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Abstract
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1st-order beliefs. The measured beliefs help us to infer the conditional probability
systems of both players. The inferred CPS’s and players’ actual strategy choices
identify why they fail to reach the BI outcomes. First, we examine whether the
player’s strategies are best response to the measured beliefs, i.e. players are rational.
In all the treatments, the frequency of players’ being rational is significantly less than
probability 1; but the frequency in the Constant-Sum treatment is significantly higher
than that in other treatments. Second, as regarding players’ beliefs and higher-order
beliefs of rationality, we find that neither common initial belief of rationality nor
common strong belief of rationality always holds. Nevertheless, in the Constant-Sum
treatment both the frequency of players’ initially believing in others’ rationality and
the frequency of players’ higher-order initial belief of rationality are significantly than
those in the other treatments.
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1 Introduction

This paper studies rationality, belief of rationality, and higher-order belief of rationality

in the centipede game experiment. Actual play in centipede experiments seldom ends as

backward induction predicts. Existing literature attributes the departure from backward

induction (BI thereafter) prediction either to players’ lack of rationality, or to players’

inconsistent beliefs and higher-order beliefs of others’ rationality. In this paper, we evaluate

these arguments in a more direct fashion. We elicit the first mover’s belief about the second

mover’s strategy as well as the second mover’s initial and conditional beliefs about the first

mover’s strategy and 1st-order belief. The measured beliefs help us to infer the conditional

probability systems (CPS thereafter) of both players. The inferred CPS’s and players’

actual strategy choices identify why they fail to reach the BI outcomes.

The first strand of the existing experimental literature focuses on players’ lack of ratio-

nality. It presumes presence of behavioral types who fail to or do not maximize monetary

payoffs1. For example, McKelvey and Palfrey [24] assume that ex-ante a player chooses to

not play along the BI path with probability p. But assuming irrationality before a game

starts is restrictive; people could be right but think others are wrong. In this paper, the

inferred CPS and players’ strategies allow us to directly examine players’ rationality. We

define rationality as a player’s strategy best responding to the measured belief. We find,

in all three treatments, the frequency of either player’s being rational is significantly lower

than 100 percent. But in the Constant-Sum treatment, which excludes the efficiency prop-

erty as well as any possibility of mutual benefits, the frequency of the first-mover being

rational is significantly higher than those in the other two treatments.

The other strand of literature attributes the experimental anomalies to lack of common

knowledge of rationality. Two field centipede experiments (Palacios-Huerta and Volij [27]

and Levitt et.al [22]) are in this fashion. Both use professional chess players as experi-

mental subjects; the authors assume there is always rationality and common knowledge of

rationality among chess players. The authors’ approach is based on Aumann’s [2] claim2

“if common knowledge of rationality holds then the backward induction outcome results.”

Nevertheless, the notion of “common knowledge” is not empirically verifiable; one can never

ensure the existence of “common knowledge” among chess-players or the non-existence of

it among ordinary laboratory subjects. This suggests that the knowledge-based approach

may have limited explanatory power for the anomalies in the centipede experiments. Thus

1See McKelvey and Palfrey [24], Fey et.al.[15], Zauner [37], Kawagoe and Takizawa [20].
2For more knowledge-based theoretical discussion on the “backward induction paradox,” see Bicchieri

[9][10], Pettit and Sugden [29], Reny [31][32], Bonanno [13], Aumann [2][4][3], Binmore [11][12].
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in this paper we follow an alternative approach, the belief-based epistemic game theory3 to

address the notion of common belief of rationality. The measured beliefs, high-order beliefs,

and players’ actual strategy choices help us to identify whether rationality and common

initial belief of rationality and/or rationality and common strong belief of rationality hold.

We find, in fact, that common initial belief of rationality does not always exist in the

laboratory. In all three treatments, the frequency of players’ believing opponents’ ratio-

nality is significantly less than 100 percent. Nevertheless, in the Constant-Sum treatment

this frequency is significantly higher than that in the other two treatments; whereas the

frequency in the Baseline Centipede treatment does not differ significantly form that in

the No-Mutual-Benefit treatment, a treatment that excludes the mutually beneficial out-

come but not the efficiency property from the Baseline game. Moreover, in all treatments

the average frequency of the second mover’s initially believing the first mover’s rational-

ity and 2nd-order rationality is significantly less than 100 percent. This frequency in the

Constant-Sum treatment is significantly higher than those in the other two treatments.

Also it gradually increases towards 100 percent as subjects gain experience in later rounds

of the experiment; whereas in the other two treatments there is no such increasing pattern

as more rounds are played.

Furthermore, we find that common strong belief of rationality is seldom observed in

the laboratory, especially for the second-mover. In all three treatments, the the average

frequency of the second mover’s strongly believing the first-mover’s rationality and 2nd-

order rationality is significantly less than 100 percent. And this frequency in the Constant-

Sum treatment does not significantly differ from those in the other two treatments. Notice

that the second-movers are informed that the first-mover has chosen a non-BI strategy for

the first stage before being asked to state their conditional beliefs. Thus our result indicates

that once the second-movers observe the first-movers’ deviating from the BI path, the

former can hardly believe that the latter’s rationality AND higher-order belief of rationality.

Last but not least, let us close this section by emphasizing the difference between this

belief-based approach and the level-k model. The level-k analysis assumes the presence

of behavior types before the game starts: there always exists a level-zero who is the least

sophisticated; each player believes her opponent to be less sophisticated than herself and

respond to those types optimally. Nevertheless, our approach does not impose any pre-

sumptions on players’ beliefs and behavior: we elicit the true patterns of them. We do not

assume ex-ante that players best respond to others’ types; nor do we restrict players’ beliefs

3See Aumann and Brandenburger [1], Battigalli [5], Battigalli and Siniscalchi [6][7], Ben-Porath [8],
Brandenburger [14].
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about their opponents’ degree of sophistication. Strategies and reported beliefs from our

experiment can be used to examine the level-k model, but not vice versa.

The remainder of the paper is organized as follows. Section 2 formally defines players’

beliefs, rationality, and beliefs of rationality in the centipede game. Section 3 presents the

experimental design in detail, with Section 3.1 introducing experimental treatments and

testing hypothesis and Section 3.2 introducing the procedure and belief elicitation method

in the laboratory. Section 4 presents the experimental findings on players’ strategies, play-

ers’ beliefs about opponents’ strategies, rationality, and higher-order beliefs of rationality.

Section 5 reviews related theoretical literature on backward induction and epistemic game

theory and previous experimental studies on the centipede games. Section 6 concludes.

2 Defining Belief, Rationality, and Belief of Rational-

ity

We follow Brandenburger’s [14] notation of players’ belief types and epistemic states

throughout this section. Denote the two-player (Ann and Bob) finite centipede game

〈Sa, Sb,Πa,Πb〉 where Si and Πi represent player i’s set of pure strategies and set of payoffs,

respectively.

Definition 1. We call the structure 〈Sa, Sb;T a, T b;λa(·), λb(·)〉 a type structure for the

players of a two-person finite game where T a and T b are compact metrizable space, and

each λi : T i → ∆(S−i×T−i), i = a, b is continuous. An element ti ∈ T i is called a type for

player i, (i = a, b). An elements (sa, sb, ta, tb) ∈ S×T (where S = Sa×Sb and T = T a×T b)

is called a state.

