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Abstract

This paper analyzes the impact of local and global interactions on individuals’ action choices.
Players are located in a network and interact with each other with perfect knowledge of their
neighborhood and probabilistic knowledge of the complete network topology. Each player
chooses an action, from some finite set, which imposes an externality on their neighbors as
well as an externality on the complete network. Players deal with two opposing forces: they
obtain utility from sharing their choices with their neighbors (positive local externality) but
suffer disutility from sharing the same choice with all members of the network (negative
global externality). Economic and social phenomena exhibiting these features are: the adop-
tion of cost-reducing innovations, clusters of firms, time schedule choices, the adoption of
subcultures and fads, among others.

We find the conditions for the existence of all Bayesian Nash equilibria and translate
them to a characterization in terms of the main properties of the network topology. The ba-
lance between local satisfaction and global dissatisfaction partially explains the equilibrium
outcome. The players who finally decide the type of equilibria are those that are either highly
connected (hubs) or poorly connected (peripherals) to the others. On the one hand, hubs
try to coordinate their action choices, which will depend on the perceived congestion. On
the other, peripherals are only worried about congestion and play the less selected actions of
the network. Some examples illustrate our main results as well as the failure of equilibirum
existence for some congestion costs.
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1. Introduction

Many social and/or economic activities exhibit local externalities but, at the same time,
suffer from the inability of agents to coordinate their actions which, in turn, is a source
of congestion in societies. For instance, individuals following the same schedule have the
opportunity to share common time with others which is highly valuable for them: colleagues
in a firm can meet in their coffee break, friends can see each other after work to speak and
have a drink, relatives can get together in the evening on working days or at the weekend. But
these individuals access public services such as public transport, highways, sport facilities,
supermarkets, cinemas, airports, etc., which are usually congested at rush hours because
of the regularity of society’s schedules. As a result, individuals suffer the inconvenience of
sharing public services with many other people (global negative externality or congestion) in
order to share common time with colleagues, friends and relatives (positive local externality).
This effect has been called the tragedy of the commons in the analysis of air traffic congestion
(Mayer and Sinai [15]), but can be extended to many other contexts where there are multiple
agents who do not take into account the externality they create for others.

For example, firms often benefit when their business partners (suppliers, firms of com-
plement goods) adopt cost-reducing innovations; this set of partners is a small subset of
the total set of potential adopters of these innovations. Firms would like that their business
partners adopt the same innovation but too many adopters (substitute firms) may give rise
to a negative externality. Similarly, firms’ choice of location may suffer from the same coor-
dination problem: firms may like to locate in clusters with other firms in order to obtain
increasing returns from sharing local indivisible facilities (or a common local public good),
but too many firms in the same cluster may create a congestion problem and reduce the
initial advantage of being together.

The adoption of subcultures, social groups with particular behaviors or beliefs, by youth
can also be explained by our model. A young will adopt a certain subculture if the proportion
of their friends following it is big enough. However, young people like belonging to something
unique and exclusive, thus the attractiveness of a subculture decreases with the proportion
of people in society following it. In like fashion, the adoption of fads where the exclusivity
is part of their attractiveness can also be approach by our model.

Coordination failure, or agents’ uncertainty about the action of other agents, may be an
important source of congestion in large decentralized societies. In the El Farol or Santa Fe
bar problem, Arthur [2] provides a simple paradigm for congestion and coordination pro-
blems that may arise in societies. El Farol is a bar in Santa Fe. The bar is popular, but
becomes overcrowded when more than sixty people over one hundred attend on any given
evening. Everyone enjoys themselves when fewer than sixty people go, but no one has a
good time when the bar is overcrowded. The El Farol problem emphasizes the difficulty of
coordinating the actions of independent agents without a centralized mechanism. Unlike the
standard public good framework, in this scenario fully informed optimizing agents will not
increase consumption of a publicly available resource until it experiences an inefficient level
of congestion. If agents could predict the behavior of other agents perfectly the bar would



never be crowded and all the patrons would have a good time. The only source of con-
gestion, at least in a deterministic framework, is the inability of agents to coordinate their
actions. Although the El Farol problem initially explored the collective dynamics of boun-
dedly rational agents, it is also interesting as a simple model of congestion and coordination
behavior that occurs with shared resources like Internet bandwidth. Arthur [2] believed that
any solution to the El Farol problem would require heterogeneous agents, that is, agents
who pursue different strategies.

We analyze the above insights in a static model where individuals enjoy being at the
bar with their friends or relatives but suffer from the congestion created by all the agents in
society. We will assume that congestion is an increasing function on the number of individuals
choosing the same action, unlike the El Farol problem where there is only congestion when
the proportion of individuals in the bar is above certain threshold. Thus, we consider that
the congestion cost is not an all or nothing concept but a non-linear continuous function on
the proportion of individuals making the same choice. Namely, when the number of players
choosing the same is small, then the addition of a new player with the same choice will
not increment the congestion cost substantially, while if the number of players following the
same action is large, then the new player will cause a large increment in the congestion.

Let us consider that the relationships between individuals can be modeled as a network,
where each node is an individual and any (undirected) link between two nodes represents
some kind of relationship between them such as friendship, family ties, firms of complement
goods, etc. Each individual only has a local knowledge of the network: they know their
neighbors (to whom they are linked) but they do not know who their neighbors’ neighbors
are. This lack of information about the network’s topology is modeled by considering it as
an instance of a random network where individuals know the degree probability distribution
over the nodes of the network.

Individuals simultaneously choose their actions from a finite set, which imposes an ex-
ternality on their neighbors as well as an externality on the complete network, and then
obtain an utility. The optimal (Bayesian Nash) decision taken by each individual depends
on: the spread of their connections in the network (their degree), the degree probability dis-
tribution, and the balance between positive local externality and negative global externality
which impact on their utility.

We assume that each individual’s utility depends mostly on two factors: positively on the
proportion of neighbors choosing the same action (positive local externality) and negatively
on the proportion of the network members doing the same, because it creates congestion
(negative global externality).

Our contribution is twofold. We find first the conditions for the existence of all Bayesian
Nash equilibria, which at the same time explain the non-existence results. Next we translate
the condition on equilibrium existence to an equilibrium characterization in terms of the
main properties of the network topology.

To motivate our analysis notice that a rough calculation would give us two possible (Ba-
yesian Nash) equilibrium solutions: the one where all individuals choose the same action
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(homogeneous pure profile), and the one where each individual chooses their actions ran-
domly giving all options the same probability (uniformly mixed profile). Intuitively, homo-
geneous pure profiles could be equilibrium outcomes when congestion costs are low, whereas
the uniformly mixed profile would be an equilibrium solution if congestion costs were high
enough.

However, common intuition needs to be polished since both local and global network
properties play an important role in equilibrium choices. This comes from the observation
that the network topology defines two important features such as hub players (highly con-
nected nodes) and peripheral players (poorly connected nodes). Although each individual’s
value function will depend on both the average action profile followed by the network and the
average action profile of their neighbors, their relative weight will depend on the individual’s
number of connections. Thus, the network average action profile is particularly important
for peripherals because, by definition, their number of neighbors is very small and therefore
their choice will mostly be driven by the network global topology. A peripheral player is
only worried about congestion and to reduce it as much as possible she choose the least
frequent action. Thus, when peripherals are frequent homogeneous pure equilibrium profiles
are impossible to sustain. On the contrary, the hubs or highly connected players’ choices
will mainly depend on the average profile of their neighbors’ actions, i.e. on the network
local properties. It’s very likely that hubs will be linked to other hubs, thus they try to
coordinate their choices to play the same action and maximize their utility. However, if the
proportion of hubs is too high, then congestion disutility may prevail and it makes difficult
to guarantee equilibrium profiles. Therefore Bayesian Nash Equilibria are expressed in terms
of the proportion of hubs and peripherals which, in turn, is given by both the asymmetry of
the degree probability distribution (its skewness) and the weight of its tails

To the best of our knowledge this is the first time that both local and global effects
are analyzed from the network perspective. We finish this section with a review of related
literature.

1.1. Related literature

Our paper is a contribution to network games, an active area of research over the last
few years. A complete review of this literature exceeds the intention of this section, so we
refer readers to the extensive overview in Goyal [12] and more recently Jackson [14]. We
assume that the network of relationships between individuals is fixed. When an individual
chooses their action they obtain utility from sharing their choice with their neighbors but
suffer the disutility of sharing the same choice with all members of the network. Thus, an
individual’s net utility depends both on their action as well as on other individuals’ actions,
forcing them to play in a strategic way.

The focus is on large networks, where a change in the behavior of one individual could
drastically modify their utility while having a marginal impact on other individuals’ utilities.
Thus, we will consider that there are an infinite number of individuals in the network as
in Galeotti and Vega-Redondo [10] and Morris and Shin [16]. This assumption makes the
computations easier and does not have any effect on the main results.
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We consider a random network, where individuals do not know the complete topology of
the network but rather the degree distribution (which is fixed). Random networks were first
used in Newman [17]. An overview of this literature can be found in Newman et al. [18] and
some applications of these models to economic problems in Ioannides [13]. More recently
Galeotti and Vega-Redondo [10] use random networks to study how local externalities shape
agents’ strategic behavior when the underlying network is volatile and complex. Galeotti
et al. [9] and Sundararajan [20] analyze local networks, where each individual’s utility de-
pends on their own action as well as on their neighbors’ actions. The first paper provides
a framework with random networks to characterize the behavior and payoffs of individuals
according to different factors in the model. The second paper presents a model where indi-
viduals value the adoption of a product by a heterogeneous subset of other individuals in
their neighborhood, and have incomplete information about the structure and strength of
adoption complementarities among all other individuals.

