-

ulation is needed. However as the reader can easily check, we do not need an

infinite population to state Theorem 5, that is, U can be a finite set.

4 Coalitional semivalues

As we mentioned in Preliminaries, Dubey et al. (1981) defined semivalues by

removing Efficiency from the classical characterization of the Shapley value,

or more precisely by removing Efficiency and adding Monotonicity. Our aim

in this section is to obtain a generalization of semivalues to the coalitional

framework following their procedure. So, we will eliminate Efficiency (actually

Carrier (i)) from the new axiom system proposed in the present work, and we

will add three other axioms which are satisfied by the coalitional value. Two of

them are adaptations of the Monotonicity and Projection axioms of Dubey et

al. (1981) (properties (P3) and (P4) in Preliminaries), and the third is specific

to the coalitional context.

A mapping ψ : X → AG will be called a coalitional semivalue if it satisfies:
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Carrier (ii);

Linearity: ψ (c1 · v + c2 · w,B) = c1 · ψ (v,B) + c2 · ψ (w,B), c1, c2 ∈ R;

Rearrangement ;

Monotonicity : If v ∈ G is monotonic, then ψ (v,B) is also monotonic;

Projection: If v ∈ AG, then ψ (v,B) = v

Coalitional Partnership: Let (v,B) ∈ XN such that Bp is formed by veto

players in v. Let π : U → U such that πBq ∩ πBr = ∅, and |πBp| = 1. Then

ψi (v,B) = ψi
(
ψπBp (πv,Bπ) · uBp ,B

)
, for all i ∈ Bp.

(A player i is veto in game v if v(S) = 0 whenever i /∈ S).

To interpret this axiom we will assume that Bp ⊆ N , otherwise v is the

zero game. Since coalition Bp is formed by veto players in game v, all its

subcoalitions are powerless. In this sense Bp acts as a single player, so we can

say that Bp behaves in v as in uBp , since players in U\Bp are also null players

in both games. And this is at the root of the Coalitional Partnership axiom.

What π does in this axiom is to focus attention on Bp by formally turning

this coalition into one individual. Thus we obtain the semivalue of the “single

player” Bp in πv, and then consider the unanimity game ψπBp (πv, πB) · uBp .

This axiom requires the semivalue of any player i ∈ Bp in this unanimity game

to coincide with this semivalue in the former game v.

Notice also that a coalition formed by veto players is a coalition of partners

(Kalai and Samet, 1987) and that the Coalitional Partnership axiom has a

parallelism with the Partnership axiom used by these authors to characterize
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the weighted Shapley values.

In what follows we provide an explicit formula for coalitional semivalues.

Let (an)n∈N and (bn)n∈N be two collections of vectors, with an, bn ∈ Rn, satis-

fying (3), (4) and (5) for every n ∈ N. Define φa,b : X → AG for every finite

coalition N , every (v,B) ∈ XN , and every i ∈ Bp by

(
φNa,b

)
i
(v,B) =

∑
T⊆BN\{Bp∩N}
S⊆Bp∩N\{i}

a
|BN |
t · b|Bp∩N |

s ·
[
v
(
AT ∪ S ∪ {i}

)
− v (AT ∪ S)

]
,

(13)

where AT =
⋃
Bq∈T Bq ∩N , and t = |T | and s = |S|.

Theorem 7 A mapping ψ : X → AG is a coalitional semivalue if and only

if there exist two collections of vectors (an)n∈N and (bn)n∈N, with an, bn ∈ Rn,

satisfying (3), (4) and (5) for every n ∈ N, such that ψ = φa,b.

PROOF. This theorem is a consequence of propositions 8 and 11. 2

Proposition 8 Let (an)n∈N and (bn)n∈N be two families of vectors satisfying

(3), (4) and (5) for every n ∈ N. Then mapping φa,b is a coalitional semivalue

on X.

PROOF. First let us see that φa,b is well defined, that is for every (v,B) ∈

XN ∩ XM it holds that φNa,b (v,B) = φMa,b (v,B). Clearly, it suffices to prove

that: if k /∈ N , then
(
φNa,b

)
i
(v,B) =

(
φ
N∪{k}
a,b

)
i
(v,B) for every i ∈ N . So let

i ∈ Bp ∩N and let us distinguish three cases.
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i) If k /∈ Bp, and k ∈ Br with Br ∩N ∈ BN . By (13)

(
φ
N∪{k}
a,b

)
i
(v,B) =∑

T⊆BN\{Bp∩N}
Br∩N /∈T

S⊆Bp∩N\{i}

a
|BN |
t · b|Bp∩N |

s ·
[
v
(
AT ∪ S ∪ {i}

)
− v (AT ∪ S)

]
+

∑
T⊆BN\{Bp∩N}

Br∩N∈T
S⊆Bp∩N\{i}

a
|BN |
t · b|Bp∩N |

s ·
[
v
(
AT ∪ {k} ∪ S ∪ {i}

)
− v (AT ∪ {k} ∪ S)

]
,

where AT =
⋃
Bq∈T Bq ∩N , t = |T | and s = |S|.

Since k is a null player in v, it follows that v
(
AT ∪ {k} ∪ S ∪ {i}

)
= v

(
AT ∪

S ∪ {i}
)
, and v

(
AT ∪ {k} ∪ S

)
= v (AT ∪ S). Hence by (13) the latter sum is

equal to
(
φNa,b

)
i
(v,B).

ii) If k /∈ Bp and k /∈ ⋃Bq∩N∈BN
Bq; applying (13)

(
φ
N∪{k}
a,b

)
i
(v,B) =

∑
T⊆BN\{Bp∩N}
S⊆Bp∩N\{i}

a|BN∪{k}|
t · b|Bp∩N |

s ·
[
v
(
AT ∪ S ∪ {i}

)
− v (AT ∪ S)

]

+ a
|BN∪{k}|
t+1 · b|Bp∩N |

s ·
[
v
(
AT ∪ {k} ∪ S ∪ {i}

)
− v

(
AT ∪ {k} ∪ S

)],
where AT =

⋃
Bq∈T Bq ∩N , t = |T | and s = |S|.

