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Abstract

Dekel et al. (J Econ Theory 89 (1999) 165-185) offered a solution con-
cept of “rationalizable self-confirming equilibrium (RSCE)” as the steady
state where rational individuals observe the played actions and use the in-
formation about opponents’ payoffs in forming the beliefs about opponents’
behavior off the equilibrium path. In this paper we investigate epistemic con-
ditions for RSCE from a decision-theoretic point of view. Within a standard
semantic framework, we formulate and show, by using the notion of “condi-
tional probability system (CPS),” that RSCE is the logical consequence of
common knowledge of rationality and mutual knowledge of the actions along
the path of play. In this paper, we also apply this epistemic approach to
other related solution concepts such that self-confirming equilibrium (SCE)
and sequential rationalizable self-confirming equilibrium (SRSCE).
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1 Introduction

In extensive games, Fudenberg and Levine (1993) presented a solution concept of “self-

confirming equilibrium (SCE)” which arises as a steady state where players correctly

predict the moves their opponents actually make, but may have misconceptions about

what their opponents would do at information sets that are never reached when the

equilibrium is played. That is, the notion of SCE is designed to model situations where

players have no a priori information about opponents’ play or payoffs and, when each time

the game is played, they observe only the actions actually played by their opponents along

the equilibrium path; cf. also Fudenberg and Kreps (1995) and Fudenberg and Levine

(2006, 2009). A particular and noteworthy feature of SCE is that beliefs about off-path

play are completely arbitrary so that players may hold false and inconsistent belief about

off-path play; in particular, the notion of SCE allows players to use a “noncredible”

threats in beliefs about off-path play (see Dekel et al. (1999, Fig. 2.1)). If, however,

players can use information about opponents’ payoffs and think strategically, players

should be able to deduce and make use of information about opponents’ payoff functions

and, thus, can alleviate inconsistency in players’ beliefs about off-path play. To fulfil this

purpose, Dekel et al. (1999, 2001) provided a solution concept of “rationalizable self-

confirming equilibrium (RSCE)” which refines SCE by requiring a player’s rationality at

the player’s information sets that are not precluded by his own strategy. Dekel et al.

(1999) showed that RSCE is robust to payoff uncertainty in the sense of Fudenberg et

al. (1988). Dekel et al. (1999, Sec. 4) also defined a stronger concept of “sequentially

rationalizable self-confirming equilibrium (SRSCE)” by requiring a player’s rationality at

all of the player’s information sets, so that the sequential rationalizability notion implies

backward induction in finite games of perfect information with generic payoffs; SRSCE

is related to Greenberg et al.’s (2009) notion of “mutually acceptable course of action

(MACA).”

The purpose of this paper is to offer a simple epistemic characterization for RSCE. This

line of study can help to deepen our understanding of RSCE and other related solution

concepts from an epistemic perspective. In doing so, a technical difficulty encountered in

dynamic extensive-form game models is, when facing with strategic uncertainty, how to

model a player’s beliefs about opponents’ play in every contingency, including informa-

tion sets that the player thinks will not actually arise. Inspired by Selten’s (1975) idea
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of “trembles,” Dekel et al. (2002) defined the “extensive-form convex hull” of a set of

behavior strategies to model a player’s beliefs about the play of an opponent’s strate-

gic behavior in extensive games; cf. also Greenberg et al. (2009, pp.95-98) for related

discussions. In this paper, we use the notion of “conditional probability system (CPS)”

introduced by Myerson (1986) to represent players’ beliefs and provide an epistemic char-

acterization for the solution concept of RSCE. More specifically, each player is assumed

to hold an “independent” CPS over on the product of action spaces in the agent-normal

form of an extensive game, which is based on the information along the path of play.

Within a standard semantic framework or Aumann’s model of knowledge, we formulate

and show that RSCE is the logical consequence of mutual knowledge of actions and

rationality along the path of play and common knowledge of rationality off the path

of play (see Theorem 3.1 and Corollary 3.1). This result provides a unifying epistemic

approach to other related solution concepts such as SCE and SRSCE; we demonstrate,

in this paper, how various epistemic characterizations for related solution concepts can

be derived by varying the restrictions of rationality (see Corollaries 3.2 and 3.3).

The rest of this paper is organized as follows. Section 2 contains some preliminary

notation and definitions. Section 3 presents a simple epistemic characterization for RSCE

and discusses its epistemic relations to other related solution concepts such as SCE and

SRSCE. Section 4 offers concluding remarks.

2 Notation and Definitions

Since the formal description of an extensive game is by now standard (see, for instance,

Kreps and Wilson (1982) and Kuhn (1954)), only the necessary notation is given below.

