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Abstract

We study a principal-agent relationship without monetary transfers. The
principal is uncertain of the agent’s preferences. We show that if the principal
is restricted to offering convex menus (menus consisting of only convex sets),
then a pooling menu, a menu consisting of a single delegation set, is optimal.
We also show that the restriction to convex menus is without loss in various
settings. Thus, in these settings, the optimal menu consists of a single interval.
We also show that the optimal pooling menu is convex (in all settings studied).
In addition, we provide some comparative statics. Finally, this paper generalizes
a main result of Melumad and Shibano (1991) to a larger class of loss functions.
The proof of this generalization provides additional intuition for the result: non-
convex menus are mean-preserving spreads of convex menus. Thus, nonconvex
menus are suboptimal for the principal.
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1 Introduction
It’s time to apply the same rules from top to bottom.

-President Barack Obama, 2012 State of the Union Address 1

In order to succeed, companies must design prudent rules and guidelines for the
actions of their employees. One reason for the significance of this design is that those
managing an organization frequently have to rely on the information (and actions) of
others. Yet, the people they rely on may not share the same goals as the managers.
Thus, they may provide noisy information or may implement actions contrary to the
desires of the managers. These concerns are not just relevant to companies, but are
also relevant to legislatures forming committees or regulatory agencies (Melumad and
Shibano, 1994, Gilligan and Krehbiel, 1987).

In certain cases, this difficulty can be alleviated by offering monetary transfers.
These transfers may incentivize the agents to implement actions in the best interest of
the managers or to reveal their hidden information (and preferences) to the manager
(Laffont and Martimort, 2002). Yet in industries where the wages are flat, a manager
will not be able to use monetary transfers to try and screen between agents. In
fact, the lower-level managers may not have the authority to collect or provide the
required monetary transfers to their workers to induce them to take the optimal
actions. In addition, designing contracts specifying the optimal transfers for every
task may be too complex or costly for the manager to design. In certain situations,
such as committees of legislative bodies (Gilligan and Krehbiel, 1987, Melumad and
Shibano, 1994), monetary transfers are not permitted for legal reasons.

This paper analyzes settings where a principal faces uncertainty in two respects.
First, the principal faces uncertainty regarding the underlying state of nature (where
the optimal decision depends on the state of nature). In addition, the principal does
not know the preferences of an agent to which he may delegate a task. The goal of
this paper is to understand how the principal designs delegation rules (the decision
rights available to the agents) to optimally use the information of the agents. The
principal could offer all agents the same set of responsibilities. This set could be
smooth or disjointed (these will be defined below and the example in two paragraphs
should make these descriptions clearer).

Alternatively, the principal may design the decision rights in order to learn about
the preferences of the agents. The principal may design different sets of responsibil-
ities in order to screen between agents with with different preferences. By allowing
agents to choose between different sets of responsibilities a principal will be able to

1The 2012 State of the Union transcript is available at: http://www.whitehouse.gov/the-press-
office/2012/01/24/remarks-president-state-union-address
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infer agent preferences. This paper explores whether a principal can design different
responsibilities to take advantage of the information revealed by this responsibility
choice. This paper argues that the principal should require all agents to follow the
same guidelines (and offer them all the same set of guidelines). In addition, the menu
should not be disjointed: if the principal allows the agent to take two actions, a and
b, he should allow the agent to take all actions "in between" a and b. The choices
from the optimally designed screening menu of responsibilities provide the principal
with little useful information. Only final actions provide useful information (about
the state) to the principal, not the choice of responsibility.

In order to clarify this description, consider the following example (adapted from
Frankel, 2011). Consider a school where teachers are paid flat wages and assign grades
to their students. Both the school and teacher desire to assign higher grades to better
performing students. The school may prefer that the teacher assign a lower amount
of A-level grades (to maintain the reputation of a high grade point average from the
school). In contrast, the teacher may prefer to give a higher amount of A-level grades
to students (perhaps from a desire to make the students happier, or to encourage
students to take the course by offering them the prospect of higher grades). In order,
to control their agent (the teacher) the school may set a required grading curve that
all teachers may obey.

Thus, the school may limit the grading practices of the teachers by requiring
them to assign grades according to a particular curve. For example, one type of curve
could be bimodal around A-level and C-level grades. Another type of curve could
be more uniform. Alternatively, the school may offer each teacher a menu of sets
of allowable curves. For example, the menu could consist of one set of permissible
bimodal distributions and one set of allowable uniform distributions of grades. The
teachers would pick set of curves from the menu at the beginning of the semester.
By doing this, the school could allow the different types of teachers to reveal their
preferences about grading, while still preserving a desired grade-point average. We
show that the school should give each teacher one allowable set of curves. In addition,
if both bimodal and uniform curves are allowed, the school should offer a smooth
gradation of choices of curves between bimodal and uniform.

More generally, we would like to analyze the setting of communication without
transfers. In particular, we are interested in studying how uncertainty in agent pref-
erences influences communication (under commitment on the part of the principal).
In this case, a principal offers an agent a menu of sets (of decisions). The agent
picks a set, then observes the state of the world, and then chooses an action from
the set of actions that he had chosen. The principal implements the action the agent
selected. We interpret offering a rule with a larger range of actions as inducing more
communication between principal and agent than a rule that offers a smaller range
of actions. In general, we want to explore how the nature of communication changes
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when an additional channel of communication is added: a channel for the agent to
reveal preferences (as opposed to just the state of the world). We show that in the
case of no transfers, it is optimal for the principal to just offer one possible set of
actions. In other words, attempting to screen between the different types of agents
by offering a menu of actions does not yield the principal any extra expected utility.
The optimal set is larger than that offered to the most biased agent, but smaller than
that offered to the least biased agent when preferences are known.

These results depend on multiple assumptions. First, we assume that the state is
distributed uniformly over the unit interval. Another crucial assumption is that the
bias term is constant and does not depend on the state. At the beginning of the paper,
we restrict attention to convex menus (menus that only contain convex sets). Under
this restriction, the results depend on the agents having a symmetric, differentiable,
and strictly concave loss functions. The loss also depends on the distance of the
action, x, from the state, s, (or from the state plus a bias term). More formally,
the loss function is L(x, s) = U(|x − s − ki|), where ki is the bias term and U is a
symmetric, differentiable, and strictly concave loss function. Later we show that the
above restriction to convex menus is without loss for quadratic loss functions and for
a two type case (where one type has no bias).

1.1 Outline

In Section 2, we describe the related literature. In Section 3, we present the formal
model. In Section 4, we provide a characterization of the best response of the agent.
In Section 5, we present examples to provide intuition for the proof of the main
result. In Section 6, we summarize our main results. In Section 7, we show that the
optimal delegation set is pooling of the principal is restricted to convex menus. In
Section 8, we show that this restriction is without loss. In Section 9, we provide some
comparative statics. Section 10 concludes the paper.

2 Related Literature
The literature most relevant to this project is that of cheap talk and mechanism design
without transfers (delegation).The work most influential to this project from the cheap
talk literature is that of Crawford and Sobel ( 1982). The case of cheap talk with
unknown preferences has been studied by Sobel (1985), Morgan and Stocken (2003),
Wolinsky (2003), Dimitrakas and Sarafidis (2005), and Li and Madarasz (2009). These
papers do not discuss screening using different communication protocols.

Of the delegation literature the two most important papers for this project are
those of Holmstrom (1984), and Melumad and Shibano (1991) (abbreviated as MS).
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Martimort and Semenov (2006) provide conditions for when the optimal delegation
set is an interval (but still consider the case when the preferences of the agent are
known). Mylovanov (2008) studies veto-based delegation and Kovac and Mylovanov
(2009) also study when stochastic mechanisms yield optimal payoffs to the principal.
Alonso and Matouschek (2008) study the optimal delegation problem under more
general preferences and distributions over the state space, but when the preference of
the agent is known.

Alonso and Matouschek (2007) provide a synthesis of the two literatures by study-
ing a setting of cheap talk with partial commitment. Dessein (2002) provides a dif-
ferent synthesis of these two literatures. Amador and Bagwell (2012a) and (2012b)
provide applications of the theory of delegation to tariff caps. Amador, Werning, and
Angeletos (2006) apply the theory of delegation to study commitment and flexibility
in saving rules.

Armstrong (1995) and Frankel (2011) consider the case of preference uncertainty
but do not study the optimal screening contracts. Work that does study the optimal
screening menu, has been done by Kovac and Krahmer (2012). Yet the agents in
their model have known preferences. What distinguishes the agents is the precision of
their knowledge over the future state of nature. Carrasco and Fuchs (2009) consider a
setting of implementing a decision with agents who have different preferences, but the
preferences of the agents are known. Another related literature is that of sequential
screening (2000). In that paper, the functional form of the agents’ utility is monotonic.
In this case, the utilities are not monotonic.

3 The Model

3.1 Preferences

The setting is similar to that of Melumad and Shibano (1991), except that we in-
troduce uncertainty in the bias between the agent and principal Thus, the payoff
functions of the agent depend on the state of nature (s ∈ [0, 1]), the action imple-
mented by the principal (x ∈ R), and the bias of the agent (k ∈ R+). Let U : R→ R,
where U is a symmetric, differentiable, strictly concave function, that is maximized
at zero (without loss of generality, we normalize U so that U(0) = 0)2.The utility
function of the principal is UP (x, s) = U(x − s). Let 0 ≤ k1 < k2 < · · · < kN The
utility function of agent i is U i(x, s) = U(x− s− ki) where i ∈ {1, 2, . . . , N} = N . ki
and s are random and statistically independent, where s is distributed uniformly over
[0, 1]. The probability that bias ki is chosen is denoted by pi. We call this environ-

2These conditions also imply that U(·) is strictly decreasing over R+ and strictly increasing over
R−.
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ment (of utility functions, arbitrary number of types, and nonnegative bias), setting
D (for default setting). Later on we will restrict attention to two simpler settings.

3.2 Actions and Timing

Before describing the timing of the game, I first define a delegation set. A delegation
set is a set of actions, D, that the agent will be restricted to take. D must be compact
and I denote the set of compact subsets of the real line by D. (We only need to restrict
attention to closed sets since for every unbounded closed set, there is a bounded
closed set that produces the same outcome and provides identical incentives). By the
taxation principle, the principal will offer the agents a menu of set,m = {D1, . . . , DN}
(I will describe the timing of the game below). Let DN =M be the set of all menus
of delegation sets. We call a menu, m ∈ M, a convex menu if every D ∈ m is a
convex set. In other words, all the delegation sets in a convex menu are convex. We
denote the set of convex menus byMC. We call a menu, m ∈M, a nonconvex menu
if there exists a nonconvex set, D′ ∈ m.

The timing of the game is as follows:

Time 0: Nature chooses ki (bias) for the agent. The agent observes this value, but the
principal does not.

Time 1: The principal offers the agent a menu of delegation sets, m = {Di}i∈N ∈M.

Time 2: The agent selects one of the sets, Di, and this selection is observed by the
principal.

Time 3: The state of the world, s, is chosen by nature. It is observed by the the agent
but not the principal.

Time 4: The agent picks a final action d ∈ Di, which is observed by the principal.

Time 5: The agent’s action choice is implemented and payoffs are determined.

The interpretation of this formulation is that the agent takes the final, payoff-
relevant action. Yet, the action the agent takes is restricted by the principal. The
action chosen by the agent must be an element of his chosen delegation set, which was
designed by the principal. Hence, the principal’s strategy is an element {Di}i∈N ∈
M = DN .

The agent’s strategy is an action at each information set in the game tree. Thus,
the agent’s strategy is σ, where

σ : N ×M× [0, 1]→ D × R, (3.1)
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where
σ(i,m, s) = (σM(i,m), σD(i,m, s)), (3.2)

where:

σM(i,m) ∈ m, (3.3)

σD(i,m, s) ∈ σM(i,m), (3.4)

i ∈ N = {1, . . . , N}, s ∈ [0, 1]. (3.5)

σM(i,m) represents the delegation set agent i chooses from the menu offered by the
principal (implied by condition 3.3). σD(i,m, s) represents the final action chosen by
the agent after observing the state of nature. Notice that the final action must be an
element of the delegation set chosen (implied by condition 3.4).

3.3 Solution Concept

The solution concept used throughout this paper is Perfect Bayes-Nash Equilibrium.
The principal chooses m = {D1, . . . , DN} to maximize ex-ante expected utility:

max
m∈M

n∑
i=1

pi

(∫ 1

0

UP
(
σD(i,m, s), s

)
ds

)
. (3.6)

Each type of agent (i ∈ {1, . . . , N}), chooses the final action, σD(i,m, s) to maxi-
mize ex-post utility conditional on the original choice of delegation set from the menu,
σM(i,m):

σD(i,m, s) ∈ argmax
d∈σM(i,m)

U i(d, s) = argmax
d∈σM(i,m)

U(d− s− ki). (3.7)

Their are two points to notice. First, notice that σD is determined by σM. We
call the value of σM(i,m), agent i’s choice of delegation set. Second, we don’t
need to assume that the menu contains only bounded closed sets. In other words,
σM(i,m) need not be compact. Since the loss function is symmetric and decreasing
in the distance from s + ki action, we know that there exists an Q(i,m) such that
|σD(i,m, s)| ≤ Q(i,m), ∀s ∈ [0, 1]. Thus, we know that even for menus containing
closed (but not bounded sets), σD is well-defined. Each agent type, chooses the del-
egation set, Dj, from the menu, m = {D1, . . . , DN} in order to maximize interim
expected utility given his future final actions, EiDj, where:

EiDj =

∫ 1

0

U i
(
σD(i,m, s), s

)
ds (3.8)
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where σD(i,m, s) ∈ Dj.
Before deriving results about the optimal convex and pooling menus, we need to

derive some properties about equilibrium strategies of the agents. We will state the
useful properties of the equilibrium best responses in the next section (we will char-
acterize σD(i,m, s) and prove some useful lemmas about this function). Melumad
and Shibano (1991) prove the relevant properties of these best response functions for
a general class of utility functions. We will show below that the utility functions as-
sumed here satisfy the properties necessary for Melumad and Shibano’s proof. Hence,
their results apply in this setting.

4 Characterizing the Agent’s Best Response
The agent type’s (i ∈ N ) behavior is very simple conditional on the choice of a
delegation set, σM(i,m) = D ∈ m. Agent type i will choose, for each state s, the
element in D closest to s. Let’s call this point xDi (s). More formally, for every
compact set D ⊆ R (we just need the set to be closed, but we assume compactness
for a smoother description) :

xDi (s) ∈ argmax
d∈D

U i(d, s) = argmax
d∈D

U(d− s− ki). (4.1)

Comparing (3.7) and (4.1) we define

xDi (s) := σD(i,m, s), (4.2)

when σM(i,m) = D.
We call xDi the delegation schedule generated by D for type i. This function maps

the current state, s, to an optimal action of the agent within his chosen delegation
set, D. Let xOi (s) = xRi (s) = argmaxd∈R U(d − s − ki) = s + ki. xOi is the optimal
delegation schedule for type i: for each state, s, xOi yields the best possible final action
for the agent type. Call the range of xOi the set of ideal actions for type i. Notice
that the range of xOi = [ki, 1 + ki]. In addition, the ideal action set of the principal is
[0, 1]. The properties of xDi are listed in Appendix A. The most important result is
that the delegation schedule is an increasing function.

We call a delegation set D nonredundant for agent type i if I(xDi ) := Image(xDi ) =
D. In words, a delegation set D is nonredundant for player i if every action in set
D is taken by player i for a particular state. We now show that for every closed set
D, there is a nonredundant set D′ = I(xDi ) for player i (which we know is compact).
This is Result 4.3. Before proving it we will need a lemma and a corollary.

Lemma 4.1. For all D ∈ D and i ∈ N , I(xDi ) is compact.

10



Proof. See Appendix A.

Corollary 4.2. For all D ∈ D and i ∈ N , I(x
I(xDi )
i ) = I(xDi ).

The following result puts this lemma and corollary together and allows us to
reduce attention to nonredundant sets:

Result 4.3. For every set D ∈ D and i ∈ N , there is a nonredundant set D′ ∈ D
such that I(xD

′
i ) = I(xDi ) and xD′i (s) = xDi (s),∀s ∈ [0, 1].

Result 4.3 (the nonredundancy result) will simplify analysis when studying screen-
ing menus (defined below).

The interim expected utility to the agent of type i after choosing the delegation
set D is:

EiD =

∫ 1

0

U
(
xDi (t)− t− ki

)
dt.

Thus, by the Taxation Principle, the principal’s optimization program is :

max
{D1,...,Dn}∈M

n∑
i=1

pi

(∫ 1

0

U
(
xDi
i (t)− t

)
dt

)
(4.3)

subject to the type incentive constraint for delegation sets (ICi
k):

EiDi ≥ EiDj,∀i, j.