Since k is a null player in v it follows that

(
φ
N∪{k}
a,b

)
i
(v,B) =

∑
T⊆BN\{Bp∩N}
S⊆Bp∩N\{i}

(
a
|BN |+1
t · b|Bp∩N |

s + a
|BN |+1
t+1 · b|Bp∩N |

s

)
·

[
v
(
AT ∪ S ∪ {i}

)
− v (AT ∪ S)

]
.

Since an satisfies (5), this is equal to
(
φNa,b

)
i
(v,B).
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iii) If k ∈ Bp, then applying (13) once more

(
φ
N∪{k}
a,b

)
i
(v,B) =

∑
T⊆BN\{Bp∩N}
S⊆Bp∩N\{i}

a|BN |
t · b|Bp∩N |+1

s ·
[
v
(
AT ∪ S ∪ {i}

)
− v (AT ∪ S)

]

+ a
|BN |
t · b|Bp∩N |+1

s+1 ·
[
v
(
AT ∪ {k} ∪ S ∪ {i}

)
− v (AT ∪ {k} ∪ S)

],

where AT =
⋃
Bq∈T Bq ∩ N , t = |T | and s = |S|. Since k is a null player

in v, and bn satisfies condition (5), it follows that the sum above is equal to(
φNa,b

)
i
(v,B).

Let us now see that φa,b is a coalitional semivalue. It is clear that φa,b satis-

fies Carrier (ii) and Linearity. Monotonicity and the Projection axioms follow

respectively since an and bn satisfy (3), (4) for every n ∈ N. Checking Rear-

rangement is as in Theorem 5. So it only remains to prove that φa,b satisfies

Coalitional Partnership.

Let (v,B) ∈ XN such that Bp is formed by veto players in v. Also let π :

U → U , such that π (Bq) ∩ π (Br) = ∅, if q 6= r and |πBp| = 1. If Bp is not

contained in N , then v = 0 and the result follows immediately. So suppose

that Bp ⊆ N . Applying (13) for each i ∈ Bp it holds that

(φa,b)i (v,B) =
∑

T⊆BN\{Bp∩N}
S⊆Bp∩N\{i}

a
|BN |
t · b|Bp|

s ·
[
v
(
AT ∪ S ∪ {i}

)
− v (AT ∪ S)

]

=
∑

T⊆BN\{Bp}
a
|BN |
t · b|Bp|

|Bp|−1 · v
(
AT ∪Bp

)
, (14)
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where AT =
⋃
Bq∈T Bq ∩N , t = |T | and s = |S|. Also by (13),

(φa,b)πBp
(πv,Bπ) =∑

T⊆Bπ
πN\{πBp}

S⊆{πBp}∩πN\{πBp}

a
|Bπ

πN |
t · b|πBp∩πN |

s ·
[
πv
(
CT ∪ S ∪ {πBp}

)
− πv(CT ∪ S)

]

=
∑

T⊆Bπ
πN\{πBp}

a
|Bπ

πN |
t · b10 ·

[
πv
(
CT ∪ {πBp}

)]
=

∑
T⊆Bπ

πN\{πBp}
a
|Bπ

πN |
t ·

[
πv
(
CT ∪ {πBp}

)]
, (15)

where CT =
⋃
πBq∈T πBq ∩ πN , and the last equality follows since bn satisfies

condition (3), and consequently b10 = 1.

Finally, if α is any real number, by (13),

(φa,b)i

(
α · uBp ,B

)
=

∑
T⊆BN\{Bp}
S=Bp\{i}

a
|BN |
t · b|Bp|

s · α =

b
|Bp|
|Bp|−1 · α ·

|BN |−1∑
t=0

(
|BN | − 1

t

)
· a|BN |

t = b
|Bp|
|Bp|−1 · α, (16)

where the last equality holds since an satisfies (3).

Hence, from (14), (15) and (16) it follows that

(φa,b)i

(
(φa,b)πBp

(πv,Bπ) · uBp ,B
)

=

= b
|Bp|
|Bp|−1 ·

∑
T⊆Bπ

πN\{πBp}
a
|Bπ

πN |
t ·

[
πv (CT ∪ πBp)

]
=

b
|Bp|
|Bp|−1 ·

∑
T⊆BN\{Bp}

a
|BN |
t ·

[
v (AT ∪Bp)

]
= (φa,b)i (v,B) .

And the proof is complete. 2

The next two lemmas will be used in the proof of the following proposition.

Their proofs are located in the appendix. First some definitions.
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Let N be a fixed finite coalition. For each pair of positive integers t̂, ŝ ∈ N

such that t̂ + ŝ ≤ |N | + 1, let ρN,̂t,ŝ =
(
ρN,̂t,ŝt,s

)
t=0,...,̂t−1
s=0,...,ŝ−1

be a matrix of real

numbers. We will require the following conditions for every matrix ρN,̂t,ŝ

t̂−1∑
t=0

ŝ−1∑
s=0

(
t̂− 1

t

)
·
(
ŝ− 1

s

)
· ρN,̂t,ŝt,s = 1, (17)

and

ρN,̂t,ŝt,s ≥ 0. (18)

Let ρN =
{
ρN,̂t,ŝ : t̂+ ŝ ≤ |N |+ 1

}
be the collection of such matrices, and let

φρ
N

: XN → AGN defined for each (v,B) ∈ XN and every i ∈ Bp by

φρ
N

i (v,B) =
∑

T⊆BN\{Bp∩N}
S⊆Bp∩N\{i}

ρ
N,|BN |,|Bp∩N |
t,s ·

[
v
(
AT ∪S∪{i}

)
−v (AT ∪ S)

]
, (19)

where AT =
⋃
Bq∈T Bq ∩N , and t = |T | and s = |S|.

Lemma 9 Let ψ : X → AG be a mapping that satisfies the Carrier (ii), Lin-

earity, Rearrangement, Monotonicity and Projection axioms. Then for every

finite coalition N ⊂ U there exists a collection of matrices ρN =
{
ρN,̂t,ŝ

}
,

satisfying (17) and (18), such that ψN = φρ
N
.