We first define rationality using the type-state language:

Definition 2. A strategy-type pair of player i, (i = a, b), (si, ti) is rational if si maximizes

player i’s expected payoff under the measure λi(ti)’s marginal on S−i.

Next, we define a player’s believing an event as:

Definition 3. Player i’s type ti believes an event E ⊆ S−i × T−i if λi(ti)(E) = 1, i = a, b.

Denote

Bi(E) = {ti ∈ T i : ti believes E}, i = a, b

the set of player i’s types that believe the event E.
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For each player i, denote Ri
1 the set of all rational strategy-type pairs (si, ti). Thus R−i1

stands for the set of all rational strategy-type pairs of opponent −i, i.e.

R−i1 = {(s−i, t−i) ∈ S−i × T−i : (s−i, t−i) is rational.}, i = a, b

Now we can define a player’s believing in his or her opponent’s rationality as player i

believes an event E = R−i1 :

Definition 4. Player i’s type ti believes his or her opponent’s rationality R−i1 ⊆
S−i × T−i if λi(ti)(R−i1 ) = 1. Denote

Bi(R−i1 ) = {ti ∈ T i : ti believes R−i1 }, i = a, b

the set of player i’s types that believe opponent −i’s rationality.

Then for all m ∈ N and m > 1, we can define Ri
m inductively by

Ri
m = Ri

m−1 ∩ (Si ×Bi(R−im−1)), i = a, b

And write Rm = Ra
m × Rb

m. Then players’ higher order beliefs of rationality is defined in

the following way:

Definition 5. If a state (sa, sb, ta, tb) ∈ Rm+1, we say that there is rationality and mth-

order belief of rationality (RmBR) at this state.

If a state (sa, sb, ta, tb) ∈ ∩∞m=1Rm, we say that there is rationality and common belief

of rationality (RCBR) at this state.

For a perfect-information sequential move game such as the centipede game, in case

the game situation involves the players not playing the backward-induction path (BI path

thereafter), we also need to describe players’ beliefs of probability-0 events. We use the tool

of conditional probability systems (CPS thereafter) introduced by Renyi’s [33]. It consists

of a family of conditional events and one probability measure for each of these events. For

the centipede game under analysis, we define player i initially believes event E if i’s

CPS assigns probability 1 to event E at the root of the perfect-information game tree. We

denote the set of player i’s types that initially believe event E as IBi(E), i = a, b. We also

define player i strongly believes event E if for any information set H that is reached,

i.e. E ∩ (H × T−i) 6= ∅, i’s CPS assigns probability 1 to event E. We denote the set of a

player’s types who strongly believe event E as SBi(E), i = a, b.
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3 Experimental Design

We experimentally investigate players’ rationality, beliefs and higher-order beliefs about

opponents’ rationality. Section 3.1 describes the treatments and testing hypothesis. Section

3.2 details the laboratory environments, belief elicitation, and other experimental proce-

dures.

3.1 Treatments and Hypothesis

Our experiment consists of three treatments, each of which is a three-legged centipede

game. The first treatment, “Baseline Centipede Game” is shown in Figure 1. Both the Nash

equilibrium outcome and Subgame Perfect equilibrium outcome involve player A choosing

OUT at the first stage and the two players ending up with a 20− 10 split of payoffs.

Figure 1: Baseline Centipede Game

Here we emphasize three feature of this baseline game: first, the same as the “backward

induction paradox” discussed in the theoretical literature, the sum of the players’ payoffs

grows at each stage. Had the players not played the BI path, the outcome would yield the

players a larger sum of payoffs. We call this an efficient outcome. Second, had player A

played IN at both of his/her decision stages and had player B played IN at his/her decision

stage, the game would end up with a mutually beneficial 25 − 45 payoff split. This is

because 25 is greater than 20, the payoff that player A gets if he/she plays OUT at the first

stage; and 45 is greater than 40, the payoff that player B gets if he/she plays OUT at the

second stage. Third, allowing for probabilistic belief, it is easy to calculate that if player
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A expects player B to play IN with a probability greater than 1
3
, his/her best response

is to play IN for the first stage and OUT for the third stage. As for player B, if he/she

expects player A to play IN at the third stage with a probability greater than 2
3
, his/her

best response is to play IN for the second stage.

Figure 2: Constant-Sum Centipede Game

Our second treatment, the “Constant-Sum Centipede Game,” is shown in Figure 2.

The sum of the players’ payoffs at all stages is a constant. This version of the centipede

game eliminates the efficient concern presented in the Baseline Centipede treatment; and

similar experimental treatments without examining players’ beliefs has been conducted by

Fey et.al. [15], Levitt et.al. [22]. We choose the constant-sum payoff to be 50 because this

is the actual average sum of the payoffs subjects earned in the laboratory in the Baseline

Centipede treatment. And we choose the split of the players’ payoffs at each stage such that

the cutoff probabilistic belief for each player is the same as that in the Baseline Centipede

treatment. Namely, if player A expects player B to play IN with p ≥ 1
3
, his/her best

response is to play IN-OUT; if player B expects player A to play IN at the third stage with

q ≥ 2
3
, his/her best response is to play IN for the second stage.

Notice that the Constant-Sum Centipede excludes both the efficiency property and

mutual-beneficial payoff property from the Baseline Centipede. To further investigate the

key driving force underlying the observed differences between the first two treatments, we

conduct a “No-Mutual-Benefit Centipede” treatment as shown in Figure 3. The sum of

the players’ payoffs at each stage remains the same as in the Baseline Centipede; the only

change is the 15 − 55 split of payoffs had both players played the IN-IN-IN path. In this

case player A’s cutoff probabilistic belief for playing IN-OUT remains as 1
3
, whereas player

B’s cutoff probabilistic belief for playing IN changes to 2
5
.
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Figure 3: No-Mutual-Benefit Centipede Game

Table 1 below summarizes the treatments and number of sessions, subjects, and matches

of games for each treatment.

Table 1: Experimental Treatments

Treatments # of Sessions # of Subjects Total # of Games
Baseline Centipede 5 60 450
Constant-Sum 5 60 450
No-Mutual-Benefit 3 36 270

Next, we list the testing hypotheses as comparisons between the treatments, and as

comparisons with theoretical predictions. Our first set of hypotheses are on the players’

strategy choices. In all three treatments, the Nash equilibrium outcome involves the game

ending as player A plays OUT at the first stage; and the Subgame Perfect equilibrium

prescribes both player’s choosing OUT at each’s decision stage(s). Therefore we have the

following hypotheses:

Hypothesis 1. In all three treatments, the frequency of player A’s choosing IN at the

first stage does not differ significantly from 0. Specifically, this frequency in the Baseline

Centipede treatment does not differ significantly from that in the Constant-Sum treatment.

Hypothesis 2. In all three treatments, the frequency of player B’s choosing IN at the

second stage does not differ significantly from 0. Specifically, this frequency in the Baseline

Centipede treatment does not differ significantly from that in the Constant-Sum treatment.
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The second set of hypotheses describes players’ rationality. As defined in Section 2, a

player is rational if his or her strategy choice maximizes the expected payoffs given his or

her belief. A fully rational player best responds to both the initial belief and conditional

belief with probability 1. In Appendix 7.1 we demonstrate the following hypotheses by

proving five observations.

Hypothesis 3. If player A is rational, then in all three treatments, the frequency of A’s

strategy best responding to A’s belief does not significantly differ from 1. Specifically, this

frequency in the Baseline Centipede treatment does not differ significantly from that in the

Constant-Sum treatment.