Consider a (finite) extensive-form game with perfect recall:

T ≡ (N,V,H,
©
Ah
ª
h∈H , {ui}i∈N),

where N = {1, 2, . . . , n} is the (finite) set of players, V is the (finite) set of nodes (or

vertices), H is the set of information sets (which is a partition of nonterminal nodes), Ah

is the (finite) set of pure actions available at information set h, and ui is player i’s payoff

function defined on terminal nodes. A mixed action at information set h is a probability

measure on Ah. Denote the set of mixed actions at h by 4Ah. Denote the collection of
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player i’s information sets by Hi. Denote by A ≡ ×h∈HAh the set of actions.

A behavior strategy of player i is a function, πi, that assigns some randomization

πi(h) ∈ 4Ah to every h ∈ Hi. Let Πi be the set of player i’s behavior strategies. Denote

the set of behavior strategy profiles by Π, i.e. Π = ×j∈NΠj. For π ∈ Π, we denote by
ui(π) player i’s (expected) payoff if strategy profile π is adopted from the root of the game.

For π ∈ Π, we denote by π(h) the mixed action of π at h, and denote by π(−h) the profile
of mixed actions of π at all information sets other than h. Given π ∈ Π, let Hπ be the set

of information sets reached with positive probability under π. Denote by Hi
π = Hπ ∩Hi

the set of player i’s information sets reached by π and Hi
πi
= ∪π−i∈Π−iHi

(πi,π−i) the set of

player i’s information sets that are reachable under πi.

Write πki Ã πi for the “trembling” sequence
©
πki
ª∞
k=1

of strictly positive behavior

strategies in Πi that converges to πi.

2.1 RSCE: A Definition

Dekel et al. (1999) proposed a solution concept of “rationalizable self-confirming equilib-

rium (RSCE)” for extensive games where players learn the path of the play and incor-

porate the information of opponents’ payoffs into the original notion of SCE. Following

Dekel et al. (1999), an assessment ηi for player i is a function that assigns a probability

measure over the nodes at each of his own information sets. A belief of player i is a

pair (ηi, π
i
−i ) where ηi is player i’s assessment and πi−i = (πij)j 6=i represents player i’s

conjecture about opponents’ strategies. A version of player i is a strategy-belief pair

vi = (πi, (ηi, π
i
−i )). Given a version vi = (πi, (ηi, π

i
−i )), πi (h) is a best response with

respect to (πi, (ηi, π
i
−i )) at h ∈ Hi if

ui
¡
πi, π

i
−i|h, ηi (h)

¢ ≥ ui
¡
ah,
¡
πi, π

i
−i
¢
(−h) |h, ηi (h)

¢ ∀ah ∈ Ah

where ui (π|h, ηi (h)) represents player i’s conditional expected payoff given that informa-
tion set h is reached, that player i’s assessment is given by ηi(h), and that the strategies

are π.

A version vi = (πi, (ηi, π
i
−i )) is consistent (Kreps and Wilson (1982)) if ηi,k → ηi

where ηi,k is obtained using Bayes rule from a trembling sequence πi−i,k Ã πi−i. A belief

model V = (V1, V2, ..., Vn) where Vi is the set of consistent versions for player i.
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A strategy πi of player i is in the extensive-form convex hull of a subset Πi ⊆ Πi

(Dekel et al. (2002)), denote by coe (Πi), if there is an integer m, strategies {πi,t}t=1, ...,m
in Πi, sequences of strictly positive behavior strategies πi, t, k Ã πi,t, and a sequence

αk → α of probability distributions on [1, ..., m], such that the behavior strategies πi, k,

which is outcome-equivalent to convex combination
Pm

t=1 αt,k πi, t, k, converges to πi (in

this situation we denote by πi, k Ã πi ∈ coe (Πi)).

Dekel et al. (1999 & 2002) defined SCE, RSCE and SRSCE as strategy profiles.

Since only the path of play is essential in these notions, we give the following alternative

definition in terms of paths of play.

Definition 2.1 (Dekel et al. 1999 & 2002). Let bπ be a path of play. Given a belief
model V = (V1, V2, ..., Vn), for every player i ∈ N and every

¡
πi,
¡
ηi, π

i
−i
¢¢ ∈ Vi, we

consider the following conditions for V :

(1) ∀h ∈ Hi
πi
, πi (h) is a best response with respect to (ηi, π

i
−i).

(1’) ∀h ∈ Hi
(πi,πi−i)

, πi (h) is a best response with respect to (ηi, π
i
−i).