Recently several authors have become interested in Local Networks, where a player’s pa-
yoff depends only on their own actions and those of their neighbors. Galeotti et al. [9] provide
a general model and analyze how a given individual’s behavior is affected by their position
within the network and the nature of the game (strategic substitutes versus complements
and positive versus negative externalities, and the level of information.) Sundararajan [20]
presents a model of local effect for the analysis of an adoption game. Among other results,
these articles show the existence of equilibria in pure strategies and give some properties
that they verify. Our model differs in that we consider a payoff function which has both
local and global externalities, but we use specific functional forms close to the ones found
in Galeotti and Vega-Redondo [10] and Ballester et al. [3]. Those papers, however, analyze
local games and a continuum of players’ space of actions.

This paper is organized into seven sections. Section 2 provides the general framework.
Section 3 presents the main results on equilibrium existence and Section 4 characterizes
equilibria in terms of the network topology. Some comparative statics for two-type players’
examples are offered in Section 5. Section 6 illustrates the results of Sections 3 and 4 in
Scale free and Poisson random networks. Finally, Section 7 concludes the paper.

2. The model

There is a countable infinity of agents (players) N, and A is a finite set of actions for
them. We assume that there are only two possible actions', i.e. A = {m,e}. For each player
1 € N, we denote their action by a; € A. What is relevant in the analysis in that if only
one individual changes their decision, then the other individuals’ payoffs do not change (or
change only marginally). Thus, the analysis could be carried out by considering a large
number of individuals and the main results will not be affected.

Non-directed graphs are used to model network relationships between individuals. In
such graphs the nodes correspond to the agents and the links correspond to the bilateral
relationships between them. Let g be such a network.

IThis is a simplification. The model with a finite number of actions extends easily.
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Each individual ¢ € N has a number of relationships with other agents in g that defines
their set of neighbors, N;, and their degree, k;. Each agent knows their degree but does not
know the degree of the other nodes in the network. We assume that players know the degree
distribution that is fixed and characterized by the probability distribution

P = {pk}keK (1)

where K, its support, is a subset (no necessarily finite) of the positive integer numbers,
K C N*, and p, denotes the probability of finding a player in the network who has k
neighbors. We assume that the first moment of the random variable defined by p is finite,
thus let d be the average degree, i.e. d = ), . Ip;. Notice that isolated players are not
allowed since we assume that each individual in society maintains at least one relationship
with another one.

Players interact with each other as determined by ¢g. The network is equiprobable chosen
from among all the possible networks that have a given degree distribution p. Thus, we
are assuming that no player knows their neighbors’ degree but all of them know the overall
degree distribution and the random network is fully characterized by it.

The influence of a player in the network is measured by their centrality. The simplest
measure of centrality is a player’s degree, which only uses local information and is invariant
with respect to the rest of the graph.? A individual with high degree is a central player
with respect to a local portion of the graph and becomes in a hub of the network, while
another individual with low degree is a peripheral in a local portion of the graph. Notice
that both hubs and peripherals are relative concepts: they depend on the degree probability
distribution of each network. Given a network, an individual’s degree should be considered
high or low with respect to the average degree of the network she belongs to. Thus, a relative
measure of centrality may be helpful to classify a node as either a hub or a peripheral.

Definition 1. [Relative degree] Given a network g and its degree distribution p = {pk rex,
we define the relative degree of a node as the ratio between its degree and the average degree,
i.e. given node i € N, its relative degree is k;/d.

The relative degree play a central role in the characterization of the equilibria. Nodes
with high relative degree will be considered as hubs and nodes with low relative degree will
be peripherals.

If a player chooses a neighbor randomly, then they will not know their degree but will
know that neighbor’s degree distribution. Assuming independence across neighbors’ degrees,
then the probability of arriving at a node is proportional to its degree, and we can compute
that !

~ Pk
Pk= 5 (2)
ZleK Ipi

20ther concepts of centrality, such as Closeness, Betweenness and Bonacich’ measure, need to know the
complete topology of the network to be calculated. A description of these measures can be found in Jackson
[14]



is the probability of a node having degree k when it is selected randomly from among a
player’s neighbors. Let this distribution be denoted by p = {pi }rek-

Mixed strategies are allowed, so that the decision of any player is an element in A(A),
which is the set of all probability distributions over A. Given that A has two elements, we
can identify the 1-dimensional simplex A(A) with the interval [0, 1]. Therefore, player i’s
action is x; € [0, 1], where z; is the probability of choosing action m, and then 1 — z; is the
probability of choosing action e.

Prior to interaction each player i has to decide their action z; € [0, 1] individually and
independently of the other players. This decision can only depend on their own degree and
the degree distribution on the other player degrees. Let {z;,x_;} be the profile of actions,
where z; is the action chosen by ¢ and x_; those of the other players. Let (z;)jen, be the
profile of actions of i’s neighbors. We assume that the net payoff function of player ¢ has
two components, the gross payoff function, f, which measures local externalities, and the
congestion function, h, which measures global externalities:

uilzi, x—i) = flai, (2))en;] — hlzi, x].

Assuming ex-ante symmetry across players, player ¢’s gross payoff depends on their action
and the actions of their neighbors,

fAA) x A(AN - Ry,
while the congestion depends on the actions chosen by all the players in the network,

h:AAYN - R,.

2.1.  The Bayesian Game

The strategic situation is modeled as a classical Bayesian game, where each player’s type
is identified with their degree and all the players’ types are drawn independently according
to the prevailing degree distribution p. Therefore, the type space for every player is K and
their beliefs on the other types is the degree distribution p. Each player’s strategy is a
mapping from their type to set [0, 1]. In other words, as in Galeotti and Vega-Redondo [10],
we posit that each player chooses an action induced only by their own degree, the degree
distribution p and their prediction of the other players’ actions x = {xy }ren which specifies
how every other player anticipates choosing their action, depending on their degree. Thus,
we analyze symmetric Bayesian strategies, i.e., all players with the same degree choose the
same strategy.

Denote by vi[z,x] the expected payoff function of a k-degree player who chooses action
x and expects the degree contingent strategy x = {z;}ex,

vz, x] = Ep[fl, (zx,)jen]] = Eplhlz, (zx,)jen]].
7



We have defined an incomplete information game where the player’s degree defines their
type. The main objective of this paper is to study the strategy profiles (indexed by the
degree) that are symmetric Bayesian-Nash Equilibrium (BNE).

Definition 2. A strategy profile x* = {z} }rex is a symmetric Bayesian-Nash Equilibrium
(BNE) if it satisfies:
Ty, € argmatycpo 1)V, X" (3)

forallk € K.

A strategy profile is a BN E if no player can deviate unilaterally and benefit from that
deviation.

To provide a precise specification of function vg[zg, x| and characterized the BNE we
have to consider in detail the two functions that define the expected net payoff function.

2.2.  Local and global externalities

The expected gross payoff function

The gross payoff function, f, measures the utility that a player, say i, obtains by the
interaction with their neighbors. We define the gross payoff function of a player as the expec-
ted proportion of their neighbors choosing their same action. Therefore, the local interaction
component exhibits positive externalities since the player i’s gross payoff increases with the
proportion of neighbors choosing the same action than 1.

The player i’s gross payoff function depends on two random variables, the proportion of
their neighbors choosing their same action, and their own action. The first random varia-
ble has a distribution governed by p, and the second follows a Bernoulli distribution with
probability xj,. However, by the law of total probability, the expected proportion of their
neighbors choosing their same action is given by the expected proportion of their neighbors
choosing action m times the probability of player i’s action to be m plus the expected pro-
portion of their neighbors choosing action e times the probability of player ¢’s action to be
e:

Eﬁf[xkiv (xkj)jENi] = Eﬁf[mv (xkj)jENi]PTOb(ai = m) + Ef)f[e? (:ij)jGNi]PTOb(ai = 6)
= Eﬁf[m7 (ij)jeNi]$ki + Eﬁf[ea (xk’j)jeNi](l - xkz)

The expression Egf[m, (zx,);en,] is the expected value of a random variable, the pro-
portion of neighbors choosing action m. One way to obtain an explicit specification of this
expected value is to make explicit the support of the random variable, compute the proba-
bility mass of each element in the support and calculate the expectation. This is the way
followed in Galeotti and Vega-Redondo [10] to compute a close expression.®> An alternative

3The support of the random variable is the set of all possible distributions of the degrees of player
i’s neighbors, i.e., the set of all k; dimensional vectors of integer components such that the sum of the
components is equal to k;. The random variable follows a multinomial distribution
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way is to realize that the expected value of fm, (zy,);en,] is equal to the probability that
a randomly chosen player ¢’s neighbor has played action m, and compute this probability
using, again, the law of total probability:

Esf[m, (zx;)jen;] = Prob(Randomly chosen neighbor (r.c.n.) plays m)
= Z Prob(r.c.n. plays m|r.c.n. has degree [) Prob(r.c.n. has degree [])

leK

= Zﬂilﬁl

leK

Notice that the last term does not depend on the identity of the player but depends
on the player’s action which is degree contingent. Let us define the average proportion of
neighbors following action m in terms of the distribution of the neighbors’ degree, x, as

leK

Similarly, we obtain that Egfle, (z;)jen,] = 1 — Z. Thus, the expected gross payoft fun-
ction of a player with degree k can be written as,

Epflze, x| = 2 + (1 — a)(1 — 7) (5)

that is independent of the player’s identity. Therefore, the expected gross payoff of k-type
player depends on its own action and on the average proportion of neighbors choosing the
same action in terms of the distribution of the neighbors’ degree.