Lemma 10 Let ψ be a coalitional semivalue on X, and N,M ⊂ U be two

finite coalitions. Let ρN , ρM be the respective collections of matrices according

to Lemma 9. If N ⊆ M , then ρN,̂t,ŝ = ρM,̂t,ŝ for every t̂, ŝ such that t̂ + ŝ ≤

|N |+ 1.

Proposition 11 If ψ is a coalitional semivalue on X, then there exist two

collections (an)n∈N, (bn)n∈N, with an, bn ∈ Rn, satisfying (3), (4) and (5) for

every n ∈ N, such that ψ = φa,b.
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PROOF. Let ψ be a coalitional semivalue on X. By Lemma 9, for each finite

coalition N ⊂ U there exists a collection of matrices
{
ρN,̂t,ŝ

}
satisfying (17)

and (18), and such that ψN = φρ
N
.

Clearly, Anonymity (Rearrangement) implies ρN,̂t,ŝ = ρN
′ ,̂t,ŝ for every pair

of finite coalitions N,N ′ ⊂ U such that |N | = |N ′| = n. So let us denote

ρn,̂t,ŝ = ρN,̂t,ŝ and let us prove that there exist two collections (an)n∈N and

(bn)n∈N, satisfying (3), (4) and (5) for every n ∈ N, and such that ρn,̂t,ŝt,s = at̂t ·bŝs.

For each n ∈ N, define ant = ρn,n,1t,0 , 0 ≤ t ≤ n−1, and bns = ρn,1,n0,s , 0 ≤ s ≤ n−1.

Now let us see that an and bn satisfy conditions (3), (4) and (5).

Since ρn,n,1 and ρn,1,n satisfy (17) and (18), it immediately follows that an and

bn both satisfy conditions (3) and (4).

Now let us see that an satisfies (5). Let N ⊂ U be a finite coalition, and

v ∈ GN . Let k /∈ N and consider a coalitional structure B such that k /∈ Bp

and k /∈ ⋃Bq∩N∈BN
Bq. Then for every i ∈ Bp it holds

ψ
N∪{k}
i (v,B) =

∑
T⊆BN\{Bp∩N}
S⊆Bp∩N\{i}

(
ρ
n+1,|BN |+1,|Bp∩N |
t,s + ρ

n+1,|BN |+1,|Bp∩N |
t+1,s

)
·

[
v
(
AT ∪ S ∪ {i}

)
− v (AT ∪ S)

]
,

where AT =
⋃
Bq∈T Bq ∩N , t = |T | and s = |S|. And by Carrier (ii)

ψ
N∪{k}
i (v,B) = ψNi (v,B) =∑

T⊆BN\{Bp∩N}
S⊆Bp∩N\{i}

ρ
n,|BN |,|Bp∩N |
t,s ·

[
v
(
AT ∪ S ∪ i

)
− v (AT ∪ S)

]
.

Consequently if 0 ≤ t ≤ |BN | − 1 and 0 ≤ s ≤ |Bp ∩N | − 1, then

ρ
n+1,|BN |+1,|Bp∩N |
t,s + ρ

n+1,|BN |+1,|Bp∩N |
t+1,s = ρ

n,|BN |,|Bp∩N |
t,s .

18



Taking B such that |BN | = n− 1 and |Bp ∩N | = 1, this amounts to an+1
t +

an+1
t+1 = ant for every 0 ≤ t ≤ n, and consequently an satisfies (5).

Next let us see that bn satisfies (5). Again let N ⊂ U be a finite coalition,

and v ∈ GN . Let k /∈ N and consider now a coalitional structure B such that

k ∈ Bp. Then for every i ∈ Bp ∩N it holds that

ψ
N∪{k}
i (v,B) =

∑
T⊆BN\{Bp∩N}
S⊆Bp∩N\{i}

ρn+1,|BN |,|Bp∩N |+1
t,s ·

[
v
(
AT ∪ S ∪ {i}

)
− v (AT ∪ S)

]

+ ρ
n+1,|BN |,|Bp∩N |+1
t,s+1 ·

[
v
(
AT ∪ {k} ∪ S ∪ {i}

)
− v (AT ∪ {k} ∪ S)

],
where AT =

⋃
Bq∈T Bq ∩N , t = |T | and s = |S|. And by Carrier (ii)

ψ
N∪{k}
i (v,B) = ψNi (v,B) =∑

T⊆BN\{Bp∩N}
S⊆Bp∩N\{i}

ρ
n,|BN |,|Bp∩N |
t,s ·

[
v
(
AT ∪ S ∪ {i}

)
− v (AT ∪ S)

]
.

Consequently if 0 ≤ t ≤ |BN | − 1 and every 0 ≤ s ≤ |Bp ∩N | − 1 then

ρ
n+1,|BN |,|Bp∩N |+1
t,s + ρ

n+1,|BN |,|Bp∩N |+1
t,s+1 = ρ

n,|BN |,|Bp∩N |
t,s .

Let t̂+ ŝ ≤ n+ 1, and take B such that |BN | = t̂ and |Bp ∩N | = ŝ, then the

equality above amounts to

ρn+1,̂t,ŝ+1
t,s + ρn+1,̂t,ŝ+1

t,s+1 = ρn,̂t,ŝt,s , 0 ≤ t ≤ t̂− 1, 0 ≤ s ≤ ŝ− 1. (20)

Choosing t̂ = 1 and ŝ = n, these equalities imply that bn satisfies condition

(5).

To complete the proof it is enough to show that if t̂+ ŝ ≤ n+ 1 then

ρn,̂t,ŝt,s = at̂t · bŝs, 0 ≤ t ≤ t̂− 1, 0 ≤ s ≤ ŝ− 1.
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We will proceed by induction on ŝ.

In the case ŝ = 1, Lemma 10 and the definition of an imply that if t̂ ≤ n it

holds that

ρn,̂t,1t,0 = ρt̂,̂t,1t,0 = at̂t = at̂t · b10, 0 ≤ t ≤ t̂− 1.

So let us assume that the statement is true if ŝ′ < ŝ and let us prove it for ŝ.

To prove that ρn,̂t,ŝt,s = at̂t ·bŝs for each s = 1, . . . , ŝ−1 we will proceed by reverse

induction on s. We will first show that ρn,̂t,ŝ
t,ŝ−1

= at̂t · bŝŝ−1
if 0 ≤ t ≤ t̂− 1.