(1”) ∀h ∈ Hi, πi (h) is a best response with respect to (ηi, π
i
−i).

(2) the path of play resulting from (πi, π
i
−i) is bπ.

(3) ∀j 6= i, πij ∈ coe (Πj) where Πj = {πj : (πj, (ηj, πj−j)) ∈ Vj for some belief

(ηj, π
j
−j)}.

The path bπ is a rationalizable self-confirming equilibrium (RSCE) if there is a belief model
V satisfying (1), (2) and (3), bπ is a self-confirming equilibrium (SCE) if there is a belief

model V satisfying (1’), (2) and (3), and bπ is a sequential rationalizable self-confirming
equilibrium (SRSCE) if there is a belief model V satisfying (1”), (2) and (3).

Dekel et al. (1999, p.173) showed, through the example of Selten’s Horse, that arbi-

trage and heterogeneous false beliefs about off-path play can lead to non-Nash outcomes:

SCE, RSCE and SRSCE all can arrive at a steady state that cannot arise in Nash equi-

librium. The following example illustrates the differences in SCE, RSCE and SRSCE.
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Fig. 1

In this game depicted in Fig. 1, it is easy to verify that the path outcomes of SCE, RSCE

and SRSCE are as follows:

SCE: s1; c1s2; c1c2c3

RSCE: s1; c1c2c3

SRSCE: c1c2c3

While the path s1 can arise in RSCE by using a “rationalizable” belief that player 2 will

play s2 with probability 1, the path c1s2 cannot arise in RSCE (since player 1’s second

decision node is not precluded by his strategy and, thus, the rationality at this decision

node requires player 1’s choice to be c3). The unique backward induction outcome: c1c2c3
coincides with the unique path outcome of SRSCE.

2.2 CPS in Extensive Games

In this paper, we consider the “conditional probability system (CPS)” on the space, A =

×h∈HAh, of action profiles in the agent-normal form of T . Accordingly, a CPS on A can

be viewed as a conditional-probability function which is defined at every information set,

including those are not reached, a probability distribution on agents’ actions. Formally, a

CPS μ| on A is a function that specifies, for every nonempty subset B ⊆ A, a conditional

probability distribution μ|B given B and satisfies the property:

μ|B(D) = μ|C(D)μ|B(C) for D ⊆ C ⊆ B ⊆ A.

See, e.g., Myerson (1991, Sec. 1.6).

Denote by

A (h) ≡ {a ∈ A : a reaches h}
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the set of action profiles by each of which h can be reached. For i ∈ N and h ∈ Hi,

ah ∈ Ah is a best response with respect to a CPS μ| on A if

X
a−h∈A−h

μ|−hA(h)(a−h)ui(ah, a−h) ≥
X

a−h∈A−h
μ|−hA(h)(a−h)ui(bh, a−h) ∀bh ∈ Ah

where μ|−hA(h) is the margin of μ |A(h) on A−h,1 which specifies the agent h’s belief about

opponents’ choices given that information set h is reached.

By Myerson’s (1986) Theorem 1, a CPS on a (finite) state space can be expressed by

a convergent sequence of “full-support” probability distributions over the state space. A

CPS μ| on A is associated with a probability distribution p (on A), denoted by μ|[pkÃp], if

there exists a sequence of probability distributions pk → p such that:

(i) For k = 1, 2, ... and every a ∈ A, pk(a) > 0;

(ii) For any B, C ⊆ A with B 6= ∅, μ|B(C) = limk→∞
pk(B∩C)
pk(B)

.

For the purpose of this paper, we say “a CPS μ| on A is independent” if μ| = μ|[pkÃp]

where pk are product measures on the (product) space A; cf., e.g., McLennan (1989) for

more discussions.

The following lemma is an immediate implication of Myerson’s (1986) Theorem 1,

which states a relationship between “sequential rationality” and “conditionally preference

ordering by CPS.”

Lemma 1. Let πj,k Ã πj ∀j ∈ N . For all h ∈ Hi, πi (h) is a best response with respect

to a consistent version (πi, (ηi, π−i )) with πj,k Ã πj ∀j 6= i if, and only if, πi (h) is

preferred to ah with respect to μ|[πkÃπ] for all ah ∈ Ah.