The expected congestion function

The congestion function, h, measures a player’s dissatisfaction from, for example, the
use of a public service simultaneously with individuals in the network that have chosen their
same action. Thus, this is a global interaction and exhibits negative externalities, as player’s
payoff will be decreasing on the number of players choosing the same action than theirs.

We propose a congestion function that is quadratic on the expected proportion of players
choosing the same action as that player. This relationship reflects what is commonly seen in
real life. When the number of players choosing the same action is small, then the addition
of a new player with the same action will not increment congestion substantially, while if
the number of players following the same action is large, then the new player will cause a
large increment in congestion. This fact is reflected through the quadratic dependence of the
congestion on the number of subjects choosing the same action as theirs.

Let us consider a player ¢ with degree k. Similar reasoning as the above for the gross
payoff function allows us to write the expected congestion function, Ey[h[z, (zx,);en]], as,



Ephlzy,, (zr,)jen] = (Eph[m, (:L‘kj)jeN])QPTOb((li =m)+ (Eph[e, (xkj)jeN])QProb(ai =e)
= (Bphlm, (wx,)jen]) “wr, + (Ephle, (wx,)jen])” (1 = z,).

However, the expected proportion of players choosing action m, Eph[m, (zx,) en], is equal
to the probability that a randomly chosen player has played action m. This probability is
straightforwardly computed as,

Ephlm, (w4;)jen] = Prob(Randomly chosen player (r.c.p.) plays m)

= Z Prob(r.c.p. plays m|r.c.p. has degree [) Prob(r.c.p. has degree [])
IeK

S
Let T be the average proportion of the choices of all the network types,

T = Zilflpl, (6)

leK

then the expected congestion function of a player of degree k, Ep[h[zk,X]], can be written
as,

Eo[h[zy, x]] = g[xkf2 +(1—2)(1 -7, (7)

where ¢ is a parameter bigger than zero.

As the expected gross payoff function, the expected congestion cost is independent of the
player’s identity and depends on the player’s own action, which is degree contingent, and on
the expected choice of all the network players.

The expected net payoff function
Combining the two components of the value function, the expected net payoff function
can be written as:

veln, X] = 2T + (1 — 24) (1 — F) — g[xkEQ +(1—2)(1 7). (8)

The structure of the expected net payoff function, where both gross payoffs and conges-
tion are quadratic, can be found in other studies which analyze the effect of local externalities
on players’ decisions (see e.g. Galeotti and Vega-Redondo [10] or Ballester et al. [3]). Here,
in contrast, we take into account both local and global externalities.

Then v |z, x| can be expressed as a quadratic function of zy,

vkley, x| = o + Z ok + Brer + yu({ztien) (9)
IEK\k
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where,

- 1
Q. = 2pk_0pk<§pk+1>7

ap; = 2]3/[ — cpl(pk + 1), for all [ # k,
C ~
B = Cpk—1+§—pk, and

w{zihzr) = (1- g) - leﬁl + E[Zﬂpz@ - lepl)}

I£k 14k 14k

Function vg [z, x| depends on xj and on the weighted aggregation of the expected choices
of all other player types in the network, i. e. ), 21 ORI T Each weight aj; measures the joint
expected contribution of an [-degree player to the marginal payoffs of a k-degree player both
as a neighbor and as a member of the whole network.

Notice that ayyg, the coefficient of the quadratic term, depending on the congestion cost
can be either positive or negative and, therefore, the net payoff function can be either
convex or concave. It can be checked that the coefficients of the net payoff function verifies
the following property,

1
gk + Br + 5 ; ap = 0. (14)

3. Existence of Bayesian Nash equilibria

As it is well known a Bayesian Nash equilibrium always exists, possibly in mixed stra-
tegies, whenever functions vg[xy,X] are concave in xy (g, < 0), for all £ € K, and each
strategy space is compact (as is in our case where x; € [0,1]). However, by (10) above,
concavity of all v;’s functions only results when c is sufficiently high.

Thus, when the congestion cost parameter ¢ is small enough, then functions vg[zg, x| are
convex in z, (agx > 0) in the interval [0, 1], best replies need not be continuous and have a
jump. This is so even for intermediate values of ¢, when some functions vy [z, x] may still
remain convex while others have already turned to be concave.* We need then to borrow
results from supermodular games and monotone best responses (Vives [21]).

Function wvg[zg, x| depends on z; and on the choices of all other player types in the
network, x_j. Theorem 4.2 in Vives (Vives [21]) states that a Bayesian Nash equilibrium
exists if, for all k& € K, the set of strategies is a lattice compact, vy is supermodular on [0, 1]
and/or has increasing differences in (xy,x_). Moreover, vy is supermodular if and only if
vy /Ox1,0z; > 0 for all [ # k. Given that 0%*vy, /0,01 = ayy, supermodularity is guarantee
if and only if ay; > 0 for all k,1 € K, [ # k. On the other hand, v, has increasing differences

4Since for ayp = 0, the value function is linear and we are only interested in quadratic value functions,
then we disregard the linear case.
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in (zy,x_) if vg[zg, X k] — vg|xr, X' ] is increasing in xy, for all x_j, > x'_; (x_p # X' ).
By (9) above,

Vel X_p] — vkl X ) = 2 Y gl — 7)) + (%) — (X k).
12k

If x_j > x'_j, then vy has increasing differences if and only if oy > 0 for all k.1 € K,
[ # k, i.e., the same conditions guarantee both supermodularity and increasing differences
of vy,.

Let Uy (x_g) be the best response of type k to x_y, if vy is either supermodular or has
increasing differences and the strategy sets are lattices (sets [0,1]), then Wy (x_;) is increasing
in x_y, the composite best response is also increasing and (by Topkins’ Theorem) a Bayesian
Nash equilibrium exists (Vives [21]). Thus, if each player considers each of the other players’
action as strategic complement (g > 0foralll, k € K, # k), then Bayesian Nash equilibria
will exist.

Therefore we have two general sufficient conditions under which a Bayesian Nash equi-
librium exists:
a) Either all the functions vy [z, x| are concave in xy in the interval [0, 1].

b) Functions vy, are either all convex, all concave or some convex and others concave in
the interval [0, 1], and players are strategic complements (ag; > 0, for all [ # k).

Define homogeneous pure strategy BNE as the profiles where all types play the same pure
action either m or e, i.e., the profiles xg = (0,0,...,0) and x; = (1,1,...,1); heterogeneous
pure strategy as those profiles where all types play a pure action, not necessarily the same,
i.e., those profiles x such that x € {0,1} for all k € K; mized strategy BNE as the profiles
where all types play a mixed action (zx € (0,1) for all £ € K); and finally hybrid BNE
as those profiles where some players choose a pure strategy and others a mixed strategy.
Condition a) above is mainly concerned with the existence of mixed Bayesian Nash equili-
bria but condition b) is a monotonicity condition which applies mainly to pure strategy and
hybrid Bayesian Nash equilibrium. In the following we relax condition b) and give condi-
tions for the existence of the above different equilibrium profiles, which depend on both the
concavity /convexity of the payoff function and the strategic complementarity /substitution
relationship between players’ actions.

Homogeneous pure strateqy Bayesian Nash equilibria
Suppose firstly that all the v, functions are convex in [0, 1], then each Wy (x_;) € {0,1}
and there exist two Bayesian Nash equilibria in homogeneous pure strategies, xo and x;7. In

111 1)
)

fact, from (9) above it is easily seen that vi[x1] = vp[Xe] and that for x_; = (5,5,5..-3

then both z;, = 1 and xy = 0 belong to Wy (x_y), so that best responses have at most a jump
upwards. In this setting, we can notice by (9) and (14) that, for all k,

1
Uk[l,X,k] > Uk[O,X,k] <~ Z(xl — é)akl > 0. (15)
I£k

Thus, if x_, is either a vector of 1’s or of 0’s, then whenever Zl# ag> 0, the best
12



response of each player of type k, for all k£ € K| is a non-decreasing function of the aggregate
of the other players’ strategies, being z;, = 1 as a best reply to a profile of 1’s and a x; =0
to a profile of 0’s. Hence, the equilibrium profiles are homogeneous sequences of either all
I’s or all 0’s. Thus, when functions v are all convex in [0,1], all we need to guarantee
an homogeneous pure strategy Bayesian Nash equilibrium is that for any player, the other
players’ actions are strategic complements in the aggregate, i.e., ), 21 1 =>0.

Similarly, suppose now that all the functions v; where concave then,

Br + Zl# Qg Ty
_2akk '

Up(xok) = (16)

By concavity ag, < 0, then homogeneous pure strategy equilibria would exist whenever
Br < 0, because by (14) that implies that ), 2k ag;>0 and hence each player’s best response
function is non-decreasing.’

