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ABSTRACT 

Rosenthal (1972) points out that the coalitional function form may 

be insufficient to analyze some strategic interactions of the cooperative 

normal form. His solution consists in representing games in effectiveness 

form, which explicitly describe the set of possible outcomes that each 

coalition can enforce by a unilateral deviation from any proposed 

outcome.  

This paper detects some non-appropriateness of the effectiveness 

representation with respect to the stability of outcomes against coalitional 

deviations. In order to correct such inadequacies, it is then proposed a new 

model, called deviation function form, which modifies Rosenthal’s setting 

by also modeling the coalition structure and by incorporating new 

coalitional interactions, which support the agreements proposed by 

deviating coalitions. The concept of stability of the matching models, 

viewed as a cooperative equilibrium concept, is then translated to any 

game in the deviation function form and is confronted with the traditional 

notion of core. Precise answers are given to the questions raised.  
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INTRODUCTION 

The theory developed here presupposes an environment in which 

some decision situation takes place, involving a set of agents whose main 

activity is to form coalitions. If a coalition is formed, its members interact 

among them, by acting according to established rules, aiming to reach an 

agreement on the terms that will regulate their participation in the given 

coalition. This situation is called “cooperative game” when it is 

approached from an abstract mathematical view point. An outcome is the 

mathematical object which models a set of coalitions, whose union is the 

whole set of agents, together with the set of agreements reached by each 

coalition, as the final result of the negotiation process. Of course, agents 

have preference over possible outcomes2.  

A mathematical treatment for such a cooperative decision situation 

involves to simplify and to abstract the rules of the game. This is done 

through the built of an appropriate mathematical model. The starting point 

is the selection of the details of the rules of the game to be retained. Such 

selection depends on the purposes of analysis.  

In this paper we propose a mathematical model for the situation 

described above, called deviation function form (df-form, for short). The 

rules of the game are fully modeled by the deviation function. For each 

feasible outcome  x  and coalition  S,  the deviation function specifies the 

set of feasible deviations from  x  via  S.  This set can be interpreted as the 

set of outcomes which can arise from the joint actions of the members of  

S  against  x, when these actions are allowed by the rules of the game.  

This model can be used as vehicle of any cooperative equilibrium 

analysis, under the presupposition of the following principle of rationality: 

 “Faced with a feasible outcome  x, a coalition will take any action 

against  x,  whenever such an action is allowed by the rules of the game 

and propitiates a profitable deviation from  x  to all members of the given 

coalition.” 

                                                 
2 An example of such a cooperative game situation is a matching market. The interested 
reader can find an introduction to the theory of matching markets in Roth and Sotomayor 
(1990, 1992). 
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Within this context, no cooperative equilibrium analysis should 

ignore “what coalitions can do ex post” when confronted with a feasible 

outcome, in order to deviate from it. According to this principle,  

“an equilibrium occurs when ex-post, after the agreements have 

been reached, there is no coalition, whose members, by acting according 

to the rules of the game, are able to profitably deviate from the set of 

current agreements.” 

It is this principle that we shall try to formulate mathematically. 

Once this is done, a precise definition of the cooperative equilibrium, 

needed for rigorous reasoning, can be provided. Roughly speaking, a 

feasible outcome  x  is destabilized by a coalition  S  if there is some 

deviation from  x  via  S  such that all the outcomes that arise from this 

particular deviation are preferred to  x  by all players in  S. An outcome is 

a cooperative equilibrium if it is not destabilized by any coalition.  

The framework presented here is general enough to model 

cooperative games in the normal form, in the characteristic function form 

or in the effectiveness form. It also encompasses situations in which a 

player may participate in more than one coalition. In these cases, when the 

trades done by a given coalition are independent of the trades done by the 

other coalitions, the standard deviation- to dissolve all current agreements 

and to form new agreements only among themselves – is not the only kind 

of deviation allowed by the rules of the game to the members of a 

coalition. The independent trades imply that the players of a coalition are 

allowed to maintain current agreements or to reformulate them. In such 

situations the core may not be the natural solution concept. (See 

Sotomayor 1992, 2010, 2012). 