For any subset Π ⊆ Π, let

coe (Π) = ×j∈Ncoe (Πj) ,

1The margin of μ|A(h) on A−h is defined as probability measure on A−h such that

∀a−h ∈ A−h, μ|−hA(h)
¡
a−h

¢ ≡ X
ah∈Ah

μ|A(h)
¡
ah, a−h

¢
.
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where Πj = {πj : (πj, π−j) ∈ Π}. Written πk Ã π ∈ coe (Π) for “πj,k Ã πj ∈ coe (Πj)

∀j ∈ N .” Define

ICPSe(Π) ≡ ©μ| : μ| = μ|[πkÃπ] for some πk Ã π in coe (Π)
ª
.

That is, ICPSe(Π) is the set of all independent CPS on A that can be generated by

π ∈ coe (Π).

3 Epistemic Characterization of RSCE

Following Aumann (1976, 1987, 1995, and 1999), we provide, within the standard partition

model, epistemic conditions for RSCE by common knowledge of “rationality” and mutual

knowledge of the equilibrium path. A model of knowledge for game T is given by

M(T ) =< Ω, {Pi}i∈N , {πi}i∈N , {μi|}i∈N > ,

where
Ω is the set of states
Pi(ω) is player i’s information partition at ω
πi(ω) is player i’s behavior strategy at ω
μi|(ω) is player i’s conditional belief systems at ω

.

We refer to a subset E ⊆ Ω as an event. For an event E ⊆ Ω, we take the following

standard definitions.

• KiE ≡ {ω ∈ Ω| Pi(ω) ⊆ E} is the event that i knows E.

• KE ≡ ∩i∈NKiE is the event that E is mutually known.

• CKE ≡ KE ∩ KKE ∩ KKKE ∩ · · · is the event that E is commonly

known.

For E ⊆ Ω, we denote by

π(E) ≡ {π(ω) : ω ∈ E}.

Throughout this paper, we assume πi (·) is measurable w.r.t. information partition Pi —

i.e. πi(ω) = πi(ω
0) ∀ω0 ∈ Pi(ω).
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Agent h ∈ Hi is rational at ω if πi(ω)(h) is a best response with respect to μi|(ω)
∈ ICPSe(π(Pi(ω)). For every i ∈ N and every h ∈ Hi, denote by

R̊h ≡ ©ω : agent h is robust-rational at ω if h ∈ Hi
πi(ω)

ª
,

i.e., R̊h represents the event that agent h is robust-rational whenever information set h is

not excluded by his strategy choice. Let

R̊i ≡ ∩h∈HiR̊h and R̊ ≡ ∩i∈NR̊i.

For any given path of play π̂, let

R̊π̂ ≡ ∩h∈Hπ̂
R̊h and R̊−π̂ ≡ ∩h6∈Hπ̂

R̊h,

where Hπ̂ is the information sets That is, R̊π̂ is the event that players are robust-rational

at the information sets along the path π̂ and R̊−π̂ is the event that players are rational

at the off-path information sets.

The path of play under π can be viewed as the restriction of π to reachable information

sets: bπ = ×h∈Hππ(h).

Denote by π̂ the restriction of π to Hπ̂, i.e., π̂(ω)= π|Hπ̂
(ω) ∀ω ∈ Ω. Let

[π̂] ≡ {ω : π̂(ω) = π̂} ,

i.e., [π̂] is the event that the path of play is π̂.

We are now in a position to present the central result of this paper which provides a

simple epistemic characterization for the notion of RSCE. Theorem 3.1 states that mutual

knowledge of a path of play, robust-rationality along the information sets prescribed

by the path, and common knowledge of robust-rationality at off-path information sets,

imply an RSCE. Conversely, any RSCE can be attained by the aforementioned epistemic

assumptions.

Theorem 3.1 (a) Let ω ∈ (K[π̂] ∩ R̊π̂) ∩ CKR̊−π̂. Then, π̂(ω) = π̂ is an RSCE. (b)

Let π̂ be an RSCE. Then, there is a knowledge model M (T ) such that π̂(ω) = π̂ for all

ω ∈ (K[π̂] ∩ R̊π̂) ∩ CKR̊−π̂.
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Proof. (a) For any i ∈ N , define

Πi = {πi(ω) : ω ∈ (K[π̂] ∩ R̊π̂) ∩ CKR̊−π̂},

and let Π ≡ ×i∈NΠi.

Clearly, if h ∈ Hπ̂, π(h) = π̂(h) for all π ∈ Π. That is, for all π ∈ Π, π has the same

distribution over outcomes as induced by π̂.

(i) For any i ∈ N, πi ∈ Πi, there exists ω ∈ (K[π̂]∩R̊π̂)∩CKR̊−π̂ such that πi(ω) = πi.