Hypothesis 4. If player B is rational, then in all three treatments, the frequency of B’s

strategy best responding to B’s belief does not significantly differ from 1. Specifically, this

frequency in the Baseline Centipede treatment does not differ significantly from that in the

Constant-Sum treatment.

We then move to players’ belief about the opponents’ rationality and common belief

of rationality. As defined in Section 2, a player believes one’s opponent being rational if

he/she assigns probability 1 to all the states (s−i, t−i) in which opponent −i’s strategy best

responds to the belief in that state. For player A, this probability is the one he/she states

before the game starts. For player B, the probability he/she assigns to A’s strategy-belief

pair at the root of the game tree is the initial belief, while the probability he/she assigns

once called upon to move at the second stage (if observed) is the conditional belief in

the definition of “strong belief” in Section 2. Thus we have the following hypotheses. In

Appendix 7.1 we prove them by demonstrating five observations.

Hypothesis 5. If rationality and common strong belief of rationality holds, then

in all three treatments, the frequency of A’s believing B’s choosing IN at the second stage

does not significantly differ from 0. Specifically, this frequency in the Baseline Centipede

treatment does not differ significantly from that in the Constant-Sum treatment.

Hypothesis 5 comes from the fact that rationality common strong belief of rationality

(RCSBR) implies that player A’s believing in B’s rationality, believing in B’s (initially and

conditionally) believing A’s rationality, and so on. Thus as shown in Section 7.1, there is

no state that involves player A’s believing player B’s choosing IN satisfying RCSBR.

Hypothesis 6. If common belief of rationality holds, then in all three treatments, the

frequency of B’s believing A’s rationality does not significantly differ from 1. Specifically,

this frequency in the Baseline Centipede treatment does not differ significantly from that in

the Constant-Sum treatment.
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Hypothesis 7. If rationality and common initial belief of rationality holds, then

in all three treatments, the frequency of B’s initially believing in A’s rationality and 2nd-

Order rationality does not differ significantly from 1. Specifically, this frequency in the

Baseline Centipede treatment does not differ significantly from that in the Constant-Sum

treatment.

Hypothesis 8. If rationality and common strong belief of rationality holds, then

in all three treatments, the frequency of B’s conditionally believing in A’s rationality and

2nd-Order rationality does not differ significantly from 1. Specifically, this frequency in the

Baseline Centipede treatment does not differ significantly from that in the Constant-Sum

treatment.

Hypothesis 6 comes from the fact that common belief of rationality implies player B’s

(both initially and conditionally) assigning probability 1 to the event of A’s rationality.

Hypothesis 7 comes from the fact that rationality and common initial belief of rationality

implies player B’s assigning probability 1 to A’s rationality AND A’s believing B’s ratio-

nality at the root of the game tree. Hypothesis 8 is from the fact that rationality and

common strong belief of rationality implies player B’s still assigning probability 1 to

A’s rationality and 2nd-order rationality even after observing A has chosen IN for the first

stage.

3.2 Design and Procedure

All sessions were conducted at the Pittsburgh Experimental Economics Lab (PEEL) in

Spring 2013. A total of 156 subjects are recruited from the undergraduate population of the

University of Pittsburgh who have no prior experience in our experiment. The experiment

adopts between-subject design, with 5 sessions for the Baseline Centipede treatment, 5 ses-

sions for the Constant-Sum treatment, and 3 sessions for the No-Mutual-Benefit treatment.

The experiment is programmed and conducted with z-Tree (Fischbacher [16]).

Upon arrival at the lab, we seat the subjects at separate computer terminals. After

we have enough subjects to start the session4, we hand out instructions and then read

the instruction aloud. A quiz which tests the subjects’ understanding of the instruction

follows. We pass the quiz’s answer key after the subjects finish it, explaining in private to

whomever have questions.

4Each session has 12 subjects. We over-recruit as many as 16 subjects each time. By arrival time, from
the 13th subject on, we pay them a $5.00 show-up fee and ask them to leave.
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In each session, 12 subjects participate in 15 rounds of one variation of the centipede

game. Half of the subjects are randomly assigned the role of Member A and the other half

the role of Member B. The role remain fixed throughout the experiment. In each round,

one Member A is paired with one Member B to form a group of two. The two members

in a group would then play the centipede game in that treatment. Subjects are randomly

rematched with another member of the opposite role after each round.

For the aim of collecting enough data, we first use strategy method to elicit the subjects’

strategy choice5. We ask the subjects to specify their choice at each decision stage had it

been reached. Then the subjects’ choice(s) are carried out automatically by the programme

and one would not have a chance to revise it if one’s decision stage is reached.

After the subjects finish the choice task, they enter a “forecast task” phase which is to

elicit their beliefs about opponent’s choices. Member A is asked to choose from one of the

two statements which he/she thinks more likely6: “Member B has chosen IN” or “Member

B has chosen OUT.” Member A’s predictions are incentivized by a linear rule: 5 points if

correct, 0 if incorrect. Member B is informed that his/her partner A has made a selection

of choices for stage 1 and 3, AND have chosen a statement about Member B’s choice. Then

Member B’s are asked to enter six numbers as the percent chance into a table, each cell of

which represents a choice-forecast pair that Member A has chosen. For example, as shown

in the table below, the upper-left cell represents the event that Member A has chosen OUT

for the 1st stage and “Statement I.”

Statement I �

Statement O

1st Stage Out, 3rd In or Out 1st Stage In, 3rd Stage Out 1st Stage In, 3rd Stage In

If B’s decision stage is reached (which means his/her partner Member A has chosen IN),

he/she will be asked to make a second forecast about the percent chance for each possible

5Another advantage of the strategy method is to exclude subjects’ incentives to signal, hedge, or bluff
their opponent. Had we not adopted this method, in the baseline treatment we would have observed an
even higher frequency of player A’s choosing IN for the first stage. Player A might find it optimal to
“bluff opponent” if player B is tempted by the efficient and mutually beneficial payoff split in the Baseline
Centipede treatment AND B would not strongly believe A’s rationality after observing A’s choosing IN for
the first stage.

6Since in all treatments player A’s cutoff probabilistic belief is 1
3 , which is smaller than 50 percent, the

point prediction Member A is making here is without loss of generality.
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outcome of A’s choices. Member B’s predictions are incentivized by the quadratic rule:

5− 2.5× [(1− βij)2 +
∑
kl 6=ij

β2
kl]

where βkl stands for Member B’s stated percent chance in row k column l of the table, and

i, j represents that row i column j is the outcome from Member A’s choices7.

At the end of the experiment, one round is randomly selected to count for payment. A

subject’s earning in each round is the sum of the points he/she earn from the choice task

and the forecast task(s). The exchange rate between points and US dollars is 2.5 : 1. A

subject receivers his/her earning in that selected round plus the $5.00 show-up fee.

4 Experimental Findings

4.1 Players’ Strategy Choices

Our first set of results compares the frequency of players’ strategy choices with that pre-

dicted by the Subgame Perfect equilibrium. We first state the result addressing Hypothesis

1, then move to the result addressing Hypothesis 2.

Result 1. (1) In all three treatments, the average frequency of A’s choosing IN at the first

stage is significantly higher than 0. (2) The average frequency of A’s choosing IN at the

first stage in the Constant-Sum treatment is significantly lower than that in the Baseline

Centipede treatment.

