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Abstract

This paper introduces a dynamic Bayesian game with an unknown popu-

lation distribution. Players do not know the true population distribution and

assess it based on their private observations using Bayes�rule. First, we show

the existence and characterization of an equilibrium in which each player�s strat-

egy is a function not only of the player�s type but also of experience. Second,

we show that each player�s initial belief about the population distribution con-

verges almost surely to a �correct�belief.
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1 Introduction

When a (true) population distribution is not known, as opposed to the Bayesian

game by Harsanyi (1967), players who are repeatedly matched have incentives to

learn from others�actions about the population distribution. For example, in reality,

before people decide to take a particular action and anticipate others�strategies, they

try to �gure out what the relevant population distributions look like. In this paper,

we are interested in those game-theoretic situations and their consequences.

We assume that there is a large population, and that players from the population

are distributed according to a probability distribution. It is common knowledge that

there is a true population distribution among two distributions in which one �locally�

�rst-order stochastic dominates the other,1 but players do not know which one is the

true population distribution. In each period t 2 N, every two players are randomly

paired to play a 2 � 2 game, and after the game, each player�s belief about the

population distribution is updated by Bayes�rule after observing the other�s action.

They are paired for just one period, and rematched again after each period. The

types of each player are relevant for the player�s own payo¤, and observations in

each match are private. Hence, the matching mechanism of the game is �public,�

but the information �ow of the game is �private.�2

Since each player�s monitoring is private, each player�s estimate about the popu-

lation distribution is also private. Hence, each player�s strategy is a function of both

the player�s type and observations. We call player i�s history of observations up to

t� 1 player i�s experience at t, and a vector of player i�s type and experience player

i�s characteristic, since a type (resp. an experience) of player i can be de�ned as his

or her innate (resp. acquired) characteristic. Given this private type and estimate,

1For a formal de�nition, see (A5) in section 3.

2As observed by Fudenberg and Levine (1998), this environment is most frequently used in

experiments for game theory: �Random-matching model Each period all players are randomly

matched. At the end of each round, each player observes only the play in his own match...... This

is the treatment most frequently used in game theory experiments�(p. 6).
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each player anticipates what samples and data the opponent has observed in the

past as well as the opponent�s type.

This paper provides three main results: existence, monotonicity and conver-

gence. For each period, every two-paired players play a Bayesian game with their

characteristics. Since a Bayesian game even with a one-dimensional type space may

not have an equilibrium,3 we adopt a simple model in which a Bayesian equilibrium

strategy is parameterized by a threshold type. In addition, by assuming players have

the same initial beliefs, we enable them to construct expectations without invoking

the hierarchy of beliefs problem, which extends Harsanyi�s ingenious idea (Theorem

1).

Second, the monotonicity result establishes that if given each period, a player

believes that a stochastic dominant distribution is more likely, then the player�s

equilibrium strategy shows a certain monotonic pattern (Theorem 2).4 In particular,

if a player has an experience that generates beliefs such that a stochastic dominant

distribution is more likely, then his or her optimal strategy is to make more types

take an action that were chosen under the stochastic dominant one. Hence, given

each period, the same type, which is determined in the beginning of a game, can

make di¤erent decisions depending on di¤erent experiences, or sample paths. For

example, if a person takes a �bad�action, it may be because the person is bad by

nature or because the person has observed many bad actions on the part of others

in the past.5

This also allows us new interpretations about experimental results, which often

do not support theoretical predictions, especially, in two di¤erent ways: before an

3There are two main approaches to tackling the existence of a Bayesian game with general

action and multidimensional type spaces. One is by McAdams (2003), extending Athey (2001),

who suggests the single crossing condition (p. 866) for a one-dimensional type space, and the other

is by Vives (1990) and Van Zandt and Vives (2007), who utilize supermodular payo¤s.

4See Marimon (1997) for arguments that convergence alone is not su¢ cient to make learning

theory interesting.

5Hence, the world one believes one knows can be just the re�ection of what one perceives.
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experiment, di¤erent �subjects�may have di¤erent preconceptions, given their past

private experiences, about �objects�of the experiment, and during an experiment,

subjects can learn even with a random matching; for example, van Huyck, Battalio

and Beil (1990) �nd, using minimum e¤ort games, that in random-pair experiments,

the subjects�dynamic behavior shows learning features similar to those in �xed -pair

experiments.6

Third, we show that each player�s initial belief about the true distribution con-

verges almost surely to a correct belief (Theorem 3). This also implies that the limit

of equilibrium strategies from a sequence of observations is equal to the equilibrium

strategy with common knowledge. In other words, Harsanyi�s common distribution

assumption is justi�able in the long run.7 On the other hand, in the real world,

people can observe a large but only �nite number of samples, so their experiences

will in�uence their beliefs about population distributions, such as the above sec-

ond result, which provides a di¤erent perspective on �almost common knowledge�

situation studied by Rubinstein (1989).

To the author�s knowledge, this is the �rst paper to attempt to study Bayesian

learning of an unknown type distribution through players�interactions. This paper

also departs from papers in learning in games (for surveys, see Marimon (1997),

Fudenberg and Levine (1998), Vega-Redondo (2003) and Nachbar (2004)) in two

major ways; a signaling process is endogenously generated from players� actions,

and each player receives private signals. Hence, monitoring is private in this paper,

6van Huyck, Battalio and Beil (1990) write that �Experiments six and seven randomly paired

subjects with an unknown partner. Hence, experiments six and seven test whether the results

obtained in experiments four and �ve were due to subjects repeating the period with the same

opponent.... Moreover, the subjects�dynamic behavior was similar to that found in the �xed pair

C treatment�(p. 244). However, they do not provide an explanation for how this occurs.

