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1 Introduction
In recent years, school choice policies have become popu-
lar in cities across the United States to give parents the op-
portunity to choose which school their child will attend, and
economists have been important in the design of many of the
mechanisms used for the actual implementation of these poli-
cies (e.g., in New Orleans, Denver, Boston, and New York
City, among others).1 In conjunction with giving parents more
choice, many school districts also set socioeconomic diversity
as an important goal, which is often achieved by imposing
lower and upper quotas on the numbers of each type of stu-
dent that can be enrolled at a school. For example, the Cam-
bridge, Massachusetts school district divides students into two
socioeconomic classes (low SES and high SES) and requires
that each SES class comprise 45-55% of the students at ev-
ery school.2 Similarly, Montclair, New Jersey divides the city
into three zones based on socioeconomic data and attempts
to equalize the number of students from each zone at each
school.3 In New York City, “Educational Option” schools
must have 16 percent of students score above grade level on
a standardized reading test, 68 percent must score at grade
level, and 16 percent must score below grade level.

While some papers such as [4] and [1] consider the prob-
lem of diversiy in school choice, most work considers only
type-specific upper quotas. Such upper quotas can be defi-
cient, because they can still result in completely segregated
schools.4 One simple (and often used) approach is to impose
upper quotas that are artificially lower than the true upper quo-
tas (what we will call “artificial caps”). By imposing suffi-
ciently stringent artificial caps, the school district can ensure
that all of the true lower and upper quotas are satisfied. How-
ever, this solution may waste seats in the sense that it will
be possible to reassign some students and make them better
off, while still satisfying all diversity constraints (and without
harming other students).

In this paper, we propose mechanisms that guarantee all
diversity constraints will be satisfied and outperform impos-

1See, for example, [2] and [3].
2The exact percentages may change from year to year.
3Due to recent court rulings, many school districts can no longer use race

as a factor in making assignments, and so use other criteria such as geography
or socioeconomic status.

4In addition, [8] shows that these mechanisms can actually be Pareto in-
ferior for minority students, the supposed beneficiaries.

ing artificial caps. In addition, we show that our mechanisms
perform well on other dimensions that are important in match-
ing markets in general, and school choice markets in particu-
lar: namely, strategyproofness, fairness, and nonwastefulness.
To the best of our knowledge, we are the first to provide (non-
trivial) strategyproof mechanisms that satisfy all type-specific
lower and upper quotas.

2 Model

There is a set I = {1, . . . , I} of students and a set S= {s1, . . . ,sM}
of M schools. Each student is of exactly one type in the set
Θ = {θ1, . . . ,θT}. Each school has a capacity of qs seats, and
type specific lower and upper quotas Lsθ and Usθ , respec-
tively, for each type.5 Each school has a priority relation
�s on the set of students, and each student has a preference
relation Pi on the set of schools. A matching is a mapping
µ : I ∪ S→ 2I∪S such that µ(i) ∈ S for all i ∈ I; µ(s) ⊆ I for
all s ∈ S; and i ∈ µ(s) ⇐⇒ µ(i) = s. We say a matching is
feasible if all capacities and quotas are satisfied.

If, at a matching µ , there is some student-school pair (i,s)
such that s�i µ(i) and the matching µ ′ in which i is moved to
s and all other assignments remain the same is feasible, then
µ is wasteful. If µ is not wasteful, we say it is nonwasteful.

If at matching µ , there is a student i such that s �i µ(i)
and i �s j for some j ∈ µ(s), we say that i envies j. If no
student has any envy, we call the matching fair.

A mechanism χ is a function that, for each vector of re-
ports of the students P=(Pi)i∈I , outputs a matching. A mech-
anism is strategyproof if no student can ever improve her as-
signment by lying about her preferences, no matter what the
other students report.

Strategyproofness, nonwastefulness, and fairness are three
important desiderata in school choice. However, it is simple to
show that once lower quotas are introduced, the set of fair and
nonwasteful matchings may be empty.6 Due to this impossi-
bility result, we must weaken either fairness or nonwasteful-
ness.

5We of course must impose some consistency conditions on the capacities
and quotas and number of students of each type, to ensure that we can feasibly
assign all students to a school. For brevity, we do not discuss these conditions
here.

6See, for example, [5] and [6].
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qs Ls` Lsh Us` Ush Priorities
A 1 0 0 1 1 h1 �A h2 �A `1
B 1 0 0 1 1 h1 �B h2 �B `1
C 2 1 1 1 2 h1 �C h2 �C `1

Table 1: Capacities, type-specific quotas, and priorities for the
three schools. The market consists of two students of type h,
labeled h1 and h2, and one student of type `, labeled `1.

3 An illustrative market
For the remainder of the paper, we use an example of a simple
market to illustrate our ideas. The market consists of three
students, I = {h1,h2, `1}. Two students, h1 and h2, are of
high socioeconomic status, while one student, `1, is of low
socioeconomic status. The set of schools is S = {A,B,C}.