Result 1 addresses Hypothesis 1. Figure 4 depicts the treatment-average frequency of

player A’s choosing IN at the first stage across all periods. This frequency in the Constant-

Sum treatment is significantly lower than that in the Baseline treatment; but both of them

are significantly higher than 0, the Subgame Perfect equilibrium prediction.

It is natural to ask what these player A’s would play given that they had deviated

from the equilibrium path. Namely, what is the frequency of choosing strategy IN-OUT

7Palfrey and Wang [28] and Wang [36] have discussed eliciting subjects’ beliefs using proper scoring
rules. This is the major reason we adopt a quadratic scoring rule. We are also aware of the risk-neutrality
assumption behind the quadratic rule and the possibility to use an alternative belief elicitation method
proposed by Karni [19]. But concerning the complexity of explaining Karni’s method to the subjects, we
adopt the quadratic rule which is simpler in explanation.
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Figure 4: Average Frequency of A’s Strategy Choice, Across Periods

Note: Figure on top compares the average frequency of A’s choosing IN predicted by the Subgame Perfect
equilibrium (blue curve), the frequency from the Baseline Centipede treatment (purple curve), and the
frequency from the Constant-Sum treatment (yellow curve). Figure at bottom adds the average frequency
from the No-Mutual-Benefit treatment (green curve), to the comparison.

versus the frequency of choosing IN-IN? Figure 5 depicts the treatment-average frequency

of player A’s choosing strategy IN-IN. It is interesting to note that the frequency in all

three treatment is not significantly different from 0; and there is no significant difference

across treatments. Notably, this is true even for the Baseline Centipede treatment. In

other words, despite the efficiency property and mutual benefit property of the Baseline

Centipede, actual plays seldom end up with the “mutually beneficial” 25− 45 payoff split.

Conditional on the third node being reached, almost all player A’s optimally choose OUT

for the third stage.

Result 2. (1) In all three treatments, the average frequency of B’s choosing IN at the

second stage is significantly higher than 0. (2) The average frequency of B’s choosing IN

at the second stage in the Constant-Sum treatment is significantly lower than that in the

12



Figure 5: Average Frequency of A’s Choosing IN-IN at Both Decision Stages, Across Periods

Note: Figure on top compares the average frequency of A’s choosing IN at the first stage and IN at the
third stage predicted by the Subgame Perfect equilibrium (blue curve), the frequency from the Baseline
Centipede treatment (purple curve), and the frequency from the Constant-Sum treatment (yellow curve).
Figure at bottom adds the average frequency from the No-Mutual-Benefit treatment (green curve), to the
comparison.

Baseline Centipede treatment.

Result 2 addresses Hypothesis 2. Figure 6 depicts the treatment-average frequency

of player B’s choosing IN at the second stage across all periods. This frequency in the

Constant-Sum treatment is significantly lower than that in the Baseline treatment; but

both of them are significantly higher than 0, the Subgame Perfect equilibrium prediction.
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Figure 6: Average Frequency of B’s Strategy Choice, Across Periods

Note: Figure on top compares the average frequency of B’s choosing IN predicted by the Subgame Perfect
equilibrium (blue curve), the frequency from the Baseline Centipede treatment (purple curve), and the
frequency from the Constant-Sum treatment (yellow curve). Figure at bottom adds the average frequency
from the No-Mutual-Benefit treatment (green curve), to the comparison.

4.2 Rationality

In this section we present comparison results on players’ rationality across treatments.

We first examine the frequency of A’s best responding to his/her stated belief. Notice

that there are two data points from A’s strategy-belief choices that can be identified as

“rational.” Either player A chooses strategy IN-OUT and believes that B has chosen IN,

or chooses OUT for the first stage and believes that B has chosen OUT. We sum up the

frequencies from the two cases as we calculate the overall frequency of A’s being rational.

Result 3. (1) In all three treatments, the average frequency of player A’s being rational

is significantly lower than 1. (2) The average frequency of player A’s being rational in

the Constant-Sum treatment is significantly higher than that in the Baseline Centipede
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treatment.

Result 3 addresses Hypothesis 3. Figure 7 depicts the treatment-average frequency of

player A’s being rational across all periods. This frequency in the Constant-Sum treatment

is significantly higher than that in the Baseline treatment; but both of them are significantly

lower than 1 as required by the notion of rationality.

Figure 7: Average Frequency of A’s Best Responding to Own Belief, Across Periods

Note: Figure on top compares the average frequency of A’s best responding to his/her stated belief if
A is rational (blue curve), the frequency from the Baseline Centipede treatment (purple curve), and the
frequency from the Constant-Sum treatment (yellow curve). Figure at bottom adds the average frequency
from the No-Mutual-Benefit treatment (green curve), to the comparison.

We then investigate the frequency of B’s best responding to his/her stated belief. From

B’s stated belief, if the probability he/she assigns to A’s choosing strategy IN-IN is greater

than his/her cutoff probabilistic belief, it is rational for B to choose IN for the second stage;

otherwise, it is rational to choose OUT for the second stage. We sum up the frequencies

from the two cases as we calculate the overall frequency of B’s being rational.
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Result 4. (1) In all three treatments, the average frequency of player B’s being rational

is significantly lower than 1. (2) The average frequency of player B’s being rational in the

Constant-Sum treatment is not significantly different from that in the Baseline Centipede

treatment.

Result 4 addresses Hypothesis 4. Figure 8 depicts the treatment-average frequency of

player B’s being rational across all periods. This frequency in the Constant-Sum treatment

is not significantly higher than that in the Baseline treatment; and both of them are

significantly lower than 1 as required by the notion of rationality.

Figure 8: Average Frequency of B’s Best Responding to Own Belief, Across Periods

Note: Figure on top compares the average frequency of B’s best responding to his/her own belief if B
is rational (blue curve), the frequency from the Baseline Centipede treatment (purple curve), and the
frequency from the Constant-Sum treatment (yellow curve). Figure at bottom adds the average frequency
from the No-Mutual-Benefit treatment (green curve), to the comparison.
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4.3 Belief of Rationality and Higher-Order Belief of Rationality

In this section we present comparison results on players’ belief of rationality and higher-

order belief of rationality across treatments. We first examine the frequency of A’s believing

B’s choosing IN for the second stage.

Result 5. (1) In all three treatments, the average frequency of player A’s believing B’s

choosing IN is significantly higher than 0. (2) The average frequency of player A’s believ-

ing B’s choosing IN in the Constant-Sum treatment is significantly lower than that in the

Baseline Centipede treatment.

Figure 9: Average Frequency of A’s Believing B’s Choosing IN, Across Periods

Note: Figure on top compares the average frequency of A’s believing B’s rationality and 2nd-Order
rationality if RCSBR holds (blue curve), the frequency from the Baseline Centipede treatment (purple
curve), and the frequency from the Constant-Sum treatment (yellow curve). Figure at bottom adds the
average frequency from the No-Mutual-Benefit treatment (green curve), to the comparison.

Result 5 addresses Hypothesis 5. As shown in Section 3.1, if rationality and common

strong belief of rationality holds, in all states player A should not believe that B would
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ever chosen IN for the second stage. Figure 9 depicts the treatment-average frequency of

player A’s believing B’s choosing IN across all periods. This frequency in the Constant-Sum

treatment is significantly lower than that in the Baseline treatment; but both of them are

significantly higher than 0 as required by the notion of RCSBR. The comparison of player

A’s belief accuracy across treatments is included in Appendix 7.2.