7This reports an optimistic prediction; if people can be matched in�nitely often in a random

manner, the negative biases or stereotypes they hold about others will disappear. For instance, if

there are two groups (BlacknWhite, etc), and members of each group can have certain beliefs about

the other�s distribution on characteristics, then the in�nite random matching between them yields

the convergence to a correct belief.
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whereas public monitoring is allowed in papers on learning with repeated games

(Jordan (1991, 1995), Kalai and Lehrer (1993a), and Nyarko (1994, 1998)). In addi-

tion, we focus on an equilibrium process like Jordan (1991, 1995) and Jackson and

Kalai (1997), which is di¤erent from the literature on learning with �non-equilibrium

processes�(Fudenberg and Levine (1993a, b), Kalai and Lehrer (1993b), Fudenberg

and Kreps (1994), Nachbar (1997) and Dekel, Fudenberg and Levine (2004)) that

dispense with the rational expectations about the other players�strategies and in-

stead introduce other regularity conditions.8

We start by introducing an illustrative example with two periods in section

2. Section 3 provides a formal model, and section 4 presents the main results.

Concluding remarks are in section 5, and all the proofs are collected in an appendix.

2 An illustrative example

Consider as an example a symmetric coordination game with two players and two

actions.9

I (invest) N (not invest)

I (invest) �; � � � 1; 0

N (not invest) 0; � � 1 0; 0

(1)

If players have complete information about �, I (resp. N) is a dominant strategy if

� > 1 (resp. if � < 0), and (I; I) and (N;N) are two pure-strategy Nash equilibria if

� 2 [0; 1]. Following Harsanyi (1967), the game can be formulated with incomplete

8Regarding the literature on games with incomplete information, in which the common prior

assumption is relaxed, following the seminal works by Schmeidler (1989) and Gilboa and Schmeidler

(1989), papers study ambiguity aversion for games with incomplete information using either a

maxmin expected utility or a Choquet expected utility with multiple priors (see Salo and Weber

(1995), Lo (1998) and Chen, Katuscak and Ozdenoren (2007)), but this paper�s focus is more on

learning than on ambiguity aversion. See also Mertens and Zamir (1985) and Epstein and Wang

(1996) for general conditions under which a state of types can be constructed.

9This static game is from Morris and Shin (2003). In nature, however, this model is related

neither to games with complementarities nor to global games.
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information about � such that each player�s type �i is independently and identically

drawn (i. i. d.) from a di¤erentiable population distribution F where F is common

knowledge.10 A (pure) strategy si of each player i of this incomplete-information

game is a mapping from
�
�; �
�
to fI;Ng, and its equilibrium strategy is always

parameterized with a threshold type ki such that

si (�i) =

8<: I if �i > ki,

N if �i < ki.

The existence of a symmetric equilibrium s� with a threshold k� 2
�
�; �
�
follows

from the condition k� � F (k�) = 0.

Now, we present a two-period game that is based on a model in the next section.

The (true) population distribution F is no longer common knowledge; F can be

either Fa or Fb. For this example, we make the following simplifying assumptions:

(i) Fa strongly �rst-order stochastic dominates Fb; that is,

Fa (�) < Fb (�) for all � 2
�
�; ��
�
.

(ii) The support
�
�; �
�
has values � < 0 and 1 < �.

(iii) Either Fa or Fb is uniform.

We would like to emphasize that in the next model section, apart from a common

2 � 2 game, each above assumption is substantially generalized. In particular, (i)

is replaced with a weaker condition, a local stochastic dominance (A5), (ii) is a

general support (A6), and (iii) is a non-uniform assumption (A7). In addition, a

di¤erentiable distribution is generalized to a continuous distribution (A4).

There are two periods: period 1 and period 2. In each period, every two players

are randomly paired, and they play the game (1). Denote by �i1 player i�s subjective

probability in period 1 that the population distribution is Fa, and by k1 the threshold

in period 1. We let all the players have the same initial belief �1 = �i1 = �j1 2 (0; 1)

for i 6= j. A strategy si1 of each player i in period 1 of this unknown population

10 If the low (column) player is player i (j), then � in the �rst (second) entry changes to �i (�j)

with the incomplete information.
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game is a mapping from
�
�; �
�
to fI;Ng, and its symmetric equilibrium s�1 is derived

with a threshold k�1 2
�
�; �
�
such that

k�1 � [�1Fa (k�1) + (1� �1)Fb (k�1)] = 0. (2)

After they play the game, each player observes I or N from his or her opponent in

the end of period 1. Their beliefs about Fa are updated using Bayes�rule. Denote by

�2 (!i) player i�s posterior probability in period 2 that the population distribution

is Fa if player i has observed !i 2 fI;Ng in period 1. Since there may be multiple

equilibria in the previous period, we assume that in the beginning of period 2, all

players correctly expect an equilibrium threshold in period 1, k�1. Then, �2 (!i) can

be derived as

�2 (I) =
(1� Fa (k�1))�1

(1� Fa (k�1))�1 + (1� Fb (k�1)) (1� �1)
, (3)

�2 (N) =
Fa (k

�
1)�1

Fa (k�1)�1 + Fb (k
�
1) (1� �1)

.

A strategy si2 of each player i in period 2 may depend not only on the player�s

type �i but also on experience !i from the previous period, so si2 is a mapping from�
�; �
�
� fI;Ng to fI;Ng, given by

si2 (�i; !i) =

8<: I if �i > ki2 (!i) ,

N if �i < ki2 (!i) .