Let us consider a finite coalition N ⊂ U , such that |N | = n, and let B be any

coalitional structure such that |BN | = t̂, and |Bp ∩N | = ŝ, and Bp ⊆ N . Let

v ∈ GN be any game for which Bp is formed by veto players. If i ∈ Bp, by

Lemma 9 it holds that

ψi (v,B) =
∑

T⊆BN\(Bp∩N)
S⊆Bp∩N\{i}

ρn,̂t,ŝt,s ·
[
v
(
AT ∪ S ∪ {i}

)
− v (AT ∪ S)

]
=

∑
T⊆BN\{Bp}

ρn,̂t,ŝ
t,ŝ−1

· v (AT ∪Bp) , (21)

where AT =
⋃
Bq∈T Bq ∩N , and t = |T | and s = |S|.

Let π : U → U be a mapping as in the statement of the Coalitional Partnership

axiom; that is, such that πBq ∩ πBr = ∅, if q 6= r and |πBp| = 1. Also let θ :

U → U such that
∣∣∣∣θ(π (Bq ∩N)

)∣∣∣∣ = 1 for all Bq ∈ B and θ (πBq)∩θ (πBr) = ∅
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if q 6= r. Applying Rearrangement we have

ψπBp (πv,Bπ) = ψθ(πBp)

(
θ (πv) , (Bπ)θ

)
=

∑
T⊆BN\{Bp}

ρ
|θ(πN)|,|(Bπ)θ

θ(πN)|,1
t,0

·
[
θ (πv)

(
θ (πAT ) ∪ θ (πBp)

)
− θ (πv) (θ (πAT ))

]
=

∑
T⊆BN\{Bp}

ρt̂,̂t,1t,0 · v (AT ∪Bp) =
∑

T⊆BN\{Bp}
at̂t · v (AT ∪Bp) , (22)

where AT =
⋃
Bq∈T Bq ∩N .

Furthermore, since Bp is a carrier of uBp , by (19) for all α ∈ R it holds that

ψi
(
α · uBp ,B

)
= ψ

Bp

i

(
α · uBp ,B

)
=∑

S⊆Bp\{i}
ρŝ,1,ŝ0,s ·

[
α · uBp (S ∪ {i})− α · uBp (S)

]
= ρŝ,1,ŝ

0,ŝ−1
· α = bŝŝ−1 · α. (23)

Choosing α =
∑
T⊆BN\Bp

at̂t · v (AT ∪Bp), by the Coalitional Partnership ax-

iom, and taking into account (21), (22) and (23), we can conclude that for any

v ∈ GN for which Bp is formed by veto players, it holds that

∑
T⊆BN\Bp

ρn,̂t,ŝ
t,ŝ−1

· v (AT ∪Bp) = bŝŝ−1 ·
∑

T⊆BN\Bp

at̂t · v (AT ∪Bp) .

Therefore, if t̂+ ŝ ≤ n+ 1 and 0 ≤ t ≤ t̂− 1, it holds that ρn+1,̂t,ŝ

t,ŝ−1
= at̂t · bŝŝ−1

.

Now assume that if t̂+ ŝ ≤ n+ 1 and 0 ≤ t ≤ t̂− 1 it holds that

ρn,̂t,ŝt,s′ = at̂t · bŝs′ , for all s′ > s, (24)

and let us see that ρn,̂t,ŝt,s = at̂t · bŝs.

Indeed, if t̂+ ŝ ≤ n+ 1, from (20) it follows that

ρn,̂t,ŝt,s + ρn,̂t,ŝt,s+1 = ρn−1,̂t,ŝ−1
t,s , 0 ≤ t ≤ t̂− 1,
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and, applying the induction hypothesis,

ρn,̂t,ŝt,s + ρn,̂t,ŝt,s+1 = at̂t · bŝ−1
s 0 ≤ t ≤ t̂− 1.

This together with (24) implies that

ρn,̂t,ŝt,s = at̂t ·
(
bŝ−1
s − bŝŝ+1

)
0 ≤ t ≤ t̂− 1.

Since bn satisfies (5)

ρn+1,̂t,ŝ
t,s = at̂t · bŝs 0 ≤ t ≤ t̂− 1,

and the proof is complete. 2

Example 12 In this example we will show that Coalitional Partnership is

independent from the rest of the axioms used in Theorem 7. Indeed, for each

n ∈ N and t ∈ {0, . . . , n− 1} define

αnt =



1 if n = 1

1
2

if n > 1 and (t = 0 or t = n− 1)

0 otherwise,

βnt =



δ if n > 1 and t = n− 1

−δ if n > 1 and t = 0

0 otherwise,

where −1
2
< δ < 1

2
. Let us consider the mapping ξ : X → AG defined for each

N ⊂ U finite by ξN = φρ
N

where for each t̂, ŝ ∈ N such that t̂+ ŝ ≤ |N |+ 1

ρN,̂t,ŝt,s = αt̂t · αŝs + β t̂t · β ŝs 0 ≤ t ≤ t̂− 1, 0 ≤ s ≤ ŝ− 1.

One can easily check that ξ is well defined and satisfies the Carrier (ii), Lin-
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earity, Rearrangement, Monotonicity, and Projection axioms. However it does

not satisfy Coalitional Partnership. Otherwise by Theorem 7, there are two

families of vectors of real numbers (an), (bn) such that ρN,̂t,ŝt,s = at̂t · bŝs. As in

the proof of Proposition 11 it holds that at̂t = ρn,n,1t,0 = αnt and bt̂t = ρn,1,n0,s = αnt

when t̂ 6= 1 and ŝ 6= 1. But this contradicts the definition of ρN,̂t,ŝt,s .

Remark 13 Dubey et al., (1981) also considered semivalues defined on games

with a fixed finite carrier N in the following way. A semivalue on GN is a

function ψN : GN → AGN satisfying properties (P1), (P2N), (P3) and (P4),

where (P2N) is (P2) restricted to mappings π preserving N . We have the

following result.