Since ω ∈ R̊π̂ ∩ CKR̊−π̂, ω ∈ R̊. Therefore, ∀i ∈ N there is μi|(ω) ∈ ICPSe(π(P i(ω))

such that ∀h ∈ Hπi(ω),πi(ω)(h) is a best response with respect to μi|A(h)(ω).
(ii) Let ω ∈ (K[π̂]∩R̊π̂)∩CKR̊−π̂. Since ω ∈ Ki[π̂], for all ω0 ∈ Pi(ω), π(ω0)(h) = π̂(h)

for all h ∈ Hπ̂. That is, for all ω0 ∈ Pi(ω), π(ω0)(h) = π(ω)(h) for all h ∈ H π̂.

If h /∈ Hπ̂, then ∀ω0 ∈ Pi(ω),

π(ω0)(h) ∈ {π(ω00)(h) : ω00 ∈ CKR̊−π̂} (since Pi(ω) ⊆ CKR̊−π̂)

= {π(ω00)(h) : ω00 ∈ CKR̊−π̂ ∩ (K[π̂] ∩ R̊π̂)}.

Therefore, π(Pi(ω)) ⊆ Π. Since πi (ω) = πi (ω
0) ∀ω0 ∈ Pi (ω), π(Pi(ω)) ⊆ {πi} ×Π−i for

all ω ∈ (K[π̂] ∩ R̊π̂) ∩ CKR̊−π̂.

By (i) and (ii), it follows that for every i ∈ N and πi ∈ Πi, there is a μi| ∈ ICPSe(Π)

such that for every h ∈ Hπi, πi(h) is a best response with respect to μi|A(h). Thus, there
exists πk Ã π ∈ coe (Π) such that μi| = μ|[πkÃπ], and ∀h ∈ Hπ̂, π(h) = π̂(h). By Lemma

1, ∀i ∈ N and πi ∈ Πi, there exists (ηi, π
i
−i ), which is consistent with πk Ã π, such that

∀h ∈ Hπi, πi(h) is best response with respect to (ηi, π
i
−i ). As ∀j 6= i, πj,k Ã πj ∈ coe (Πj)

and πj = πij, π
i
j ∈ coe (Πj). That is, ∀h ∈ Hπ̂

¡
πi, π

i
−i
¢
(h) = π̂(h).

For all ∀i ∈ N , let

Vi ≡
⎧⎨⎩ (πi (ω) , (ηi, π

i
−i )) :

(ηi, π
i
−i ) is consistent with πk Ã π
where μ|[πkÃπ] = μi| (ω)

and ω ∈ (K[π̂] ∩ R̊π̂) ∩ CKR̊−π̂

⎫⎬⎭ ,
and V ≡ (V1, V2, ..., Vn). Then, for all i ∈ N and

¡
πi,
¡
ηi, π

i
−i
¢¢ ∈ Vi, we have

(1) ∀h ∈ Hπi, πi (h) is a best response with respect to (ηi, π
i
−i).

(2)
¡
πi, π

i
−i
¢
has the distribution over outcomes induced by π̂.

(3) ∀j 6= i, there exists πij ∈ coe (Πj) where Πj = {π0j : (π0j, (ηi, πj−j)) ∈ Vj for some
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belief (ηi, π
j
−j)}.

That is, ∀ω ∈ (K[π̂] ∩ R̊π̂) ∩ CKR̊−π̂, π̂ (ω) = π̂ and π̂ is an RSCE.

(b)Let π̂ be an RSCE that is supported by V = (V1, V2, ..., Vn).

We proceed to show a stronger result that there isM (T ) such that π̂ (ω) = π̂ for all

ω ∈ CK([π̂] ∩ R̊) 6= ∅. For all i ∈ N , for every (πi, (ηi, π
i
−i)) ∈ Vi,

(1) ∀h ∈ Hπi, πi (h) is a best response with respect to (ηi, π
i
−i).

(2)
¡
πi, π

i
−i
¢
has the distribution over outcomes induced by π̂.

(3) ∀j 6= i, there exists πij ∈ coe (Πj) where Πj = {π0j : (π0j, (ηi, πj−j)) ∈ Vj for some

belief (ηi, π
j
−j)}.

Let μi| (πi) = μ|[πkÃπ] such that πi, k Ã πi ∈ coe ({πi}), and πij, k Ã πij ∈ coe (Πj) ∀j 6= i.