Denote by G the probability that player j plays N in period 2.

G(!i; k
�
1; kj2 (I) ; kj2 (N)) (4)

� �2 (!i)A(k�1; kj2 (I) ; kj2 (N)) + (1� �2 (!i))B(k�1; kj2 (I) ; kj2 (N)),

where

A(k�1; kj2 (I) ; kj2 (N)) � (1� Fa (k�1))Fa(kj2 (I)) + Fa (k�1)Fa(kj2 (N)),

B(k�1; kj2 (I) ; kj2 (N)) � (1� Fb (k�1))Fb(kj2 (I)) + Fb (k�1)Fb(kj2 (N)).

A(k�1; kj2 (I) ; kj2 (N)) is the probability that player j chooses N if the population

distribution is Fa, and B(k�1; kj2 (I) ; kj2 (N)) is the probability if the population
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distribution is Fb. The probability that player j has observed I (resp. N) in period

1 is (1� Fa (k�1)) (resp. Fa (k�1)) if the population distribution is Fa, which event can

be realized with a probability �2 (!i) from player i�s perspective in period 2. The

same argument applies for the event that the population distribution is Fb, which

can be realized with a probability 1� �2 (!i).

Player i�s payo¤ with a characteristic (�i; !i) from choosing I given player j�s

strategy with (kj2 (I) ; kj2 (N)) is �i�G(!i; k�1; kj2 (I) ; kj2 (N)), and player i�s payo¤

from choosing N is always zero. The following proposition shows the existence of a

symmetric equilibrium with a pair (k�2 (I) ; k
�
2 (N)) 2

�
�; �
�2
, satisfying

k�2 (!) = G (!; k
�
1; k

�
2 (I) ; k

�
2 (N)) for each ! 2 fI;Ng , (5)

and k�2 (I) < k
�
2 (N), which con�rms our intuition. If player i has observed I before,

then the player has a posterior probability �2 (I) > �2 (N), which in turn implies

that a stochastic dominant distribution Fa is more likely than Fb. Hence, he or she

anticipates more high types in the population, which results in a lower threshold

k�2 (I) < k
�
2 (N), meaning that more types of player i choose to invest.

Proposition 1 A symmetric equilibrium in period 2 exists, and it satis�es k�2 (I) <

k�2 (N).

This allows us new interpretations about outcomes of games with incomplete

information, which was not previously possible in Harsanyi�s model with a common

population distribution. Let player i�s type �i be between k�2 (I) and k
�
2 (N). Then

the player chooses to invest given a positive outcome I in the past and to not invest

given a negative outcome N in the past. Hence, the same type, which is determined

in the beginning of a game, can make di¤erent decisions depending on his or her

past experience. We introduce a formal model in the next section.

3 Model

Let time be discrete and in�nite, indexed by t 2 N. In each period t, every two

players in a large population are randomly matched, and play a symmetric normal
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form game11 with two actions f�; �g. Each player�s payo¤ is u : f�; �g2 ! R and,

as in Carlsson and van Damme (1993), a 2� 2 game is parameterized with the pair

(d�; d�):

d� � u (�; �)� u (�; �) ,

d� � u (�; �)� u (�; �) ,

where d� (resp. d�) denotes the loss that player i incurs when player i unilaterally

deviates from the action pro�le (�; �) (resp. (�; �)).

A 2� 2 game can be formulated with incomplete information such that the pair

(d� (�i) ; d� (�i)) depends on the realization of �i. Players know that the type �i of

each player i is i. i. d from a (true) population distribution, and it is either a CDF

Fa : � ! [0; 1] or a CDF Fb : � ! [0; 1], where its support � is an interval in

R, including a unbounded one, but they do not know which one is the population

distribution.

For the class of functions (d�; d�), we assume that

(A1) For each  = �; �, d is continuous.

(A2) For all �i 2 �, d�(�i) + d�(�i) > 0.12

De�ne D : �! R as

D (�i) =
d� (�i)

d� (�i) + d� (�i)
.

By (A1)-(A2), the function D is well de�ned, and continuous.

(A3) D is a strictly increasing function.13

11The framework of this paper is non-cooperative. If it is cooperative so that players share

their information about their types, then there is no incentive for them to estimate a population

distribution.

12 If d�(�i) + d�(�i) = 0, player i�s payo¤ does not depend on his opponent�s strategies given �j

and !j . See (6) below.

13 Note that although (A3) can be replaced by a weaker assumption, �D is a strictly monotonic

function,� we keep this, since it will only reverse the inequality sign of the equilibrium strategy

below. The complete proof for the case with �D is a strictly decreasing function� is available from

the author upon request.
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In each period t, after a 2 � 2 game is played, each player�s belief about the

population distribution is updated by Bayes�rule using his or her opponent�s action.

Denote by 
t the set of histories up to period t�1 and !t an element of the set 
t. In

particular, 
1 = ?, and 
t = f!1t ; !2t ; :::; !2
t�1
t g has 2t�1 elements for t = 2; 3; 4:::.14

We assume that for any two players i 6= j, they have the same initial belief, �1 2 (0; 1)

to focus on a symmetric equilibrium in this paper.15 Let �t(!it) denote player i�s

posterior probability that the population distribution is Fa, where the experience

!it is player i�s history of observations up to period t� 1 for t = 2; 3; 4:::.