The standard approach found in [4] and [1] would be to
run the deferred acceptance algorithm on the above market
using only the upper quotas. However, this may unfortu-
nately result in an infeasible assignment. To see this, con-
sider the following preferences: Ph1 : A,B,C, Ph2 : B,A,C and
P̀ 1 : C,A,B.7

The standard solution when there are only upper quotas is
to use the deferred acceptance (DA) algorithm. In round 1,
each student applies to her first choice school, and the school
tentatively accepts applicants according to its priority relation
up to its quotas and capacities, rejecting the rest. All students
rejected then apply to their next choice, and the schools con-
sider students tentatively held from the previous round and all
new applicants, again tentatively accepting students according
to its priority relation. The algorithm continues until either no
student is rejected or all students have applied to all schools.

When we run DA on the reports P = (Ph1 ,Ph2 , P̀ 1) using
only the upper quotas from Table 1, the resulting matching is

µ1 =

(
A B C
h1 h2 `1

)
Note that this assigns no type h students to C, which violates
the lower quotas at C, and so is not feasible.

Artificial caps DA

One easy solution to the lack of feasibility is to artificially
cap the number of h students at A by lowering UAh from 1 to
0. Now, if we run DA with these quotas, the output is

µ2 =

(
A B C
/0 h1 h2, `1

)
,

which does satisfy all upper and lower quotas. By using this
artificial cap DA algorithm (ACDA), we can guarantee that
the true lower and upper quotas will be satisfied for any report
of the students. Such an approach is taken by many real-world
markets (see, for example, [4] or [7]).

7We use the notation Pi : x,y,z to mean that student i prefers x to y to z.

While simple, this mechanism is problematic. This can
be seen by considering a profile of reports P̃ = (Ph1 , P̃h2 , P̀ 1),
where students h1 and `1 reports are unchanged, but student
h2 reports P̃h2 ;C,B,A. The resulting matching after running
DA with artificial caps is

µ3 =

(
A B C
/0 h1 h2, `1

)
.

Note here that, while µ3 satisfies all of the quotas, we can in
fact make h1 better off by assigning him to A, and the resulting
matching would still satisfy all of the quotas.

This wastefulness is a general feature of artificial caps
type mechanisms. These mechanisms eliminate some seats
ex-ante, without regard for student demand. Doing so ensures
that all of the lower quotas will be filled, but can potentially
result in large efficiency losses. Our proposed mechanisms
will rectify this by only reducing quotas when necessary.

Deferred acceptance with dynamic quotas (DADQ)

The idea behind DADQ can be illustrated by our example:
rather than reducing the type h quota at A from the outset as in
ACDA, we only do so when necessary. More specifically, we
start by running the algorithm with the original upper quotas
from Table 1. If the resulting matching satisfies all of the
lower quotas, the algorithm finishes. If not, we reduce a quota
at some school, and then run the algorithm again. We continue
until the resulting matching is feasible.

To illustrate, let us describe the algorithm for our example
when the submitted preference profile is P. In round 1, the
resulting matching is µ1, just as above. Since the lower quota
at C is not filled, we then lower the type h quota at A from 1 to
0, and rerun DA. The new matching is µ2, which does satisfy
all of the quotas, and so the algorithm finishes.

While the output in the above is the same as ACDA, the
benefit of DADQ is revealed when we consider the preference
profile P̃. In round 1 of the algorithm, the matching is

µ4 =

(
A B C
h1 /0 h2, `1

)
.

Since this satisfies all quotas, the algorithm ends and the fi-
nal matching is µ4, which Pareto dominates µ3, the match-
ing obtained from ACDA in the previous section. This Pareto
dominance is general, as we discuss in Section 4.

Multistage DA

We also consider an alternative mechanism which we call
multistage DA (MSDA) (the tradeoffs between DADQ and
MSDA will be discussed in Section 4). MSDA is also run in
several stages. The idea behind multistage DA is to first “re-
serve” a number of students equal to the sum of the minimum
quota seats remaining. Then, run standard DA using only the
upper quotas on the remaining students. Since we have the
reserved students, we know that no matter how the students
in the first stage are allocated, we will certainly have enough

2



5 CONCLUSION

agents to fill any remaining quotas. This process is then re-
peated until all students have a seat.

To illustrate, consider our example with preferences P.
Based on the starting lower quotas, we must reserve 1 type
h student and 1 type ` student. Say that we reserve h2 and `1.
Then, we run DA on student h1, who applies (and is accepted
at) A. Now, we reduce the quota and capacity at A by 1. Af-
ter this assignment, there the number of lower quota seats is
exactly equal to the number of agents of each type, and so
we run DA on the remaining students, but only allow them to
apply to schools with lower quota seats remaining. The final
matching is matching µ4 from above.