These results can be extended to any mix of convex and concave payoff functions provided
that for any player, the other players’ actions are strategic complements in the aggregate,
since in this case each player’s best reply is non-decreasing. Then,

Proposition 1. The two homogeneous pure strateqy BNFE, Xqo and x1, will exist if for any
player, the other players’ actions are strategic complements in the aggregate: for all k € K,
El# ag>0. (If vy, is concave, then B, < 0 will be sufficient to guarantee that condition).

Notice that the above Proposition gives weakness conditions for the existence of homo-
geneous pure strategy BNE than supermodularity or increasing difference of functions wy,
where strategic complementarity has to be satisfied for each individual pair of players.

Also notice that under the above conditions no heterogeneous pure strategy BNE, se-
quences with a mix of zeros and ones, will exist. However, these strategy equilibria may also
exist under different conditions, as the following example shows:

Example 1. Let K = {15,16,17} with py = 1/3 for all k € K. Then, p15 = 15/48, D1s
— 16/48 and piy = 17/48.

Here, functions vy specify to (the terms not depending on xj are not included):

U15[$15, ($16, $17)] = Q15,15 $15 + Q5,16 T15T16 + Q15,17 T15217 + Bis5 15

= [5/8 — (7/18)c|zls + [2/3 — (4/9)c|x15216 + [17/24 — (4/9)c|x 15217 + [(5/6)Cc — 21/16]215
v16[T16, (%15, T17)] = Q116,16 T3 + Q16,15 T16T15 + V16,17 T16T17 + P16 T16

= [2/3 — (7/18)c]zl; + [5/8 — (4/9)c|z16x15 + [17/24 — (4/9)c|x16217 + [(5/6)c — 4/3]x16
vir[zar, (@15, T16)] = Q7,17 Ty + Q715 T1715 + Quz16 17T 16 + Pir Tar
= [17/24 — (7/18)c|a?, + [5/8 — (4/9)c|w17215 + [2/3 — (4/9)c|w17216 + [(5/6)c — 65/48] 217

?Alternativelly, by (14) and (16) the condition for Wy (x_4) > 1 is that 3=, ; ap(z; — 1) > Bx and then
if x_y, is a vector of 1’s all we need is that 8 < 0. Similarly as above, the condition for ¥ (x_j) < 0 is that
Zlik apr; < —p, and then if x_j is a vector of 0’s, the result follows.

13



Whenever ¢ < 93/64 = 1.45, all v, functions are convex and Zlik ag; >0, for all
k € {15,16,17}. Then by Proposition 1, the unique BNE’s are the two homogeneous pure
strategy profiles x¢ and x;.

However, for 99/64 < ¢ < 45/28, (99/64 =~ 1.55 and 45/28 =~ 1.61), all v, functions are
convex but »_,_; ajy < 0, with each oy < 0, for all k € {15,16,17}, and all [ # k. Since
617 > 6,15 and agr16 > 7,15, the unique BNE’s are the two heterogeneous pure strategy
profiles x = (0,1,1) and x' = (1,0,0).

Notice that, interestingly enough, no equilibrium will exist in the interval 93/64 < ¢ <
99/64. For instance, suppose that ¢ = 95/64, then ay, > 0 for all £ € {15,16,17}, with
Zl# ags; > 0, El# ag6; > 0 and Zl# a7y < 0. Therefore, by Proposition 1, homogeneous
pure strategy equilibria do not exist. In addition, heterogeneous pure strategy equilibria
neither exist as well. To see that, consider, as an example, the profile x = (0,1,1) as the
proposed equilibrium. Type k = 15 will deviate and play ;5 = 1 because ), 21 0151 > 0
and then vy5(1,1,1) > v35(0,1,1). But for (1,1,1) type k = 17 will deviate and play z17 = 0
because Zl#k a7, < 0 and then v17(1,1,0) > v17(1, 1, 1) and so on. Similar arguments apply
for other heterogeneous profiles.

Heterogeneous pure strateqy Bayesian Nash equilibria

To investigate heterogeneous pure strategy equilibrium, let us consider two type of pla-
yers, K = {1,2}, with payoff functions vg, k € K and a proposed equilibrium (1,0) where
type 1 chooses a 1, and type 2 chooses a 0. If both functions are convex, then by (15) the
condition for type 1 is that aqa(xe — %) = a12(0 — %) > 0, or ajp < 0. Similarly, for type
2 this condition is that a9 < 0. Therefore, if o;; < 0, 7,7 = 1,2, 7 # j, an heterogeneous
pure strategy equilibrium exists because each best reply is decreasing, but the composite
best reply is increasing. Now, suppose that the payoff functions are concave, then since
each player best response is given by (16), then for the equilibrium (1,0) it is needed that
Uy(0) > 1 and W¥o(1) <0, or —ayz > [ and fy < —aw. Furthermore, since by concavity of
vy, o = —[f1 + %Oélg] <0, and then ; > —%au. Combining this expression with the one
above, —aqy > 1 > —%Oélg that implies a5 < 0 and B; > 0. Similarly, the concavity of vy
implies that as; < 0 and [y > 0. Therefore, since the composite best response is increasing,
the conditions ;; < —f3; < 0, 4,7 = 1,2, i # j guarantee the heterogeneous pure strategy
equilibrium (1,0). Finally, for the two type of players, when one function is convex, say vy,
and the other concave, the conditions are as above, ajo < 0 for the convex function and
a9 < —f < 0 for the concave one.

The extension of the above conditions for more than two players is as follows. Let K the
set of types such that z; = 0 and let K; the set of types with z;, = 1, with KoU K; = K,
and assume that all functions vy are convex. Then, by (15), ZleKh 1k Okl > ZleKO oy, for
all k € K; and ZZGKI o < ZleKO’ 12k KL for all £ € K,. These conditions characterize
heterogeneous pure strategy equilibria. A k € K; player’s best response will be increasing
in the aggregate of all [ # k and likewise for any k € K, player’s best response. A sufficient
condition for existence is that that, for all k € K, ZleKl, 12k Ol = 0> ZleKO oy, and for
l € Ky, ZkGKO pott Q> 0 > > kek, Quk- Notice that for say, k& € Kj, the actions of the
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other players in K are strategic complements in the aggregate while those of the players in
Ky are strategic substitutes in the aggregate and viceversa.

Similarly, assume now that all functions vy are concave, then by the best reply function
(see 16) and property (14), for all k € K,

Bk + Zl;ﬁk A2y . Bk + Zle[ﬁ,l#k A
—20up 2B + 31, il '

\I/k(X_k) =

Thus, Wi(x_x) > 1 translates to condition ZZGKO ag < —f. In addition, —[8 +
%z#k ag] < 0, or = < %Z#k ay, by concavity. Then, combining these inequalities,

1
Dtero Ok S =B < 5[ ex, Qm F Zlelﬁ,l;«ék ay), and hence 3o p o < ZleKl,l;ék Okl -
Similarly, for all k& € Ky since Wi(x4) < 0, then )7, ay < —f, and by concavity

If this conditions are satified, by an argument similar to the above, an heterogeneous pure
strategy equilibrium exists.

Proposition 2. Let K the set of types such that xz;, = 0 and let Ky the set of types with
xr = 1, with KgU K, = K, then heterogeneous pure strateqy BNE exists whenever,

1. Functions vy, are all conver, ZleKL 1k Ol = ZleKO ap forallk € Ky, and ) e oy <
ZZGK()’ 1k Okl for all k € K,.

2. Functions vg[zy, x| are all concave, ZleKo g < =P for allk € Ky, and )y ap <
—B for all k € K.

We do not further proceed with the conditions for heterogeneous pure strategy equilibria
when some functions are concave and some other ones convex.

Mixed strategy Bayesian Nash equilibria

As already mentioned, when functionswy [z, x| are concave in z, (g, < 0), for all k € K,
and since each strategy space is compact a Bayesian Nash Equilibrium in mixed strategies
exits. Alternatively, define the uniformly mixed strategy profile as the one where all players
choose randomly between actions, giving each action the same probability of being chosen,
i.e., the profile x such that z;, = 1/2 for all k € K. If all payoff functions are concave, then the
the uniformly mixed strategy profile is a BNE. By (14) we have that —cayy, = Sk+3 >tk Ol

then by (16), W, ({1/2}1z) = 1/2.

Proposition 3. A mized strateqy BNE exists whenever all payoff functions are concave.

Hybrid pure strateqy Bayesian Nash equilibria

It remains to show the existence of hybrid BNE equilibria where some players choose a
pure strategy and others a mixed one. Given the difficulty of dealing with heterogeneous
pure strategies, we restrict the analysis to those hybrid equilibria whose pure strategies are
homogeneous. Also, these equilibria can only take place when some vy, functions are convex
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and others are concave. Consider first that all v, functions are convex but one, this one, v,
being concave. The profiles x = (z,,,x_,) with either z,, € [3,1) and ), = 1 for all k # n or
z, € (0, 3] and 24, = 0 are BNE if i) each player with a convex payoff function considers the
actions of the remaining players as strategic complements in the aggregate, i.e., >, Kk Okl 2
0 for all k # [; ii) the player with the concave payoff function considers the other players
(with convex functions) as strategic complements in the aggregate (3, c,u > 0); and iii)
Bn > 0, that guarantees that the n-type player chooses a mixed action x,, € (0,1). (It follows
from (15) and (16) and similar reasoning that the ones already used.) Again the strategic
complementarity in the aggregate between the players’ choices guarantees the existence of
equilibria. This result is extended to any number of convex and concave functions provided
that all the convex functions satisfy that ), Lk >0, [ # k and the concave function that
> 2n Ot > 0,1 # n. Each player with a concave function will choose ¥,,(x_,)>1/2 whenever
those with convex functions choose 1’s and will choose ¥,,(x_,,) < 1/2, whenever the players
with convex functions choose 0’s. Since all the best replies are non-decreasing, the composite
best response is non-decreasing and (hybrid) equilibria exist.