We call a vector of player i�s type and experience, (�i; !it), player i�s charac-

teristic. For period t, denote by vt(�i; !it; Ajt; Bjt) the net gain of player i with a

characteristic (�i; !it) from choosing � (rather than �) when player i expects that

player j chooses � with probability Ajt if the population distribution is Fa, and that

player j chooses � with probability Bjt if the population distribution is Fb.16 Then,

vt is given as17

vt(�i; !it; Ajt; Bjt) � (d�(�i) + d�(�i))[D (�i)� (�t(!it)Ajt+ (1� �t(!it))Bjt)]. (6)

If vt(�i; !it; Ajt; Bjt) > 0 (resp. < 0), it is optimal for player i with a characteristic

(�i; !it) to choose � (resp. �). First, we show that player i�s equilibrium strategy is

14For example, 
2 = f�; �g and 
3 = f(�; �); (�; �); (�; �); (�; �)g.
15The game has to start with certain initial subject beliefs of players in the population. Alterna-

tively, we can assume a common distribution of the initial beliefs. However, this will be awkward.

To replace a common distribution of types with a weaker assumption in this paper, we would then

have introduced another common distribution, a distribution of the initial beliefs. We would like

to emphasize here that only in the �rst period do players have this common belief, and that after

the �rst period, they will have di¤erent beliefs depending on their observations.

16Of course, both Ajt and Bjt depend on player j�s strategies, but before we show in Lemma

1 that a cut-o¤ strategy is an equilibrium strategy for the game, we keep those as these �reduced

forms.�Later, Ajt and Bjt will be derived precisely in (9).

17vt is from [1� (�t(!it)Ajt + (1� �t(!it))Bjt)]d�(�i)� (�t(!it)Ajt + (1� �t(!it))Bjt)d�(�i).
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a mapping sit : �� 
t ! f�; �g such that

sit(�i; !it) =

8<: � if �i > kit (!it) ,

� if �i < kit (!it) ,
(7)

where kit (!it) is player i�s threshold type given !it 2 
t, in which �high� types

choose �. It follows from the result that we simply need to examine threshold types

for the search of an equilibrium.

Lemma 1 Under (A1)-(A3), for each i and every !it 2 
t, any equilibrium strategy

sit of player i satis�es (7).

If the probability that player j chooses � strictly increases, player i�s optimal re-

sponse is to increase his or her threshold, which results in more �low�types choosing

�.18

For the class of distribution functions (Fa; Fb), we assume that

(A4) For each n = a; b, Fn is continuous.

(A5) There exists a subinterval � of � such that

� � f� 2 � j Fa (�) < Fb(�)g.

(A5) is a local stochastic dominance relationship between Fa and Fb. If Fn were

known as the population distribution, then given player j�s threshold kjn, the

net gain of player i with a characteristic (�i; !it) from choosing � is (d�(�i) +

d�(�i))[D(�i)�Fn(kjn)], and in Lemma 2, we show that any equilibrium is symmet-

ric.

Lemma 2 Under (A1)-(A5), for each n = a; b, if Fn were known as the population

distribution, then any equilibrium is symmetric, that is, kin = kjn for i 6= j.

18This does not mean that in general, the model is related to strategic complementarities. The

strategic complementarity of payo¤s requires either d� (�) � d�(�) or d� (�) � d�(�) for all �, but

none of them is necessary for the condition that D is strictly monotonic.
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With assumption (A6) followed by Lemma 2, we show in section 4 that each

player�s best response, in terms of the player�s threshold, has a value between ka

and kb, which results in the existence of a pure strategy equilibrium in each period.19

(A6) For each n = a; b, if Fn were known as the population distribution, then

there exists an equilibrium such that each player�s threshold type is an interior point

of �.

Lemma 2 and (A6) entail that for each n = a; b, there exists kn such that

D(kn)� Fn(kn) = 0. (8)

The last assumption (A7) guarantees an intuitively reasonable outcome ka < kb

for ka; kb 2 �. Since D is strictly increasing, it is natural that the stochastic domi-

nant distribution Fa on � has a lower threshold if it were known as the population

distribution, and their thresholds fall in the area where two distributions are dis-

tinct. Figure 1 illustrates that with a strictly increasing D, both ka > kb and ka < kb

are possible.

(A7) There exists at least one n 2 fa; bg such that for any pair �0 > � on �,

D
�
�0
�
�D (�) � Fn

�
�0
�
� Fn (�) .

Lemma 3 Under (A1)-(A7), if ka; kb 2 �, ka < kb.

Let kit = (kit(!t))!t2
t be a collection of player i�s thresholds for each possible

experience !t, and h�t be an equilibrium history up to t � 1. We assume that each

player correctly expects the same h�t since there can multiple equilibria in a period.

Then, the probability that player j chooses � in period t, Gt, is derived as

Gt(!it; h
�
t ;kjt) � �t(!it)At(h�t ;kjt) + (1� �t(!it))Bt(h�t ;kjt),

where

At(h
�
t ;kjt) �

P
!t2
t Pr (!tjF = Fa; h

�
t )Fa(kjt(!t)), (9)

Bt(h
�
t ;kjt) �

P
!t2
t Pr (!tjF = Fb; h

�
t )Fb(kjt(!t)).

19 In the example, a special type of support, a compact interval
�
�; �
�
with � < 0 and 1 < �, works

as a su¢ cient condition to present the existence of a pure strategy equilibrium in the second period.
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Fb

Fa

D

kakb

ÝaÞ

Fb

Fa

D

ka kb

ÝbÞ

Figure 1: (A7) is violated in (a) and satis�ed in (b).