Historically, the cooperative equilibrium analysis of many games 

has relied on the notion of core and has had as its primary vehicle the 

characteristic function form. In this form an outcome is represented by the 

payoffs of the players, but the information with respect to the actions the 

players take to reach these payoffs is lost. For each coalition it is specified 

the set of payoff vectors that the members of the coalition can assure itself 

in some sense, without any concurs of players out of the coalition.  Thus, 
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the conditionality that characterizes the payoffs of the players in the 

cooperative games in the normal form is also lost.  

In his paper of 1972, Rosenthal shows that in certain situations, in 

which the payoffs of the members of a coalition also depend on the actions 

taken by players out of the coalition, there may be outcomes (given by 

payoff vectors) in the core of the game in the characteristic function form, 

which are derived from outcomes (given by a profile of actions) that are 

not in the core of the cooperative game in the normal form.  In an attempt 

to correct the imperfections of the characteristic function representation, 

which make this form inadequate to represent some cooperative games in 

the normal form, Rosenthal proposed the effectiveness function form.     

Under the effectiveness function representation, for a given 

coalition and a given outcome there is a set of alternative outcome subsets, 

which the coalition can enforce against the given outcome. This means 

that when faced with an outcome, the members of a coalition are able, by 

interacting only among themselves, to restrict the negotiation process to 

any one of the specified subsets of the outcome set.  

However, not all games fit equally well into the Rosenthal’s 

framework, since the joint actions that a coalition can take ex-post  are not 

always restricted to “interactions among themselves”. Also, the 

cooperative equilibrium analysis based only on the core is not always the 

most appropriated approach.  The point is that there may be some relevant 

features of some cooperative decision situations, which should not be 

ignored in any analysis of cooperative equilibrium of these situations, but 

that both game forms, the coalitional function form and the effectiveness 

form, seem to deal inappropriately.   

In fact, in the text of the present work, an example presents a game 

situation whose representation in the coalitional function form or in the 

effectiveness form does not capture the details of the rules of the game 

that would be necessary to make evident if a given core outcome is or is 

not a cooperative equilibrium.3 Thus the features of the game that are lost 

in these representations make deficient any cooperative equilibrium 

                                                 
3 That there may be core outcomes that are not cooperative equilibria was first proved in 
Sotomayor (1992) (see also Sotomayor, 1999 and 2010). 
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analysis which has as vehicle any of the two forms. In this example, an 

adequate representation of the game situation is obtained by using the 

deviation function form. This model corrects the imperfections inherent of 

both, the coalitional function form and the effectiveness form, as those 

pointed out in this example.  

It is well-known that in the matching models, the set of cooperative 

equilibrium outcomes (called stable outcomes in those models) is a subset 

of the core, and it may be smaller than this set.4 We show that this set 

inclusion relation between the two sets is maintained in any cooperative 

game.5 We define the effectiveness function form and the coalition 

function form for a game in the df-form. We then show that the 

effectiveness function form is adequate to represent cooperative games in 

which the coalition structure is a partition of the  whole set of players. If, 

in addition, the payoffs of the members of a coalition only depend on the 

agreements reached by them, then these games can also be fully 

represented in the coalitional function form. In this case, when an outcome 

is represented by a payoff vector in both forms, the core of the game in the 

effectiveness function form coincides with the core of the game in the 

coalitional function form. In both cases, the concept of cooperative 

equilibrium is equivalent to the core concept.  

Further details are discussed in the text. In section 2 the 

cooperative normal form, the coalitional function form and the 

effectiveness form are described and an example is presented with the 

intent of motivating section 3. In section 3 we present the deviation 

function form and give the definition of stability. Section 4 is devoted to 

model a cooperative decision situation in the df- form.  Section 5 defines 

the core and the effectiveness function for a game in df-form. Section 6 is 

devoted to prove the connection between the core and the stability 

concepts in games in the df-form. Section 7 derives the df-form of a 

coalitional game in the characteristic function form and proves that, in the 

                                                 
4 This phenomenom was first observed in Sotomayor (1992), for the continuous matching 
models and in Sotomayor (1999), for the discrete matching models. 
5 For the non-matching games, this phenomenom was first pointed out in Sotomayor 
(2010).  
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coalitional games,6 the stability concept is equivalent to the core concept. 