A menu solving the principal’s problem subject to the ICi
k constraints3 is calledM-

optimal. If the set of menus in (4.3) is restricted to convex menus, then the expected
utility maximizing, incentive compatible menu will be calledMC-optimal. We call

EPi Di =

∫ 1

0

U(xDi
i (t)− t)dt

the expected payoff to the principal from type i.
We say that a set D′ improves upon D for type i if

EPi D′ =
∫ 1

0

U(xD
′

i (t)− t)dt >
∫ 1

0

U(xDi (t)− t)dt = EPi D

and
EiD′ ≥ EiD.

3For the rest of this paper, we will just call these constraints the ICk constraints.
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Notice that the menu that improves upon another only satisfies the ICk constraint
for type i (and not necessarily type j).

A menu is convex if all sets in it are convex. A menu m ∈ DN is pooling if it
is singleton (m = {D}). We call D the pooling set. A menu m ∈ DN is screening
if it is non-singleton and all sets are nonredundant. This is not such a demanding
requirement since I(xDi

i ) ⊆ Di, and, therefore,

Ei
(
I(xDi

i )

)
= Ei(Di) ≥ Ei(Dj) ≥ Ei

(
I(x

Dj

j )

)
,

∀i, j ∈ N . Hence, the expected payoff and incentive constraints are preserved.
The decision of the agent is determined by the menu that is offered. The two

types of menus are convex menus (menus containing only convex sets) and nonconvex
menus. In order to to better analyze nonconvex menus, we will use some results
derived in the next section about nonconvex menus and the gaps in them.

5 An Example That Illustrates the Proofs of the
Main Results

We provide an example to show that the problem is nontrivial and to give the reader
a flavor for the proofs of the main results of this paper.

Example 1: Feasibility of Convex Menus and Optimality of Pooling
First we show that the problem is feasible (even under the restriction to convex

menus) and then provide intuition for the optimality of pooling menus. We show
that there exist menus that are convex, incentive compatible, and screening. Let
UP (x, t) = −(x − t)2, U1(x, t) = −(x − t − .05)2, and U2(x, t) = −(x − t − .5)2.
(Hence, k1 = .05 and k2 = .5.) Let m = {D1, D2}, where D1 = [0.05, .45] and
D2 = {1

2
}. Hence, we have E1D1 > E1D2, E2D2 > E2D1.

Notice that menu D1 is "lower" than menu D2. We will prove below, via a single-
crossing lemma, that incentive compatibility implies that the delegation sets in a
screening menu must "increase" with bias (the delegation set chosen by type i, Di,
must be lower than the delegation set chosen by type j, Dj, with kj > ki). Notice
that if D1 and D2 were reversed (D1 = {1

2
} and D2 = [0.05, .45]), the menu would

not be incentive compatible.
On the other hand, if the principal knows the bias of the agent, he would want

to choose the set [ki, 1 − ki] (this will be shown below- what is important to notice
for intuition is that the optimal delegation set is lower for types with lower bias).
Thus, in order to screen, one must choose sets according to an order contrary to
that desired by expected payoff maximization. Hence, the optimal delegation set is

12
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Figure 1: Figures 1a and 1b: 1a plots the loss for each type for set D1.
1b plots the loss for each type for set D2.

pooling. In this case, the pooling menu m′ = {[.05, .5]} yields the principal strictly
higher expected payoff than the screening menu m.

Example 2: Improving On Nonconvex Menus
We now provide an example to show why convex menus may be assumed without

loss of generality (under quadratic loss functions). Let UP (x, t) = −(x − t)2 be the
utility of the principal, U1(x, t) = −(x − t)2 be the utility of the unbiased type,
and U2(x, t) = −(x − t − .5)2 be the utility of the biased type. Let m = {D1, D2},
where D1 = [0, 0.15] ∪ {0.45} and D2 = {0.5}. This menu is incentive compatible (
E1D1 > E1D2, E2D2 > E2D1).

Notice that D1 has a gap, G = (.15, .45). Yet, we can "fill in" the gap in set
D1 (replace D1 with D̂ = [0, .45]), and then "thin" it (replace D̂ with a new set
D′ = [0, a] such that a < .45) in a way that:

• The unbiased agent is indifferent between the new (convex set), D′ = [0, a], and
the original set, D1 (E1D′ = E1D1). In this case, a ≈ 0.443.

• The the expected utility to the principal is higher from the new set than the
original set: EP1D′ > EP1D1

• The new set D′ is even worse for the other agent than the original set D1:
E2D′ < E2D1 < E2D2. Hence the new menu is incentive compatible.

Under quadratic loss, the gain in expected payoff to the principal from filling in
a gap, is equal to the gain in expected payoff of the agent (type 1) from filling in a
gap. Yet, the loss in expected payoff from thinning the filled in set is lower for the
principal than the agent (type 1). Thus, the "filled in and thinned" set keeps type
1 at the same expected payoff (and preserves incentive compatibility), but strictly
benefits the principal. The "fill in" and "thin" variational argument will be used to
prove that the restriction to convex menus is without loss. Finally, we point out that

13



by offering the convex, pooling menu m = [0, 1
2
], the principal can achieve a strictly

higher expected payoff than from offering the menu {D′, D2}.
We are now ready to state the main results of this paper.

6 Main Results
If U(·) = −(·)2 and there are an arbitrary (but finite) amount of types with nonneg-
ative bias we say that we are in setting Q. If U(·) is defined as in section 3, but there
are only two types, one unbiased (k1 = 0) and the other biased (k2 > 0), we say that
we are in setting T . Notice that setting D is a generalization of both settings Q and
T . The main result of this paper is:

Proposition 6.1 (No Need to Screen- NNS). In settings Q and T the optimal del-
egation menu is pooling and convex. An optimal menu is of the form: m∗ = {D∗},
where

D∗ =

{
[k1, γ

∗] if k1 ≤ 1
2
,

{1
2
} if k1 > 1

2
. (6.1)

where γ∗ ≤ 1.

In other words, under the appropriate restrictions, no screening menu can yield
the principal strictly higher expected payoff than a pooling menu. The principal
should not worry about screening and just find the optimal pooling menu. In addi-
tion, the principal doesn’t even need to worry about discontinuities, and his program
is reduced from an infinite dimensional optimization problem to a two dimensional
optimization problem. Alternatively, the result shows that the additional information
the principal extracts about bias from an optimal (incentive compatible) screening
menu is worthless. The principal would perhaps be better suited trying to infer the
bias of his agent from repeated interaction, or by investing in technology for acquiring
information about bias (though these are subjects for further work).

This main result is proved in stages. We first prove (in section 7) that if attention
is restricted to convex menus, the optimal delegation menu is pooling (under no
restrictions on utility functions, setting D):

Proposition 6.2 (No Need to Screen: Convex Menu Version). Under setting D
(defined at the beginning section 3), the optimal menu in MC (the set of convex
menus) is pooling. An optimal menu is of the form: m∗C = {D∗}, where

D∗ =

{
[k1, γ

∗] if k1 ≤ 1
2
,

{1
2
} if k1 > 1

2
. (6.2)

where γ∗ ≤ 1.
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We then proceed to show that this restriction is without loss in settings Q and T
(in section 8).

Proposition 6.3 (W.L.O.G. for Q and T ). The restriction to convex sets is without
loss in settings Q and T .

In order to prove this result, we will need a result that filling in gaps of nonconvex
sets is beneficial to the principal (Lemma 8.2). The proof of this result allows us to
generalize a result of Melumad and Shibano (1991) that the optimal delegation set
(under known preferences) is convex. In addition, the proof will provide intuition
for their convexity result. The deviation from the principal’s ideal action under a
nonconvex delegation set is a mean-preserving spread of the deviation under a convex
delegation set (which we also discuss in section 8). With this result, it is simple to
show that the optimal pooling set, the set in an optimal pooling menu (which is the
optimal menu in settings Q, T , and D restricted to convex menus), is convex and
approximately unique: all other optimal menus differ on a set of actions that will be
played with probability zero.

Proposition 6.4 (Convex Optimal Pooling). Given any distribution over N types of
agents, their exists a convex set D∗P that could serve as an optimal pooling set. All
other optimal pooling menus differ from D∗P on a set that will be played with probability
zero in equilibrium.

Section 9 contains some comparative static results. We show some comparative
statics of the optimal pooling delegation set. Let pN := (p1, . . . , pN), where

∑N
i=1 pi ≤

1 (the subscript N denotes the dimension of the vector (pL would be an L-tuple).
We also define kN := (k1, . . . , kN) (again, the subscript N denotes the dimension of
the vector (kL would be an L-tuple). Denote the optimal pooling delegation set by
D∗(pN ,kN).

Result 6.5. Fix pN . The optimal pooling delegation set, D∗(pN , kN) is weakly de-
creasing in kN . Formally,

k′N ≥ kN ⇒ D∗(pN , k
′
N) ⊆ D∗(pN , kN), (6.3)

where k′N ≥ kN iff k′i ≥ ki for all i ∈ {1, . . . , N}.
In order to introduce the next comparative static result, let F(pN ,kN )(z) denote the

cumulative distribution function of the biases kN under the probability distribution
pN :

Result 6.6. The optimal pooling delegation set, D∗(pN , kN) is weakly decreasing in
first-order stochastic dominance (%1st). Formally,

(p′N , k
′
N) %1st (pL, kL)⇒ D∗(p′N , k

′
N) ⊆ D∗(pL, kL), (6.4)

where (p′N , k
′
N) %1st (pL, kL) iff F(p′N ,k

′
N )(z) ≤ F(pL,kL)(z) for all z ∈ R.
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7 Convex Menus
We first prove that if the principal is restricted to offer convex menus, then the optimal
convex menu will be a pooling menu. We use a variational argument. We will prove
this by finding a pooling menu that increases the expected payoff from each type.
In order to find this pooling menu we need three lemmas about convex delegation
sets. The first establishes that filling in the gap between zero and the lowest point
of the set can only help the principal (no matter what type of agent). The second
lemma will tell us how high to set the highest point of the pooling delegation set.
The final lemma is a version of single-crossing and will allow us to order the sets in
the proposed delegation menu. We use this order to construct a pooling menu that
yields the principal higher expected payoff.

Recall that the principal’s program is to maximize :

EP (M) = max
m={D1,...,DN}

EP (m) = max
m={D1,...,DN}

N∑
i=1

pi

(∫ 1

0

U(xDi
i (t)− t)dt

)
subject to the type incentive constraint for delegation sets (ICi

k):

EiDi ≥ EiDj,∀ i, j.

Note that EP (m = {D1, . . . , DN}) =
∑N

i=1 pi

(∫ 1

0
U(xDi

i (t)− t)dt
)
.

Remember that

EPi Di =

∫ 1

0

U(xDi
i (t)− t)dt

the expected payoff to the principal from type i.
Since we first restrict attention to the case when all the Di are convex we may let,

Di = [ai, bi].
We have the following lemma:

Lemma 7.1. (Down to ki Lemma) Let D = [a, b], where a > ki ≥ 0, then EPi D <
EPi D′, when D′ = [ki, b]

Proof. See Appendix.

Thus, if the agent’s type was known, Lemma 12 implies that an optimal convex
delegation set is of the form D = [ki, b]. Thus, the expected payoff to the principal
from the set [ki, b] when 1 + ki ≥ b ≥ ki would be:

Ψi(b) = EPi [ki, b] =

∫ b−ki

0

U(ki)ds+

∫ 1

b−ki
U(b− s)ds (7.1)
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= U(ki)(b−ki)+
∫ 1−b

−ki
U(s)ds = U(k)(b−ki)+

∫ min{1−b,0}

−ki
U(s)ds+

∫ max{1−b,0}

0

U(s)ds.

For b < ki, Ψi(b) =
∫ 1

0
U(b− s)ds. Thus, we have the following lemma:

Lemma 7.2. (Known Bias Optimum Lemma) Let the bias, ki, of the agent be known
by the principal. If ki ≥ 1

2
, then an optimal convex delegation set is D∗i = {1

2
}. If

ki <
1
2
, then an optimal convex delegation set is D∗i = [0, 1 − b∗i ], where b∗i = 1 − ki.

For this case, Ψi(·) is strictly increasing from [0, 1 − ki] and strictly decreasing from
[1− ki, 1 + ki]. Thus, D∗i = [0, qi] where qi = max{1

2
, 1− ki}.

Proof. See Appendix.

7.1 Single-Crossing Lemma and Proof of Main Result for Con-
vex Menus

We now want to prove a single-crossing result. First, if we have two sets D1 =
[a1, b1] 6= D2 = [a2, b2] such that a1 < a2 and b1 ≥ b2, or a1 ≤ a2 and b1 > b2 (or the
case with both inequalities reversed), then D1 would always be strictly preferred by
both types and the incentive constraints would not hold.

Thus, the only remaining possibilities are:
(A) a1 < a2 and b1 < b2
(B) a1 > a2 and b1 > b2
We will use the single-crossing condition to rule out case (B).

Lemma 7.3. (Single-Crossing Lemma) If Di, Dj ∈ m such that m is ICk and ki < kj.
We cannot have ai > aj and bi > bj. If ai > aj and bi > bj, then EjDj ≥ EjDi implies
that EiDj > EiDi, which violates the ICk condition.

Proof. See Appendix.

Armed with these three lemmas, we are ready to prove that the optimal convex
menu is pooling. First, if the bias of all types is ≥ 1

2
, then by the Known Bias

Optimum Lemma (Lemma 7.2), the optimal convex menu is [0, 1
2
]. This yields the

principal the optimal expected utility from each type. Thus, we assume that k1 < 1
2
.

We provide a complete proof in the Appendix. Here we provide the intuition:
The goal is to find a pooling menu that yields the principal higher expected payoff.

We construct this pooling menu in three steps. First, we know that an ICk menu must
be of the form m = {D1 = [a1, b1], . . . , DN = [aN , bN ]} where bi ≤ bj for all j > i. By
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Lemma 7.1, we know that if we were to replace each Di by D0
i = [ki, bi], we would

improve the principal’s expected utility. There is one problem though, the menu of
D0
i ’s may not be ICk. Yet, we can replace this menu with a pooling menu. From

single-crossing, we know that the bi are increasing in i. In addition, from Lemma
7.2 (Known Bias Optimum Lemma), we know that the qi = 1− ki (the optimal end
points under known bias), are decreasing in i. Thus, if some bi > qi, then bj > qj for
all j > i. In words, if type i’s delegation is too large, all higher type’s delegation sets
are too large. Thus, by shrinking the delegation sets of all such types (and expanding
the delegation sets of the types whose sets are not too large) we can achieve a pooling
delegation set that yields the principal higher utility than the original menu m. We
know state the result:

Proposition 7.4 (No Need to Screen: Convex Menus). If menus in a delegation set
are restricted to contain only convex sets, then there exists an optimal pooling menu,
m = {P ∗} that is optimal.

Proof. See Appendix.

Hence, if an organization is restricted to offering a convex menu of guidelines, then
the organization should set the same guidelines for each member. We also note that
incentive compatibility was only used to show that the sets are ordered (bi < bi+1 for
all i). Once the sets are ordered, the argument did not use incentive compatibility.
Thus, let d∗i = maxd∈Di

d. Thus, if we are given a menu m = {D1, . . . , DN} where:
(i) each Di is convex, (ii) d∗i ≤ 1 + ki for all i, and (iii) d∗i ≤ d∗i+1 for all i (and strict
inequality holds for, at least, i = 1), then we can use the argument in the proof to
find a (convex) pooling menu that yields the principal strictly higher expected utility.
Call a menu satisfying (i)-(iii) a nice menu (notice that a nice menu may not be ICk).
Thus, we have the following lemma:

Lemma 7.5. Given a nice menu, m, then there exists a pooling menu (m′) with
convex delegation set D′ = [k1, γ] (m̂ = {[k1, γ]}) such that:

EP (m̂) =
N∑
i=1

EPi [k1, γ] >
N∑
i=1

EPi Di = EP (m). (7.2)

This lemma will prove useful in the next section. Suppose an incentive-compatible
menu, m = {D1, . . . , DN}, yields the principal less expected payoff than a nice menu,
mn = {Dn

1 , . . . , D
n
N}:

EP (mn) =
N∑
i=1

EPi Dn
i >

N∑
i=1

EPi Di = EP (m). (7.3)
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Thus, Lemma 7.5 shows that we can find a pooling menu m̂ = {D̂} such that :

EP (m̂) =
N∑
i=1

EPi D̂ >

N∑
i=1

EPi Dn
i = EP (mn) > EP (m). (7.4)

We state this as the following corollary:

Corollary 7.6. Let m be an incentive-compatible menu. If there is a nice menu (that
is not necessarily incentive-compatible), mn, that yields the principal higher expected
payoff as in equation (7.3), then there is a convex, pooling menu (a singleton dele-
gation set composed of a convex set) that yields the principal strictly higher expected
payoff as in equation (7.4).