At(h
�
t ;kjt) is the probability that player j chooses � if the population distribution

is Fa, and Bt(h�t ;kjt) is the probability that player j chooses � if the population

distribution is Fb. By (6) and (A2), we de�ne the net gain of player i with a

characteristic (�i; !it) from choosing � as Vt:

Vt(�i; !it; h
�
t ;kjt) � D(�i)�Gt(!it; h�t ;kjt). (10)

Lemma 4 establishes that given each !t 2 
t, there exists player i�s best response

function in terms of a threshold kit(!t) between ka and kb.

Lemma 4 Under (A1)-(A7), given each !t 2 
t and every kjt 2 [ka; kb]2
t�1
, player

i�s best response function exists, which we denote by

kit(!t) = �t(!t;kjt) 2 [ka; kb].

Then, a symmetric equilibrium in period t is k�t = (k�t (!t))!t2
t such that for

each !t 2 
t,

Vt(k
�
t (!t) ; !t; h

�
t ;k

�
t ) = 0.

By constructing the best response in terms of a threshold, we can transpose a �nite

action game to a continuous threshold game, and thus we apply a �xed point theorem

to �nd out a pure strategy equilibrium in the typical way.
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4 The main results

This section provides three main results of the paper.

4.1 Existence

We present the �rst main result, the existence of a symmetric equilibrium, by com-

bining two Lemmas below. Lemma 5�s existence result holds under �t(!t) 2 (0; 1).20

Lemma 5 Under (A1)-(A7), for each period t, if ka; kb 2 � and �t(!t) 2 (0; 1),

then there exists a symmetric equilibrium such that k�t (!t) 2 (ka; kb) for all !t 2 
t.

If At(h�t ;k
�
t )�t + Bt(h

�
t ;k

�
t ) (1� �t) 2 (0; 1), for each !t 2 
t, the posterior

�t+1(!t+1) is derived using Bayes�rule: if � is observed in period t,

�t+1(!t+1) =
(1�At(h�t ;k�t ))�t(!t)

(1�At(h�t ;k�t ))�t(!t) + (1�Bt(h�t ;k�t ))(1� �t(!t))
, (11)

and if � is observed in period t,

�t+1(!t+1) =
At(h

�
t ;k

�
t )�t(!t)

At(h�t ;k
�
t )�t(!t) +Bt(h

�
t ;k

�
t )(1� �t(!t))

. (12)

For the next Lemma, we replace (A4) with (A40) which requires that Fn�s density

function is everywhere positive on �.

(A40) For each n = a; b, Fn is continuous and has its density function fn (�) > 0

for all � on �.

Lemma 6 shows that under k�t (!t) 2 (ka; kb), for each �t(!t) 2 (0; 1) with

!t 2 
t, we have �t+1(!t+1) 2 (0; 1) regardless of whether � is observed or � is

observed in period t.

Lemma 6 Under (A1)-(A3) and (A40)-(A7), if ka; kb 2 � and k�t (!t) 2 (ka; kb),

then for each �t(!t) 2 (0; 1) with !t 2 
t, �t+1(!t+1) 2 (0; 1) for all !t+1 2

f�; �g � f!tg.

20Even without �t(!t) 2 (0; 1), the proof of Lemma 5 establishes the existence of a symmetric

equilibrium k�t (!t) 2 [ka; kb] for all !t 2 
t, that is, k�t (!t) can be ka or kb.

13



Since �1 2 (0; 1) in the �rst period, using a recursive method, it is immediate

from Lemmas 5 and 6 that for each t and every !t 2 
t, the equilibrium threshold

k�t (!t) falls within (ka; kb) and �t(!t) 2 (0; 1), which is summarized in the following

Theorem.

Theorem 1 Under (A1)-(A3) and (A40)-(A7), if ka; kb 2 �, then for each t and

every !t 2 
t, there exists a symmetric equilibrium such that k�t (!t) 2 (ka; kb), and

furthermore, �t(!t) 2 (0; 1).

For each t and every !t 2 
t, we have an �interior belief��t(!t) 2 (0; 1), which

plays an important role to prove next two main results.

4.2 Monotonicity

The second main result of this paper shows the monotonicity result: if ka; kb 2 �,

then for any two di¤erent experiences such that one�s belief about a stochastic

dominant distribution on � is more likely than the other, that is, �t(!0t) > �t(!t),

the former induces a lower threshold such as k�t (!
0
t) < k

�
t (!t).

Theorem 2 Under (A1)-(A3) and (A40)-(A7), if ka; kb 2 �, then for any pair

!0t; !t 2 
t such that �t(!0t) > �t(!t),

k�t (!
0
t) < k

�
t (!t).

When player i has a posterior probability �t(!0t) > �t(!t), player i believes that

Fa is more likely than Fb. Lemma 1 shows that high types choose �, and from the

stochastic dominance relationship between Fa and Fb, Fa has more high types on �.

Hence, player i expects that his or her opponent�s probability of choosing � is greater.

It follows that player i�s optimal response is to make the own probability of choosing

� strictly increase. As a result, player i has a lower threshold, k�t (!
0
t) < k

�
t (!t).

The proof of Theorem 2 also shows that if ka; kb 2 �, for each t and every h�t ;k�t ,

At(h
�
t ;k

�
t ) < Bt(h

�
t ;k

�
t ), (13)

14



which entails that in each equilibrium in every period, the probability that each

player�s opponent plays � if the population distribution is Fb is greater than the

probability if the population distribution is Fa.