Theorem 14 (Dubey et al., 1981) Let N ⊂ U be a finite coalition and n =

|N |. For each vector pn satisfying (3) and (4), the mapping ψp
n

: GN → AGN

defined by (
ψp

n
)
i
(v) =

∑
S⊆N\{i}

pns ·
[
v
(
S ∪ {i}

)
− v (S)

]
,

is a semivalue on GN . Moreover, every semivalue on GN is of this form, and

the mapping pn → ψp
n

is one-to-one.

By examining the proof of Theorem 14 above one can realize that it is not

necessary to consider that N is included in the infinite set U .

For coalitional semivalues we have a similar result.

Let M be a finite coalition with |M | = m. A mapping ψ : XM → AGM

is said to be a coalitional semivalue on M if it satisfies Carrier (ii), Linear-

ity, RearrangementM , Monotonicity, Projection, and Coalitional PartnershipM

(where the RearrangementM and Coalitional PartnershipM axioms stand re-

spectively for Rearrangement and Coalitional Partnership when the games are
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in GM ; the coalitional structures are partitions of M ; the mappings π going

from M into itself; and Bπ are defined accordingly).

Let a = (an)mn=1 and b = (bn)mn=1 be two collections of vectors, with an, bn ∈ Rn,

satisfying (3), (4) for every n = 1, . . . ,m, and (5) for every n = 1, . . . ,m− 1

(Notice that by (5) we only need to specify am and bm to completely determine

a and b.) Define the mapping ψa,b : XM → AGM for every (v,B) ∈ XM and

every i ∈ Bp by

(
ψa,b

)
i
(v,B) =

∑
T⊆B\{Bp}
S⊆Bp\{i}

a
|B|
t · b|Bp|

s ·
[
v
(
AT ∪ S ∪ {i}

)
− v (AT ∪ S)

]
,

where AT =
⋃
Bq∈T Bq, and t = |T | and s = |S|.

The proof of the following theorem is very similar to that of Theorem 7.

Theorem 15 For each pair of collections of vectors a and b as before, map-

ping ψa,b : XM → AGM is a coalitional semivalue on M . Moreover, every

coalitional semivalue on M has this form.

5 Coalitional semivalues as “compositions” of semivalues

As mentioned in Preliminaries, the coalitional value of a game is obtained by

applying the Shapley value twice as follows. First we define a new game by

means of the Shapley value, and later we apply the Shapley value to the new

game. In this sense we say that the coalitional value is a “composition” of

the Shapley value with itself. This section is devoted to proving that coali-

tional semivalues can be obtained in a similar way. That is, every coalitional

semivalue is the “composition” of two semivalues. And on the other hand, the
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“composition” of two semivalues will yield a coalitional semivalue.

Let ψ : G → AG be a semivalue, N a finite coalition and v ∈ GN . Let B be

a coalitional structure and let us fix Bp ∩N ∈ BN . Denote by vψ,Bp the game

in GBp∩N defined for each S ⊆ Bp ∩N by

vψ,Bp (S) = ψS
(
vB(S)

)
,

where B (S) and vB(S) are defined in (1) and (2) respectively. That is, vψ,Bp (S)

is the semivalue of “player” S in game vB(S).

Proposition 16 Let (an) and (bn) be two families of vectors satisfying (3), (4)

and (5) for every n ∈ N. Let ψ1 and ψ2 be respectively the semivalues defined

by these collections according to Theorem 4. Then for every (v,B) ∈ XN and

every i ∈ Bp ∩N it holds that

(φa,b)i (v,B) = ψ2
i

(
vψ

1,B
p

)
.

PROOF. Applying (6) twice we obtain

ψ2
i

(
vψ

1,B
p

)
=

∑
S⊆Bp∩N\{i}

b|Bp∩N |
s

[(
vψ

1,B
p

)(
S ∪ {i}

)
−
(
vψ

1,B
p

)
(S)

]
=

∑
S⊆Bp∩N\{i}

b|Bp∩N |
s

 ∑
T⊆BN\{Bp∩N}

a
|BN |
t

[
v
(
AT ∪ S ∪ {i}

)
− v(AT )

]
−

∑
T⊆BN\{Bp∩N}

a
|BN |
t

[
v(AT ∪ S)− v(AT )

] =

=
∑

T⊆BN\{Bp∩N}
S⊆Bp∩N\{i}

a
|BN |
t b|Bp∩N |

s

[
v
(
AT ∪S ∪{i}

)
− v (AT ∪ S)

]
= (φa,b)i (v,B) ,

where AT =
⋃
Bq∈T (Bq ∩N), t = |T | and s = |S|. 2
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The next Corollary states that a coalitional semivalue is the “composition” of

two semivalues.

Corollary 17 A mapping ψ : X → AG is a coalitional semivalue if and

only if there exist two semivalues ψ1, ψ2 : G → AG such that for every finite

coalition N ,and every (v,B) ∈ XN it holds that

ψi (v,B) = ψ2
i

(
vψ

1,B
p

)
for all i ∈ Bp ∩N.

PROOF. This is a direct consequence of Theorem 7 and Proposition 16. 2

Remark 18 As in Remark 13 this corollary can be adapted easily to the case

in which the carrier is a fixed finite set.

Let M be a finite coalition and m = |M |. First notice that if (v,B) ∈ XM ,

then games vB and vψ
1,B

p have carriers with cardinality lower than |M |. Hence

we can consider both games as included in GM , and this is how the situation

has to be understood in the following theorem, whose proof is omitted.

Theorem 19 A mapping ψ : XM → AGM is a coalitional semivalue on M if

and only if there exist two semivalues on M , ψ1, ψ2 : GM → AGM such that

for every (v,B) ∈ XN it holds that

ψi (v,B) = ψ2
i

(
vψ

1,B
p

)
for all i ∈ Bp.

Now for every finite coalition N = {i1, . . . , in}, denote

BS(N) =
{
{i1} , . . . , {in} , U\N

}
, and BT (N) = {N,U\N} ,

that is, in BS(N) we have partitioned N into singletons, and in BT (N) all

the members in N are “together” in one coalition.
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In the next theorem we identify the semivalues ψ1, ψ2 of Corollary 17.