In this section, we restricted the analysis to convex menus. In the next section
we will show that this analysis is without loss in two important settings. We will
do so by showing that for each incentive compatible menu, there is a nice menu that
yields the principal strictly higher expected payoff. Hence, by Corollary 7.6, there is
a convex pooling menu that yields the principal strictly higher expected payoff.

8 When the Restriction to Convex Menus is Without
Loss: Settings Q and T

In this section, we prove that the restriction to convex menus is without loss for
settings Q (quadratic loss) or T (two types, one unbiased). In order to analyze
nonconvex menus, we will need to analyze nonconvex sets. Hence, we will need to
study sets with gaps:

8.1 A Note on Gaps

In the class of games studied in this paper, the principal offers the agent a menu of
sets. In order to discuss the types of sets the principal may find optimal to offer we
introduce a useful definition. We define carefully the definition of a gap in a delegation
set. Assume that a delegation set, D, is not convex. Thus, if there exists a point y
such that x, z ∈ D and x < y < z, let G+

D(y) = [y, uDy ), where

uDy = sup
t
{t ∈ R|t > y, [y, t) ∩D = ∅}.

In addition, let G−D(y) = [dDy , y), where

dDy = inf
t
{t ∈ R|y > t, (t, y] ∩D = ∅}.
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Thus, define GD(y) := G−D(y) ∪G+
D(y), where GD(y) is the largest gap containing y.

We state one more lemma which will be useful later.

Lemma 8.1. dDy , uDy ∈ D.

Proof. This follows from the openness of the complement of a compact set (D is
compact). Since compact sets are closed, these points must be contained in a compact
set, D.

With this result, we can define the expected payoff increase from filling in a gap.
This will be used in the proof that the restriction to convex sets is without loss
(Proposition 8.5). This proof will require us to fill in gaps to convert (nonconvex)
incentive-compatible menus into nice menus. In the next subsection, we show that
filling in a gap that is not too high ,G ⊆ (−∞, 1 + ki], raises the expected payoff of
the principal (this will be used in the proof that the restriction to convex menus is
without loss).

8.2 Gap Filling Lemma, Intuition for Convex Sets, and the
Optimal Pooling Menu

We first show how to improve upon an arbitrary set with a gap. We shall show that
the same modification strictly improves utility, independent of the bias of the agent.
Thus, if there is a pooling menu with a gap, we can use this particular modification
and raise the principal’s expected payoff. The modification used in this section will
be to completely fill in the gap (but only when the gap does not contain the point
1 + ki, the largest point the agent would choose if the delegation set were R). In
other words, if D contains a gap, (l, h) such that h ≤ 1 + k1, the set D′ = D ∪ (l, h)
will yield the principal strictly higher expected utility. We call this modification gap
filling. We restrict attention to the case when h ≤ 1+ki. Thus, there are two possible
cases for the gap G = (l, h): (a) l ≥ ki or (b) l < ki. In either case, filling in the gap
raises the expected payoff of the principal. We state this in the following lemma:

Lemma 8.2. (Gap Filling Lemma) Let ki ≥ 0. Let D be a set with gap, G = (l, h),
such that G ⊆ (−∞, 1 + ki]. Let D(ε, l, h) := D ∪ [l, l+ ε)∪ (h− ε, h], where ε ≤ h−l

2
.

Then we know that for all ε ∈ [0, h−l
2

] we have

EPi D =

∫ 1

0

U(xDi (s)− s)ds ≤
∫ 1

0

U(x
D(ε,l,h)
i (s)− s)ds = EPi D(ε, l, h).

Hence, completely filling in the gap (replacing D with D′ = D ∪ G) would yield the
principle higher utility: EPi D ≤ EPi D′, where the inequalities in the expected payoffs
are strict if and only if h > ki.
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Proof. See Appendix.

The intuition for this result is simple. The deviation from a principal’s ideal
choice (absolute value of distance of action chosen by agent from the state, the ideal
choice of the principal) can be viewed as a random variable. The proof shows that
the deviation of a set with a gap is a mean-preserving spread of the deviation of a
set with a (partially) filled in gap. Thus, we have further intuition for Melumad and
Shibano’s (1991) result about the optimality of intervals. Gaps in delegation sets
generate "riskier" lotteries for the principal. Hence, convex sets are optimal when
preferences are known.

Yet, the Gap Filling Lemma leaves us on the cusp of proving a new result about
the optimal pooling menu. We know that if the highest point of a delegation set in
an optimal pooling menu is ≤ 1 + k1 then we can just (completely) fill in all the gaps
and raise the expected utility of the principal. Thus, it remains to show that the
optimal pooling menu is contained in (−∞, 1 + k1]:

Lemma 8.3. Let D∗P denote the optimal pooling delegation set. It is without loss of
generality to assume that D∗P ⊆ (−∞, 1 + k1].

Proof. See Appendix.

Thus, as argued in the previous paragraph we have the following proposition:

Proposition 8.4 (Convex Optimal Pooling). Given any distribution over N types of
agents, their exists a convex set D∗P that could serve as an optimal pooling set. All
other optimal pooling menus differ from D∗P on a set that will be played with probability
zero in equilibrium.

8.3 Proving the Main Result: Proposition 8.5

Recall that the proof that the restriction to convex sets is without loss (Proposition
8.5) shows that for every incentive compatible menu m = {D1, . . . , DN}, there is
a nice menu yielding the principal higher expected payoff. Thus, by Corollary 7.6,
we know that there is a convex pooling menu that yields the principal strictly higher
payoff than m. The construction of the nice menu proceeds according to the following
steps:

Step 1: If D1 ⊆ (−∞, 1 + k1], let D̂1 = D1 and skip to step 2. If D1 ⊆ (−∞, ki],
let d∗ = maxD1 = maxd∈D1 d. Let I1 = {d∗} and skip to step 3. If D1 *
(−∞, 1 + k1], replace D1 with D̂1 ⊆ (−∞, 1 + k1] such that:

E1
1D̂1 = E1

1D1, (8.1)
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EP1 D̂1 ≥ EP1D1, (8.2)

and

Ej1D̂1 ≤ Ej1D1, (8.3)

for all j > 1.

Step 2: Find I1 = [k1, a
∗
1] such that:

E1I1 = E1D̂1, (8.4)

EP I1 ≥ EP D̂1, (8.5)

and
EjI1 ≤ EjD̂1, (8.6)

for all j > 1.

Notice that for all j > 1, EjDj ≥ EjI1.

Step 3: Repeat steps 1 and 2 replacing 1 with i for all i > 1.

Notice again that for all j > i, EjDj ≥ EjIi.

Note that by equations (8.1), (8.3), (8.4), and (8.6), and incentive compatibility
of the original menu we have a∗i ≥ a∗j , for all j < i. This holds since EiIi ≥ EiIj if
and only if a∗i ≥ a∗j .

Thus, the menu {I1, . . . , IN} is a nice menu and we have the following result.

Proposition 8.5. In settings Q and T , the restriction to convex sets is without loss:
the optimal delegation set is pooling and convex.

Proof. See Appendix.

While we leave the details of the construction to the Appendix. The construction
of D̂i is valid for setting D. The properties of settings Q and T are used for the
construction of Ii. In all settings, the agent gains expected payoff from filling in a
gap. In all settings, the principal gains expected payoff from filling in a gap (this is
the gap filling lemma). In setting Q, the expected gain to the principal from filling
in a gap is equal to the expected gain to an agent from filling in a gap (this is the
meaning of equation (14.100) in the Appendix).
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In setting T , the gain to the principal from filling in a gap is the same as the gain
to the unbiased agent (since they have the same preferences). The only difference is
in the final stage. As in setting Q, we replace D1 with I1 and D2, with D̂2. Yet, the
gain to the principal from filling in a gap may be less than that of the agent (since
the preference function is more general than quadratic and agent 2 has positive bias).
However, by the Gap Filling Lemma, we can simply fill in all the gaps in D̂2 (resulting
in the new set Ĩ2 = [k2, ã2]) and be assured that ã2 ≥ a∗1, where I1 = [k1, a

∗
1]. Thus,

we found a nice menu that yields the principal higher expected payoff than the the
original menu. Hence, by Corollary 7.6, we know that there is a convex, pooling menu
that yields the principal higher expected payoff than the original menu. Thus, we
know that convex, pooling menus are optimal. In the next section, we discuss the
comparative statics of these menus.

9 Comparative Statics
Let I(u) = [0, u]

Vi(u) := EPi I(u) =


∫ 1

0
U(u− s)ds when u ∈ [0, ki] ,

(u− ki)U(ki) +
∫ 1

u−ki U(u− s) when u ∈ [ki, 1 + ki] ,

U(ki) when u ≥ 1 + ki.

(9.1)

Notice that Vi(ki, u) is twice differentiable and strictly concave in u.
Differentiating we get:

∂V

∂u
(ki, u) :=

d

du

(
EPi I(u)

)
=


∫ 1

0
U ′(u− s)ds = U(u)− U(1− u) when u ∈ [0, ki] ,

U(ki) +
∫ 1

u−ki U
′(u− s) = U(ki)− U(1− u) when u ∈ [ki, 1 + ki] ,

0 when u ≥ 1 + ki.
(9.2)

Notice that ∂V
∂u

(ki, u) is nonincreasing in ki: if k′i ≥ ki, then ∂V
∂u

(k′i, u) ≤ ∂V
∂u

(ki, u).
Letmu = {I(u)}. Differentiability and strict concavity imply that

∑N
i=1 piV (ki, u) =

EP (mu) is strictly concave and twice differentiable and is maximized at u such that

N∑
i=1

pi
∂V

∂u
(ki, u) = 0 (9.3)

In addition, if the pi are held fixed, but and if k′i ≥ ki, then the fact that ∂V
∂u

(ki, u)
is nonincreasing in k′i gives us:
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N∑
i=1

pi
∂V

∂u
(ki, u) ≤ 0. (9.4)

Hence, let pN := (p1, . . . , pN), where
∑N

i=1 pi ≤ 1 (the subscript N denotes the
dimension of the vector- pL would be an L-tuple). and kN := (k1, . . . , kN) (again, the
subscript N denotes the dimension of the vector- kL would be an L-tuple). Denote
the optimal pooling delegation set by D∗(pN ,kN). Remembering that that if k1 > 1

2

the optimal delegation menu is {1
2
}, we have the following result:

Result 9.1. Fix pN . The optimal pooling delegation set, D∗(pN , kN) is weakly de-
creasing in kN . Formally,

k′N ≥ kN ⇒ D∗(pN , k
′
N) ⊆ D∗(pN , kN), (9.5)

where k′N ≥ kN iff k′i ≥ ki for all i ∈ {1, . . . , N}.

Now, let F(pN ,kN )(z) denote the cumulative density function of the distribution
of the biases kN under the probability distribution pN . We can extend the previous
result:

Result 9.2. The optimal pooling delegation set, D∗(pN , kN) is weakly decreasing in
first-order stochastic dominance (%1st). Formally,

(p′N , k
′
N) %1st (pL, kL)⇒ D∗(p′N , k

′
N) ⊆ D∗(pL, kL), (9.6)

where (p′N , k
′
N) %1st (pL, kL) iff F(p′N ,k

′
N )(z) ≤ F(pL,kL)(z) for all z ∈ R.

Proof. We provide a complete proof in the Appendix. The intuition of the proof is to
show that if one lottery, a, over types (first-order) stochastically dominates another,
b, then we can convert a into b through a sequences of monotonic adjustments to bias
and monotonic adjustments to the probabilities.

Thus, if one draw of types is "more biased" (according to first-order stochastic
dominance), then the principal will offer the riskier draw a smaller delegation set (of
the optimal menu).

10 Conclusion
In this paper we have shown that under uncertainty over the preferences of agents (and
the technical conditions over distributions and preferences), pooling delegation menus
perform as well (or better) than screening menus if menus are restricted to those that
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only contain convex sets. We also showed that this restriction was without loss in
multiple settings. In these settings, we showed that there is no benefit to screening.
Thus, the informational role of the delegation set should be to reveal the state of
nature and not the preferences of the agent. Another implication of this paper is that
the principal cannot screen with partial commitment (committing to take certain
actions but not others). This holds since the case of cheap talk is equivalent to
committing to take the equilibrium decisions of the model. Thus, screening between
agents of different bias will require different channels.

The results in this paper suggest several directions for future work. First, it re-
mains to generalize the results of this paper to settings where the states are not
distributed uniformly, the bias is not constant, and the utility is not necessarily
quadratic. One can also explore whether stochastic mechanisms yield the principal
higher expected payoff than deterministic mechanisms. In addition, one may gen-
eralize the results of this paper to the case of more than 1 agent (potentially to
analyze hierarchies). In addition, as in Amador and Bagwell (2012) one may con-
sider alternate quasilinear utilities to incorporate the possibility of money burning in
delegation. One may consider (finite) repeated interaction to see if there is a screen-
ing menu that yields the principal strictly higher expected payoff than the optimal
(repeated pooling) delegation menu.

11 Appendix A: Proofs for Results in Section 4
Lemmas 11.1-11.4 are the delegation schedule analogs of delegation rule lemmas in
Proposition 1 of Melumad and Shibano (1991). Notice that U i = UP , for ki = 0. In
addition, U i is single-peaked (for each s, there is an x such that ∂U i

∂x

(
x− s− ki

)
= 0),

∂2U i

∂x2

(
x− s− ki

)
< 0, and ∂2U i

∂x∂s

(
x− s− ki

)
> 0. These are the conditions on the the

utility function for Proposition 1 of Melumad and Shibano (1991). Hence, we can cite
a few results of Proposition 1 from their paper:

Lemma 11.1 (Delegation schedules are weakly increasing). For all i ∈ N , xDi (s) is
weakly increasing in s and the only discontinuities of it are jump discontinuities.

Thus, we know that for all D and i, xDi (s) is weakly increasing and, hence, has
only jump discontinuities. Let xD+

i (s) = limr→s+ x
D
i (s) and xD−i (s) = limr→s− x

D
i (s).

By part (iii) of Proposition 1 of Melumad and Shibano (1991) we have:

Lemma 11.2. At a point of discontinuity, τ ∈ [0, 1], of xDi , we have that: (a)
|xD+
i (τ)− τ − ki| = |xD−i (τ)− τ − ki|. (b) xDi (τ) ∈ {xD−i (τ), xD+

i (τ)}.

In addition, we have the following corollary:
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Corollary 11.3. If τ is a point of discontinuity of the delegation schedule,

xD−i (τ) < τ + ki < xD+
i (τ). (11.1)

Finally, we know that the function xDi achieves both the right and left hand limits
at a point of discontinuity (though not at the same point):

Lemma 11.4. If τ is a point of discontinuity, there exist s1, s2 ∈ [0, 1] such that
xDi (s1) = xD+

i (τ) and xDi (s2) = xD−i (τ).

Proof. By Lemma 11.2, we know that xDi (τ) ∈ {xD−i (τ), xD+
i (τ)}. W.L.O.G. assume

xDi (τ) = xD−i (τ).
By Corollary 11.3, we know that there is s1 close enough to τ that τ + ki <

s1 + ki < xD+
i (τ). In addition, we know that xD+

i (τ) ∈ D, by compactness (closure)
of D (since compactness implies closure). Also, we know(

xD−i (τ), xD+
i (τ)

)
∩D = ∅.

Otherwise, xDi (τ) is not optimal.
By Lemma 11.2,

|xD−i (τ)− τ − ki| = |xD+
i (τ)− τ − ki|.

Thus,
|xD−i (τ)− s1 − ki| > |xD+

i (τ)− s1 − ki|.

Thus, xD+
i (τ) = xDi (s1).

Comment: In addition, this proof shows that if the point of discontinuity, τ , is
contained in the interior of the unit interval, then ∃s1, such that xDi (s) = xD+

i (τ),∀s ∈
(τ, s1]. By a similar argument, ∃s2, such that xDi (s) = xD−i (τ),∀s ∈ [s2, τ).

Proof of Lemma 4.1:

Proof. We prove this by showing that the set I(xDi ) is bounded and closed. Hence,
by the Heine-Borel theorem it is compact.

Step 1: I(xDi ) is bounded.

Proof. First, since xDi weakly-increasing by Lemma 11.1. Thus, it’s range is bounded:
xDi (0) ≤ xDi (s) ≤ xDi (1) for all s ∈ [0, 1].

Step 2: Admissible sets are closed.
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Proof. We prove this lemma by showing that the complement of I(xDi ) is open.
Let q ∈ R where q is in the complement of I(xDi ), I(xDi )C . Then, ∃ε > 0 such

that (q − ε, q + ε) ⊆ I(xDi )C .
Otherwise, q would be a right or left hand limit of xDi by Lemma 11.1. But then,

by Lemma 11.4, q ∈ I(xDi ). But this is a contradiction. Thus, I(xDi )C is open and
I(xDi ) is closed.