Clearly, μi| (πi) ∈ ICPSe ({πi} ×Π−i). Define a knowledge model for game T :

M (T ) =< Ω, {Pi}i∈N , {πi}i∈N , {μi|}i∈N > ,

such thatΩ =
n¡

πj, μj| (πj)
¢
j∈N : πj ∈ Πj,∀j ∈ N

o
and for all i ∈ N and ω =

¡
πj, μj| (πj)

¢
j∈N

in Ω,
πi (ω) = πi, μi| (ω) = μi| (πi) and
Pi (ω) = {ω0 ∈ Ω : πi (ω

0) = πi and μi (ω
0) = μi (πi)}.

Now, consider any arbitrary ω =
¡
πj, μj| (πj)

¢
j∈N ∈ Ω. By Lemma 1, it follows that for

all i ∈ N and h ∈ Hπi, πi (ω) (h) is a best response with respect to μi|A(h) (ω). Since
μi| (πi) ∈ ICPSe ({πi} ×Π−i), μi| (ω) ∈ ICPSe (π (Pi (ω))) ∀i ∈ N . Therefore, ω ∈ R̊.

But, since π̂ (ω) = π̂, ω ∈ [π̂]. Therefore, Ω = R̊ ∩ [π̂] and, hence, π̂ (ω) = π̂ for all

ω ∈ CK([π̂] ∩ R̊) = Ω. ¥

An immediate corollary of Theorem 3.1 gives a more readily expressible and readable

form of epistemic assumptions of RSCE: The notion of RSCE can be viewed as the logical

consequence of common knowledge of robust-rationality plus mutual knowledge of a path

of play.

Corollary 3.1 (a) Let ω ∈ K[π̂] ∩ CKR̊. Then, π̂(ω) = π̂ is an RSCE. (b) Let π̂ be

an RSCE. Then, there is a knowledge model M (T ) such that π̂(ω) = π̂ for all ω ∈
K[π̂] ∩ CKR̊.

This theorem says that mutual knowledge of the on-path actions, robust-rationality

along on-path information sets, and common knowledge of robust-rationality at off-
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path information sets lead to “rationalizable self-confirming equilibrium (RSCE).” The

“robust-rationality” is defined only at reachable information sets, rather than at all in-

formation sets. In particular, this “rationality” at off-path information sets does require

that each player be optimal at all these information sets, but it requires only that each

player be optimal at the information sets that are not precluded by the player’s strategy

at the state. Dekel et al. (1999) showed that the notion of RSCE is not robust to the

presence of a small amount of payoff uncertainty in the sense of Fudenberg et al. (1988).

The epistemic assumption of “common knowledge of robust-rationality at off-path in-

formation sets” can be justified by using the prior payoff information (cf. Dekel et al.

(1999)).

In Fudenberg and Levine (1993) and Fudenberg and Kreps (1995), players are assumed

to have no a prior information about each others’ payoffs, and only observe the actions

chosen by their opponents. In such an environment, Fudenberg and Kreps (1995) proposed

the solution concept of “self-confirming equilibrium (SCE)” in which players’ behavior is

required to be optimal only at the observed information sets and players’ behavior at off

the equilibrium path information sets imposes no requirement of rationality. Without

imposing any “rationality” restriction on the off-path behavior, we obtain an epistemic

characterization for SCE as a corollary of Theorem 3.1.

Corollary 3.2 (a) Let ω ∈ K[π̂]∩ R̊π̂. Then, π̂(ω) = π̂ is an SCE. (b) Let π̂ be an SCE.

Then, there is a knowledge model M (T ) such that π̂(ω) = π̂ for all ω ∈ K[π̂] ∩ R̊π̂.

Proof. (a) For any i ∈ N , define

Πi = {πi(ω) : ω ∈ K[π̂] ∩ R̊π̂,

and let Π ≡ ×i∈NΠi.

Clearly, if h ∈ Hπ̂, π(h) = π̂(h) for all π ∈ Π. That is, for all π ∈ Π, π has the same

distribution over outcomes as induced by π̂.

(i) For any i ∈ N , πi ∈ Πi, there exists ω ∈ K[π̂] ∩ R̊π̂ such that πi(ω) = πi. Since

ω ∈ K[π̂] ∩ R̊π̂, ω ∈ R̊π̂. Therefore, ∀i ∈ N there is μi|(ω) ∈ ICPSe(π(P i(ω)) such that

∀h ∈ Hπ̂ ∩Hi, πi(ω)(h) is a best response with respect to μi|A(h)(ω).
(ii) Since ω ∈ K[π̂] ∩ R̊π̂, ω ∈ Ki[π̂] ⊆ [π̂]. Then, for all ω0 ∈ Pi(ω), π(ω0)(h) = π̂(h)

for all h ∈ Hπ̂. That is, for all ω0 ∈ Pi(ω), π(ω
0)(h) = π(ω)(h) for all h ∈ Hπ̂. Therefore,
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π(Pi(ω)) ⊆ Π. Since πi (ω) = πi (ω
0) ∀ω0 ∈ Pi (ω), π(Pi(ω)) ⊆ {πi} × Π−i for all

ω ∈ K[π̂] ∩ R̊π̂.