Now suppose that all the v, functions are concave but one, say vy, this one being convex,
and that each player with a concave payoff function considers as strategic substitutes both
the actions of the remaining players with concave functions as well as the one of the player
with a convex function, k, i.e., aps < 0, api < 0 for all k,s € K \ n. Furthermore, assume
that the player with the convex functions also consider as strategic substitutes (pairwise)
the actions of all the other players, i.e.,ax, < 0 for all n € K \ k. Then an equilibrium
exists, possibly hybrid. The idea of the proof relies on the fact that the system with concave
functions has two solutions, parameterized by zp € {0,1} (since the v, are concave and
the strategy space is compact), which are non-increasing in x; because a,; < 0 for all n.
Let x(1) = {z}(1)}nzr and x5 (0) = {z%(0)},zk, be such solutions with 27 (1) < z7(0)
for all n € K and n # k. By the strategic substitution between players’ actions, in the
Appendix it is shown that 2% (1) < 1/2 < 27 (0) for all n # k. Now, player k will maximize
vy, given the other players’ choice. Then, since by (15), vg[l,x5(1)] > v[0,x}(1)] if and
only if >, {z;(1) — 1/2}a;,>0, a solution exists provided that ay,< 0, for all n # k.
The strategic substitution of actions between the players with concave functions and the
one with a convex function imply that the composite best response in non-decreasing and
an hybrid equilibrium exist.

Proposition 4. Hybrid BNE equilibria (with homogeneous pure strategies) exist whenever,
1. Some functions vy are convex and some others convex and players’ actions are strategic
complements in the aggregate, i.e. Zl# ag; > 0 for all conver functions, and Zlin oy > 0
with B, > 0, for the concave functions.
2. All functions v, are concave but one being convez, vy, and for all n,s € K \ k,
s <0, g <0 and oy, < 0 (strategic substitutes).

The equilibrium may fail to exist.
The above Propositions give us conditions which are sufficient to guarantee the existence
of different kind of BNE. However, it still remains the question of whether the equilibrium
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K={2, 3, 4}, p,=p3=p,=1/3

V, convex V, convex V, convex V, concave
V, convex V, convex V, concave V; concave
V, convex V, concave V, concave V,concave
Pure BNE Pure BNE Hybrid BNE Mixed BNE
(1,1,1) (1,1,1) (0.5,0.6,0) (.5,.5,.5)
(0,0,0) (0,0,0) NO BNE (0.5, 0.4, 1)
: : : > i :
1.14 125 15 1.7 2 2.29

Figura 1: Example 2. Different kind of BNE and as a function of the congestion parameter, conca-
vity /convexity of the payoff functions and strategic complementarity and substitution.

may fail to exist. This situation may happens when some best response function are increa-
sing while some other ones decreasing, thus possibly missing the equilibrium. Notice that
all of our results are under the assumption on independence between neighbors’s degree and
individual degree, and we are not sure about what affiliation between players’ degrees may
add to the analysis.

The following example with three type of players illustrates the non-existence problem
as well as the above Propositions.

Example 2. Let g be a network where individuals are unformly distributed in degrees 2,3
and 4. Then K ={2,3,4} and p, = 1/3, for all k = 2,3,4.

Here, functions vy specify to (the terms not depending on x; are not included):

va[ma, (13, 24)] = [4/9 — (7/18)c|x3 + [2/3 — (4/9)c|xazs + [8/9 — (4/9)c|wors + [(5/6)c — 11/9])xo
vslrs, (T2, 24)] = [2/3 — (T/18)c]z3 + [4/9 — (4/9)c|asze + [8/9 — (4/9)c|a374 + [(5/6)c — 4/3] 73
va[ra, (T2, 23)] = [8/9 — (7/18)c]w3 + [4/9 — (4/9)c|xaze +[2/3 — (4/9)c|zas + [(5/6)c — 13 /914

Notice that vy is convex for ¢ < 8/7 = 1.143, v3 is convex for ¢ < 12/7 = 1.714 and v, is
convex for ¢ < 16/7 =~ 2.286.°

The equilibrium configuration is displayed in Figure 3

For ¢ < 1.143, we find two BNE in homogeneous pure strategies, where conditions of
Proposition 1 are fulfilled, i.e., all the v functions are convex with > ik Ok >0, for k € K,
i.e., actions of the players are strategic complements in the aggregate.

6Also notice that for ¢ < 1, ag;> 0, for k,j = 2,3,4 and k # j. For 1 < ¢ < 1.25, Ej;£4 a4;> 0 (although
Oé42<0), forl1 <e¢< 1.5, Ej;éS Oéng 0 (although az39< 0) and for 1 < ¢ < 1.75, Zj;é2 Oész 0 (although
a93< 0 for ¢ > 15)
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For ¢ > 1.143 function v, turns to be concave while v and v, still remain convex. Then
in the interval 1.143 < ¢ < 1.25, Z#k ag; > 0, for k € K (with 3 < 0), the conditions of
Proposition 1 still are satisfied and we find that the unique equilibria are the two equilibria
in homogeneous pure strategies.

As above, in the interval 1.25 < ¢ < 1.714, both functions v3 and v, are still convex
with vy concave but the BNE’s fail to exist. In particular, in the interval 1.25 < ¢ < 1.50,
where > .o > 0, > 303 > 0, but 3, as; < 0. The reason is the failure of type
k = 4 to consider the other players’ actions as strategic complements; while in the interval
150 < ¢ <171, 32, p a0 > 0but 30503 <0and )., aq; < 0, thus players’ actions are
neither strategic complement nor strategic substitutes in the aggregate. The same argument
applies to the interval 1.71 < ¢ < 2, where both v, and v3 are now concave while v4 remains
convex, with > ., ag; > 0but 0. za3; <0and >, as; <O0.

For ¢ > 2, the equilibrium is restored because in the interval 2 < ¢ < 2.286, v, is convex
and v, and vs are concave with ay; < 0 forall k, j € K, k # 7, so that actions are all strategic
substitutes. For instance, for ¢ = 2.2, the two hybrid BNE are {25 = 0.51, 2 = 0.60, 2} = 0}
and {z3 = 0.49, 235 = 0.40, 2} = 1}. Notice, that in this case the conditions of Proposition
4(2) are satisfied.

Finally, for ¢ > 2.286, all the vy, functions, are concave. The unique BNE is the uniformly
mixed strategy profile {5 = 0.5, 25 = 0.5,z = 0.5} (see Proposition 3).

4. Network characterization of Bayesian Nash Equilibria

As we have seen BN E profiles depend on both the degree distribution of the network and
the congestion parameter. Intuition suggests that if congestion is high enough, the unique
BNE profile is the one in which players’ choice of actions are as heterogeneous as possible.
Only for low congestion will the players choose the same action.

However, intuition has to be poolished since the network global topology plays an impor-
tant role in the equilibrium characterization. To see that notice that the degree distribution
defines two important network features such as hub and peripheral players. Although each
individual’s value function depends on both the average action profile followed by all the in-
dividuals of the network and the average profile of their neighbors, their relative weight will
depend on the individual’s number of connections. Thus, the network average action profile
is particularly important for peripherals because, by definition, their number of neighbors is
very small and therefore their choices will mostly be driven by the network global topology.
On the contrary, the hubs choices will mainly depend on their neighbors average action
profile, i.e. on the network’s local properties. Therefore both local and global properties
determine the equilibrium choices. The proportion of hubs and peripherals depends on the
weight of the tails of the degree distribution. As a consequence the equilibrium characteriza-
tion is driven by the proportion of hubs and peripherals which, in turn, is given by both the
asymmetry of the degree distribution (its skewness) and the weight of its tails (its kurtosis).
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The next results characterize the BNE profiles of Section 3: mixed strategy profiles, ho-
mogeneous pure strategqy profiles and hybrid equilibrium profiles, in terms of the network
topology. First, Proposition 3 can be expressed as,

Proposition 5. Let g be a network with a degree distribution of p = {pk }rex. The unique
mized strateqy BNE is the uniformly mized strategy profile. Moreover, the uniformly mized
strategy will be a BNE if and only if the network relative degree § is bounded from above:
E<<@+p) foralkeK.

Proof. See the Appendix.

The first statement in Proposition 5 says that if x is a mixed strategy BNE, i.e. z;, € (0,1)
for all k € K, then it cannot be otherwise unless 2, = 1/2. The second one gives a necessary
and sufficient condition, concavity of the vy functions, for all £ € K, in order that the
uniformly mixed strategy profile is a BNE. Given a congestion function parameter, concavity
imposes an upper bound on the maximum relative degree of the considered network. This
means that the degree distribution can be left skewed but not right skewed and thus, the
right tail of the degree distribution tells us whether a uniformly mixed strategy BNE exists.
Therefore, uniformly mized BNE profiles are very difficult to achieve in networks with players
with high relative degree (hubs) unless the congestion cost parameter is very high. This is
so even when there is only one such a player. In fact, when the maximum degree k is not
bounded, then mized strateqy equilibrium will not exist. (Some examples are given in Section
6.)