Theorem 20 If ψ is a coalitional semivalue, then the mappings ψs, ψt : G→

AG defined for every v ∈ GN by

ψs(v) = ψ
(
v,BS(N)

)
and ψt(v) = ψ

(
v,BT (N)

)

are semivalues and for every (v,B) ∈ XN it holds that

ψi (v,B) = ψti
(
vψ

s,B
p

)
for all i ∈ Bp ∩N.

PROOF. Let ψ be a coalitional semivalue and (an) and (bn) be the two fami-

lies of vectors associated with ψ according to Theorem 7. From Proposition 16

it suffices to show that ψs and ψt are the semivalues associated respectively

with (an) and (bn). Indeed if v ∈ GN and i ∈ N

(ψs)Ni (v) = ψNi
(
v,BS(N)

)
=∑

T⊆BS
N\{{i}∩N}
S=∅

a
|BN |
t · b10 ·

[
v
(
AT ∪ S ∪ {i}

)
− v (AT ∪ S)

]

=
∑

T⊆BS
N\{i}

ant · v
(
AT ∪ {i} − v (AT )

)
.

So ψs is the semivalue associated with (an). And similarly for ψt and (bn). 2

Remark 21 In the theorem above we have seen that the mapping ψs (respec-

tively ψt) that assigns its coalitional semivalue to every game v ∈ G when

all the players in the carrier of v are separated (respectively together), is a

semivalue; it is in this sense that coalitional semivalues can be considered as

generalizations of semivalues.

According to Corollary 17 coalitional semivalues are “compositions” of two

semivalues, but these two semivalues do not necessarily coincide. Next we
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characterize the subfamily of coalitional semivalues that are the “composition”

of a semivalue with itself. We need the following axiom, where ψ : X → AG.

Coalitional Structure Equivalence: ψi
(
v,BS

)
= ψi

(
v,BT

)
.

This axiom requires ψ to yield the same results when all the players in the

carrier of v act together as when each of them acts on his own.

Theorem 22 A mapping ψ : X → AG satisfies Carrier (ii), Linearity, Rear-

rangement, Monotonicity, Projection, Coalitional Partnership, and Coalitional

Structure Equivalence if and only if there exists a semivalue ξ on G such that

for every (v,B) ∈ XN , if i ∈ Bp ∩N it holds that

ψi (v,B) = ξi
(
vξ,Bp

)
.

PROOF. This is an immediate consequence of Theorem 7 and Theorem 20. 2

Remark 23 Notice that the mapping defined in Example 12 satisfies Coali-

tional Structure Equivalence. Therefore, Coalitional Partnership is indepen-

dent from the other axioms in the previous theorem.

To finish this section we will consider the characterization of Hart and Kurz

(1983) given in Theorem 3. It turns out that if we remove Efficiency from the

system proposed by these authors, we do not obtain all the “compositions”

of semivalues, but only those in which a semivalue is “composed” with the

Shapley value.

Theorem 24 A mapping ψ : X → AG satisfies the Carrier (ii), Linearity,

Anonymity, Inessential Game, Monotonicity, and Projection axioms if and
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only if there exists a semivalue ξ on G such that for every (v,B) ∈ XN ,

ψi (v,B) = Shi
(
vξ,Bp

)
for all i ∈ Bp ∩N. (25)

PROOF. First of all it is clear that if ξ is a semivalue, the mapping defined

by (25) satisfies these axioms.

To prove the converse consider a mapping ψ : X → AG, that satisfies these

axioms. Let ψs : G→ AG be the mapping defined by

ψs(v) = ψ
(
v,BS(N)

)
, for every v ∈ GN .

Clearly, by Carrier (ii) and (27) the mapping ψs is well defined. And since

ψ satisfies the Linearity, Anonymity, Monotonicity and Projection axioms, it

immediately follows that ψs satisfies (P1), (P2), (P3) and (P4). By Theorem 4

the mapping ψs is a semivalue on G.

Now let B = {B1, . . . , Bh} be an arbitrary coalitional structure and consider

the set H = {i1, . . . , ih}, where ip ∈ Bp for each p = 1, . . . , h. Consider also

the family of games
{
vB : v ∈ G

}
, where vB is the game v restricted to the

field generated by B (i.e., considering B as set of players). Obviously we can

identify set
{
vB : v ∈ G

}
with GH . So ψ induces a mapping ψB : GH → AGH

defined for each vB ∈ GH and each ip ∈ H by

ψB
ip

(
vB
)

= ψ (v,B) (Bp) ,

where ψ (v,B) (Bp) =
∑
i∈Bp

ψi (v,B).

Mapping ψB is well defined, since vB = wB implies (v − w)B = 0 and, apply-

ing Linearity and Inessential Game, for every Bp ∈ B it holds that

ψ (v,B) (Bp) = ψ (w,B) (Bp) .
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On the other hand notice that for every vB ∈ GH it holds
(
vB
)B

= vB. Hence,

by Carrier (ii) for every vB ∈ GH it holds that

ψB
ip

(
vB
)

= ψB
ip

((
vB
)B
)

= ψ
(
vB,B

)
(Bp) =

ψ
(
vB,BS(H)

)
(Bp) = ψip

(
vB,BS(H)

)
= ψsip

(
vB
)
. (26)

Hence ψB = ψs on GH .

Now let us show equality (25) for ξ = ψs, and the proof will be completed.

Taking into account that for every v, w ∈ G it holds that vψ
s,B

p + wψ
s,B

p =

(v + w)ψ
s,B

p , and from Linearity, we only need to consider unanimity games.

So let uR be a unanimity game, with R ⊂ U finite. First we show that

ψNi (uR,B) = 0 for all i /∈ N. (27)

So let i /∈ N . By Monotonicity ψi (uR,B) ≥ 0. Now consider the game

w = −uR +
∑
j∈R u{j}. Since w is monotonic it follows that ψi (w,B) ≥ 0.

By the Projection and Linearity axioms ψi(w,B) = ψi
(
−uR+

∑
j∈R u{j},B

)
=

−ψi (uR,B), and therefore, ψi (w,B) ≤ 0. Consequently it holds that ψi (w,B) =

−ψi (uR,B) = 0.