Since I(xDi ) is closed and bounded, by the Heine-Borel Theorem it is compact.

12 Appendix B: Proofs for Results in Section 7
Proof of Lemma (Down to ki Lemma):

Proof. If a ≥ 1 + ki, then U(xDi (s)− s) < U(ki) for all s ∈ [0, 1]. Thus,

EPi D =

∫ 1

0

U(xDi (s)− s)ds <
∫ 1

0

U(ki)ds = EPi D′. (12.1)

If a < 1 + ki, then

EP
i D =

∫ 1

0

U(xDi (s)− s)ds =

∫ a−ki

0

U(ai − s)ds+

∫ 1

a−ki
U(xDi (s)− s)ds (12.2)

=

∫ a

ki

U(s)ds+

∫ 1

a−ki
U(xDi (s)−s)ds <

∫ a−ki

0

U(ki)ds+

∫ 1

a−ki
U(xDi (s)−s)ds = EPi D′

(12.3)
since a > ki. Thus, D is not optimal.

Proof of Lemma 7.2:

Proof. Notice that if ki ≥ 1
2
, then Ψi(ki) > Ψi(b),∀ b > ki ≥ 1

2
. In addition, for

strictly concave U(·)

argmax
b∈[0,1]

∫ 1

0

U(b− s)ds =
1

2
. (12.4)

Thus, for ki ≥ 1
2
, an optimal convex delegation set is [0, 1

2
].

If ki < 1
2
, then

Ψi(ki) =

∫ 1

0

U(ki − s)ds >
∫ 1

0

U(b− s)ds = Ψi(b), ∀ b ∈ [0, ki).
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But over [ki, 1] Ψ is differentiable and strictly concave. Hence, Ψi(b) is maximized
by b∗ such that

Ψ′i(b
∗) = U(k)− U(1− b∗) = 0

⇐⇒ b∗ = 1− ki,

since Ψ′′i (b) = U ′(1 − b) < 0, for b ∈ [ki, 1). Thus, we know that Ψi(·) is strictly
increasing until b∗ and decreasing after.

Proof of Lemma 7.3 (Single-Crossing Lemma):

Proof. Assume that ai > aj and bi > bj. W.L.O.G. We can assume (by the nonre-
dundancy result) that bi ≤ 1 + ki and aj ≥ kj.

EjDj =

∫ aj−kj

0

U(aj−s−kj)ds+
∫ 1

bj−kj
U(bj−s−kj)ds =

∫ aj−kj

0

U(s)ds+

∫ 1+kj−bj

0

U(s)ds,

(12.5)
In addition, we have:

EjDi =

∫ ai−kj

0

U(ai−s−kj)ds+
∫ 1

bi−kj
U(bi−s−kj)ds =

∫ ai−kj

0

U(s)ds+

∫ 1+kj−bi

0

U(s)ds,

(12.6)
The ICk condition implies that EjDj ≥ EjDi.

⇐⇒
∫ 1+kj−bj

1+kj−bi
U(s)ds ≥

∫ ai−kj

aj−kj
U(s)ds (12.7)

⇐⇒
∫ 1+ki−bj

1+ki−bi
U(s)ds >

∫ ai−ki

aj−ki
U(s)ds, (12.8)

since ki < kj and U(·) is strictly concave

⇐⇒ EiDj > EDi (12.9)

and the ICk condition is violated.

Proof of the No Need to Screen Result for Convex Menus (Proposition 7.4):

28



Proof. If there is a type with bias strictly less than 1
2
, then by the Single-Crossing

Lemma (Lemma 7.3), we know that if a menu m = {D1 = [a1, b1], . . . , DN = [aN , bN ]}
satisfies the ICk constraints we need

b1 < b2 < · · · < bN (12.10)

By Lemma 12, we know that if we were to replace each Di by D0
i = [ki, bi] (forming

the menu m0), then ∫ 1

0

U(xDi
i (t)− t)dt ≤

∫ 1

0

U(x
D0

i
i (t)− t)dt, (12.11)

and, therefore,

EP (m) =
N∑
i=1

pi

(∫ 1

0

U(xDi
i (t)− t)dt

)
≤

N∑
i=1

pi

(∫ 1

0

U(x
D0

i
i (t)− t)dt

)
= EP (m0).

(12.12)
Thus, while m0 may yield the principal a higher expected payoff, it may not be

incentive compatible. Thus, we will modify this menu further (making it both a
incentive compatible and a pooling menu).

By the Known Bias Optimum Lemma (Lemma 7.2) we know that the optimal
complete information (over types) delegation set for type i is equal to Di∗ = [0, qi],
where qi = max{1

2
, 1− ki}. Thus, we have:

q1 ≥ q2 ≥ · · · ≥ qN . (12.13)

Recalling Equation (12.10):

bN > · · · > b1. (12.14)

Roughly, these equations state that the optimal delegation sets (under complete
information) are decreasing. In contrast, the sets in a non-pooling, but ICk menu
must be increasing. We will use this contrast to achieve a contradiction.

If b1 ≥ q1, then the pooling menu with pooling set [0, q1] is ICk (trivially) and
yields the principal strictly higher expected payoff than m0 (and m) from the Known
Bias Optimum Lemma (since the expected payoff to the principal is decreasing when
the delegation set is too large- thus, there is a gain from shrinking each D0

i ).
If bN ≤ qN , then the pooling menu with pooling set [0, qN ] is ICk (trivially) and

yields the principal strictly higher expected payoff than m0 (and m) by the Known
Bias Optimum Lemma. If b1 < q1 and bN > qN we define the Turning Point Type

i∗ = max{i ∈ N|bi ≤ qi}. (12.15)

29



By equations (12.14) and (12.13) we know that i∗ is well-defined.
W.L.O.G assume bi∗ < qi∗+1 ≤ qi∗ < bi∗+1. Let the pooling delegation set be

D∗ = [0, qi∗+1]. From the Known Bias Optimum Lemma, we know the the pooling
menu yields the principal strictly higher expected payoff than menu m0 (and m). In
addition, it satisfies ICk (trivially). Hence, we have shown by contradiction, that the
optimal convex menu must be pooling.

13 Appendix C: Proofs for Section 8.2
Proof of the Gap Filling Lemma, Lemma 13.2:

There are two possible cases for the gap G = (l, h): (a) l ≥ k1 or (b) l < k1. We
prove the Gap Filling Lemma for each case separately.

In each case we show that the deviation generated by the unfilled set is a mean-
preserving spread of the (partially) filled in set. Let’s begin with case (a): l ≥ k1.

13.1 Proof of Case (a)

Let’s track the deviation of the delegation schedule from the ideal point of the prin-
cipal.

XD
i (s) = xDi (s)− s =

{
l − s when s ∈ [l − ki, h+l2

− ki) ,
h− s when s ∈ (h+l

2
− ki, h− ki] ,

(13.1)

Let ε ≤ h−l
2
, D(ε, l, h) = D ∪ [l, l + ε] ∪ [h− ε, h]. First, notice that

xDi (s)− s = x
D(ε,l,h)
i (s)− s, (13.2)

when s ∈ [0, l − ki] ∪ [h− ki, 1]. When s ∈ [l − ki, h− ki],

XD(ε,l,h)
i (s) = x

D(ε,l,h)
i (s)− s, (13.3)

where

XD(ε,l,h)
i (s) =


ki when s ∈ [l − ki, l + ε− ki] ,
l + ε− s when s ∈ [l + ε− ki, h+l2

− ki) ,
h− ε− s when s ∈ (h+l

2
− ki, h− ε− ki] ,

ki when s ∈ [h− ε− ki, h− ki] ,

(13.4)

We argue that XD
i is a mean-preserving spread of XD(ε,l,h)(s) when s is uniformly

distributed between the interval [l − ki, h− ki].

Lemma 13.1. XD
i (s) is a mean-preserving spread of XD(ε,l,h)

i (s) when s is uniformly
distributed between the interval [l − ki, h− ki].
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Proof. For this proof, we fix l and h. Thus, we denote D(ε, l, h) by D(ε).
Part A: We first show that XD

i (s) and XD(ε)
i (s) have the same mean.

Let η = h− l.

EXD
i =

1

η

(∫ h+l
2
−ki

l−ki
(l−s)ds+

∫ h−ki

h+l
2
−ki

(h−s)ds
)

=
1

η

(∫ h−l
2

0

(ki−t)dt+
∫ 0

−h−l
2

(ki−t)dt
)
,

(13.5)
where equality was obtained by a change of variables s = t + l − ki in the first

integral and s = t+ h− ki in the second integral.
But by (13.5) we have that

EXD
i = ki (13.6)

but then

EXD
i = EXD(ε)

i = ki (13.7)

since

EXD(ε)
i =

1

η

(∫ l+ε−ki

l−ki
kids+

∫ h+l
2
−ki

l+ε−ki
(l+ε−s)ds+

∫ h−ε−ki

h+l
2
−ki

(h−ε−s)ds+

∫ h−ki

h−ε−ki
kids

)
(13.8)

=
1

η

(
2εki +

∫ h−l
2
−ε

0

(ki − s)ds+

∫ 0

−h−l
2

+ε

(ki − s)ds
)

= ki, (13.9)

where the equality between equations (13.8) and (13.9) follows a change of variables
similar to that in (13.5).

Part B: We now show that for all t ∈ R, we have:∫ t

−∞

(
FD(s)− FD(ε)(s)

)
ds ≥ 0.

(and the inequality holds strictly for s ∈ (ki − h−l
2
, ki + h−l

2
).

Let FD(x) denote the cdf of XD
i and let FD(ε)(x) denote the cdf of XD(ε,l,h).

FD(x) =


0 when s ∈ (∞, ki − h−l

2
] ,

1
η
(s− (ki − h−l

2
)) when s ∈ [ki,

h−l
2

+ ki] ,

1 when s ∈ [h−l
2

+ ki,∞) ,

(13.10)
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FD(ε)(x) =


0 when s ∈ (−∞, ki − h−l

2
+ ε] ,

1
η
(s− (ki − h−l

2
+ ε)) when s ∈ [ki − h−l

2
+ ε, ki) ,

2ε
η

+ 1
η
(s− (ki − h−l

2
+ ε)) when s ∈ [ki, ki + h−l

2
− ε) ,

1 when s ∈ [ki + h−l
2
− ε,∞) ,

(13.11)

Notice that
∫ t
−∞

(
FD(s) − FD(ε)(s)

)
ds ≥ 0 ,for all t ∈ (−∞, ki) since FD(s) ≥

FD(ε)(s) for all such s (and the inequality is strict from [ki − h−l
2
, ki)).

Define ψ(·) such that:

ψ(s) := FD(ki + s)− FD(ε)(ki + s).

Notice that for s ∈ [−h−l
2
, h−l

2
] we have:

ψ(s) = −ψ(s). (13.12)

Thus, since FD(s) = FD(ε)(s) for s ∈ (−∞, ki − h−l
2

] ∪ [ki + h−l
2
,∞) and since

FD(s) > FD(ε)(s) for all such s ∈ [ki − h−l
2
, ki), equation (13.12) implies that∫ t

−∞

(
FD(s) − FD(ε)(s)

)
ds ≥ 0 for all s ∈ R (and the inequality is strict for s ∈

[ki − h−l
2
, ki + h−l

2
).

Lemma 13.1 that filling in a gap (by any amount) strictly increases the utility
of the principal (and, of course, the agent), independent of the agent’s bias! This is
summarized in the following proposition:

Lemma 13.2. (Gap Filling Lemma- Case (a), G ⊆ [ki, 1 + ki]) Let ki ≥ 0. Let
D be a set with gap, G = (l, h), such that G ⊆ [ki, 1 + ki]. Then we know that
EPi D =

∫ 1

0
U(xDi (s) − s)ds <

∫ 1

0
U(x

D(ε)
i (s) − s)ds = EPi D(ε). Hence, completely

filling in the gap (replacing D with D′ = D ∪ G) would yield the principle strictly
higher utility:

EPi D < EPi D′ = EPi (D ∪G). (13.13)

Proof. We know that xDi (s) = x
D(ε)
i (s) for all s ∈ [0, l] ∪ [h, 1]. Thus, we just need to

show that ∫ h

l

U(xDi (s)− s)ds <
∫ h

l

U(x
D(ε)
i (s)− s)ds. (13.14)

But from Lemma 13.1 that XD
i = xDi (s)−s is a mean-preserving spread of XD(ε)

i =

x
D(ε)
i (s)− s. So since U(·) is strictly concave we have that:
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1

η

∫ h

l

U(xDi (s)− s)ds < 1

η

∫ h

l

U(x
D(ε)
i (s)− s)ds, (13.15)

which is equivalent to equation (13.14).
Equation (13.13) is obtained by replacing D with D(ε), where ε = h−l

2
(since

D(h−l
2

) = D ∪G).
This concludes the proof of case (a).

For case (b), the argument is similar:

13.2 Proof for Case (b) l < k1

In order to to prove the result, we need to prove an analogous mean-preserving spread
lemma to Lemma 13.1. In this case, the gap, G = (l, h) will not be contained in
[ki, 1 + ki]. Yet, h ∈ (ki, 1 + ki] (if h = ki, the filling in the gap has no effect on
the agent’s actions). Another condition needed to make the case nontrivial is that
h+l
2
− ki > 0. Otherwise, l would be played with zero probability and filling in the

gap is equivalent to "lower" the delegation set as in the down to k Lemma (Lemma
12). As in the down to k Lemma, filling in the gap (or, equivalently in this special
case, adding to the delegation set from below) strictly increases the expected payoff
of the principal.

Once again, we define the deviation function, XD
i (s) as before:

XD
i (s) = xDi (s)− s =

{
l − s when s ∈ [0, h+l

2
− ki)

h− s when s ∈ (h+l
2
− ki, h− ki] .

(13.16)

Notice that k − l < h−l
2
. Thus, k − l + h+l

2
≤ h− ε. In add

XD
i (s) = xDi (s)− s, (13.17)

when s ∈ [l − ki, h− ki].
Let ε ≤ ki − l, D(ε, l, h) = D ∪ [l, l + ε] ∪ [h − ε, h]. The inequalities l < ki and

ε ≤ ki − l imply that the type i will never play an action lower than l + ε. In fact,
type i will play l until the state he is indifferent between l and h.

Hence, if we define the deviation function as before, we have:

XD(ε,l,h)
i (s) = x

D(ε,l,h)
i (s)− s, (13.18)

where

XD(ε,l,h)
i (s) =


l + ε− s when s ∈ [0, h+l

2
− ki)

h− ε− s when s ∈ (h+l
2
− ki, h− ε− ki]

ki when s ∈ [h− ε− ki, h− ki] .
(13.19)
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In addition, notice that XD(ε,l,h)
i (s) = XD

i (s) for all other s in [0, 1].
We argue that XD

i is a mean-preserving spread of XD(ε,l,h)
i (s) when s is uniformly

distributed between the interval [0, h+ l − 2ki].

Lemma 13.3. XD
i (s) is a mean-preserving spread of XD(ε,l,h)

i (s) when s is uniformly
distributed between the interval [0, 2

(
h+l
2
− ki

)
].

Proof. Part A: We first show that XD
i (s) and XD(ε,l,h)

i (s) have the same mean.
Let η = h+ l − 2ki.

EXD
i =

1

η

(∫ h+l
2
−ki

0

(l − s)ds+

∫ h−ki−(ki−l)

h+l
2
−ki

(h− s)ds
)

(13.20)

=
1

η

(∫ h−l
2

ki−l
(ki − t)dt+

∫ −(ki−l)
−h−l

2

(ki − t)dt
)
,

where equality was obtained by a change of variables s = t+ l−ki in the first integral
and s = t+ h− ki in the second integral.

But by (13.20) we have that

EXD
i = ki (13.21)

but then

EXD
i = EXD(ε,l,h)

i = ki (13.22)

since

EXD(ε,l,h)
i =

1

η

(∫ h+l
2
−ki

0

(l + ε− s)ds+

∫ h−ε−ki−(ki−l−ε)

h+l
2
−ki

(h− ε− s)ds
)

(13.23)

=
1

η

(∫ h−l
2
−ε

ki−l−ε
(ki − s)ds+

∫ −(ki−l−ε)
−
(

h−l
2
−ε
) (ki − s)ds

)
= ki, (13.24)

where the equality between equations (13.23) and (13.24) follows a change of variables
similar to that in (13.5).