4.3 Convergence

The last main result of this paper provides the convergence. We show that each

player�s initial belief about the true distribution converges almost surely to a cor-

rect belief. Denote by �t the random variable, the probability that the population

distribution is Fa in period t and !(t) the observation in period t. Then, it follows

from Theorem 1, (11) and (12) that the relationship between �t and �t+1 can be

written as below:

�t+1
1� �t+1

=

�
(1�At(h�t ;k�t ))
(1�Bt(h�t ;k�t ))

�1f�g(!(t)) �At(h�t ;k�t )
Bt(h�t ;k

�
t )

�1f�g(!(t)) �t
1� �t

, (14)

where 1f�g is an indicator function. By the proof of Theorem 2, for each t and every

h�t ;k
�
t , we have At(h

�
t ;k

�
t ) < Bt(h

�
t ;k

�
t ) in (13), which in turn implies that

�t+1 > �t if � is observed in period t,

�t+1 < �t if � is observed in period t,

that is, if � is observed, the probability that the population distribution is Fa is

greater. Thus, in order to study the dynamic behavior and the convergence of �t,

the main question is whether � is observed more �frequently�along the equilibrium

path if Fa is the population distribution. Note that the random variables in (14)

are not i. i. d., so the strong law of large numbers cannot be used to determine the

long-run behavior.

We show, using the martingale convergence theorem, in Theorem 3 that each

player�s initial belief �1 about the population distribution converges almost surely

to a correct belief.

Theorem 3 Under (A1)-(A3) and (A40)-(A7), if ka; kb 2 �, then for any �1 2

(0; 1), �t converges almost surely to a correct belief.

15



As �t converges almost surely to a correct belief, each player�s sequence of equi-

librium strategies converges almost surely to the equilibrium strategy when the pop-

ulation distribution is common knowledge.

5 Concluding remarks

We analyze a dynamic Bayesian game with an unknown population distribution for a

2�2 game. It is shown that each player�s initial belief about a population distribution

converges almost surely to a correct belief. However, in reality, we can only have

a large but �nite number of matchings, and people are sometimes matched in a

non-random manner, so each �sample path�will in�uence the decisions of players

in game-theoretic situations with an unknown population distribution.

In a subsequent work, a model with continuous actions can be introduced to

examine conditions under which we can obtain similar results.

Appendix: proofs

Proof of Proposition 1. Recall that for the example, we assume that the support�
�; �
�
has values � < 0 and 1 < �, and that either Fa or Fb is uniform. First, we

show the existence. Denote

G (k2 (I) ; k2 (N)) � (G (I; k�1; k2 (I) ; k2 (N)) ; G (N; k�1; k2 (I) ; k2 (N))) .

It follows from � < 0 and 1 < � that G can be de�ned as a continuous mapping

from
�
�; �
�2
to
�
�; �
�2
, and that a �xed point (k�2 (I) ; k

�
2 (N))2

�
�; �
�2
exists such

that G (k�2 (I) ; k�2 (N)) = (k�2 (I) ; k�2 (N)). Now, we suppose k�2 (I) � k�2 (N). By (4)

and (5),

k�2 (I)� k�2 (N) (15)

= G (I; k�1; k
�
2 (I) ; k

�
2 (N))�G (N; k�1; k�2 (I) ; k�2 (N))

= (�2 (I)� �2 (N))[A (k�1; k�2 (I) ; k�2 (N))�B (k�1; k�2 (I) ; k�2 (N))]

� (�2 (I)� �2 (N))[Fa(k�2 (I))� Fb(k�2 (N))],

16



where the last inequality follows from:

A (k�1; k
�
2 (I) ; k

�
2 (N))�B (k�1; k�2 (I) ; k�2 (N))

= (1� Fa (k�1))Fa(k�2 (I)) + Fa (k�1)Fa(k�2 (N))

� [(1� Fb (k�1))Fb(k�2 (I)) + Fb (k�1)Fb(k�2 (N))]

� (1� Fa (k�1))Fa(k�2 (I)) + Fa (k�1)Fa(k�2 (I))

� [(1� Fb (k�1))Fb(k�2 (N)) + Fb (k�1)Fb(k�2 (N))]

= Fa(k
�
2 (I))� Fb(k�2 (N)).

Since �1 2 (0; 1) and k�1 2 (0; 1), we have �2 (I) ; �2 (N) 2 (0; 1) in (3), which implies

�2 (I)��2 (N) 2 (0; 1). If k�2 (I) = k�2 (N), then 0 � (�2 (I)��2 (N)) [Fa(k�2 (I))� Fb(k�2 (I))] <

0, which is a contradiction. Let k�2 (I) > k
�
2 (N), and WLOG, Fb be uniform. The

�rst-order stochastic dominance relationship entails

k�2 (I)� k�2 (N) � (�2 (I)� �2 (N)) [Fa(k�2 (I))� Fb(k�2 (N))]

< (�2 (I)� �2 (N))[Fb(k�2 (I))� Fb(k�2 (N))].

From the Mean Value Theorem, there exists c 2 (k�2 (N) ; k�2 (I)) such that

k�2 (I)� k�2 (N) < (�2 (I)� �2 (N))[k�2 (I)� k�2 (N)]F 0b (c) .

Then, 1 < (�2 (I)� �2 (N))F 0b (c). Since Fb is uniform, and � � � > 1,

1 < (�2 (I)� �2 (N))F 0b (c) < 1,

a contradiction. Thus, k�2 (I) < k
�
2 (N).

Proof of Lemma 1. First, any equilibrium strategy must be a cut-o¤ strategy

for each !it 2 
t since D is strictly increasing, and �t(!it)Ajt + (1 � �t(!it))Bjt
does not depend on �i. Suppose that there exist player i�s equilibrium strategy sit

and !it 2 
t such that for a pair �0i > �i, sit(�0i; !it) = � and sit(�i; !it) = �. From

(A3),

(d�(�i) + d�(�i))
�
D(�0i)� (�t(!it)Ajt + (1� �t(!it))Bjt)

�
> vt(�i; !it; Ajt; Bjt).