By (i) and (ii), it follows that for every i ∈ N and πi ∈ Πi, there is a μi ∈ ICPSe(Π)

such that for all h ∈ Hπ̂ ∩ Hi, πi(h) is best response with respect to μi. Thus, there

exists πk Ã π ∈ coe (Π) such that μi| = μ|[πkÃπ], and ∀h ∈ Hπ̂, π(h) = π̂(h). By Lemma

1, ∀i ∈ N and πi ∈ Πi, there exists (ηi, π
i
−i ), which is consistent with πk Ã π, such

that ∀h ∈ H(πi, πi−i )
∩ Hi, πi(h) is best response with respect to (ηi, π

i
−i ). As ∀j 6= i,

πj,k Ã πj ∈ coe (Πj) and πj = πij, π
i
j ∈ coe (Πj). That is, ∀h ∈ Hπ̂

¡
πi, π

i
−i
¢
(h) = π̂(h).

For all i ∈ N , let

Vi ≡
⎧⎨⎩ (πi (ω) , (ηi, π

i
−i )) :

(ηi, π
i
−i ) is consistent with πk Ã π
where μ|[πkÃπ] = μi| (ω)
and ω ∈ K[π̂] ∩ R̊π̂

⎫⎬⎭ ,
and V ≡ (V1, V2, ..., Vn). Then, for all i ∈ N and

¡
πi,
¡
ηi, π

i
−i
¢¢ ∈ Vi, we have

(1’) ∀h ∈ H(πi, πi−i )
∩Hi, πi (h) is a best response with respect to (ηi, π

i
−i).

(2)
¡
πi, π

i
−i
¢
has the distribution over outcomes induced by π̂.

(3) ∀j 6= i, there exists πij ∈ coe (Πj) where Πj = {π0j : (π0j, (ηi, πj−j)) ∈ Vj for some

belief (ηi, π
j
−j)}.

That is, ∀ω ∈ K[π̂] ∩ R̊π̂, π̂ (ω) = π̂ and π̂ is an SCE.

(b) Let π̂ be an SCE that is supported by V = (V1, V2, ..., Vn).

We proceed to show a stronger result that there isM (T ) such that χ (ω) = π̂ for all

ω ∈ K([π̂] ∩ R̊π̂) 6= ∅. For all i ∈ N , for every (πi, (ηi, π
i
−i)) ∈ Vi,

(1’) ∀h ∈ H(πi, πi−i )
∩Hi, πi (h) is a best response with respect to (ηi, π

i
−i).

(2)
¡
πi, π

i
−i
¢
has the distribution over outcomes induced by π̂.

(3) ∀j 6= i, there exists πij ∈ coe (Πj) where Πj = {π0j : (π0j, (ηi, πj−j)) ∈ Vj for some

belief (ηi, π
j
−j)}.

Let μi| (πi) = μ|[πkÃπ] such that πi, k Ã πi ∈ coe ({πi}), and πij, k Ã πij ∈ coe (Πj)

∀j 6= i. Clearly, μi| (πi) ∈ ICPSe ({πi} ×Π−i). Define a knowledge model for game T :

M (T ) =< Ω, {Pi}i∈N , {πi}i∈N , {μi|}i∈N > ,

such thatΩ =
n¡

πj, μj| (πj)
¢
j∈N : πj ∈ Πj,∀j ∈ N

o
and for all i ∈ N and ω =

¡
πj, μj| (πj)

¢
j∈N
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in Ω,
πi (ω) = πi, μi (ω) = μi (πi) and
Pi (ω) = {ω0 ∈ Ω : πi (ω

0) = πi and μi (ω
0) = μi (πi)}.