Part B: We now show that for all t ∈ R, we have:∫ t

−∞

(
FD(s)− FD(ε)(s)

)
ds ≥ 0

(and the inequality holds strictly for s ∈ (ki − h−l
2
, ki + h−l

2
).
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As before we denote D(ε, l, h) by D(ε).
Let FD(x) denote the cdf of XD

i and let FD(ε)(x) denote the cdf of XD(ε,l,h)
i (·).

Recall that η = h+ l − 2ki.

FD(x) =


0 when s ∈ (∞, ki − h−l

2
]

1
η
(s− (ki − h−l

2
)) when s ∈ [ki − h−l

2
, l]

1
2

when s ∈ [l, 2ki − l]
1
η
(s− (2(ki − l))) + 1

2
when s ∈ [2ki − l, ki + h−l

2
] ,

1 when s ∈ [ki + h−l
2
,∞) .

(13.25)

FD(ε)(x) =


0 when s ∈ (−∞, ki − h−l

2
+ ε]

1
η
(s− (ki − h−l

2
+ ε)) when s ∈ [ki − h−l

2
+ ε, l + ε)

1
2

when s ∈ [l + ε, 2ki − l − ε]
1
η
(s− (2(ki − l − ε)) + 1

2
when s ∈ [2ki − l − ε, ki + h−l

2
− ε]

1 when s ∈ [ki + h−l
2
− ε,∞) .

(13.26)
Notice that

∫ t
−∞

(
FD(s)− FD(ε)(s)

)
ds ≥ 0 for all t ∈ (−∞, ki) since FD(s) ≥ FD(ε)(s)

for all such s (and the inequality is strict from [ki − h−l
2
, l + ε)).

Define ψ(·) such that:

ψ(s) := FD(ki + s)− FD(ε)(ki + s).

Notice that for s ∈ [l + ε, 2ki − l − ε] we have:

ψ(s) = 0. (13.27)

In addition, notice that for s ∈ [ki − h−l
2
, l + ε) ∪ (2ki − l − ε, ki + h−l

2
] we have

(similar to equation (13.12)):
ψ(s) = −ψ(s). (13.28)

Thus, since FD(s) = FD(ε)(s) for s ∈ (−∞, ki − h−l
2

] ∪ [ki + h−l
2
,∞) and since

FD(s) > FD(ε)(s) for all such s ∈ [ki − h−l
2
, ki), equations (13.27) and (13.28) imply

that∫ t
−∞

(
FD(s) − FD(ε)(s)

)
ds ≥ 0 for all s ∈ R (and the inequality is strict for s ∈

[ki − h−l
2
, ki + h−l

2
). This concludes the proof of part (B).

Parts (A) and (B) imply that XD
i is a mean-preserving spread of XD(ε)

i
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As before, this argument holds for all ki ≥ 0. In addition, we can now use Lemma
13.3 to extend the Gap Filling Lemma (Lemma ??). We show that filling in a gap
yields the principal strictly higher utility, even if the gap is not contained in the ideal
action set of the agent. In other words, if G ⊆ (−∞, 1 + ki] and G ∩ [ki, 1+i] 6= ∅,
then EPi D < EPi D(ε, l, h). We state this more precisely in the following lemma:

Lemma 13.4. (Gap Filling Lemma - Case (b) G * [ki, 1 + ki]). Let G = (l, h) be
a gap in the set D such that G ⊆ (−∞, 1 + ki] and G ∩ [ki, 1+i] 6= ∅. Let ε ≤ h−l

2
.

Hence,

EPi D ≤ EPi D(ε, l, h). (13.29)

Thus, completely filling in the gap (replacing D with D
(
h−l
2
, l, h

)
= D∪(l, h) increases

the expected payoff of the principal, where the inequalities are strict if h > ki.

Proof. First, notice that XD
i (s) = XD(ε,l,h)

i (s) for all s ∈ [h− ki, 1]. Thus, we compare
the loss for the integral of the loss (utility) over the interval [0, h− ki]. We break this
comparison into two cases.

Case 1: ε ≤ ki − l:
Recall that η (defined at the beginning of Lemma 13.3) is equal to h+ l − 2ki.
From Lemma 13.3 we know that XD

i (s) = xDi (s)− s is a mean-preserving spread
of XD(ε,l,h)

i (s) = x
D(ε,l,h)
i (s)− s over the interval [0, h + l − 2ki]. Since U(·) is strictly

concave, we have that:

1

η

∫ h+l−2ki

0

U(XD
i (s))ds <

1

η

∫ h+l−2ki

0

U(XD(ε,l,h)
i (s))ds (13.30)

⇐⇒
∫ h+l−2ki

0

U(XD
i (s))ds <

∫ h+l−2ki

0

U(XD(ε,l,h)
i (s))ds. (13.31)

In addition, since xD(ε,l,h)
i (s), xDi (s) > s + ki for s ∈ [h + l − 2ki, h − ki) and

|xDi (s)− s| > |xD(ε,l,h)
i (s)− s|∫ h−ki

h+l−2ki
U(XD

i (s))ds <

∫ h−ki

h+l−2ki
U(XD(ε,l,h)

i (s))ds. (13.32)

Equations 13.31 and 13.32 imply∫ h−ki

0

U(XD
i (s))ds <

∫ h−ki

0

U(XD(ε,l,h)
i (s))ds. (13.33)

and since (as mentioned above) XD
i (s) = XD(ε,l,h)

i (s) for all s ∈ [h−ki, 1], equation
13.33 implies the conluding inequality for Case 1:
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EPi D < EPi D(ε, l, h). (13.34)

Case 2: ki − l < ε ≤ h−l
2

(Notice that ε = h−l
2

fills in the gap.) Let ε be defined
such that ki − l = ε′ < ε ≤ h−l

2
.

From Case 1, we know that

EPi D < EPi D(ε′, l, h). (13.35)

Denote D(ε′, l, h) by D′. But notice that D′ is a set such that it’s gap (G′ = (l′ :=
l + ε′, h − ε′ =: h′) is contained in [ki, 1 + ki]. Thus, by the Gap Filling Lemma for
case (a) (Lemma 13.13), we know that

EPi D′ < EPi D′(ε− ε′, l′, h′) = EPi D(ε, l, h). (13.36)

Hence, equations 13.35 and 13.36 imply the concluding inequality:

EPi D < EPi D(ε, l, h). (13.37)

If ε = h−l
2
, then equation (13.37) still holds and implies that a completely filled in

gap strictly raises the expected utility of the principal (if h > ki).

13.3 Proof of Lemma 8.3, D∗P ⊆ (−∞, 1 + k1] WLOG

In order to prove this lemma, we show that we can ignore certain pathological cases.
First, we can ignore the case when l < 0 and h > 1. For ε small enough, the set
{l+ ε}∪{h− ε} will yield the principal strictly higher expected payoff (this argument
was made by Mylovanov, 2008). Next, we point out that in the optimal pooling
menu, there cannot be more than one point higher than 1 in the optimal delegation
set (played with strictly positive probability). The proof of this follows a similar
argument to that of Mylovanov (Lemma 1, 2008).

Lemma 13.5. (At Least One Point In [0, 1]) Let D∗P be an optimal pooling menu,
then D∗P ∩ [0, 1] 6= ∅.

Proof. Assume not. So D∗P ∩ [0, 1] = ∅. Let l denote the largest point less than 0. Let
h be the smallest point greater than 1 (both points are defined since D∗P is closed.

Hence, there exists an ε > 0 such that D′ ∩ [0, 1] 6= ∅, where D′ = {l + ε, h − ε}.
Then, |xD′i (s)− s| < |xD

∗
P

i (s)− s|, for all s ∈ [0, 1] and for all i ∈ {1, . . . , N}.
Thus, since U(·) is strictly increasing in the absolute value of loss
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EP (D′) =
N∑
i=1

pi

(∫ 1

0

U(xD
′

i (t)− t)dt
)
>

N∑
i=1

pi

(∫ 1

0

U(x
D∗P
i (t)− t)dt

)
= EP (D∗P ),

(13.38)
which contradicts optimality of D∗P .

Next we show that there is, at most, 1 point d ∈ D∗P such that d > 1:

Lemma 13.6. (At Most 1 Above 1 Lemma: 1A1 Lemma) Let D∗P be an optimal
pooling menu, then at most one element, d, such that 1 ≥ d ∈ D∗P can be played with
positive probability.

Proof. Assume not. Thus, there are d1 and d2 (assume without loss that d2 > d1)
that are each played with positive probability. Let d∗ = min{d|d ∈ D∗P ∩ [1,∞)}.
This is well-defined since D∗P is closed. Let D′ = D∗P ∩ (−∞, d∗].

We now show that

EP (D′) =
N∑
i=1

pi

(∫ 1

0

U(xD
′

i (t)− t)dt
)
>

N∑
i=1

pi

(∫ 1

0

U(x
D∗P
i (t)− t)dt

)
= EP (D∗P ).

(13.39)
Consider type i. We define the probability that type i selects an action greater

than a point d, after choosing the delegation set, D.

TDi (d) := {s|xDi (s) > d}, (13.40)

where we have that, if TDi (d) has positive measure, then

∃ d′i < 1, TDi (d) = {s|xDi (s) > d} ∈ {(d′i, 1], [d′i, 1]}, (13.41)

since xDi (·) is increasing by Lemma 11.1.
If the probability that type i selects any action, d′, such that d′ > d∗ is zero,

P
(
T
D∗P
i (d∗) = {s|xD

∗
P

i (s) > d∗}
)

= 0, then the expected payoff to the principal

(
∫ 1

0
U(x

D∗P
i (t)− t)dt) is unchanged.

If P
(
T
D∗P
i (d∗)

)
> 0, recall from (13.40) that

T
D∗P
i (d∗) = {s|xD

∗
P

i (s) > d∗} ∈ {(d′i, 1], [d′i, 1]}, (13.42)

Thus, by (13.40),
xD
′

i (s) = d∗ < x
D∗P
i (s), (13.43)
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for all s ∈ TD
∗
P

i (d∗). But since d∗ > 1, |xD′i (s) − s| < |xD
∗
P

i (s) − s| for all s ∈ T d∗i
(and equality holds for all other s).

Thus, ∫ 1

0

U(xD
′

i (t)− t)dt
)
>

∫ 1

0

U(x
D∗P
i (t)− t)dt. (13.44)

The result follows from plugging in (13.44) into (13.39).

Lemma (13.6) shows that we may restrict attention to sets with only one point
strictly greater than 1.

Let d∗ be the largest point in D∗P that is contained in the unit interval. Notice
that if h is played by type 1 (the type with the lowest bias) with zero probability,
then we know that 1 + k1− d∗ ≤ h− 1− k1, so h+d∗

2
≥ 1 + k1. Hence, h− 1 > 1− d∗,

and we are back to case 1 (where h+d∗

2
≥ 1), which we ruled out already. Thus, we

can assume that type 1 plays h with positive probability. Thus, we can assume that
type 1 will play h in states s ∈ (h+l

2
− k1, 1] Denote λ1 := min{1−

(
h+l
2
− k1

)
, 1} > 0.

Similarly, let λi denote λi := min{1 −
(
h+l
2
− ki

)
, 1} > 0. Thus, λi ≤ λi+1, for all

i. In addition, λi = λj, if and only if 1 = λi = λj. We can assume without loss of
generality that λ1 < 1. Otherwise, the set D∗P contain a redundant point l, since if
type 1 doesn’t play l, then no type will ever play l.

Now remove h from D∗P and add the interval [l, l + λi] to it, resulting in D′i =
(D∗P ∩ (−∞, l])∪ [l, l+λi]. Notice that by the assumptions of the subcase and Lemma
13.5, l is in the unit interval. We now show why this adjustment strictly increases
the utility of the principal. We prove this using the following lemmas.

Lemma 13.7. (λi-Trick Lemma)
Let i be such that h > 1 + ki, λi := min{1−

(
h+l
2
− ki

)
, 1} (recall λi > 0 for all i),

and D′i = (D∗P ∩ (−∞, l]) ∪ [l, l + λi].
For all such i ,

EPi D∗P < EPi D′i (13.45)

Proof. The principal’s expected utility from type i is

EPi D∗P =

∫ max{0,l−ki}

0

U(x
D∗P
i (s)−s)ds+

∫ h+l
2
−ki

max{0,l−ki}
U(x

D∗P
i (s)−s)ds+

∫ 1

h+l
2
−ki

U(x
D∗P
i (s)−s)ds

(13.46)
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= C l
i +

∫ h+l
2
−ki

max{0,l−ki}
U(l − s)ds+

∫ 1

h+l
2
−ki

U(h− s)ds (13.47)

(where we denoted
∫ max{0,l−ki}
0

U(x
D∗P
i (s)− s)ds by C l

i)

= C l
i +

∫ h−l
2
−ki

max{−l,−ki}
U(s)ds+

∫ 1−h

−h−l
2
−ki

U(s)ds (13.48)

= C l
i +

∫ min{l,ki}

ki−h−l
2

U(s)ds+

∫ ki+
h−l
2

h−1
U(s)ds. (13.49)

Since h > 1 + ki, notice that∫ ki+
h−l
2

h−1
U(s)ds < λiU(ki). (13.50)

Hence, by equations (13.47), (13.48), (13.49), and (13.50), we have:

EPi D∗P < C l
i + λiU(ki) +

∫ h+l
2
−ki

max{0,l−ki}
U(l − s)ds. (13.51)

Now for set D′i we have:

EP1D′i =

∫ max{0,l−ki}

0

U(x
D′i
i (s)−s)ds+

∫ max{0,l+λi−ki}

max{0,l−ki}
U(x

D′i
i (s)−s)ds+

∫ 1

max{0,l+λi−ki}
U(x

D′i
i (s)−s)ds

(13.52)

= C l
i +

∫ max{0,l+λi−ki}

max{0,l−ki}
U(x

D′i
i (s)− s)ds+

∫ 1

max{0,l+λi−ki}
U(x

D′i
i (s)− s)ds (13.53)

(where we denoted
∫ max{0,l−ki}
0

U(x
D′i
i (s)− s)ds =

∫ max{0,l−ki}
0

U(x
D∗P
i (s)− s)ds by

C l
i)

= C l
i +

∫ max{0,l+λi−ki}

max{0,l−ki}
U(min{l + λi, s+ ki} − s)ds+

∫ 1

max{0,l+λi−ki}
U(l + λi − s)ds

(13.54)

≥ C l
i + U(ki)λi +

∫ 1−λi

max{0,l−ki}
U(l − s)ds (13.55)
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≥ C l
i + U(ki)λi +

∫ h+l
2
−ki

max{0,l−ki}
U(l − s)ds. (13.56)

Inequality (13.55) is explained carefully in the next subsection.
So by equations (13.52)-(13.56):

EPi D′i ≥ C l
i + U(ki)λi +

∫ h+l
2
−ki

max{0,l−ki}
U(l − s)ds. (13.57)

But by equations (13.51) and (13.57), we have:

EPi D′i ≥ C l
i + U(ki)λi +

∫ h+l
2
−ki

max{0,l−ki}
U(l − s)ds > EPi D∗P . (13.58)

This inequality concludes the proof of this lemma.

13.4 Proof of Inequality (13.55)

Recall that Inequality (13.55) states that

EPi D′i = C l
i+

∫ max{0,l+λi−ki}

max{0,l−ki}
U(min{l+λi, s+ki}−s)ds+

∫ 1

max{0,l+λi−ki}
U(l+λi−s)ds

(13.59)

≥ C l
i + U(ki)λi +

∫ 1−λi

max{0,l−ki}
U(l − s)ds.

Proof. Case A: l + λi − ki ≤ 0 In this case:

EPi D′ = C l
i +

∫ 1

0

U(l + λi − s)ds =

∫ λi

0

(l + λi − s)ds+

∫ 1

λi

(l + λi − s)ds (13.60)

> C l
i + λiU(ki) +

∫ 1−λi

0

(l − s)ds, (13.61)

which is the desired inequality.
Case B: l + λi − ki > 0 ≥ l − ki
In this case:

EPi D′i = C l
i +

∫ l+λi−ki

0

U(ki)ds+

∫ 1

l+λi−ki
U(l + λi − s)ds (13.62)
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= C l
i + (λi − (ki − l))U(ki) +

∫ λi

λi−(ki−l)
U(l+ λi − s)ds+

∫ 1

λi

U(l+ λi − s)ds (13.63)

> C l
i + λiU(ki) +

∫ 1−λi

0

U(l − s)ds, (13.64)

which is the desired inequality
Case C: l − ki > 0. (Note This also implies that λi < 1, since l < 1.
In this case,

EPi D′i = C l
i +

∫ l+λi−ki

l−ki
U(ki)ds+

∫ 1

l+λi−ki
U(l + λi − s)ds (13.65)

= C l
i + λiU(ki) +

∫ 1−λi

l−ki
U(l − s)ds. (13.66)

Hence, the inequalities from Cases A-C, show that Inequality (13.54) holds.