We then examine player B’s believing A’s rationality. If player B’s stated belief assigns

a sum of probability 1 to the two cases in which player A is rational (either A chooses

strategy IN-OUT and believes B has chosen IN, or A chooses OUT for the first stage and

believes B has chosen OUT), we say that player B believes A’s rationality.

Result 6. (1) In all three treatments, the average frequency of player B’s believing A’s ra-

tionality is significantly lower than 1. (2) The average frequency of player B’s believing A’s

rationality in the Constant-Sum treatment is significantly higher than that in the Baseline

Centipede treatment.

Result 6 addresses Hypothesis 6. Figure 10 depicts the treatment-average frequency of

player B’s believing A’s rationality across all periods. This frequency in the Constant-Sum

treatment is significantly higher than that in the Baseline treatment; but both of them are

significantly lower than 1 as required by the notion of common belief of rationality. It is

also worth noting that in the Constant-Sum treatment this frequency increases towards 1

gradually as more rounds are played.

Next we examine player B’s believing A’s rationality AND believing A’s believing B’s

rationality (2nd-Order rationality). If player B’s initial belief assigns probability 1 to the

event that player A chooses OUT for the first stage and believes B has chosen OUT, we

say that player B initially believes A’s rationality and 2nd-Order rationality.

Result 7. (1) In all three treatments, the average frequency of player B’s initially believ-

ing A’s rationality and 2nd-order rationality is significantly lower than 1. (2) The average

frequency of player B’s initially believing A’s rationality and 2nd-order rationality in the

Constant-Sum treatment is significantly higher than that in the Baseline Centipede treat-

ment.

Result 7 addresses Hypothesis 7. Figure 11 depicts the treatment-average frequency

of player B’s believing A’s rationality and 2nd-order rationality across all periods. This

frequency in the Constant-Sum treatment is significantly higher than that in the Baseline

treatment; but both of them are significantly lower than 1 as required by the notion of
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Figure 10: Average Frequency of B’s Believing A’s Rationality, Across Periods

Note: Figure on top compares the average frequency of B’s believing in A’s rationality if common belief
in rationality holds (blue curve), the frequency from the Baseline Centipede treatment (purple curve),
and the frequency from the Constant-Sum treatment (yellow curve). Figure at bottom adds the average
frequency from the No-Mutual-Benefit treatment (green curve), to the comparison.

rationality and common initial belief of rationality. It is also worth noting that in the

Constant-Sum treatment this frequency increases towards 1 gradually as more rounds are

played.

Last we look into player B’s strongly believing A’s rationality AND 2nd-Order rational-

ity conditional on A has chosen IN for the first stage. If player B’s conditional belief assigns

probability 1 to the event that player A chooses strategy IN-OUT and believes B has chosen

IN, we say that player B strongly believes A’s rationality and 2nd-Order rationality.

Result 8. (1) In all three treatments, the average frequency of player B’s strongly believing

A’s rationality and 2nd-order rationality is significantly lower than 1. (2) The average

frequency of player B’s strongly believing A’s rationality and 2nd-order rationality in the

Constant-Sum treatment is not significantly different from that in the Baseline Centipede
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Figure 11: Average Frequency of B’s Believing A’s Rationality and 2nd-Order Rationality, Across Periods

Note: Figure on top compares the average frequency of B’s believing A’s rationality and 2nd-Order
rationality if RCIBR holds (blue curve), the frequency from the Baseline Centipede treatment (purple
curve), and the frequency from the Constant-Sum treatment (yellow curve). Figure at bottom adds the
average frequency from the No-Mutual-Benefit treatment (green curve), to the comparison.

treatment.

Result 8 addresses Hypothesis 8. Figure 12 depicts the across-period treatment-average

frequency of player B’s strongly believing A’s rationality and 2nd-order rationality condi-

tional on B is informed that A has chosen IN for the first stage. This frequency in the

Constant-Sum treatment is not significantly different from that in the Baseline treatment;

and both of them are significantly lower than 1 as required by the notion of rationality

and common strong belief of rationality. In other words, once player B observes player

A’s deviating from the equilibrium path, B hardly believes A’s being rational AND A’s

believing B’s rationality.
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Figure 12: Average Frequency of B’s Strongly Believing A’s Rationality and 2nd-Order Rationality,
Across Periods

Note: Figure on top compares the average frequency of B’s believing in A’s rationality and 2nd-Order
rationality if RCSBR holds (blue curve), the frequency from the Baseline Centipede treatment (purple
curve), and the frequency from the Constant-Sum treatment (yellow curve). Figure at bottom adds the
average frequency from the No-Mutual-Benefit treatment (green curve), to the comparison.

5 Related Literature

McKelvey and Palfrey’s [24] seminal centipede game experiment shows individuals’ be-

havior inconsistent with standard game theory prediction. Neither do they find convergence

to subgame perfect equilibrium prediction as subjects gain experience in later rounds of

the experiment. The authors attribute such inconsistent behavior to uncertainties over

players’ payoff functions; specifically, the subjects might believe a certain fraction of the

population is altruist. They establish a structural econometric model to incorporate play-

ers’ selfish/altruistic types, error probability in actions, and error probability in beliefs. If

most of the players are altruistic, the altruistic type always chooses PASS except on the

last node while the selfish type might mimic the altruist for the first several moves as in
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standard reputation models. As pointed out, the equilibrium prediction of this incomplete

information game is sensitive to the beliefs about the proportion of the altruistic type. In

our design we try to avoid this complication by allowing sorting.

Subsequent experimental studies on centipede games tend to view this failure of back-

ward induction as individuals’ irrationality. Fey et.al. [15] examine a constant-sum cen-

tipede game which excludes the possibility of Pareto improvement by not backward induct-

ing. Among the non-equilibrium models, they find that the Quantal Response Equilibrium,

in which players err when playing their best responses, fit the data best. Zauner [37] esti-

mates the variance of uncertainties about players’ preferences and payoff types and makes

comparison between the altruism models and the quantal response models. Kawagoe and

Takizawa [20] offer an alternative explanation for the deviations in centipede games adopt-

ing level-k analysis. They claim that the level-k model provide good predictions for the

major features in the centipede game experiment without the complication to incorporate

incomplete information on “types.” Nagel and Tang [26] investigate centipede games in a

variation of the strategy method: the game is played in the reduced normal form, which is

considered as “strategically equivalent” to the extensive form counterpart, but precisely to

identify “learning.” They examine behavior across periods according to learning direction

theory. They show significant differences in patterns of choices between the cases when a

player has to split the cake before her opponent and when she moves after her opponent.

Consequently, other research tries to restore the subgame perfect equilibrium outcome

by providing the subjects with aids in their decision-making processes. Bornstein et. al.

[17] show that groups tend to terminate the game earlier than individual players, once free

communication is allowed within each group. Maniadis [23] examines a set of centipede

games with different stakes and finds that providing aggregate information causes strong

convergence to the subgame perfect equilibrium outcome. However, after uncertainties

are incorporated into the payoff structure, the effect of information provision shifts in the

opposite direction. Rapoport et. al. [30] study a three-person centipede game. They

show that when the number of players increases and the stakes are sufficiently high, results

converge to theoretical predictions more quickly. But when the game is played with low

stakes, both convergence to equilibrium and learning across iterations of the stage game

are weakened. Palacios-Huerta and Volij [27] cast their doubt on average people’s full

rationality by recruiting expert chess players to play a field centipede. Strong convergence

to subgame perfect prediction is observed.