Since
¡
πi, π

i
−i
¢
has the distribution over outcomes induced by π̂ and perfect recall, ∀h ∈

Hπ̂,
¡
πi, π

i
−i
¢
(h) = π̂(h). Now, consider any arbitrary ω =

¡
πj, μj| (πj)

¢
j∈N ∈ Ω. By

lemma 1, it follows that for all i ∈ N and h ∈ Hπ̂ ∩Hi, πi (ω) (h) is a best response with

respect to μi|A(h) (ω). Since μi| (πi) ∈ ICPSe ({πi} ×Π−i), μi| (ω) ∈ ICPSe (π (Pi (ω)))

∀i ∈ N . Therefore, ω ∈ R̊π̂. But, since π̂ (ω) = π̂, ω ∈ [π̂]. Therefore, Ω = R̊π̂ ∩ [π̂] and,
hence, π̂ (ω) = π̂ for all ω ∈ K([π̂] ∩ R̊π̂) = Ω. ¥

As pointed out, Dekel et al. (1999) defined RSCE by using robust-rationality. If

“rationality” is defined as the conventional (sequential) rationality in the sense of Kreps

and Wilson (1982) — i.e., it requires to be sequentially rational at every information

set, including those unreachable information sets, we can obtain a stronger version of

“sequentially rationalizable self-confirming equilibrium (SRSCE)”; see Dekel et al. (1999,

Sec. 4). Denoted by

Rh ≡ {ω : agent h is rational at ω} .
Denoted by Ri ≡ ∩h∈HiRh the event that player i is (sequential) rational at every his own

information sets and let R ≡ ∩i∈NRi.

For any given path of play π̂, let

Rπ̂ ≡ ∩h∈Hπ̂
Rh and R−π̂ ≡ ∩h6∈Hπ̂

Rh.

Rπ̂ is the event that players are (sequential) rational along on-path information sets

specified by strategy profile π̂, and R−π̂ is the event that players are (sequential) rational

at off-path information sets.

Corollary 3.3 (a) Let ω ∈ (K[π̂] ∩ Rπ̂) ∩ CKR−π̂. Then, π̂(ω) = π̂ is an SRSCE. (b)

Let π̂ be an SRSCE. Then, there is a knowledge model M (T ) such that π̂(ω) = π̂ for all

ω ∈ (K[π̂] ∩Rπ̂) ∩ CKR−π̂.

Proof. Corollary 3.3 follows immediately from Theorem 3.2 since Rh ⊆ R̊h. ¥
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4 Concluding Remarks

In extensive-form games, Fudenberg and Levine (1993) and Fudenberg and Kreps (1995)

presented a solution concept of “self-confirming equilibrium (SCE)” which arise as a

steady states where players have no prior information about opponents’ payoff functions

or strategies, and each player observes only the actions played by opponents at each

round of the game. Dekel et al. (1999) offered a solution concept of “rationalizable self-

confirming equilibrium (RSCE),” where each player observes only the actions played by

opponents at each round of the game and behaves rationally at all of his information sets

that are not precluded by his own strategy, as a refinement of SCE. In this paper, we

have carried out the epistemic program in game theory to explore epistemic conditions

for RSCE.

We have established a simple epistemic characterization of RSCE. More specifically,

by using the notion of “conditional probability system (CPS)” introduced by Myerson

(1986), we have defined “rationality” as conditional maximization through CPS beliefs

and, within a standard semantic framework, we have formulated and shown that RSCE is

the logical consequence of common knowledge of “robust-rationality” and mutual knowl-

edge of actions along the path. This paper therefore provides an epistemic counterpart of

RSCE in terms of what players know and believe about “rationality,” actions, informa-

tion, and knowledge in complex social environments with emerging a commonly observed

path.

This paper provides a unifying epistemic approach to other related game-theoretic

solution concepts such as SCE, and “sequential rationalizable self-confirming equilibrium

(SRSCE).” In this paper, we have shown how epistemic characterizations for various

related solution concepts can be obtained, in a direct and simple way, by varying the

requirements of “rationality,” as well as assuming different epistemic conditions to players

in the game. For instance, SCE can be formally represented as the result of mutual

knowledge of actions along the path and rationality along the path; it coincides with the

motivation of SCE where each player’s strategy is a best response to his beliefs about the

play of his opponents, and each player’s beliefs are correct along the equilibrium path of

play. The study of this paper is useful to deepen our understanding of RSCE and related

solution concepts in the literature.
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We would like to point out that, in this paper, we define “rationality” as conditional

expected maximization by “independent” CPS beliefs. This formalism is used to capture

the conventional notion of sequential rationality in Kreps and Wilson (1982). Greenberg

et al. (2009) presented a unified game-theoretic solution concept of “mutually acceptable

course of action (MACA)” suitable for situations where “perfectly” and “cautiously” ra-

tional individuals with different beliefs and views of the world agree to a shared course of

action. When the underlying course of action is taken as the form of “path of play,” MACA

delivers a strong perfect-version of SRSCE which can rule out weakly dominated strate-

gies. Luo and Wang (2013) provided expressible epistemic characterization for MACA by

using “lexicographic probability system (Blume et al. (1991a,b)).”
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