Then we have

∑
i∈Bp∩R

ψi (uR,B) =
∑
i∈Bp

ψi (uR,B) = ψB
ip

(
uB
R

)
= ψsip

(
uB
R

)
=

ψsBp

(
u

B(Bp)
R

)
= (uR)ψ

s,B
p (Bp) =

∑
i∈Bp∩R

Shi

 (uR)ψ
s,B

p (Bp)

,
where the first equality follows from (27) and since uR ∈ GR; the second by

definition of ψB
ip ; the third by (26); the fourth equality by the definition of

u
B(Bp)
R ; the fifth equality by the definition of (uR)ψ,Bp ; and the last one from

the fact that the Shapley value is efficient.
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Since the Shapley value is symmetric and ψ satisfies Anonymity we obtain the

desired result.

6 Appendix

Proof of Lemma 9:

PROOF. Let B be a coalitional structure. First notice that if ψ satisfies

the Linearity, Monotonicity and Projection axioms, then for every unanimity

game uR, where R ⊆ N , it holds that

ψNi (uR,B) = 0 for all i /∈ R. (28)

The proof of this statement is identical to the proof of (27), so we omit it.

Now let Bp ∈ B such that Bp∩N 6= ∅. Consider the vector space formed by the

linear mappings from GN into AGBp∩N . Notice that for every mapping ψ on X

that satisfies Linearity, the composition of the mapping ψN (·,B) and the pro-

jection Pr : AGN → AGBp∩N defined by Pr(w) = w|Bp∩N , belongs to the lat-

ter vector space. This composition will be denoted by ψN (·,B)|Bp∩N . Further-

more, the mappings ψN (·,B)|Bp∩N , where ψ satisfies the Carrier (ii), Linear-

ity, Rearrangement, Monotonicity and Projection axioms, generate a subspace,

which will be denoted by FB
Bp

. Next we prove that dim FB
Bp

= |Bp ∩N | · |BN |.

Since unanimity games {uR : R ⊆ N} form a basis of GN , every element

f ∈ FB
Bp

is fully determined by its values on these games. In fact, due to (28)

and by Anonymity (Rearrangement actually) it is enough to specify fi (uR)

for a single player i ∈ Bp ∩R and for every unanimity game uR, with R ⊆ N .

31



Let us see now that if uR1 , uR2 are two unanimity games with R1, R2 ⊆ N

such that |Bp ∩R1| = |Bp ∩R2| and |BR1 | = |BR2|, then

fi (uR1) = fj (uR2) , for all i ∈ Bp ∩R1, and all j ∈ Bp ∩R2. (29)

Assume that f =
∑m
k=1 λk ·

(
ψk
)N
|Bp∩N

, where ψk satisfies the Carrier (ii),

Linearity, Rearrangement, Monotonicity and Projection axioms. Let H =

{iq : Bq ∩R1 6= ∅, q 6= p}, where iq ∈ Bq ∩ R1 for each q 6= p, and consider

the following coalitional structures:

B` = BR`
∪ {U\R`} , ` = 1, 2, and

B′ = {Bp ∩R1} ∪
{
{iq} : iq ∈ H

}
∪
{
U\ (Bp ∩R1) \H

}
.

And for each `i = 1, 2 let π` : U → U such that π`Bq ∩ π`Br = ∅ if q 6= r, and

(1) π` (Bp ∩R`) = Bp ∩R1, and

(2) π` (Bq ∩R`) = {iq} if q 6= p.

Then we have for every i ∈ Bp ∩R1 and every j ∈ Bp ∩R2

fi (uR1) =
m∑
k=1

λk
(
ψk
)N
i

(uR1 ,B) =
m∑
k=1

λk
(
ψk
)N
i

(
uR1 ,B

1
)

=

m∑
k=1

λk
(
ψk
)N
i

(π1uR1 ,B
′) =

m∑
k=1

λk
(
ψk
)N
j

(π2uR2 ,B
′) =

m∑
k=1

λk
(
ψk
)N
j

(
π2uR2 ,B

2
)

=
m∑
k=1

λk
(
ψk
)N
j

(uR2 ,B) = fj (uR2) ,

where the 2nd and 6th equalities follow from Carrier (ii); the 3rd and 5th from

Rearrangement and the 4th from the fact that π1uR1 = π2uR2 . Consequently

we have proved (29).

So to specify fi (uR) for a player i ∈ Bp ∩ R, it is enough to know how many

players are there in Bp∩R and how many coalitions in B intersect coalition R.
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That is, fi(uR) only depends on two numbers: |Bp ∩R| and |BR|. Since R can

be any nonempty coalition in N intersecting Bp, the number |Bp ∩R| ranges

from 1 to |Bp ∩N |, and the number |BR| ranges from 1 to |BN |. Consequently

the dimension of FB
Bp

is at most |Bp ∩N | · |BN |.

Now for each α ∈ {0, . . . , |BN | − 1} and β ∈ {0, . . . , |Bp ∩N | − 1}, consider

the family of matrices ρN (B, p, α, β) =
{
ρN,̂t,ŝ (B, p, α, β) : t̂+ ŝ ≤ |N |+ 1

}
,

where ρN,̂t,ŝ (B, p, α, β) = 0 if t̂ 6= |BN | or ŝ 6= |Bp ∩N |, and

ρ
N,|BN |,|Bp∩N |
t,s (B, p, α, β) =


(
|BN |−1

t

)−1
·
(
|Bp∩N |−1

s

)−1
if (t, s) = (α, β)

0 otherwise.

Let φρ
N (B,p,α,β) be the associated mapping defined by (19). For the sake of

simplicity denote this mapping by φB,p
α,β . Clearly the family

{
φB,p
α,β

}
α,β

is linearly

independent in FB
Bp

. So dim FB
Bp

= |BN | · |Bp ∩N | and this family is a basis

for this subspace.