It is helpful to link the attempted arguments for the experimental centipede game

anomaly with literature on equilibrium refinement. These concepts – trembling hand per-
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fection, stability, sequential equilibrium, and forward induction – attempt to distinguish

whether a deviation to the off-equilibrium path is by mistake or by intention.

“Mistakes in actions” corresponds to Selten’s [34] trembling hand perfectness. This

refinement does not “completely” exclude a small probability of “irrational” errors, while it

requires the limit of such irrationality coinciding with fully rational choices. Practically, if in

sequential games such as the centipede game, a player fails to do the backward calculations

and chooses “Pass,” the next mover should believe that such an event results from the first

mover’s mistake.

Uncertainty about payoff types, namely, players being altruistic, follows the stability

argument by Kohlberg and Mertens [21], who consider the correlation among un-scheduled

deviations. The probability of trembling is excluded in their refinement concept, as the

authors state, “the probabilities of error must not be interpreted as probabilities that the

players will ACTUALLY err.” Therefore, players’ apparently irrational choices are made

deliberately and strategically, e.g. the player is altruistic.

Errors-in-belief roughly echoes the concept of sequential equilibrium proposed by Kreps

and Wilson [25]. This concept requires players’ beliefs being consistent with completely

mixed strategies at each information set, where “completely mixed” excludes information

sets that will not be reached with positive probability. Therefore, once a player sees “Pass”

from the previous mover, he knows that he is on an “off-equilibrium” path. As noted by

Govindan and Wilson [18], a player can hold any beliefs off the equilibrium path.

Efficiency concerns come from van Damme’s [35] forward induction argument. He

points out that the weaker equilibrium refinement concepts do not require back-to-rational

behavior in later stages of the game after somebody’s off-equilibrium action, either by

mistakenly or deliberately. For example, in the centipede game, the second mover believes

that the first mover will continue to be insane all through the rest of the game. On the

contrary, van Damme [35] captures the off-schedule intention which looks irrational but is

actually not. This forward induction argument indicates that any unexpected deviation

from certain equilibrium should be viewed as rational and more ambitious strategies are

expected in succeeding stages. His argument suggests that a player will never make mistake

and behaves rationally all the way to the end, if there are potentially better payoffs.
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6 Conclusion and Discussion

This paper explores people’s beliefs behind non-backward induction behavior in labora-

tory centipede games. We elicit the first mover’s belief about the second mover’s strategy

as well as the second mover’s initial and conditional beliefs about the first mover’s strat-

egy and 1st-order belief. The measured beliefs help me infer the conditional probability

systems of both players. The inferred CPS’s and players’ actual strategy choices identify

why they fail to reach the BI outcomes. First, we examine whether the player’s strategies

are best response to the stated beliefs. In both the Baseline Centipede treatment and

the Constant-Sum treatment, the frequency of players’ best responding to own beliefs is

significantly lower than 1. Specifically, the frequency in the Constant-Sum treatment is

higher than that in the Baseline treatment; and the frequency in the No-Mutual-Benefit

treatment is not significantly different from that in the Baseline treatment. Second, we

investigate players’ belief of opponents’ rationality and higher-order belief of rationality.

In all treatments, both the frequency of players’ believing in others’ rationality and the

frequency of higher-order belief of rationality are significantly smaller than 1. Nevertheless,

the frequency in the Constant-Sum treatment dominates that in the Baseline and the No-

Mutual-Benefit treatment. Third, when it comes to the second mover’s conditional beliefs

once the first-mover has chosen a non-BI strategy, the frequency of the second movers’

strongly believing the first movers’ rationality is very low; and there is no significant dif-

ferent across treatments.
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7 Appendix

7.1 Proofs and Calculations

This section demonstrating the hypotheses specified in the main text by proving five

observations. The first observation is about B’s belief of A’s rationality. The rest four

observations identify the states that satisfy RCIBR and RCSBE. In summary, when the

strategy choices and inferred CPS’s constitute a state that satisfies rationality and common

strong belief of rationality (RCSBR henceforth), players do not fail to reach the backward

induction (BI henceforth) outcome in this state. But the reverse is not true. It is possible

that Role A’s strategy choice leads to the BI outcome, but Role B’s strategy and belief are

not consistent with RCSBR. Moreover, there exists a state in which Role B’s strategy and

belief are consistent with the BI outcome but Role A’s are not. There also exists a state in

which neither player’s strategy and belief are consistent with the BI outcome, but a weaker

notion of common belief in rationality, rationality and common initial belief of rationality,

still holds.

For the east of demonstration, we alter the notations of the players’ moves slightly, as

shown in Figure 13. Since we shall prove the following observations for all three treatments,

we use (xj, yj) to represent the players’ payoffs associated with each terminal node. And

uA represents Statement OUT, tA represents Statement IN in the instruction.

Figure 13: The Centipede Game

Observation 1. From the measured initial belief of player B,
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uA β11 β12 β13

tA β21 β22 β23

Out Down Across

if β11 + β22 = 1, player B initially believes player A’s rationality.

From the measured conditional belief of player B,

uA γ12 γ13

tA γ22 γ23

Down Across

if γ22 = 1, player B strongly believes player A’s rationality and 2nd-Order rationality.

Observation 2. If the following data point is observed, the players’ strategies and beliefs

constitute a state that satisfies RCSBR:

- Role A chooses Out and statement uA

- Role B chooses Out and the measured beliefs take the form:

uA 1[0] 0[0] 0[0]

tA 0[0] 0[1] 0[0]

Out Down Across

Note: The first number in each cell represents Role B’s belief in task (2). The second

number in [] represents Role B’s revised belief in task (3).

Observation 3. If the following data point is observed, Role B’s strategy and belief are

not consistent with RCSBR. Nevertheless, the BI outcome still obtains.

- Role A chooses Out and statement uA

- Role B chooses In and the measured beliefs take the form:

uA 1[0] 0[0] 0[0]

tA 0[0] 0[0] 0[1]

Out Down Across

Note: The first number in each cell represents Role B’s belief in task (2). The second

number in [] represents Role B’s revised belief in task (3).
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Remark: 1st-order strong belief of rationality of both players because Role B’s measured

belief indicates that he does not strongly believe Role A’s rationality. However, since Role

A chooses Out at the first node, the BI outcome still obtains. Although RCSBR does

not hold in this state, a weaker notion, rationality and common initial belief of rationality

(RCIBR), still holds. RCIBR only requires the belief consistency given the root of the

game tree.

Observation 4. If the following data point is observed, Role B’s strategy and belief are

consistent with the BI outcome. But the BI outcome does not obtain.

- Role A chooses Down and statement tA

- Role B chooses Out and the measured beliefs take the form:

uA 1[0] 0[0] 0[0]

tA 0[0] 0[1] 0[0]

Out Down Across

Note: The first number in each cell represents Role B’s belief in task (2). The second

number in [] represents Role B’s revised belief in task (3).

Remark: In this state there is no 1st-order strong belief of rationality, nor 1st-order

initial belief of rationality because Role A’s measured belief indicates that she does not

strongly, nor initially believe Role B’s rationality. Since Role A chooses Down and Role B

chooses Out, the BI outcome does not obtain. The game ends at the second node by Role

B’s playing Out.