17



sit(�i; !it) = � implies vt(�i; !it; Ajt; Bjt) � 0. Then,

(d�(�i) + d�(�i))
�
D(�0i)� (�t(!it)Ajt + (1� �t(!it))Bjt)

�
> 0.

By (A2), vt(�0i; !it; Ajt; Bjt) > 0. sit(�
0
i; !it) = � is optimal, and we have a contra-

diction.

Proof of Lemma 2. Suppose there exists an asymmetric equilibrium. WLOG

let kin > kjn. Hence, kjn is either an interior point or the in�mum of �, given player

i�s strategy kin, so player j�s payo¤ satis�es

0 � (1� Fn(kin))d�(kjn)� Fn(kin)d�(kjn) = (d�(kjn) + d�(kjn))[D(kjn)� Fn(kin)].

From (A2) and (A3),

D(kin)� Fn(kjn) � D(kin)� Fn(kin) > D(kjn)� Fn(kin) � 0,

which yields

(d�(kin) + d�(kin)) [D(kin)� Fn(kjn)] > 0. (16)

On the other hand, kin is either an interior point or the supremum of �, given player

j�s strategy kjn, satisfying

0 � (1� Fn(kjn))d�(kin)� Fn(kjn)d�(kin) = (d�(kin) + d�(kin))[D(kin)� Fn(kjn)],

which is a contradiction with (16).

Proof of Lemma 3. Suppose ka � kb. By Lemma 2, we have

D(ka)�D(kb) = Fa(ka)� Fb(kb).

If ka = kb, 0 = Fa(ka) � Fb(ka) < 0, a contradiction. If ka > kb, WLOG let Fa

satisfy (A7). Then,

D(ka)�D(kb) = Fa(ka)� Fb(kb) < Fa(ka)� Fa(kb),

which is a contradiction with (A7).
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Proof of Lemma 4. Let kat = (ka; :::; ka)| {z }
2t�1 times

and kbt = (kb; :::; kb).| {z }
2t�1 times

Fix !t 2 
t.

For kjt � kat ,

Vt(ka; !t; h
�
t ;kjt) � Vt(ka; !t; h

�
t ;k

a
t ) = D(ka)�Gt(!t; h�t ;kat )

= D(ka)� [�t(!t)Fa(ka) + (1� �t(!t))Fb(ka)]

� D(ka)� Fa(ka) = 0.

The last inequality follows from the �rst-order stochastic dominance with �t(!t) 2

[0; 1]. For kjt � kbt ,

Vt(kb; !t; h
�
t ;kjt) � Vt(kb; !t; h

�
t ;k

b
t) = D(kb)�Gt(!t; h�t ;kbt)

= D(kb)� [�t(!t)Fa(kb) + (1� �t(!t))Fb(kb)]

� D(kb)� Fb(kb) = 0.

The last inequality follows from the �rst-order stochastic dominance with �t(!t) 2

[0; 1]. We conclude that for each kjt 2 [ka; kb]2
t�1
,

Vt(ka; !t; h
�
t ;kjt) � 0 and Vt(kb; !t; h�t ;kjt) � 0.

Since Vt is a continuous and strictly increasing function of �i, there exists a unique

function 't(!t; h
�
t ;kjt) 2 [ka; kb] such that Vt('t(!t; h�t ;kjt); !t; h�t ;kjt) = 0. This

establishes the result.

Proof of Lemma 5. De�ne �t(kt) = (�t(!t;kt))!t2
t . From the proof of

Lemma 4, for each !t 2 
t and every kt 2 [ka; kb]2
t�1
, �t(!t;kt) 2 [ka; kb]. Hence,

�t is a continuous mapping from [ka; kb]2
t�1
to [ka; kb]2

t�1
. By Brouwer�s Fixed Point

Theorem, there exists k�t such that �t(k
�
t ) = k

�
t 2 [ka; kb]2

t�1
. Suppose there exists

!t 2 
t such that either k�t (!t) = ka or k�t (!t) = kb. WLOG, let k�t (!t) = ka,

which implies that Vt(ka; !t; h�t ;k
�
t ) = 0. Since k

�
t � kat and �t(!t) 2 (0; 1),

Vt(ka; !t; h
�
t ;k

�
t ) � Vt(ka; !t; h

�
t ;k

a
t ) = D(ka)�Gt(!t; h�t ;kat )

= D(ka)� [�t(!t)Fa(ka) + (1� �t(!t))Fb(ka)]

< D(ka)� [�t(!t)Fa(ka) + (1� �t(!t))Fa(ka)]

= D(ka)� Fa(ka) = 0,
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where the strict inequality follows from Fa(ka) < Fb(ka), and we have a contradic-

tion.

Proof of Lemma 6. Given k�t (!t) 2 (ka; kb), for n = a; b,

0 � Fn(ka) < Fn (k�t (!t)) < Fn(kb) � 1,

which in turn implies that At(h�t ;k
�
t ) 2 (0; 1) and Bt(h�t ;k�t ) 2 (0; 1), and the result

follows from the condition, �t(!t) 2 (0; 1).

Proof of Theorem 2. In an equilibrium, for any pair !0t; !t 2 
t, by (10),

D(kt(!
0
t))�D(kt(!t)) = Gt(!

0
t; h

�
t ;k

�
t )�Gt(!t; h�t ;k�t ) (17)

= (�t(!
0
t)� �t(!t))[At(h�t ;k�t )�Bt(h�t ;k�t )].