We now use the λi Trick (Lemma 13.7) to find a convex delegation set, D̂, to
improve upon the original nonconvex delegation set, D∗P , for all i such that 1 + ki.
This will be defined formally in the following lemma:

Lemma 13.8. (Finding the Right D̂, λ̂ Lemma)
Let I := {i|h > 1 + ki} = {1, . . . , Ih}. Then there exists a λ̂, D̂ such that D̂

improves upon D∗P for all i ∈ I:

Ih∑
i=1

piEPi D̂ >

Ih∑
i=1

piEPi D∗P , (13.67)

where D̂ = (D∗P ∩ (−∞, l]) ∪ [l, l + λ̂]
In addition, we will show that this new, convex set D̂ will strictly improve the

principal’s expected utility from all types:

N∑
i=1

piEPi D̂ >
N∑
i=1

piEPi D∗P , (13.68)

Proof. Recall λi := min{1−
(
h+l
2
−ki

)
, 1} > 0. Thus, λi ≤ λi+1, for all i. In addition,

λi = λj, if and only if 1 = λi = λj. In addition, since (WLOG) λ1 < 1, we know that:
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λ1 < λ2 ≤ · · · ≤ λIh . (13.69)

We denote (D∗P ∩ (−∞, l]) ∪ [l, l + λ] by D(λ) and define Ψ∗i (λ) as

Ψ∗i (λ) := EPi D(λ) (13.70)

=

∫ max{0,l−ki}

0

U
(
x
D(λ)
i (s)−s

)
ds+

∫ max{0,l+λ−ki}

max{0,l−ki}
U(ki)ds+

∫ 1

max{0,l+λ−ki}
U(l+λ−s)ds

= C l
i +

∫ max{0,l+λ−ki}

max{0,l−ki}
U(ki)ds+

∫ 1

max{0,l+λ−ki}
U(l + λ− s)ds, (13.71)

where C l
i =

∫ max{0,l−ki}
0

U
(
x
D(λ)
i (s)− s

)
ds.

In addition, we know from an argument similar to that in the proof of Lemma 7.2
(defined on page 18), that Ψ∗i (λ) is strictly increasing in λ for l + λ ∈ [0, qi] and is
strictly decreasing for l + λ ∈ [qi, 1], where qi = max{1

2
, 1− ki}.

Thus, since we can assume that λ1 < 1 and k1 <
1
2
, we have the following two

relations:

q1 > q2 ≥ · · · ≥ qIh . (13.72)

l + λ1 < l + λ2 ≤ · · · ≤ l + λIh . (13.73)

Two equivalent inequalities (13.72) (13.73) are similar to inequalities (12.13) and
(12.14). We employ a similar argument.

We know that if l + λi > qi, then

EPi D∗P ≤ EPi D(λi) = Ψ∗i (λi) < Ψ∗i (γ) = EPi D(γ), (13.74)

for all γ ∈ [0, λi] since Ψ∗i (·) is strictly decreasing in γ over this interval.
Similarly, we know that if l + λi < qi, then

EPi D∗P ≤ EPi D(λi) = Ψ∗i (λi) < Ψ∗i (γ) = EPi D(γ), (13.75)

for all γ ∈ [λi, qi − l] since Ψ∗i (·) is strictly increasing in γ over this interval.
In addition, from inequalities (13.72) and (13.73) we know that

l + λi < qi =⇒ l + λj < qj, ∀ j < i (13.76)

and
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l + λi > qi =⇒ l + λj > qj, ∀ j > i. (13.77)

. We break the remaining argument into cases:
Case A: l + λ1 > q1
If l+ λ1 > q1, by equation (13.77) we know l+ λi > qi for alli (Ih ≥ i > 1). Thus,

let λ̂ = max{0, q1 − l}, which implies that D̂ = D(λ̂). But then by equation (13.74)
we have that

EPi D∗P < EPi D̂, (13.78)

for all i ≤ Ih, which implies the desired equation, equation (13.67).
Case B: l + λIh ≤ qIh
If l + λIh ≤ qIh , by equation (13.76) we know l + λi ≤ qi for all i < Ih (and the

inequality is strict for at least one i). Thus, let λ̂ = qIh , which implies that D̂ = D(λ̂).
But then by equation (13.75) we have that

EPi D∗P ≤ EPi D̂, (13.79)

for all i ≤ Ih (and the inequality is strict fo at least one i), which implies the desired
equation, equation (13.67).

Case C: There exists type i such that l + λi ≤ qi and l + λi+1 > qi+1

First, note that if l + λi ≤ qi, then λi < 1, since either i = 1 (and λ1 < 1, as we
can assume above) or i > 1 and qi < 1 (and ki > 0). Thus, λj > λi for all j > i and
λm < λi for all m < i.

If there exists type i such that l + λi ≤ qi and l + λi+1 > qi+1 then we know that
for all types j < i, l + λj ≤ qj and for all types m > i, l + λm > qm. In addition, for
all types, j < i, l + λj < l + λi ≤ qi ≤ qj. Thus, for all such j ≤ i:

EPj D(max{λi+1, qi − l}) > EPj D(λj) > EPj D∗P , (13.80)

by the monotonicity properties of Ψ∗i (·) = EPi D(·). In addition, by these monotonicity
properties we have for all m > i

EPmD(max{λi+1, qi − l}) ≥ EPmD(λm) > EPj D∗P . (13.81)

Thus, set λ̂ = max{λi+1, qi − l}, D̂ = D(λ̂), and by equations (13.80) and (13.81)
we have the desired inequality:

Ih∑
i=1

piEPi D̂ >

Ih∑
i=1

piEPi D∗P . (13.82)
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This concludes the proof of Case C. We know show D̂ yields the principal strictly
higher ex-ante expected payoff (over all types) than D∗P .

Notice that
qIh ≤ l + λ̂ ≤ 1 < 1 + kIh < h. (13.83)

Thus, without loss of generality, we can assume D̂ is convex. Otherwise, we can use
the general Gap Filling Lemma (Lemma 13.4), to fill in all of the gaps and strictly
improve expected utility at least one type.

To conclude the proof of the lemma, notice that if m > Ih, we know that h ≤
1+km. Thus, if one fills in all of the gaps of D∗P , replacing it with the [0, h], we would
have (for all m > Ih):

EPi [0, h] ≥ EPi D∗P . (13.84)

But since qm ≤ qIh ≤ l + λ̂ < h, then we know from the monotonicity properties of
Ψ∗i (·) = EPi D(·) we have for all i > Ih that

EPi [0, l + λ̂] > EPi [0, h] ≥ EPi D∗P . (13.85)

Thus, letting D̂ = [0, l + λ̂], by equations (13.82) and (13.85):

N∑
i=1

piEPi D̂ >
N∑
i=1

piEPi D∗P . (13.86)

This concludes the proof of case (2ii), where h > 1 + k1.

By the previous lemmas 14.5 through (13.8), we can restrict attention to delegation
sets contained in [0, 1]. These previous lemmas show that if the set is not contained
in the unit interval (which is contained in (−∞, 1 + k1]), we can find a another set
that yields the principal strictly higher expected utility.

14 Appendix D: Proofs of Section 8 (Proposition
8.5)

Throughout this Appendix, we will modify a set Di. This first modification will
increase the expected payoff of the agent, effect the incentive compatibility conditions,
and increase the expected utility of the principal. Then we will "thin" this set (defined
below) so as to preserve the indifference of agent i. The lemma in the next section
shows that thinning the set will maintain the added benefit to the principal and will
preserve the original incentive compatibility conditions.
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14.1 Aligned Thinning Lemma

Before we construct D̂i and Ii that satisfy equations (8.1)-(8.6), we first prove a useful
lemma, but before we that, we introduce some notation which will be used throughout
this Appendix. Denote

∆P
j (D′, D) := EPj D′ − EPj D′,

where j ∈ {i, , i+ 1, . . . , N}. Denote

∆j(D′, D) := EjD′ − EjD′,

where i ∈ {i, i+ 1, . . . , N}. In addition, let A be a closed (and bounded) set. Denote
maxA := maxx∈A x. We call a closed (and bounded) delegation set D thick at the
top if there exists an ε > 0 such that [maxD− ε,maxD] ⊆ D. We call the set D−(δ)
a δ-thinning of D if D−(δ) = D ∩ (−∞,maxD − δ] and δ ≥ 0 is chosen so that
[maxD − δ,maxD] ⊆ D.

Lemma 14.1. (Aligned Thinning Lemma) Let D ⊆ (−∞, 1 + ki] be thick at the top.
Let δ > 0 and D−(δ) be a δ-thinning of D. We have the following inequality

∆j(D−(δ), D) < ∆i(D−(δ), D) < ∆P
i (D−(δ), D), (14.1)

for all j > i.

In words, equation (14.1) lemma states that thinning certain thick at the top
delegation sets causes the least expected utility loss to the principal (it may even be
a gain) and causes more expected utility losses for higher-bias types. Thus, thinning
sets will prove to be a powerful variation that preserves incentive compatibility while
maintaining expected utility gains to the principal. This will become clearer in further
proofs.

Proof. We break this lemma into two results: (i) ∆j(D−(δ), D) < ∆i(D−(δ), D) for
all j > i and (ii) ∆i(D−(δ), D) < ∆P

i (D−(δ), D).
Proof of (i):

Proof. We first show that ∆j(D−(δ), D) < ∆i(D−(δ), D) for all j > i. We will prove
this relation by writing ∆j(D−(δ), D) as a function of kj and show that it is decreasing
in kj:

For all j ∈ {i, i+ 1, . . . , N}

∆j(D−(δ), D) = EjD−(δ)− EjD (14.2)

=

∫ max{0,d∗−δ−kj}

0

U(x
D−(δ)
j (s)− s− kj)ds+

∫ 1

max{0,d∗−δ−kj}
U(d∗ − δ − s− kj)ds
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−
∫ max{0,d∗−δ−kj}

0

U(xDj (s)−s−kj)ds−
∫ max{d∗−δ−kj ,d∗−kj}

max{0,d∗−δ−kj}
U(0)ds−

∫ 1

max{0,d∗−kj}
U(d∗−s−kj)ds

=

∫ 1

max{0,d∗−δ−kj}
U(d∗ − δ − s− kj)ds−

∫ 1

max{0,d∗−kj}
U(d∗ − δ − s− kj)ds (14.3)

(
since xD

−(δ)
j (s) = xDj (s) for all s ∈ [0,max{0, d∗ − δ − kj}] and U(0) = 0

)
.

=

∫ 1+kj−d∗+δ

max{kj+δ−d∗,0}
U(s)ds−

∫ 1+kj−d∗

max{kj−d∗,0}
U(s)ds =

∫ 1+kj−d∗+δ

1+kj−d∗
U(s)ds−

∫ max{kj+δ−d∗,0}

max{kj−d∗,0}
U(s)ds

(14.4)

>

∫ 1+kl−d∗+δ

1+kl−d∗
U(s)ds−

∫ max{kl+δ−d∗,0}

max{kl−d∗,0}
U(s)ds = ElD−(δ)− ElD, (14.5)

for all kl > kj since one of three cases holds: (A) kj + δ − d∗ < 0 (B) kj − d∗ < 0 ≤
kj + δ − d∗ (C) kj − d∗ ≥ 0.

If (A) holds, then

EjD−(δ)− EjD =

∫ 1+kj−d∗+δ

1+kj−d∗
U(s)ds, (14.6)

which is strictly decreasing in kj.
If (B) holds then

EjD−(δ)− EjD =

∫ 1+kj−d∗+δ

1+kj−d∗
U(s)ds−

∫ kj+δ−d∗

0

U(s)ds. (14.7)

Differentiating with respect to kj we get

U(1 + kj − d∗ + δ)− U(1 + kj − d∗)−
(
U(kj + δ − d∗)− U(0)

)
(14.8)

< U(1 + kj − d∗ + δ)− U(1 + kj − d∗)−
(
U(δ)− U(0)

)
< 0 (14.9)

since kj−d∗ ≤ 0 < kj−d∗+ δ and since U(·) is strictly decreasing over R+, and since
U(·) is strictly concave

U(a+ δ)− U(a) < U(b+ δ)− U(b) (14.10)
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for all a > b ≥ 0. This concludes the argument for Case (B).
If (C) holds then

EjD−(δ)− EjD =

∫ 1+kj−d∗+δ

1+kj−d∗
U(s)ds−

∫ kj+δ−d∗

kj−d∗
U(s)ds. (14.11)

Differentiating with respect to kj we get

U(1 + kj − d∗ + δ)− U(1 + kj − d∗)−
(
U(kj + δ − d∗)− U(kj − d∗)

)
< 0 (14.12)

by the same reasoning as in equation (14.10).

Proof of (ii): ∆i(D−(δ), D) < ∆P
i (D−(δ), D)

Proof. We first reduce analysis to specific D and δ(D) (where the thinning will be
function of the set D). The reason we can do this is because if D is thick at the top
and D−(δ) is a δ-thinning, then D−(δ) is also a closed and bounded set. In addition,
Recall that ∆P

i (D−(δ), D) = EP
i D

−(δ) − EP
j D Hence, letting δ0 = 0,

∑L
r=1 δr = δ,

and Sr =
∑r

h=0 δh then:

∆P
i (D−(δ), D) = ∆P

i (D−(
L∑
r=1

δr), D) (14.13)

=
L∑
r=1

∆P
i

(
D−(δr + Sr−1), D

−(Sr−1) =
L∑
r=1

∆P
i

(
D−(

r∑
h=0

δh), D
−(

r−1∑
h=0

δh)

)
.

Hence, if ∆P
i

(
D−(δr + Sr−1), D

−(Sr−1) > ∆i

(
D−(δr + Sr−1), D

−(Sr−1), for all

r ∈ {1, . . . , L} then:

∆P
j (D−(δ), D) =

L∑
r=1

∆P
j

(
D−(δr+Sr−1), D

−(Sr−1)

)
>

L∑
r=1

∆j

(
D−(δr+Sr−1), D

−(Sr−1)

)
(14.14)

= ∆j(D−(δ), D).

Cases: (I) maxD > 1,maxD − 1 ≥ δ > 0. (II) 1 ≥ maxD > ki,maxD − ki ≥
δ > 0 (III) ki ≥ maxD > 0,maxD ≥ δ > 0, and (IV) maxD ≤ 0, δ > 0

Proof for Case (I), maxD > 1,maxD − 1 ≥ δ > 0:
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Proof.

∆P
i (D−(δ), D) = EP

i D
−(δ)−EP

i D =

∫ d∗−δ−ki

0

U(x
D−(δ)
i (s)−s)ds+

∫ 1

d∗−δ−ki
U(d∗−δ−s)ds

(14.15)

−
∫ d∗−δ−ki

0

U(x
D−(δ)
i (s)− s)ds− δU(ki)−

∫ 1

d∗−ki
U(d∗ − s)ds

(since xD
−(δ)

i (s) = xDi (s) for all s ∈ [0, d∗ − δ − ki], and D is thick at the top so
xDi (s) = s+ ki for all s ∈ [d∗ − δ − ki, d∗ − ki])

=

∫ 1

d∗−δ−ki
U(d∗ − δ − s)ds− δU(ki)−

∫ 1

d∗−ki
U(d∗ − s)ds (14.16)

=

∫ 1+δ−d∗

−ki
U(s)ds− δU(ki)−

∫ 1−d∗

−ki
U(s)ds =

∫ 1+δ−d∗

1−d∗
U(s)ds− δU(ki) (14.17)

=

∫ d∗−1

d∗−δ−1
U(s)ds− δU(ki) >

∫ d∗−1

d∗−δ−1
U(ki)ds− δU(ki) = 0 (14.18)

(since nonredundancy of D and thickness at the top imply that d∗ ≤ 1 + ki)

>

∫ 1+ki−d∗+δ

1+ki−d∗
U(s)ds =

∫ 1

d∗−δ−ki
U(d∗−δ−s−ki)ds−

∫ 1

d∗−kj
U(d∗−s−ki)ds (14.19)

∫ d∗−δ−ki

0

U(x
D−(δ)
i (s)−s)ds+

∫ 1

d∗−δ−ki
U(d∗−δ−s)ds−

∫ d∗−ki−δ

0

U(x
D−(δ)
i (s)−s−ki)ds

(14.20)

−
∫ d∗−ki

d∗−ki−δ
U(s+ ki − s− ki)ds−

∫ 1

d∗−ki
U(d∗ − s− ki)d

= EiD−(δ)− EiD = ∆i(D−(δ), D). (14.21)

Hence, for case (I), ∆P
i (D−(δ), D) > ∆i(D−(δ), D).

Proof for Case (II), 1 ≥ maxD > ki,maxD − ki ≥ δ > 0

Proof.