Section 8 presents some final remarks.  

 

2. PRELIMINARIES 

 The normal form of a cooperative game is derived from strategic 

situations in which agents can gain from the cooperation.  It consists of (a) 

a finite set  N  of players; (b) a strategy set  ΣS  associated with each 

coalition  S⊆N; (c) for each outcome  (P,σ),  where  P={S1,…,Sk}  is a 

partition of  N,  and  σ=(σ1, …, σk)  is a k-tuple of strategies, with  σj∈ΣSj,  

j=1,…,k, there is associated an  |N|-tuple of utility payoffs.7 Thus, the 

utility payoff of a player depends on the actions taken in all partition sets 

belonging to  P.  

The strategies in  ΣS  are taken to represent the actions allowed to  

S  by the rules of the game. They involve all members of  S  and only 

members of  S  and are addressed to the members of  S, but they may be 

conditioned to the actions taken by players out of  S. 

For each non-empty coalition S, the coalitional function  V 

specifies a set V(S)⊆ R|S|. Normally,  V(S)  is interpreted as the set of |S|-

dimensional payoff-vectors, each of which coalition  S  can “assure” itself 

in some sense, through interactions only among its members. A game in 

coalitional function form is a triple  (N,V,H),  where  H  is the set of 

possible utility outcomes for the players.8 

For any vector  x∈Rn,  let  xS  denote the projection of  x  on  R|S|. A 

domination relation on the set of feasible outcomes can be defined as 

follows.  

 

For  x  and  y  in  Rn,  the vector  y  dominates the vector  x  

via coalition  S  if (a) yp > xp  ∀ p∈S  and   (b) yS∈V(S).  

Vector  x  is in the core of the game (N,V,H) if it is in  H  
                                                 
6 Coalitional game is the name given by Shapley to a game that can be adequately 
represented by its characteristic function form. 
7 The difference between this game form and the non-cooperative normal game form is 
that in the non-cooperative case the partition is always formed with 1-player coalitions.   
8 Additional assumptions are generally required of  (N,V,H). The interested reader is 
referred to Aumann (1967) for a more complete discussion of the coalitional function 
form. See also Aumann and Hart (1992), volumes I and II.  
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and it is not dominated by any vector in  H  via  some 

coalition. 

 

The effectiveness form of a game was proposed by Rosenthal 

(1972). A game  G  in effectiveness form consists of (a) a finite set  N  of 

players; (b) a set  X  of outcomes; (c) an ordinal, vector-valued utility 

function  u: X→R|N|;  and (d) for each point  x∈X,  an effectiveness 

function  Ex  which maps every coalition  S⊆N  into a collection of subsets 

of  X.9 

The effectiveness function for any proposed outcome  x,  should 

identify, for each coalition  S,  the set of alternative subsets of outcomes 

which the members of  S  can enforce, at least in a first round, against  x, 

by interacting only among themselves. The coalition  S  is said to be 

effective against  x,  for any such subset of outcomes.  

The core concept for this framework, defined by Rosenthal (1972), is 

the following:  

 

The core of a game in the effectiveness form is defined to be the 

set of outcomes against which there exist no objections.  

 

The idea of an objection is the following. Suppose an outcome  x  

arises in a negotiation process. Suppose that coalition  S,  through actions 

that only involves players in  S, enforces the set  Y∈Ex(S).  Then  S  

objects to  x  with objection set  Y  if every point  y∈Y  that might 

“reasonably” arise  is preferred by every member of  S  to  x.  In this case, 

every such point  y  is called  an objection of  S  against  x  

Therefore, if  S  objects to  x  then, by interacting only among them in 

a convenient way, the elements of  S  are able to get higher payoffs than 

those given at  x.   