Let us consider now any mapping ψ that satisfies the Carrier (ii), Linearity,

Rearrangement, Monotonicity and Projection axioms. Then there exist real

numbers cB,pα,β such that for every v ∈ GN

ψN (v,B)|Bp∩N =
|BN |−1∑
α=0

|Bp∩N |−1∑
β=0

cB,pα,β · φ
B,p
α,β (v,B)|Bp∩N . (30)

If i ∈ Bp\N , then i /∈ R for all uR such that R ⊆ N , and therefore (28) implies

that ψi (v,B) = 0 for every v ∈ GN . As
(
φB,p
α,β

)
i
(v,B) = 0, and taking into

account (30), for all v ∈ GN and all i ∈ Bp it holds that

ψNi (v,B) =
|BN |−1∑
α=0

|Bp∩N |−1∑
β=0

cB,pα,β ·
(
φB,p
α,β

)
i
(v,B) .

Now let us show that if C is a coalitional structure such that |CN | = |BN | and
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|Cq ∩N | = |Bp ∩N |, then cC,qα,β = cB,pα,β .

Indeed, w. l. o. g. we can assume that CN = {C1 ∩N, . . . , C` ∩N}, and BN =

{B1 ∩N, . . . , B` ∩N}. Denote C′ = CN ∪ {U\N}, and B′ = BN ∪ {U\N}.

Assume that min
{
|Cr ∩N | : r 6= q

}
≥ min

{
|Br ∩N :| r 6= p

}
= K, and

consider a mapping θ1 : U → U such that θ1 (Cr ∩N) ∩ θ1 (Cr′ ∩N) = ∅,

whenever r 6= r′, and

(1) θ1N ⊆ N ,

(2) θ1h = h, for all h ∈ Cq ∩N ,

(3)
∣∣∣θ1 (Cr ∩N)

∣∣∣ = K, for all r ∈ {1, . . . , `} \{q}.

Consider also the game vC,q
α,β ∈ GN defined by

vC,q
α,β (R) =



1 if |{Cr ∈ C : r 6= q, ∅ 6= Cr ∩N ⊆ R}| > α

1 if |{Cr ∈ C : r 6= q, ∅ 6= Cr ∩N ⊆ R}| = α

and |R ∩ Cq ∩N | > β

0 otherwise.

(31)

If j ∈ Cq ∩N it holds that

cC,qα,β = ψNj
(
vC,q
α,β,C

)
= ψNj

(
vC,q
α,β,C

′
)

=

ψNj
(
θ1v

C,q
α,β,C

′θ1
)

= ψNj

(
vC′θ1 ,q
α,β ,C′θ1

)
, (32)

where the second equality follows from Carrier (ii), the third from Rearrange-

ment and the last from the fact that θ1v
C,q
α,β = vC′θ1 ,q

α,β .

Now let i ∈ Bp ∩N and let us consider a mapping θ2 : U → U such that
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(1) θ2 (Br ∩N) = θ1 (Cr ∩N), 1 ≤ r ≤ `, r 6= p,

(2) θ2 is one-to-one from Bp ∩N to Cq ∩N , and

(3) θ2 (U\N) = U\⋃`r=1 θ2 (Br ∩N).

Note that θ2v
B,p
α,β = θ1v

C,q
α,β and C′θ2 = C′θ1 . Therefore, Carrier (ii) and Rear-

rangement imply

cB,pα,β = ψNi
(
vB,p
α,β ,B

)
= ψNi

(
vB,p
α,β ,B

′
)

= ψNθ2i
(
θ2v

B,p
α,β ,C

′θ2
)

=

ψNθ2i
(
θ1v

C,q
α,β,C

′θ1
)

= ψNθ2i

(
vC′θ1 ,q
α,β ,C′θ1

)
= cC,qα,β,

where the last equality follows from (32).

If we show that cB,pα,β ≥ 0 for all α, β, and
∑|BN |−1
α=0

∑|Bp∩N |−1
β=0 cB,pα,β = 1, the proof

will be completed just by taking

ρN,̂t,ŝt,s =
cB,pt,s(

|BN |−1
t

)
·
(
|Bp∩N |−1

s

) ,
for a coalitional structure B such that t̂ = |BN |, and ŝ = |Bp ∩N |.

Since vB,p
α,β ∈ GN is monotonic, it follows that 0 ≤ ψNi

(
vB,p
α,β ,B

)
= cB,pα,β .

Now let us fix some i ∈ Bp ∩ N . On one hand, by the Projection axiom,

ψNi
(
u{i},B

)
= 1. On the other hand, ψNi

(
u{i},B

)
=
∑|BN |−1
t=0

∑|Bp∩N |−1
s=0 cB,pt,s .

Consequently
∑|BN |−1
t=0

∑|Bp∩N |−1
s=0 cB,pt,s = 1. 2

Proof of Lemma 10:

PROOF. Clearly, it suffices to prove that if k ∈ U\N , then ρN,̂t,ŝ = ρN∪{k},̂t,ŝ,

for t̂, ŝ such that t̂+ ŝ ≤ |N |+ 1.
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First notice that from condition (17), it follows that ρN,1,10,0 =1 for every finite

coalition N ⊂ U . So we can assume |N | ≥ 2.

Consider a coalitional structure B such that |BN | = t̂, and |Bp ∩N | = ŝ, and

k ∈ Br for some r 6= p such that Br ∩N 6= ∅. By Lemma 9, applying (19), if

v ∈ GN and i ∈ Bp it holds that

ψNi (v,B) =
∑

T⊆BN\{Bp∩N}
S⊆Bp∩N\{i}

ρN,̂t,ŝt,s

[
v
(
AT ∪ S ∪ {i}

)
− v (AT ∪ S)

]
, (33)

where AT =
⋃
Bq∈T Bq ∩N , and t = |T |, and s = |S|.

On the other hand, since k is a null player in v it holds that

ψ
N∪{k}
i (v,B) =

∑
T⊆BN\{Bp∩N}
S⊆Bp∩N\{i}

ρ
N∪{k},̂t,ŝ
t,s ·

[
v
(
AT ∪ S ∪ {i}

)
− v (AT ∪ S)

]
,

(34)

where AT =
⋃
Bq∈T Bq ∩N .

Since ψNi (v,B) = ψ
N∪{k}
i (v,B) for every v ∈ GN , from equalities (33) and

(34), it follows that ρN,̂t,ŝt,s = ρ
N∪{k},̂t,ŝ
t,s , and the proof is complete. 2
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