∆P
i (D−(δ), D) = EP

i D
−(δ)−EP

i D =

∫ d∗−δ−ki

0

U(x
D−(δ)
i (s)−s)ds+

∫ 1

d∗−δ−ki
U(d∗−δ−s)ds

(14.22)
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−
∫ d∗−δ−ki

0

U(x
D−(δ)
i (s)− s)ds− δU(ki)−

∫ 1

d∗−ki
U(d∗ − s)ds

(since xD
−(δ)

i (s) = xDi (s) for all s ∈ [0, d∗ − δ − ki], and D is thick at the top so
xDi (s) = s+ ki for all s ∈ [d∗ − δ − ki, d∗ − ki])

=

∫ 1

d∗−δ−ki
U(d∗ − δ − s)ds− δU(ki)−

∫ 1

d∗−ki
U(d∗ − s)ds (14.23)

=

∫ 1+δ−d∗

−ki
U(s)ds− δU(ki)−

∫ 1−d∗

−ki
U(s)ds =

∫ 1+δ−d∗

1−d∗
U(s)ds− δU(ki) (14.24)

>

∫ 1+ki+δ−d∗

1+ki−d∗
U(s)ds =

∫ 1

d∗−δ−ki
U(d∗−δ−s−ki)ds−

∫ 1

d∗−kj
U(d∗−s−ki)ds (14.25)

∫ d∗−δ−ki

0

U(x
D−(δ)
i (s)−s)ds+

∫ 1

d∗−δ−ki
U(d∗−δ−s)ds−

∫ d∗−ki−δ

0

U(x
D−(δ)
i (s)−s−ki)ds

(14.26)

−
∫ d∗−ki

d∗−ki−δ
U(s+ ki − s− ki)ds−

∫ 1

d∗−ki
U(d∗ − s− ki)d

= EiD−(δ)− EiD = ∆i(D−(δ), D). (14.27)

Hence, for case (II), ∆P
i (D−(δ), D) > ∆i(D−(δ), D).

Proof for Case (III), ki ≥ maxD > 0,maxD ≥ δ > 0

Proof. Since maxD = d∗ ≤ ki, xDi (s) = d∗ for all s ∈ [0, 1]. Similarly, xD
−(δ)

i (s) =
d∗ − δ for all s ∈ [0, 1]. Hence,

∆P
i (D−(δ), D) = EP

i D
−(δ)−EP

i D =

∫ 1

0

U(d∗ − δ− s)ds−
∫ 1

0

U(d∗ − s)ds (14.28)

=

∫ d∗−δ

0

U(d∗− δ− s)ds+

∫ 1

d∗−δ
U(d∗− δ− s)ds−

∫ d∗

0

U(d∗− s)ds−
∫ 1

d∗
U(d∗− s)ds

(14.29)

=

∫ 0

−d∗+δ
U(s)ds+

∫ 1+δ−d∗

0

U(s)ds−
∫ 0

−d∗
U(s)ds−

∫ 1−d∗

0

U(s)ds (14.30)

= −
∫ −d∗+δ
−d∗

U(s)ds+

∫ 1+δ−d∗

1−d∗
U(s)ds (14.31)
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= −
∫ d∗

d∗−δ
U(s)ds+

∫ 1+δ−d∗

1−d∗
U(s)ds (14.32)

>

∫ 1+δ−d∗

1−d∗
U(s)ds >

∫ 1+δ−d∗

1−d∗
U(s)ds+ δU(ki)−

∫ ki+δ−d∗

ki−d∗
U(s)ds (14.33)

>

∫ 1+δ−d∗

1−d∗
U(s+ ki)ds−

∫ ki+δ−d∗

ki−d∗
U(s)ds (14.34)

(since U(s) + U(ki) > U(s+ ki) for s ≥ 0)

=

∫ 1+ki+δ−d∗

1+ki−d∗
U(s)ds−

∫ ki+δ−d∗

ki−d∗
U(s)ds =

∫ 1+ki+δ−d∗

ki+δ−d∗
U(s)ds−

∫ 1+ki−d∗

ki−d∗
U(s)ds

(14.35)

=

∫ 1

0

U(d∗ − δ − s− ki)ds−
∫ 1

0

U(d∗ − s− ki)ds (14.36)

= EiD−(δ)− EiD = ∆i(D−(δ), D). (14.37)

Hence, for Case (III):∆P
i (D−(δ), D) > ∆i(D−(δ), D).

Proof of Case (IV), maxD ≤ 0, δ > 0

Proof. For d, δ ≥ 0 let

H(d, δ) =

∫ 1+d+δ

d+δ

U(s)ds−
∫ 1+d

d

U(s)ds (14.38)

∂H

∂d

(
d, δ) = U(1 + d+ δ)− U(d+ δ)− [U(1 + d)− U(d)] < 0 (14.39)

since U(s) is strictly concave and maximized at s = 0. Hence, equation (14.39) implies
that H(d, δ) is strictly decreasing in d.

We now use equation (14.39) to show the desired inequality ∆P
i (D−(δ), D) >

∆i(D−(δ), D).
As in Case (III), since maxD = d∗ ≤ ki, xDi (s) = d∗ for all s ∈ [0, 1]. Similarly,

x
D−(δ)
i (s) = d∗ − δ for all s ∈ [0, 1].

∆P
i (D−(δ), D) = EP

i D
−(δ)−EP

i D =

∫ 1

0

U(d∗ − δ− s)ds−
∫ 1

0

U(d∗ − s)ds (14.40)

=

∫ 1+δ−d∗

δ−d∗
U(s)ds−

∫ 1−d∗

−d∗
U(s)ds = H(−d∗, δ) (14.41)

> H(ki − d∗, δ) =

∫ 1+ki+δ−d∗

ki+δ−d∗
U(s)ds−

∫ 1+ki−d∗

ki−d∗
U(s)ds (14.42)
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(since H(d, δ) is strictly decreasing in d)

=

∫ 1

0

U(d∗ − δ − s− ki)ds−
∫ 1

0

U(d∗ − s− ki)ds (14.43)

= EiD−(δ)− EiD = ∆i(D−(δ), D). (14.44)

Hence, for case (IV):∆P
i (D−(δ), D) > ∆i(D−(δ), D).

Thus, from cases (I)-(IV) and the argument at the beginning of case (ii) we know
that for all D that are thick at the top, for any δ-thinning we have: ∆P

i (D−(δ), D) >
∆i(D−(δ), D).

From case (i) we know that ∆i(D−(δ), D) > ∆j(D−(δ), D) for all j > i and from
case (ii) we know ∆P

i (D−(δ), D) > ∆i(D−(δ), D). Hence, we have completed the
proof for the Aligned Thinning Lemma (Lemma 14.1).

Now we construct D̂i and Ii that satisfy equations (8.1)-(8.6).

14.2 Construction of D̂i

First, we rule out the pathological cases.
Assume that Di is not redundant. Thus, for all d ∈ Di, there is an s such that

xDi
i (s) = d. Second, if there is an l ∈ Di such that l < ki or an h ∈ Di such that
h > 1 + ki such that h or l are played with zero probability (for a single state, 0 or
1) than remove l and h from Di to achieve D̂i. From here on, q will denote the only
point (by nonredundancy) less than ki (if such q exists) and w will denote the only
point (by nonredundancy) greater than 1 + ki.

Now if Di ⊆ (1 + ki,∞) (in words, Di is too high), let α = w − 1. Replace Di

with {ki − α}. This satisfies equations (8.4)-(8.6).
Assume there exists a w in Di and that Di∩(−∞, 1+ki] 6= ∅. Thus, there is a gap

of the form (l, w) in D1 (notice that it is possible for l < ki). By nonredundancy, we
know that there is an s′ < 1 such that xDi

i (s) = w for all s such that 1 ≥ s ≥ s′ (also
notice that s′ = w+l

2
− ki). Let λi = 1− s′ (which means that 1− λi = s′ = w+l

2
− ki).

Let
D′i = (Di ∩ (−∞, 1 + ki]) ∪ [l, l + λi]. (14.45)

In words, we are tossing out the point above 1 + ki, w, and thickening Di on the
right.

This clearly raises the expected payoff to the principal.

∆P
i (D′i, Di) := EPi D′i − EPi Di (14.46)
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=

∫ max{0,l+λi−ki}

max{0,l−ki}
U(ki)ds+

∫ 1

max{0,l+λi−ki}
U(l+λi−s)ds−

∫ w+l
2
−ki

max{0,l−ki}
U(l−s)ds−

∫ 1

w+l
2
−ki

U(w−s)ds

(14.47)

=

∫ max{0,l+λi−ki}

max{0,l−ki}
U(ki)ds+

∫ 1−l−λi

max{−l−λi,−ki}
U(s)ds−

∫ w−l
2
−ki

max{−l,−ki}
U(s)ds−

∫ 1−w

−w−l
2
−ki

U(s)ds

(14.48)

=

∫ max{0,l+λi−ki}

max{0,l−ki}
U(ki)ds+

∫ w−l
2
−ki

max{−l−λi,−ki}
U(s)ds−

∫ w−l
2
−ki

max{−l,−ki}
U(s)ds−

∫ 1−w

−w−l
2
−ki

U(s)ds

(14.49)
(since 1− λi = w+l

2
− ki)

=

∫ max{0,l+λi−ki}

max{0,l−ki}
U(ki)ds+

∫ min{l+λi,ki}

ki−w−l
2

U(s)ds−
∫ min{l,ki}

ki−w−l
2

U(s)ds−
∫ ki+

w−l
2

w−1
U(s)ds

(14.50)

=

∫ max{0,l+λi−ki}

max{0,l−ki}
U(ki)ds+

∫ min{li,ki}

ki−w−l
2

U(s)ds+

∫ min{l+λi,ki}

min{l,ki}
U(s)ds (14.51)

−
∫ min{l,ki}

ki−w−l
2

U(s)ds−
∫ ki+

w−l
2

w−1
U(s)ds

=

∫ max{0,l+λi−ki}

max{0,l−ki}
U(ki)ds+

∫ min{l+λi,ki}

min{l,ki}
U(s)ds−

∫ ki+
w−l
2

w−1
U(s)ds (14.52)

≥ λiU(ki)−
∫ ki+

w−l
2

w−1
U(s)ds (14.53)

> λiU(ki)− λiU(ki) (14.54)

since 1− w + w−l
2

+ ki = 1− w+l
2

+ ki = λi.
Hence, from equation (14.54) we see that:
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∆P
i (D′i, Di) = EPi D′i − EPi Di > λiU(ki)− λiU(ki) = 0. (14.55)

In addition, we can also bound the change in expected payoff to the principal from
below. Since

∫ w−l
2

w−1−ki U(s+ ki)ds =
∫ ki+w−l

2

w−1 U(s)ds and since U(·) is nonpositive, and
strictly concave, we have:

−U(s+ ki) + U(ki) > −U(s) (14.56)

∆P
i (D′i, Di) ≥ λiU(ki)−

∫ ki+
w−l
2

w−1
U(s)ds. (14.57)

=

∫ w−l
2

w−1−ki
U(ki)ds−

∫ w−l
2

w−1−ki
U(s+ ki)ds >

∫ w−l
2

w−1−ki
U(s)ds, (14.58)

by equation (14.56).
We now show that the change in expected payoff for type i is also positive and

bound it from above by the change in expected payoff to the principal. For agent
type i, the gain is:

∆i(D′i, Di) := EiD′i − EiDi (14.59)

=

∫ max{0,l+λi−ki}

max{0,l−ki}
U(0)ds+

∫ 1

max{0,l+λi−ki}
U(l + λi − s− ki)ds (14.60)

−
∫ w+l

2
−ki

max{0,l−ki}
U(l − s− ki)ds−

∫ 1

w+l
2
−ki

U(w − s− ki)ds

=

∫ 1+ki−l−λi

max{ki−l−λi,0}
U(s)ds−

∫ w−l
2

max{ki−l,0}
U(s)ds−

∫ 1+ki−w

−w−l
2

U(s)ds (14.61)

=

∫ w−l
2

max{ki−l−λi,0}
U(s)ds−

∫ w−l
2

max{ki−l,0}
U(s)ds−

∫ 1+ki−w

−w−l
2

U(s)ds (14.62)

(since 1− λi = w+l
2
− ki)

=

∫ w−l
2

max{ki−l−λi,0}
U(s)ds−

∫ w−l
2

max{ki−l,0}
U(s)ds−

∫ w−l
2

w−1−ki
U(s)ds. (14.63)
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From equation (14.63) we see that

0 < ∆i(D′i, Di) = EiD′i − EiDi ≤ −
∫ w−l

2

w−1−ki
U(s)ds. (14.64)

Thus, by equations (14.58) and (14.64) we have:

∆P (D′i, Di) = EPD′i − EPDi > −
∫ w−l

2

w−1−ki
U(s)ds ≥ EiD′i − EiDi = ∆i(D′i, Di) > 0.

(14.65)
Thus, the expected payoff gain to the principal from replacing Di with D′i is higher

than the expected payoff gain of type i. We also know that the gain to type i is higher
than the gain to types j for all j > i:

For agent type j, note that j > i so kj > ki. Hence, the expected gain to type j
is:

∆j(D′i, Di) := EjD′i − EjDi (14.66)

=

∫ max{0,l+λi−kj}

max{0,l−kj}
U(0)ds+

∫ 1

max{0,l+λi−kj}
U(l + λi − s− kj)ds (14.67)

−
∫ w+l

2
−kj

max{0,l−kj}
U(l − s− kj)ds−

∫ 1

w+l
2
−kj

U(w − s− kj)ds

=

∫ 1+kj−l−λi

max{kj−l−λi,0}
U(s)ds−

∫ w−l
2

max{kj−l,0}
U(s)ds−

∫ 1+kj−w

−w−l
2

U(s)ds (14.68)

=

∫ w−l
2

+kj−ki

max{kj−l−λi,0}
U(s)ds−

∫ w−l
2

max{kj−l,0}
U(s)ds−

∫ 1+kj−w

−w−l
2

U(s)ds (14.69)

(since 1− λi = w+l
2
− ki)

=

∫ w−l
2

+kj−ki

max{kj−l−λi,0}
U(s)ds−

∫ w−l
2

max{kj−l,0}
U(s)ds−

∫ w−l
2

w−1−kj
U(s)ds (14.70)
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=

∫ max{kj−l,0}

max{kj−l−λi,0}
U(s)ds+

∫ w−l
2

max{kj−l,0}
U(s)ds+

∫ w−l
2

+kj−ki

w−l
2

U(s)ds (14.71)

−
∫ w−l

2

max{kj−l,0}
U(s)ds−

∫ w−l
2

w−1−kj
U(s)ds

<

∫ max{kj−l,0}

max{kj−l−λi,0}
U(s)ds−

∫ min{w−l
2
,w−kj}

w−1−ki
U(s)ds (14.72)(

where we broke the integral
∫ w−l

2
+kj−ki

max{kj−l−λi,0} U(s)ds into a sum of three integrals∫ max{kj−l,0}
max{kj−l−λi,0} U(s)ds+

∫ w−l
2

max{kj−l,0} U(s)ds+
∫ w−l

2
+kj−ki

w−l
2

U(s)ds

)
which holds since∫ w−l

2
+kj−ki

w−l
2

U(s)ds−
∫ w−l

2

w−1−kj
U(s)ds < −

∫ w−l
2

w−1−ki
U(s)ds.

This strict inequality holds since either (i) : w > 1 + kj or (ii) : w ≤ 1 + kj.
(i): If w > 1 + kj holds, then:

w − l
2

> w − 1− kj ⇐⇒ 1 >
w + l

2
− kj. (14.73)

(ii): If 1 + kj > w holds, recalling that w > 1 + ki, we see that:

1 + kj − w < 1 + kj − (1 + ki) = kj − ki <
w − l

2
+ kj − ki. (14.74)

Recall from equation (14.63) that

∆i(D′i, Di) =

∫ w−l
2

max{ki−l−λi,0}
U(s)ds−

∫ w−l
2

max{ki−l,0}
U(s)ds−

∫ w−l
2

w−1−ki
U(s)ds (14.75)

=

∫ max{ki−l,0}

max{ki−l−λi,0}
U(s)ds−

∫ w−l
2

w−1−ki
U(s)ds. (14.76)

Thus, by equation (14.72) we have:
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∆j(D′i, Di) = EjD′i−EjDi <

∫ max{kj−l,0}

max{kj−l−λi,0}
U(s)ds−

∫ min{w−l
2
,w−kj}

w−1−ki
U(s)ds (14.77)

≤
∫ max{ki−l,0}

max{ki−l−λi,0}
U(s)ds−

∫ w−l
2

w−1−ki
U(s)ds = EiD′i − EiDi = ∆i(D′i, Di).

Thus, the gain to type i from replacing Di with D′i is strictly higher than that of
type j for all j > i.