Note that At(h�t ;k
�
t )�Bt(h�t ;k�t ) does not depend on !t. Suppose that there exists

a pair !0t; !t 2 
t such that �t(!0t) > �t(!t) and k�t (!
0
t) � k�t (!t). We divide the

proof into two cases.

Case 1 . Suppose that there exists a pair !0t; !t 2 
t such that �t(!0t) > �t(!t)

and k�t (!
0
t) = k

�
t (!t).

It follows from (17) that At(h�t ;k
�
t )�Bt(h�t ;k�t ) = 0. Then, for any pair !0t; !t 2


t, D(kt(!0t))�D (kt(!t)) = 0, which implies that for any pair !0t; !t 2 
t, kt(!0t) =

kt(!t) = k. Theorem 1 shows that k 2 (ka; kb), so

0 = At(h
�
t ;k

�
t )�Bt(h�t ;k�t ) = Fa(k)� Fb(k) < 0,

a contradiction.

Case 2 . Suppose that there exists a pair !0t; !t 2 
t such that �t(!0t) > �t(!t)

and k�t (!
0
t) > k

�
t (!t).

It follows from (17) thatAt(h�t ;k
�
t )�Bt(h�t ;k�t ) > 0. Denote kmint = minfk�t (!1t ); k�t (!2t ); :::; k�t (!2

t�1
t )g

and kmaxt = maxfk�t (!1t ); k�t (!2t ); :::; k�t (!2
t�1
t )g. In addition, denote by !maxt an ex-

perience that corresponds to kmaxt , and by !mint an experience that corresponds to

kmint . From (17),

D(kmaxt )�D(kmint ) = (�t(!
max
t )� �t(!mint ))[At(h

�
t ;k

�
t )�Bt(h�t ;k�t )]. (18)
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Since kmaxt > kmint andAt(h�t ;k
�
t )�Bt(h�t ;k�t ) > 0, we conclude �t(!maxt )��t(!mint ) >

0. Let kmaxt � (kmaxt ; :::; kmaxt )| {z }
2t�1 times

and kmint � (kmint ; :::; kmint )| {z }
2t�1 times

. Then, we derive

At(h
�
t ;k

�
t )�Bt(h�t ;k�t ) � At(h�t ;kmaxt )�Bt(h�t ;kmint ) = Fa(k

max
t )� Fb(kmint ).

From (18),

D(kmaxt )�D(kmint ) = (�t(!
max
t )� �t(!mint ))[At(h

�
t ;k

�
t )�Bt(h�t ;k�t )]

� (�t(!
max
t )� �t(!mint ))[Fa(k

max
t )� Fb(kmint )].

By Theorem 1, �t(!maxt )� �t(!mint ) 2 (0; 1). WLOG, let Fa satisfy (A7). Then,

D(kmaxt )�D(kmint ) � (�t(!maxt )��t(!mint ))[Fa(k
max
t )�Fb(kmint )] < [Fa(k

max
t )�Fa(kmint )],

which is a contradiction with (A7).

Proof of Theorem 3. Ft denotes the product �-�eld on 
t. WLOG, let

Fa be the true population distribution. Then, the conditional probability that � is

observed given !t is 1�At(h�t ;k�t ), and the conditional probability that � is observed

given !t is At(h�t ;k
�
t ). Denote

�t �
1� �t
�t

� 0.

Then,

E
�
�t+1jFt

�
= (1�At(h�t�1;k�t ))

1�Bt(h�t�1;k�t )
1�At(h�t�1;k�t )

�t +At(h
�
t�1;k

�
t )
Bt(h

�
t�1;k

�
t )

At(h�t�1;k
�
t )
�t

= �t.

Hence, �t is a martingale. Moreover, �t is nonnegative. It follows from Corollary

(2.11) at p. 236 in Durret (1996) that �t ! � a.s. with some �. Since

�t =
1

1 + �t
is continuous,

�t ! � a.s. From (17), as t!1,

D(kt(!
0
t))�D(kt(!t))! 0 a.s.,
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which results in kt ! k a.s. This in turn implies

At(h
�
t ;k

�
t )! Fa (k) a.s. and Bt(h�t ;k

�
t )! Fb (k) a.s. (19)

Now, suppose � 6= 0. Since �t ! � a.s., and log(1=z) is a continuous function of z

on R++,

log(
1

�t
)! log(

1

�
) a.s. (20)

Taking the natural log of (14), we have

log(
1

�t+1
)�log( 1

�t
) = 1f�g(!(t)) log

�
1�At(h�t ;k�t )
1�Bt(h�t ;k�t )

�
+1f�g(!(t)) log

�
At(h

�
t ;k

�
t )

Bt(h�t ;k
�
t )

�
.

(21)

By (20),

log(
1

�t+1
)� log( 1

�t
)! 0 a.s.

However, by (19),

log

"�
1�At(h�t�1;k�t )

��
1�Bt(h�t�1;k�t )

�# ! log

�
(1� Fa (k))
(1� Fb (k))

�
a.s.,

log

�
At(h

�
t�1;k

�
t )

Bt(h�t�1;k
�
t )

�
! log

�
Fa (k)

Fb (k)

�
a.s.

It follows from the proof of Theorem 1 that k 2 [ka; kb] in the limit, and thus

Fa (k) < Fb (k), which implies that the right-hand side of (21) is almost surely non-

zero. We have a contradiction. This implies that �t ! 0 a.s. Since �t is bounded

by 1, (1� �t)! 0 a.s., which leads to �t ! 1 a.s.
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