Observation 5. If the following data point is observed, neither player’s strategy and

belief is consistent with the BI outcome. The BI outcome does not obtain. Nevertheless,

the strategies and beliefs constitute a state that satisfies rationality and common initial

belief of rationality.

- Role A chooses Down and statement tA

- Role B chooses In and the measured beliefs take the form:

uA 1[0] 0[0] 0[0]

tA 0[0] 0[0] 0[1]

Out Down Across
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Note: The first number in each cell represents Role B’s belief in task (2). The second

number in [] represents Role B’s revised belief in task (3).

Remark: In this state there is no 1st-order strong belief of rationality of both players

because (1) Role B’s measured belief indicates that he does not strongly believe Role A’s

rationality, and (2) Role A’s measured beliefs indicates that she believes Role B’s rationality

in response to his belief, but she does not believe that Role B believes her rationality. Since

Role A chooses Down and Role B chooses In, the BI outcome does not obtain. The game

ends at the last node by Role A’s choosing Down.

Compare observation 3 and 5. Role B’s inferred CPS is the same, which assigns prob-

ability 0 to Role A’s rationality if Role B’s decision node is reached. Therefore, whenever

Role B does not believe Role A’s rationality conditional on a zero-probability event, Role A

can attain a higher payoff by playing Down instead of Out. Both states satisfy rationality

and common initial belief of rationality, but not rationality and common strong belief of

rationality.

Proof for Observation 2 and 4

The inferred CPS’s of both players are as follows:

λa(ta)

T b tb 0 1

Out In

Sb

λa(ua)

T b tb 1[0] 0[1]

Out In

Sb

λb(tb)

T a
ua 1[0] 0[0] 0[0]

ta 0[0] 0[1] 0[0]

Out Down Across

Sa

We are going to show:

1. The state (Out, ua,Out, tb) satisfies both RCIBR and RCSBR
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2. The state (Down, ta,Out, tb) satisfies neither RCIBR nor RCSBR

First notice that the strategy-type pair (Out, ua) and (Down, ta) are rational for player

Ann. The strategy-type pair (Out, tb) is rational for player Bob. For the initial belief we

have:

IBa(Rb
1) = {ua}, IBb(Ra

1) = {tb},

then we have:

Ra
2 = Ra

1 ∩ (Sa × IBa(Rb
1)) = {(Out, ua)}

Rb
2 = Rb

1 ∩ (Sb × IBb(Ra
1)) = {(Out, tb)}

Inductively, we have Ra
m{(Out, ua)} and Rb

m = (Out, tb), ∀m ∈ N. Therefore we have:

∩∞m=1Rm = (Out, ua,Out, tb)

and (Down, ta,Out, tb) /∈ ∩∞m=1Rm

As for strong beliefs, at the second node of the game, Bob’s information set

H = {Ann would play “Down” or “Across”}. Thus

H × T a = {(Down, ta), (Down, ua), (Across, ta), (Across, ua)}

Bob’s type tb is the only type who assigns probability 1 to any event E s.t. E∩(H×T a) 6= ∅.
So we have SBb(Ra

1) = {tb}.

At the first node of the game, H = ∅ for Ann. So Ann’s strong beliefs at this node are

degenerate. At the third node of the game, Ann’s information set H = {Bob played “In”}.
Both Ann’s type assigns probability 1 to any event E s.t. E ∩ (H × T a) 6= ∅. So we have

SBa(Rb
1) = {ta, ua}.

Inductively we have:

Ra
2 = Ra

1 ∩ (Sa × SBa(Rb
1)) = Ra

1

Rb
2 = Rb

1 ∩ (Sb × SBb(Ra
1)) = {(Out, tb)}
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Iterate one more level, we have:

SBb(Ra
2) = SBb(Ra

1) = {tb}

SBa(Rb
2) = {ta ∈ T a : ∀H s.t. Rb

2 ∩ (H × T b) 6= ∅, λa(ta)(Rb
2) = 1}

= {ua}

and

Ra
3 = Ra

2 ∩ (Sa × SBa(Rb
2)) = {(Out, ua)}

Rb
3 = Rb

2 ∩ (Sb × SBb(Ra
2)) = {(Out, tb)}

Then we have SBb(Ra
3) = {tb} and SBa(Rb

3) = {ua}. For any m ≥ 3, we have Ra
m =

{(Out, ua)} and Rb
m = {(Out, tb)}. Thus:

∩∞m=1Rm = {(Out, ua,Out, tb)}

Therefore, the only state that satisfies rationality and common strong belief of rationality

is (Out, ua,Out, tb).

The results are summarized in the following table:

State RCIBR RCSBR
(Down, ta,Out, tb) × ×
(Out, ua,Out, tb)

√ √

Proof for Observation 3 and 5

The inferred CPS’s of both players are:

λa(ta)

T b
ub 0 0

tb 0 1

Out In

Sb

λa(ua)

T b
ub 1[0] 0[0]

tb 0[0] 0[1]

Out In

Sb
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λb(tb)

T a
ua 1[0] 0[0] 0[0]

ta 0[0] 0[0] 0[1]

Out Down Across

Sa

We are going to show:

• Both states (Down, ta, In, tb) and (Out, ua, In, tb) satisfy RCIBR but not RCSBR.

We first identify strategy-type pairs that are rational. For player Ann, it is easy to

show that strategy sa = Down maximizes type ta’s expected payoff and strategy sa = Out

maximizes type ua’s expected payoff. For player Bob, strategy sb = In maximizes type tb’s

expected payoff. Thus we have:

Ra
1 = {(Down, ta), (Out, ua)}

Rb
1 = {(In, tb)}

Initial beliefs:

Both Ann’s type ta and uaassign probability 1 to (In, tb), so we have IBa(Rb
1) = {ta, ua}.

Bob’s type tb assigns probability 1 to (Out, ua) ∈ Ra
1, so we have IBb(Ra

1) = {tb}.

Then we have:

Ra
2 = Ra

1 ∩ (Sa × IBa(Rb
1))

= {(Down, ta), (Out, ua)} ∩ ({Out,Down,Across} × {ta, ua})

= Ra
1

Similarly, Rb
2 = Rb

1, and Ra
3 = Ra

2 ∩ (Sa × IBa(Rb
2)) = Ra

2 = Ra
1. Mathematical induction

gives:

Ra
m = Ra

m−1 = Ra
1 ⇒ Ra

m+1 = Ra
m = Ra

1

Similar result for Bob. Therefore we have

Rm = Ra
m ×Rb

m = Rm−1

⇒ ∩∞m=1Rm = Ra
1 ×Rb

1

= {(Down, ta, In, tb), (Out, ua, In, tb)}
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Thus both states satisfy rationality and common initial belief of rationality.

Strong beliefs:

At the second node of the game, Bob’s information setH = {Ann would play “Down” or “Across”}.
Thus

H × T a = {(Down, ta), (Down, ua), (Across, ta), (Across, ua)}

Bob’s type tb assigns probability 0 to (Down, ta) ∈ Ra
1, but assigns probability 1 to

(Across, ta) /∈ Ra
1. So we have SBb(Ra

1) = ∅. Thus ∩∞m=1Rm = ∅. No state belongs to ∅.
Hence neither state satisfies RCSBR.