Recalling from equation (14.64) that ∆i(D′i, Di) = EiD′i−EiDi > 0 we now find a
D̂i such that ∆i(D̂i, Di) = 0. We do this by first noticing that D′i is thick at the top.

Recalling equation (14.45) that D′i = (Di ∩ (−∞, 1 + ki]) ∪ [l, l + λi] we denote

D(ε)i := (Di ∩ (−∞, 1 + ki]) ∪ [l, l + λi − ε]. (14.78)

Thus, D(0)i = D′i and D(λi) = Di∩(−∞, 1+ki] From equation (14.64) we know that
EiD(0)i − EiDi > 0. In addition, since the agent chooses w (the point above 1 + ki)
with positive probability the agent is worse off when w is removed (and nothing else
is added). Thus, we know that EiD(λi)i − EiDi < 0. Hence, by the Intermediate
Value Theorem, there is a δ̂ > 0 such that EiDi(δ̂)− EiDi = 0. Let

Di(δ̂) = D̂i. (14.79)

Notice that ∆P
i (Di, D

′
i) > ∆i(D,D′i) > ∆j(Di, D

′
i), for all j > i. In addition D̂i

is a δ-thinning of D′i. Thus, by the Aligned Thinning Lemma (Lemma 14.1) since
∆P
i (D̂i, D

′
i) > ∆i(D̂i, D

′
i) > ∆ji(D̂i, D

′
i),

So

∆P
i (D̂i, Di) = ∆P

i (D̂i, D
′
i) + ∆P

i (D′i, Di) > ∆i(D̂i, D
′
i) + ∆i(D′i, Di) = 0 = ∆i(D̂i, Di)

(14.80)
> ∆j(D̂i, D

′
i) + ∆j(D′i, Di) = ∆j(D̂i, Di).

Hence, EP D̂i > EPDi. Thus, D̂i has the desired incentive compatibility properties
for Step 1: equations (8.1)- (8.3) are satisfied.

14.3 Construction of Ii
From Step 1, we know that we can restrict attention to D̂i such that D̂i ⊆ (−∞, 1+ki].
Let ai = maxd∈D̂i

d. Let D′′i = [ki, ai]. In words, we filled in all of the gaps in D̂i.
This replacement strictly raises agent i’s expected payoff. We will then replace D′′i
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with the interval, Ii = [ki, a
∗
i ] such that agent i is indifferent between Ii and Di (thus,

a∗i < ai). Such an a∗i exists by the Intermediate Value Theorem. Hence, Ii satisfies
equation (8.4). It remains to show that it satisfies equations (8.5) and (8.6).

Equation (8.6) is the easier relation to prove. First, note that D′′i fills in all gaps
in Di. EjD′′i −EjDi is just the expected gain to type j > i from filling in all the gaps
in Di. The gain from a gap G ⊆ [kj, 1 + kj] is the same to type j as it is to type
i since U(·) is a function of the absolute value of distance from action d to s + kj.
Thus, only case where the change in expected payoff from filling in a gap is different
is for the case when G = (l, h), h > kj, and l < kj. In this case, the loss to the agent
j over the gap is ∫ h+l

2
−kj

0

U(l − s− kj)ds+

∫ h−kj

h+l
2
−kj

U(h− s− kj)ds (14.81)

=

∫ h−l
2

kj−l
U(s)ds+

∫ h−l
2

0

U(s)ds. (14.82)

For type i, the loss over the gap is∫ h+l
2
−ki

max{0,l−ki}
U(l − s− ki)ds+

∫ h−ki

h+l
2
−ki

U(h− s− ki)ds (14.83)

=

∫ h−l
2

max{ki−l,0}
U(s)ds+

∫ h−l
2

0

U(s)ds <

∫ h−l
2

kj−l
U(s)ds+

∫ h−l
2

0

U(s)ds. (14.84)

Thus, the loss to type i is greater from this kind of gap. Hence, filling it in will
increase the expected payoff of type i by more than that of type j > i. Hence, we
have that

∆i(D′′i , Di) > ∆j(D′′i , Di). (14.85)

In addition, since

∆i(Ii, D
′′
i ) = EiIi − EiD′′i =

∫ 1+ki−a∗i

0

U(s)ds−
∫ 1+ki−ai

0

U(s)ds =

∫ 1+ki−a∗i

1+ki−ai
U(s)ds

(14.86)
and, since

∫ 1+ki−a∗i
1+ki−ai U(s)ds >

∫ 1+kj−a∗i
1+kj−ai U(s)ds for kj > ki, then we know that

∆j(Ii, D
′′
i ) = EjIi − EjD′′i =

∫ 1+kj−a∗i

1+kj−ai
U(s)ds (14.87)
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<

∫ 1+ki−a∗i

1+ki−ai
U(s)ds = EiIi − EiD′′i = ∆i(Ii, D

′′
i ).

(Notice that this argument also shows that ∆P (Ii, D
′′
i ) ≥ ∆i(Ii, D

′′
i ), since kP = 0 <

ki.) Thus,

EjIi−EjDi = ∆j(Ii, D
′′
i ) + ∆j(D′′i , Di) < ∆i(Ii, D

′′
i ) + ∆i(D′′i , Di) = EiIi−EiDi = 0.

(14.88)
So EjIi < EjDi for all j > i. This shows that equation (8.6) is satisfied by Ii. It
remains to show that Ii satisfies equation (8.5).

In order to show equation (8.5), we break it into two cases:
Nice Gap: G ⊆ [ki, 1 + ki]
Let Lji (G) denote the loss over a gap, G = (l, h) ⊆ [ki, 1 + ki], to an agent j or a

principal with agent i. Thus, j ∈ {P, 1, 2, . . . , N} and if j 6= P , then j = i:

LPi (G) =

∫ h+l
2
−ki

l−ki
U(l−s)ds+

∫ h−ki

h+l
2
−ki

U(h−s)ds =

∫ −ki+h−l
2

−ki
U(s)ds+

∫ −ki
−ki−h−l

2

U(s)ds

(14.89)

=

∫ −ki+h−l
2

−ki−h−l
2

U(s)ds =

∫ ki+
h−l
2

ki−h−l
2

U(s)ds. (14.90)

The loss to an agent with bias ki is:

Lii(G) =

∫ h+l
2
−ki

l−ki
U(l−s−ki)ds+

∫ h−ki

h+l
2
−ki

U(h−s−ki)ds =

∫ h−l
2

0

U(s)ds+

∫ 0

−h−l
2

U(s)ds

(14.91)

Lii(G) =

∫ h−l
2

−h−l
2

U(s)ds >

∫ ki+
h−l
2

ki−h−l
2

U(s)ds = LPi (G), (14.92)

for all ki > 0. Notice that U(·) is negative, so even though the value of the loss
is higher for the agent, the absolute value of the loss from the gap is higher for the
principal.

When the gap is filled in, the loss to the principal is F P
i (G) := (h − l)U(ki) and

the loss to the agent is F i
i (G) := (h− l)U(ki) = 0. Thus, the gain from filling in the

gap to the principal, ∆P
i (G) is

∆P
i (G) = F P

i (G)− LPi (G) = (h− l)U(ki)−
∫ ki+

h−l
2

ki−h−l
2

U(s)ds. (14.93)
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Notice that by the Gap Filling Lemma (Lemma 13.2), ∆P
i (G) > 0.

For the type i agent, the gain from filling in the gap ∆P ii(G) is

∆i
i(G) = F P

i (G)− LPi (G) = −
∫ h−l

2

−h−l
2

U(s)ds. (14.94)

Thus, gain is clearly positive since U(·) ≤ 0. For quadratic functions (U(s) = −s2),
it turns out that these two gains are equal since, (letting ε = h−l

2
):

∆i
i(G) =

∫ ε

−ε
s2ds =

2

3
ε3. (14.95)

In contrast,

∆P
i (G) = −(2ε)k2i +

∫ ki+ε

ki−ε
s2ds (14.96)

= −(2ε)k2i +
1

3
(ki + ε)3 − 1

3
(ki − ε)3 = −(2ε)k2i +

1

3

(
(ki + ε)3 − (ki − ε)3

)
(14.97)

= −(2ε)k2i +
1

3

(
(ki + ε)− (ki− ε)

)(
(ki + ε)2 + (ki + ε)(ki− ε) + (ki− ε)2

)
, (14.98)

(by the identity a3 − b3 = (a− b)(a2 + ab+ b2)).

= −(2ε)k2i +
1

3
(2ε)

(
k2i + ε2 + k2i − ε2 + k2i + ε2

)
= −(2ε)k2i +

1

3
(2ε)(3k2i + ε2) (14.99)

= −(2ε)k2i +
1

3
(2ε)(3k2i + ε2) =

2

3
ε3 = ∆i

i(G), (14.100)

by equation (14.95). Hence, to summarize, we have (for quadratic loss functions)
∆i
i(G) = ∆P

i (G). In addition, if we would only partially fill in the gap, G, add
[l, l+ ε]∪ [h− ε, h] to the set) then the gain would also be equal to both the principal
and agent type i (since partially filling the gap and then filling in the remainder is
equivalent to completely filling in the gap). Thus, the expected gain to the principal
from filling in a gap is the exact same expected payoff as type i.

Low Gap Case: G = (l, h), l < ki < h ≤ 1 + ki
If the l < ki < h and ε = ki− l. Notice that ε was chosen to turn the low gap case

into a nice gap case. Once [l, l+ ε]∪ [h− ε, h] is added to the set, this gap is no longer
a low gap and becomes a nice gap (the remaining gap is contained in [ki, 1 + ki]).
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Thus, if we can show that, for this chosen ε, the increase is higher for the principal
than the agent type i, we are done.

Loss from gap G, Agent:

Lii(G) := Lii(G, 0) =

∫ h+l
2
−ki

0

U(l − s− ki)ds+

∫ h−ki

h+l
2
−ki

U(h− s− ki)ds (14.101)

=

∫ h−l
2

ki−l
U(s)ds+

∫ h−l
2

0

U(s)ds. (14.102)

Loss from gap G(ε), Agent:

Lii(G, ε) =

∫ h+l
2
−ki

0

U(l + ε− s− ki)ds+

∫ h−ε−ki

h+l
2
−ki

U(h− ε− s− ki)ds (14.103)

=

∫ h−l
2
−ε

ki−l−ε
U(s)ds+

∫ h−l
2
−ε

0

U(s)ds. (14.104)

If we subtract equation (14.102) from (14.104) we get the gain in expected payment
to the agent from filling in the gap:

∆i
i(G, ε) = Lii(G, ε)− Lii(G, 0) (14.105)

=

∫ h−l
2
−ε

ki−l−ε
U(s)ds+

∫ h−l
2
−ε

0

U(s)ds−
∫ h−l

2

ki−l
U(s)ds−

∫ h−l
2

0

U(s)ds

=

∫ ki−l

ki−l−ε
U(s)ds−

∫ h−l
2

h−l
2
−ε
U(s)ds−

∫ h−l
2

h−l
2
−ε
U(s)ds < −2

∫ h−l
2

h−l
2
−ε
U(s)ds (14.106)

which is the benefit when G ⊆ [ki, 1 + ki].
The principal’s benefit is higher. Loss from gap G, for the Principal:

LPi (G) := Lii(G, 0) =

∫ h+l
2
−ki

0

U(l − s)ds+

∫ h−ki

h+l
2
−ki

U(h− s)ds (14.107)

=

∫ h−l
2
−ki

−l
U(s)ds+

∫ −ki
−ki−h−l

2

U(s)ds =

∫ l

ki−h−l
2

U(s)ds+

∫ ki+
h−l
2

ki

U(s)ds. (14.108)
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The loss from gap G(ε) to the principal is:

LPi (G, ε) = εU(ki) +

∫ h+l
2
−ki

0

U(l + ε− s)ds+

∫ h−ε−ki

h+l
2
−ki

U(h− ε− s)ds (14.109)

= εU(ki)+

∫ −ki+h−l
2
−ε

−l−ε
U(s)ds+

∫ −ki
−ki−h−l

2
+ε

U(s)ds = εU(ki)+

∫ l+ε

ki−h−l
2

+ε

U(s)ds+

∫ ki+
h−l
2
−ε

ki

U(s)ds.

(14.110)
If we subtract equation (14.108) from (14.110) we get the gain in expected payment

to the principal from filling in the gap:

∆P
i (G, ε) = LPi (G, ε)− LPi (G, 0) (14.111)

= εU(ki) +

∫ l+ε

ki−h−l
2

+ε

U(s)ds+

∫ ki+
h−l
2
−ε

ki

U(s)ds−
∫ l

ki−h−l
2

U(s)ds−
∫ ki+

h−l
2

ki

U(s)ds

(14.112)

= εU(ki) +

∫ l

ki−h−l
2

+ε

U(s)ds+

∫ l+ε

l

U(s)ds−
∫ l

ki−h−l
2

U(s)ds−
∫ ki+

h−l
2

ki+
h−l
2
−ε
U(s)ds

(14.113)

= εU(ki) +

∫ l+ε

l

U(s)ds−
∫ ki−h−l

2
+ε

ki−h−l
2

U(s)ds−
∫ ki+

h−l
2

ki+
h−l
2
−ε
U(s)ds (14.114)

> 2εU(ki)−
∫ ki−h−l

2
+ε

ki−h−l
2

U(s)ds−
∫ ki+

h−l
2

ki+
h−l
2
−ε
U(s)ds, (14.115)

since ki ≥ l+ε. But we know from the paragraph following equation (14.100)we know
that that:

2εU(ki)−
∫ ki−h−l

2
+ε

ki−h−l
2

U(s)ds−
∫ ki+

h−l
2

ki+
h−l
2
−ε
U(s)ds = −2

∫ h−l
2

h−l
2
−ε
U(s)ds. (14.116)

Hence, from equations (14.106) and (14.115) that

∆P
i (G, ε) > ∆i

i(G, ε). (14.117)
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Thus, the gain from filling in the low gap increases the expected payoff of the principal
by an amount greater than that of agent type i.

These two cases show that:

∆P (D′′i , Di) ≥ ∆i(D′′i , Di). (14.118)

We also know from the comment below equation (14.87) that

∆P (Ii, D
′′
i ) > ∆i(Ii, D

′′
i ). (14.119)

Hence by equations (14.118) and (14.119),

EP Ii − EPDi = ∆P (Ii, D
′′
i ) + ∆P (D′′i , Di) (14.120)

> ∆i(Ii, D
′′
i ) + ∆i(D′′i , Di) = EiIi − EiDi = 0.

Thus, Ii satisfies equation (8.5) and the proof of Proposition 8.5 is complete.

15 Appendix E: Proof of Comparative Statics Result
Proof of Result 9.2:

Proof. Let kL be the highest value in the support of F(pL,kL)(z). First-order stochastic
dominance implies that there exist k′N−j+1, k

′
N−j+2, . . . , k

′
N ≥ kL such that:

F(p′N ,k
′
N )(k

′
N−j+1) ≥ pN . (15.1)

(Notice that the rest of the points in the support of F(p′N ,k
′
N ) are < kL.) Hold p′N

fixed, but replace k′N with k2
N (the 2 is a superscript not an exponent) such that

k2i = k′i for i < N − j + 1 and k2i = kL for all i ≥ N − j + 1. By Result 9.1 we know
that D∗(p′N ,k

′
N) ⊆ D∗(p′N ,k

2
N).

Notice that (p′N ,k
2
N) = (p2

N−j+1,k
2
N−j+1), where p2i = p′i if i < N − j + 1 and

p2N−j+1 =
∑j−1

h=0 pN−h and k2i = k′i if i < N − j + 1 and k2N−j+1 = kL.
Then fix k2

N−j+1 but replace p2
N−j+1 with p̂2

N−j+1 such that p̂2N−j+1 = p2N−j+1 if
N − j + 1 is the smallest index i such that k2i ≥ kL−1 (and denote this index by
i∗2). If not, let p̂2N−j+1 = pL and let p̂2i∗2 = p2i∗2 +

∑j−1
h=0 pN−h. For all other i, let

p̂2i = p2i . Thus, we just transferred probability from the highest value of of bias in the
support F(p′N ,k

2
N ) and transferred it to a lower value and left all other probabilities

fixed. Remembering that ∂V
∂u

(ki, u) is nonincreasing we can conclude that:

D∗P (p2
N−j+1,k

2
N−j+1) ⊆ D∗P (p̂2

N−j+1,k
2
N−j+1). (15.2)
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Continuing in this fashion, have a finite sequence of (p̂2
N−j+1,k

2
N−j+1), (p̂

3
N−j+1,k

3
N−j+1), . . . , (p̂

q
N−j+1,k

q
N−j+1) =

(pL,kL), where
D∗P (prN−j+1,k

r
N−j+1) ⊆ D∗P (p̂sN−j+1,k

s
N−j+1), (15.3)

if s > r.
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