Let us give some intuition. Hubs always have an incentive to coordinate their actions
and select the same pure strategy. Suppose that all players with different degrees from k
choose the uniformly mixed strategy. If £ is big enough, then kp, will be also big enough,
which means that the k-degree players will have many k-degree neighbors. Thus, if these
players chose a pure strategy, say action e, their increase in the gross payoftf would be high
and would compensate for the increase in their congestion cost. More precisely, if all players
chose the uniformly mixed strategy their utility function, according to (8), would be % -5
Now, if the k-degree players changed their strategy and all of them choose action e, their
value function would be (1 + pr) — £(1 + py)?. Notice that now both the gross payoff
and the congestion cost are higher than before. This deviation is not profitable as long as
%—g > %(1 +pr) — £(1+pk)?, which implies that ipk—i-gpi > %ﬁk. Recalling that p, = kpy/d,
this inequality is equivalent to the condition of the above Proposition.

An alternative interpretation would arise if the inequality of Proposition 5 was re-written
in terms of a threshold on the congestion cost. Thus, the uniformly mixed strategy BNE
will exist if and only if ¢ > maxe Kd(%kpk)' In other words, if K was unbounded, then the
uniformly mixed strategy would not be a BNE. Hence, uniformly mixed profiles will appear
whenever there are no hubs in the network or congestion is very high for them.

Next we characterize the existence conditions of homogeneous pure strategy BNE’s.
The following Proposition translates Proposition 1 to conditions on the network degree
distribution.
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Proposition 6. Let g be a network with a degree distribution of p = {pk trex- An homoge-
neous pure strateqy will be a BNE if one of the following conditions is satisfied, either

c k; 1
-z <2< _(1_Z
12+ < 7= o (1-3 . 2pk) (17)

for all value of k, or (17) is satisfied for some values of k and

Cc

<Se+m) (18)

1 c k
cpr — 1+ = =
pk(pk 3 =7

for the other values of k.

The left hand side inequality in condition (17) implies that v, is convex, and the the
right hand side inequality implies that »_,, g > 0. With respect to condition (18), the
left hand side inequality implies that vy is concave and the right hand side that £, < 0
(and ), 21, Okl > 0). Let us interpret the above results in terms of hubs, peripherals and
the congestion cost parameter. The convexity of the v, functions is trivially satisfied for
low values of ¢ and the right hand side inequality of (17) to constraints on the probability
distribution: namely, this inequality is satisfied whenever p, < 1 k/cf for all k& > d.

Therefore, given a low congestion cost parameter, the existence of an homogeneous pure
strategy BNE imposes an upper bound on the weight of the right-tail of the degree distribu-
tion p, i.e. in the accumulative probability of hubs. Notice that there is now no upper bound
in the maximum relative degree (as was necessary for the uniformly mixed strategy BNE,
see Proposition 5), but instead hubs have to be quite unlikely. The reason is the following:
let us assume that all players, except the k-degree ones, choose action m. If the expected
number of k- degree neighbors of a k-degree players, kpy., is high enough, then it will be very
likely that these players will be linked to other k-degree players. If k-degree players choose
the other pure action, e, then their reduction on the gross payoff will be low and may be
offset by the reduction in their congestion cost. To avoid this deviation, kp, must be low
enough, and therefore p; also must be low enough.

When c¢ takes intermediate values, relatively high values of k/d have to satisfy condition
(17) and relatively low ones condition (18). The left hand side inequality of (18) can be
expressed as pp < i:gﬁ, a bound on the left-tail of the degree distribution p. Thus, the
proportion of peripherals has to be low in order an homogeneous pure strategy BNE to
exist. The reason is the following: peripherals only suffer congestion costs and receive hardly
any gross payoffs. Thus, if all players choose action m, then peripherals will have incentives
to switch to action e because their gross payoff will not change but their congestion cost will
be drastically reduced. Therefore, for moderate values of the congestion cost, condition (17)
implies that hubs have to be unlikely and condition (18) says that peripherals have to be so

as well.

Under high values of the congestion parameter homogeneous pure strategy profiles cannot
be BNE. If ¢ is high enough, then neither the left hand side inequality in (17) nor the left
hand side inequality in (18) will be satisfied by any value of the relative degree.
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To sum up, homogeneous pure strateqy BNE will exist if hubs are quite unlikely whenever
the congestion parameter is low enough; if the congestion parameter takes intermediate va-
lues, then the existence of homogeneous pure strateqy equilibrium profiles will be ensured as
long as both hubs and peripherals remain unlikely; finally, there will not be an homogeneous
pure strateqy BNE if the congestion parameter is high. Notice that since the choice of pe-
ripherals is mainly driven by the global network topology, while that of hubs is determined
instead by the local network topology, both local and global externalities play a role in the
existence of homogeneous pure strategy equilibrium choices

Finally, notice that the conditions for hybrid equilibria of Proposition 4(1) are as those
of Proposition 1 but for concave function with interior solutions, and those of Proposition
4(2) refers to the players’ action being pairwise strategic substitutes. Therefore Proposition
4 can be expressed as,

Proposition 7. Let g be a network with a degree distribution of p = {pk }rer . Hybrid BNE
will exist if one of the following conditions is satisfied, either

1-S+59) (19)

N—

for all degree k with a convex vy, and (20) is satisfied for those k with a concave vy,

k 1 c ¢ c

< Minf (1 - Z 1 22y Z

d_Mm{pk(l 2+2p,€), 4(2—|—pk)} (20)
or k z

C C

- <-< —< =

4(2+pk)_ 5 Scand d_4(2+pk> (21)

for the k degree with a convex vy, and for all the remaining | degrees with concave vy.

Here again, as in Proposition 6, condition (19) imposes an upper bound on the weight
of the right-tail of the degree distribution p: for low congestion cost, hubs have to be quite
unlikely. When ¢ takes intermediate values, relatively high values of k/d have to verify
condition (19) and relatively low ones condition (20). The latter says that either & is bounded
or hubs are very unlikely. Notice that theres is not bound on peripherals. Under the second
set of conditions (21), both peripheral and hubs have to be bounded in order a hybrid
equilibrium to exist. Finally, for high values of ¢, there is not any hybrid equilibria.

5. Comparative statics for the two-type player case

Propositions 5-7 relate the different kind of the Bayesian Nash equilibria with the propor-
tion of hubs in the network and with the type probability distribution, for given congestion
costs. A general comparative static analysis is very complex to be undertaken. However,
for a population with two-types of players something more definite can be said. We display
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here the graphical simulations for two examples with the corresponding calculations in the
Appendix.

Consider first how the equilibrium configuration changes under the presence of hubs and
peripheral, keeping the type probability distribution constant. Suppose that K = {3, 4}
with ps = py = 0.5 as opposed to K = {3, 40} with p3 = pyo = 0.5. Thus, the first example
illustrates the situation where there are neither peripherals nor hubs in the population,
while in the second example the average degree is equal to 21.5, a half of the population
(the 3-degree players) consists of peripherals and the other half (the 40-degree players) is
composed by hubs. Figure 5 displays the BNE’s as a function of the congestion parameter.
The left hand side of figure 5) corresponds to the first example while the right hand side
displays the second one. Graphs are scaled to enable comparison of the range of existence
of the different BNE’s.”

When K = {3, 4} -nether peripherals no hubs-, the two homogeneous pure strategy
BNE (either (0,0) or (1,1)) exist up to a congestion cost of 1.14. Then, there is a congestion
parameter interval -from ¢ = 1.14 to ¢ = 1.52- for which there is not any equilibrium. For
values of the parameter from 1.52 to 1.83 we find two hybrid BNE with the 4-degree player
choosing a pure strategy (either 1 or 0) and the 3-degree player the corresponding mixed
one. Finally, for high congestion cost, the uniformly mixed BNE is the unique equilibria.

When K = {3, 40}, both peripherals and hubs are present. This implies with respect
to the previous case: i) a decrease on the range of existence of homogeneous pure strategy
equilibria (the upper bound of ¢ is now 0.19); ii) a decrease on the existence of uniformly
mixed BNE (the lower bound of ¢ is now 2.98); iii) an increment in the range of non-existence,
being now from ¢ = 0.19 to ¢ = 2.48; iv) and an approach to 1/2 of the mixed strategy of the
3-degree players in the hybrid equilibria. Hence, the presence of both peripherals and hubs
reduces the range of congestion cost where there exists either pure or mixed equilibrium
profiles (see the Appendix).

However, as above mentioned, the degree probability distribution also plays a key role on
both the equilibrium configuration and its existence. To illustrate this point, consider again
the two type player networks with either K = {3,4} or K = {3,40} and the three probability
distributions, p3 = 0.25, p3 = 0.50 and p3 = 0.75. Figure 5 displays the change in the BNE’s
configurations when both the probability distribution and the ratio between degrees change.