4 Discussion
The market given above is a particularly simple example, but
all of the mechanisms can be extended to markets of arbitrary
size. Some complexities arise, because for DADQ, we must
decide in what order to reduce the quotas, while for MSDA,
we must decide which students to reserve at each stage. Strat-
egyproofness is preserved by requiring that these decisions
not depend on the submitted preferences of the students.

Recall the properties of interest from Section 2: strate-
gyproofness, fairness, and nonwastefulness. The DADQ and
MSDA mechanisms illustrate the necessary tradeoff (because
of the impossibility result) between fairness and nonwasteful-
ness: DADQ is fair (in the sense that it eliminates all envy
among students of the same type), but may waste seats, while
MSDA is nonwasteful, but will not be fair.

While DADQ cannot be nonwasteful (since we already
know it is fair), it does not give up on nonwastefulness en-
tirely. In particular, note that it only eliminates seats (i.e.,
lowers quotas) when necessary, and so in fact Pareto domi-
nates ACDA. Similalrly, while MSDA cannot be fair (since
we know it is nonwasteful), it will satisfy a weaker fairness
property, which we define in the full paper.

The full proofs of the above fairness and nonwastefulness
properties are quite intuitive. However, the last key prop-
erty we discuss, strategyproofness, proves much more diffi-
cult. Strategyproofness is regarded to be an important prop-
erty in many matching markets, and in school choice markets
in particular.8 Because of the importance of strategyproof-
ness, and the lack of strategyproof mechanisms for problems
with lower quotas (besides ACDA-type mechanisms, which,
as we noted, have other problems), we took strategyproofness
as integral to the design of our mechanisms, and in fact, un-
der certain (broad) conditions, both of our mechanisms will
be strategyproof.

For MSDA to be strategyproof, we simply require that the
order in which students are “reserved” not depend on the sub-
mitted preferences. Then, since within each stage DA is strat-
egyproof, and an agent cannot affect the stage in which he
participates, the MSDA mechanism overall is strategyproof.

8Strategyproofness prevents parents from needing to play a complicated
preference revelation game, and was a crucial property in the redesign of
Boston’s school choice mechanism. See also [9].

Proving that DADQ is strategyproof is significantly more
difficult. It may seem at first that this would not even be true,
because the report of an agent can affect which quotas are
filled at the end of a given stage, and thus also will affect the
stage at which the algorithm ends. While this is true, we show
that, as long as the choice functions of the schools get weakly
smaller at each stage,9 the mechanism will be strategyproof.
Intuitively, any individual agent’s report can only affect the
number of seats filled at any school by at most 1. Consider an
agent i who can potentially manipulate, and say that if he re-
ports truthfully, the algorithm ends in stage k, when the quota
and capacity vectors (for all schools and types) have been low-
ered to qk and Uk, respectively. It is clear that the student then
never wants to submit a (false) report that causes the algo-
rithm to end at a stage k′ > k, since at later stages, there are
simply less seats for everyone. What is more difficult to show
is that agent i does not want to submit a report that ends the
algorithm early, at some k′< k, where he “locks-in” a seat that
would have been cut if the algorithm had continued to stage
k. The general intuition is that, if i is able to obtain a seat
at some school s by reporting some P′i (6= Pi) and causing the
algorithm to end in stage k′ < k, then under the true report Pi
(or, indeed, any report), when i applies to s, all of the lower
quotas will be filled, and so the algorithm will end before he
is rejected from s. Since he cannot be rejected from s, there is
no risk to i from reporting the schools preferred to s truthfully.

5 Conclusion
This paper provides the first (nontrivial) strategyproof mech-
anisms for matching markets with type-specific lower and up-
per quotas. We identify a fairness/nonwastefulness tradeoff
and introduce two mechanisms, one for each side of this trade-
off: the deferred acceptance with dynamic quotas mechanism
(DADQ) is strategyproof and fair, while the mulitstage de-
ferred acceptance mechanism (MSDA) is strategyproof and
nonwasteful. DADQ still performs well with respect to non-
wastefulness, Pareto dominating the simple and commonly
used solution of imposing stringent artificial caps. MSDA,
on the other hand, will still satisfy a weaker definition of fair-
ness.

The main application of our model is to school choice
markets in which diversity is a large concern, of which there
are numerous examples. However, we would like to end by
noting that our mechanisms can be applied to any markets
where lower quotas are relevant. Particular examples include
the Japanese hospital residency market studied in [7], the mili-
tary cadet matching market studied in [10], or, in general, any
organization which assigns members to projects, with each
project having a minimum staffing requirement (such as a firm
and its employees).

9For example, when the quota UAh is lowered to force a type h student to
apply to C and fill the lower quota there, school A is not allowed to reassign
this seat to a type ` student. If it was allowed to do so, student `1 may have an
incentive to prolong the algorithm in order to lower the UAh quota, allowing
him entry to school A.
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