The results are summarized in the following table:

State RCIBR RCSBR
(Down, ta, In, tb)

√
×

(Out, ua, In, tb)
√

×
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7.2 Other Figures and Tables

Figure 14: Average Frequency of B’s Best Responding to Own Conditional Belief, Across Periods

Note: Figure on top compares the average frequency of B’s best responding to his/her stated conditional
belief if B is conditionally consistent (blue curve), the frequency from the Baseline Centipede treatment
(purple curve), and the frequency from the Constant-Sum treatment (yellow curve). Figure at bottom
adds the average frequency from the No-Mutual-Benefit treatment (green curve), to the comparison.
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Figure 15: Accuracy of A’s Belief, Across Periods

Note: Figure on top compares the average accuracy of A’s belief if RCBR holds (blue curve), the actual
accuracy from the Baseline Centipede treatment (purple curve), and the actual accuracy from the Constant-
Sum treatment (yellow curve). Figure at bottom adds the actual accuracy from the No-Mutual-Benefit
treatment (green curve), to the comparison.
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Figure 16: Accuracy of B’s Belief, Across Periods

Note: Figure on top compares the average accuracy of B’s initial belief if RCIBR holds(blue curve), the
actual accuracy from the Baseline Centipede treatment (purple curve), and the actual accuracy from the
Constant-Sum treatment (yellow curve). Figure at bottom adds the actual accuracy from the No-Mutual-
Benefit treatment (green curve), to the comparison.
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7.3 Laboratory Instructions

INSTRUCTIONS

Welcome! Thank you for participating in this experiment. This experiment studies decision-

making between two individuals. In the following one hour or less, you will participate in

15 rounds of decision making. Please read the instructions carefully; the cash payment you

earn at the end of the experiment may depend on how well you understand the instructions

and make your decisions accordingly.

Your Role and Decision Group

Half of the participants will be randomly assigned the role of Member A and half will be

assigned the role of Member B. Your role will remain fixed throughout the experiment. In

each round, one Member A will be paired with one Member B to form a group of two.

The two members in a group make decisions that will affect their earnings in the round.

Participants will be randomly rematched with another member of the opposite role after

each round.

Your Choice Task(s) in Each Round

In each round, each group will face the three-stage decision task shown in Figure 17. The

nodes represent choice stages, the letters above the nodes represent the member who is

going to make a choice, and the numbers represent the points one will earn, with A’s

points on top and B’s points at bottom.

• In the 1st stage A must decide between two options: Out or In. If A chooses Out,

the task ends with A receiving 20 and B 10 points. If A chooses In, the task proceeds

to the 2nd stage.

• In the 2nd stage B must decide between two options: Out or In. If B chooses Out,

the task ends with A receiving 10 and B 40 points. If B chooses In, the task proceeds

to the 3rd stage.

• In the 3rd stage A must choose again between two options: Out or In. If A chooses

Out, A will receive 40 and B 30 points. If A chooses In, A will receive 25 and B 45

points.
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Figure 17

Member A’s Choice Task

You will be asked to specify your choices for both stage 1 and 3 through a computer

interface. For each stage, you can choose one and only one option. Note that you will be

making your choices at the same time your partner B is making his or her choice. So you

don’t know what B chooses. The choices you make here will be carried out automatically

by the computer later on. You will not have an opportunity to revise them.

Member B’s Choice Task

You will be asked to specify your choice for stage 2 through a computer interface. You can

choose one and only one option. Note that you will be making your choice at the same

time your partner A is making his or her choices. So you don’t know what A chooses. The

choice you make here will be carried out automatically by the computer later on. You will

not have an opportunity to revise it.

Forecast Tasks in Each Round

Besides having the opportunity to earn points in the choice task, you will also be given the

opportunity to earn extra points by making forecast(s).

Member A’s Forecast Task

Your partner, Member B, has made a choice for stage 2. Please select the statement that

you believe is more likely:

- Statement I: Member B has chosen In.
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- Statement O: Member B has chosen Out.

You will earn 5 points if your forecast is correct (i.e. if Member B chooses In and you

select Statement I, or B chooses Out and you select Statement O). You will earn nothing

otherwise.

Member B’s Forecast Task(s)

Your partner, Member A, has made choices for both stage 1 and 3; also, he or she is

selecting between Statement I and Statement O, each of which is a statement about

the choice you just made for stage 2. Which choices do you think your partner A has made

for his or her stages, and which statement do you think your partner A is selecting?

Notice that A’s selections can be expressed in the table below. The column represents
A’s selection of statement, the row represents A’s choices for 1st and 3rd stages. So each
cell represents an outcome of A’s choices and statement. For example, the upper-left cell
represents the outcome that A has chosen Out for 1st stage, In or Out for 3rd stage, and
Statement I.

Statement I �

Statement O

1st Stage Out, 3rd In or Out 1st Stage In, 3rd Stage Out 1st Stage In, 3rd Stage In

Your first forecast task

Your first task is to forecast the percent chance that each of the six outcomes happens. A

percent chance is a number between 0 and 100, where 100 means that you are certain that

such outcome is the correct one, and 0 means that you are certain that such outcome is

not the correct one. Enter the percent chance of each outcome into the corresponding cell.

If you leave any cell as blank it will be viewed as 0. Make sure the six numbers sum up to

100.

You will earn 5 points if your forecast exactly coincide with your partner A’s statement

and choices. If your forecast does not exactly coincide with your partner A’s choice and

statement, you will receive 5 points minus 2.5 times a penalty amount. The penalty amount

is the sum of squared distances between each of the six numbers you entered and the correct

answer, i.e. the outcome from A’s selection.

Example: Suppose you believe that with 80 percent chance A has chosen to play In
for 1st and Out for 3rd stage, and has selected Statement I ; with 15 percent chance A
has chosen to play In for 1st and Out for 3rd stage, and has selected Statement O ; with
5 percent chance A has chosen to play In for 1st and In for 3rd stage, and has selected
Statement O, you should enter the numbers as below:

Statement I 0 80 0

Statement O 0 15 5 �

1st Stage Out, 3rd In or Out 1st Stage In, 3rd Stage Out 1st Stage In, 3rd Stage In
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Now suppose your partner A has chosen In for 1st and In for 3rd stage, and has selected

statement O. The penalty amount is (100/100− 5/100)2 + (0− 80/100)2 + (0− 15/100)2 =

1.54. So you earn 5− 2.5 ∗ 1.54 = 1.15 from this forecast.

Your second forecast task

After the computer carries out your partner’s and your choices, you will be informed if your

partner A has chosen In for stage 1. Now you have a chance to make a second forecast. A

four-cell table will be presented to you. (The first column of the table in your first forecast

task is removed because A has chosen In for stage 1.) Please make a percent chance forecast

again. Your penalty amount and earning point are calculated in the same way as in your

first forecast task.

Final Comments

At the end of this experiment one round will be randomly selected to count for payment.

Your earning in each round is the sum of the points you earn from the choice task and the

forecast task(s). The exchange rate between points and US dollars is 2.5 : 1. Your cash

payment will be your earning in US dollars plus the $5 show-up fee.

Your decisions and your payment will be kept confidential. You have to make decisions

entirely on your own. Please do not talk to others. If you have any question at any time,

raise your hand and the experimenter will come and assist you individually. Please turn

off your cell phone and other electronic devices.

If you have any question, please raise your hand now. Otherwise we will proceed to the

quiz.
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