"The reader can check that when K = {3,4}, the players’ expected payoff functions are

v3(zz,24) = (c—10/T)a3+ (6/7 — 5c/8)xs + (8)7 — 3c/4) w314 + 73
va(xg,x3) = (c—11/T)ay + (8)7 — 5¢/8)x3 4 (6/7 — 3¢/4) w423 + Y4

while these function are when K = {3,40},

v3(x3,240) = (c—46/43)x3 + (6/43 — 5¢/8)x3 + (80/43 — 3¢ /4) w340 + V3
U40(I40, 1’3) = (C — 83/43)140 + (80/43 — 56/8)1’4210 =+ (6/43 — 36/4)1’401’3 + Y40
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Equilibria

Figura 2: BNEs for two-type players as a function of the congestion parameter, under degree configurations
with hubs and without hubs. The solid lines indicate that both players play the same strategy, either
homogeneous pure profiles or uniformly mixed profiles; dashed lines together with solid lines mean that each
player plays a different strategy (hybrid equilibria). In this case, the dashed lines are one of the possible
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hybrid equilibrium and the solid lines are the other one.

In the top of the Figure the two type of players have similar degree, K = {3,4} and in the
bottom there are peripherals and hubs, K = {3,40}. In addition, the left hand side of the
two graphs assumes that p; = 0.25, the middle hand side that p3 = 0.50 and finally, the
right hand side that ps3 = 0.75, in other words, the probability of hubs decreases as we move

to the right.®

8For K = {3,4}, if p3 = 0.25 and py = 0.75, the players’ expected payoffs are

v3(x3,14) = (3¢/4—6/5)x3+ (2/5—9c/32)x3 4 (8/5 — 15¢/16) w374 + 3
va(xg,3) = (5¢/4 —9/5)xs + (8/5 — 33¢/32)x? + (2/5 — Tc/16)x4x3 + V4.

If p3 = 0.5 and p4 = 0.5, then see footnote 7.
If p3 = 0.75 and py = 0.25, then

v3(w3,14) = (5¢/4—22/13)x3 + (18/13 — 33¢/32)x3 + (8/13 — Tc/16)x324 + 73
va(rg,3) = (3¢/4—17/13)x4 + (8/13 — 9¢/32)x; + (18/13 — 15¢/16) 2423 + V4.

For K = {3,40}, if p3 = 0.25 and p4 = 0.75, the players’ expected payoffs are

v3(x3,240) = (3¢c/4—42/41)x3 + (2/41 — 9¢/32)x2 + (80/41 — 15¢/16) w3740 + V3
vio(za0,23) = (5c/4 — 81/41)x40 + (80/41 — 33¢/32)x5, + (2/41 — Tc/16)x 4073 + Ya0-

If p3 = 0.5 and py = 0.5, then see footnote 7.
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Inspection of Figure 3 reveals some facts related with the degree probability distribution.
When the probability of hubs decreases three general facts are observed. First, the range of
congestion costs where there exists homogeneous pure BNE increases (see Proposition 6).
In the three top graphs, this range moves from ¢ in (0, 0.91) to ¢ in (0, 1.34); in the bottom
graphs the change is less relevant, being now from ¢ in (0, 0.11) to ¢ in (0, 0.36). Second,
the range of congestion costs where there exists mixed BNE decreases (see Proposition 5).
Again, in the three top graphs, the lower bound of the congestion cost for which there exists
mixed BNE moves from 1.55 to 2.19, and in the bottom graphs moves from 1.89 to 5.80.
And third, the range of congestion costs for which there exists hybrid BNE increases: for
instance, in the left hand side of the bottom graph there is not any hybrid BNE, in the
middle hand side, hybrid BNE exist in the interval of ¢ in (2.48, 2.98), and in the right hand
side they exist for ¢ in (3.73, 5.80)(see the Appendix).

However, there is always an interval of the congestion parameter where the BNEs fail
to exist. The length of this interval depends on both the degree probability distribution
and the ratio between degrees, showing however a not linear behavior. To see this observe
that when the probability of the maximum degree players decreases, if players have similar
degree, then the length of this interval will also decrease. This is the case displayed in the
three top graphs, where the length of the interval of ¢’s precluding the equilibrium existence
is reduce from a measure of 0.64 to one of 0.08; while, if players’ degree are far apart, then
this length will increase as the probability of the maximum degree players decreases. In the
three bottom graphs, the length of the interval of ¢’s where the BNEs fail to exists increases
from a measure of 1.78 to one of 3.37. Therefore, there is not a monotone linear behavior as
the following figure 4 shows.

6. Equilibrium analysis in some common social network distribution

In this section we illustrate the above results on existence of Bayesian Nash equilibria in
two common degree probability distributions of social networks.

Empirical analysis of social networks and theoretical models about the dynamic of the
networks formation concludes that the most common random networks are the Poisson
network and the Scale-free network, where the former has a Poisson degree distribution
and the latter a Scale-free degree distribution, also called the power-law degree distribution
(Newman [17], Albert and Barabasi [1] and Jackson [14]). Scale-free distributions have fat
right tails, that is the proportion of nodes with large degrees are higher than it could be
expected if the links were formed completely independently as it occurs in Poisson random

If p3 = 0.75 and py = 0.25, then

v3(w3,240) = (5¢/4 —58/49)x3 + (18/49 — 33¢/32)x3 + (80/49 — Tc/16)x3140 + 73
vao(240,23) = (3¢c/4 — 89/49)x40 + (80/49 — 9c/32)x3, + (18/49 — 15¢/16) 4023 + Va0
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Figura 4: Two type case. The OX exes is the probability of the lower degree type; the OY exes is the range
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Probability mass: Poisson and Scale-free distributions Bayes Nash Equilibrium profiles
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Figura 5: Left: Probability mass of a Poisson distribution (solid lines) and a Scale Free distribution (dotted
line) both with an average degree of 3.0. Right: Equilibrium strategies in both distributions as a function of

the players’ degree and three congestion parameters.

networks (see the left hand side graph of Figure 6). In our terminology, hubs are unlikely in
Poisson random networks in comparison with Scale-free random networks, where hubs are

very frequent.
The relationship between the congestion parameter and the different kind of BNE under

the Poisson network exhibits a complex behavior. For instance, consider a Poisson degree
distribution with a given average degree, say3. When the congestion cost is very low, then
the conditions in proposition 6 will be satisfied and homogeneous pure strategy profiles will
be BNE; there will be a range of values of the congestion parameter (around 2) such that the
equilibrium will fail to exist; for higher values of the congestion parameter we will find hybrid
BNE: the tail players (either peripherals or hubs) will play the same pure strategy and the
players around the average degree of the network will choose a mixed action; for very high
congestion parameters a more complex equilibrium profiles arise: peripherals will choose an
uniformly mixed action, hubs will select the same pure action and the other players will play
any mixed action. Notice that the conditions in Proposition 5 will never be satisfied because
there is not an upper bound on the degree of a player and then uniformly mixed strategy
profiles will not belong to the set of BNE. This last remark also will hold for the Scale-free
distribution and, in general, for any degree distribution over an unbounded domain.

The precise values of the congestion parameter where an equilibrium configuration chan-
ges to another one depend on the specific parameter of the Poisson distribution. The right
hand side of Figure 6 displays the equilibrium strategies for a Poisson degree distribution
with average degree equal to 3 (lines with a triangle pointing-up) and for three congestion
parameters, namely 1, 3 and 10 (solid, dashed and dotted lines respectively). For the lowest
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congestion parameter, ¢ = 1, all type of players choose the same pure strategy (z; = 1 for
all k£ € K in the Figure); when the congestion parameter is higher, ¢ = 3, the players with
a degree lower than 5 play a mixed strategy and the remaining players choose the same
pure strategy (x; = 0.56,xo = 0.47, 23 = 0.45, 24 = 0.63,z;, = 1 for k > 5); for the highest
congestion parameter, ¢ = 10, the player with a degree lower than 6 play the uniformly
mixed strategy, those with a degree between 6 and 12 play a mixed strategy, monotonically
increasing on the degree, and finally, the players with a bigger degree play the pure strategy
xp =1, for k > 12).

Scale-free networks show a simpler relationship between the congestion parameter and the
kind of BNE than the Poisson network does. There always exists Bayesian Nash equilibria
and these are only of two types. For congestion parameters under a fixed threshold the
conditions of proposition 6 are always satisfied and homogeneous pure strategy profiles are
BNE; if the congestion parameter is above the threshold only hybrid equilibria exist, with
peripherals playing a mixed strategy and the remaining players choosing the same pure
strategy.

The right hand side of Figure 6 displays the equilibrium strategies of a Scale-Free degree
distribution with average degree equal to 3 (lines with a triangle pointing-down) and for the
same congestion parameters than before. For a congestion parameter equal to 1, all type
of players choose the same pure strategy; when the congestion parameter is equal to 3, the
players with degree 1 play the mixed strategy z; = 0.47 and the remaining players choose
the pure strategy x, = 1, k > 1; for ¢ = 10, the players with a degree lower than 5 play the
a mixed strategy, and those with a bigger degree play the pure strategy xy, =1, k > 5.

7. Conclusions

This paper analyzes the impact of local and global interaction on individuals’ choices.
Players are located in a network and interact with each other with perfect knowledge of
their own neighborhood and probabilistic knowledge of the complete network topology.

Individuals simultaneously choose their actions from a finite set, which imposes an exter-
nality on their neighbors as well as an externality on the complete network, and then obtain
an utility. Namely, players obtain utility from sharing their choices with their neighbors (po-
sitive local externality) but suffer disutility from sharing that choice with all the members
of the network (negative global externality). A variety of economic and social phenomena
exhibit these features such as the adoption of cost-reducing innovations, clusters of firms, the
choice of time-schedules, etc. The optimal (Bayesian Nash) decision taken by each individual
depends on three factors: the spread of their connections in the network (their degree), their
knowledge about the network’s topology, and the exact nature of the externalities which
impact on their utility.

Our main contribution is to show that both local and global network properties play an
important role in equilibrium choices. This is so because the network topology defines two
important features such as hubs (highly connected nodes) and peripherals (poorly connected
nodes). Although each individual’s value function will depend on both the average action
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profile followed by the network and the average action profile of their neighbors, their relative
weight will depend on the individual’s number of connections. Thus, the network average
action profile is particularly important for peripherals because, by definition, their number of
neighbors is very small and therefore their choice will mostly be driven by the network global
topology. On the contrary, the hubs or highly connected players’ action choices will mainly
depend on the average profile of their neighbors’ actions, i.e. on the network local properties.
Therefore our Bayesian Nash Equilibrium is expressed in terms of the ratio between hubs
and peripherals which, in turn, comes from both the asymmetry of the degree probability
distribution (its skewness) and the weight of its tails
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Appendix

Proof of Proposition 5. Notice that the k-degree players’ value function (see Expres-
sion 8) is a polynomial of degree 2 on zy. It can be written as vy[zy, x| = xpvl*[zk, x| + (1 —
T, Ufxy, X], where vz, x] =T — £2% and vf[zg,x] =1 -2 — (1 —7)".

Let x* be a strategic profile such that z; € (0,1) for all k € K. Then x* is a BNE profile
if and only if both |Qv[zk, X*]/02k|sy—a: = 0 and |0 v[xg, X*]/ 027 |2,—a: < O are satisfied
for all k € K. Computing these partial differentials we have (recall that p = kpy/d),

vy, m e ~ _

. = U —vp + 2z, — 1)pi, + epr(1 — T — ay,),
T,

82vk ~ 2

5’:13% = 4py — 2cp — cp”.

The first expression is only equal to zero if x} = 1/2 for all k € K, thus as Proposition 5
states the unique mixed BNE profile is the uniformly mixed strategy. The second expression
is therefore lower than zero if k < c¢d(2 + p)/4. This implies that the uniformly mixed
strategy is a BNE if and only if the above inequality holds, which completes the proof. [

Proof of Proposition 4.(2)

Suppose that all the v,[x,, x| functions are concave but one, vg[zg, x|, which is convex.
The idea of the proof relies on the fact that the system with concave functions has two
solutions, parameterized by x), € {0, 1} (since the v, [z, X] are concave and the strategy space
is compact), which are non-increasing in xj because o, < 0 for all n. Let x5 (1) = {2} (1) bnzk
and x}(0) = {x}(0) },,x, be such solutions with «} (1) < 27 (0) for all n € K and n # k. Now,
zy, € {0, 1} will maximize vy, given the other players’ choice. Then, vy[1,x}(1)] > v [0, x5 (1)]
and v [0, x%(0)] > vi[1,x%(0)], whenever, z* (1) < 1/2 < 2%(0) for all n # k and oy < 0, for
all [ # k , since k has to satisfy

> {7 (1) = 1/2bau>0 (22)

1k

and

- Z{x?(O) —1/2}a >0 (23)

14k

Therefore, it suffices to show that z%(1) < 1/2 < z%(0) for all n # k. Suppose on the
contrary that z;, = 0 and that {z}(0)},. < 1/2, then each n has to satisfy that

S (i (0) ~ 12} < s

In,l#k
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Since ay < 0 for all I # n and a,, < 0 for k # n, and each z;(0) < 1/2, the right hand
side of the above expression is non-positive but the left hand side is non-negative, which
is a contradiction. Hence, when x, = 0, then {z(0)},x > 1/2. Similarly, suppose on the
contrary that x;, = 1 and that {x} (1)}, > 1/2, then each n has to satisfy that

S (o)~ 1/2)an = — o

I£n,l#£k

As above, since a,; < 0 for all I # n and ay,, < 0 for k # n, and each zj(1) > 1/2, the
right hand side of the above expression is non-negative but the left hand side is non-positive,
which is a contradiction. Hence, when zj, = 1, then {z (1) }n2 < 1/2.

Calculations and analysis of some relevant bounds for the examples of sections
5.

Let us show here some calculations for the two-type player case. Denote by k and [ the
two players’ degrees with k > [, and by R = é , the ratio between degrees. Since pp +p; = 1,
let p = p; and recalling the definition of ay;. and by some calculations:

21-p) ¢

ka C
TSR

P+ 2

- 1
gk = 2pr — cpr(Spk + 1) = (3—p)(1—p).

2

Therefore vi[z, x] is convex whenever:

2(1 —p)

_¢ 4
(1-p(1-R) 2

B=P=P 20> g =y 2

Let
4

(1-p(1=R))B-p)

be the upper bound of ¢ up to which vy |z, z] is convex. Similarly, let

Cl(p,R) =

AR
(1-p) +pR)(2+p)

be the corresponding upper bound of ¢ up to which v;[x;, ] is convex. In general, unless p
is very close to 0 (the condition is R < %ﬁ),

C (p,R) =

G (p, R) < Cf (n, R).
With a little algebra it is not difficult to show that:

90w R) _ , 0C (0.R)

OR —ar ¥

In words, as k increases (R decreases), the upper bound C} also increases, making
v|xy, z] convex for more values of ¢, while C; decreases, and hence v[z;, z] is convex for
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less values of c¢. Furthermore, efficient profiles always exist, but we have only found sufficient
conditions for the pure homogeneous outcomes to be efficient. Simple examples show us that
the efficient profiles exhibit a more complex structure than that of equilibrium outcomes.
Hence, it could be interesting to analyze the characterization of efficient profiles more deeply
and, in particular, the conditions making mixed equilibrium profiles efficient.

Repeating the algreba for changes of p,

op ’ op <

aCt (p,R

Notice that —5 SN 0, whenever R < 22 Therefore, for any two degrees such that
p 2+2p

k > 2l as the probability of hubs decreases both upper bounds C}f(p, R) and C;" (p, R)
increase, this meaning that both functions vi[zy, x| and v;[z;, x| are convex for more values
of c. However, when & < 2! (no hubs), C;"(p, R) will decrease, making v[2;, 2] convex for
less values of c.

Changes in the strategic complementarity and substitution: Recalling now the definitions
of ay; and ayrand by a little algebra, for all [ # k,

- 20R
ap =2p —cepi(pr + 1) = ( b —cp(2 —p)

1—p)+pR
therefore, type k of player considers the action of type [ as a strategic complement whenever,

2pR 2R

(1—p)+pR —p2=p) >0 (—p+pR)2-p)

Define
2R

(1 =p) +pR)(2—p)
as the the upper bound of ¢ up to which type I's action is a strategic complement of type
k's action. Similarly, since

Chip, R) =

e = 2p — cpe(pi + 1) = ( 20 ) o(1—p?)

1—p)+pR

then define 5

(1=p)+pR)(1+p)’

as the the upper bound of ¢ up to which type k’s action is a strategic complement of type
s action. Then,

Ch(p,R) =

oC (p, R) oCk (p, R)
OR OR

This means that as k increases (R decreases), the upper bound C}(p, R) decreases as

> 0, <0.
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well, thus reducing the values of ¢ for which type k of player considers the action of type
| as a strategic complement. The opposite results takes place for Cjt(p, R). Combining this
last result on the bounds of C}f;(p, R) and C;(p, R) as R changes whith the corresponding
ones on C; (p, R) and C}" (p, R), it can be said that, with p fixed, as k increases the range
of values of ¢ for which an uniforms pure strategy equilibrium exist decreases. This is so,
because v|xy, x] is convex for more values of ¢, but v;[x;, ] is convex for less values of ¢, the
range of values of ¢ for which type k of player considers the action of type [ as a strategic
complement is smaller, but the range of values of ¢ for which type [ of player considers the
action of type k as a strategic complement is bigger. These opposite effects translate to a
lack of players’ coordination and thus to a bigger interval of non-existence results (see figure
2).

Next, we analyze the changes in C}(p, R) and Cji(p, R) when p changes. Some little

algebra shows that
0L R) _, OCLw. T

= 0.
dp op =
. aC,\ (p,R) 2p
As above, notice that —%-=— > 0, whenever R < 75-. Therefore, for any two type
P +2p
degrees k and [ such that £ > % (the case with hubs) as the probability of hubs

decreases both upper bounds C}(p, R) and Ci} (p, R) increase, this meaning that the upper
bound on ¢ for which type k (type [ ) of player considers the action of type [ (k) as a
strategic complement increases as well. This explains the increase of homogeneous pure
strategy equilibrium profiles in the bottom of figure 3 as p increases. When k < % (no
hubs), as p increases, C;" (p, R) will decrease and type [ of player will turn to consider the type
k's action as a strategic substitute for lower values of ¢. However, since % is decreasing
in p this effect is higher for k& than for [, thus resulting in an increase of homogeneous pure
equilibrium and hybrid equilibrium profiles for more values of ¢ as p increases, as shown in

the top of figure 3.
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