In the coalitional function formulation, it is usually assumed that 

the actions taken by the players in N\S cannot prevent  S  from achieving 

each of the payoff-vectors in V(S). This unconditional aspect of the 
                                                 
9 Originally (d) requires that, for each coalition  S⊆N,  an effectiveness function  which 
maps ever point  x∈X into a collection of subsets of  X. 
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coalitional function form makes it deficient in capturing certain features of 

some cooperative decision situations, such as those that can be represented 

in the normal form.  

 The effectiveness form representation of a game is intended to 

correct such deficiency of the characteristic function form. Its main feature 

is that it is adequate to model cooperative games in normal form, since it 

captures game situations in which the utility levels reached by a coalition  

S  also depend on the actions taken by players in  N/S.  This dependence is 

not expressed by  V(S).10    

Example 2.1, below, presents an outcome which is in the core of the 

game in the effectiveness form. However, there are coalitional interactions 

that can destabilize this outcome. This example also illustrates that there 

may be some features of the cooperative decision situations which the 

effectiveness form and the coalition function form seem to deal 

inadequately.  

 

EXAMPLE 2.1. (The effectiveness form and the characteristic 

function form do not capture all relevant details of the rules of the 

game; an outcome is in the core of the game in the effectiveness form 

but it is not a cooperative equilibrium) Consider a simple market of 

buying and selling with two sellers,  q1  and  q2,  and one buyer  p. Let  N  

denote the set of agents. Seller  q1  has 5 units of a good to sell and seller  

q2  has only 1 unit of the same good. The maximum amount of money 

buyer  p  considers to pay for one unit of the good is  $3. This agent is not 

allowed to acquire more than 5 units. The market operates as follows. The 

agreements are negotiated by each seller and the buyer, individually. An 

agreement between one of the sellers and the buyer is independent of the 

agreement between the other seller and the buyer. A transaction between 

the buyer and any one of the sellers only occurs if the price of one unit of 

the good is any non-negative number less than or equal to  $3  and  the 

number of units sold by the seller does not exceed the minimum between 

                                                 
10The interested reader can see Examples 1 and 2 of Rosenthal (1972) , where an outcome 
is not in the core of the game represented in normal form but it is in the core of the game 
in coalitional function form. 
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the number of units that he owns and  5  minus the number of units 

negotiated between the buyer and the other seller. In this case each seller 

receives the product of his negotiation with the buyer. If buyer  p  acquires  

k  items from  a seller, for $t  each, then he receives an individual payoff 

of  (3-t)k  and the seller receives the payoff of  tk.  

Suppose that this market operates under a decentralized setting where 

the agents can freely communicate with each other. Any negotiation 

between the buyer and any of the sellers involves an agreement on the 

price and an agreement on the number of units to be negotiated. It is 

reasonable to assume that the whole agreement is broken once its terms 

with respect to the price are changed. However, as for the terms with 

respect to the number of items, two cooperative approaches take into 

consideration that different kinds of pairwise interactions may originate, 

depending on how the rules of the market open up for more flexible or 

more rigid agreements. Under rigid agreements, if the term with respect to 

the number of items is broken then the whole agreement is nullified11. A 

flexible agreement allows the buyer to decrease the number of units 

without breaking the agreement corresponding to the price.  

Now consider the following feasible outcomes for the effectiveness 

form of the game. Under outcome  x,  buyer  p  acquires  5  units of the 

good of seller  q1 and pays $2 for each unit. At the feasible outcome  y,  

agent  p  acquires  4 units of the good of seller  q1, for the same $2  for 

each unit, and  q2  sells his item to  p  for  $1. 

Now observe that the point  (5,10,0)  is the payoff-vector yielded by  x, 

where the first component is the payoff of the buyer, the second 

component is the payoff of seller  q1  and the third component is the 

payoff of seller  q2.  The outcome  y  yields the utility payoff  (6,8,1),  

which players  p  and  q2  both prefer. By using the characteristic function  

V  one can only conclude that  (6,8,1)  is in  V(N)  and (6,1) is not in  

V(p,q2),  so (6,8,1)  does not dominate  (5,10,0)  via coalition  {p,q2}.  

Indeed, the payoff-vector  (5,10,0)  is clearly undominated, so it is in the 

core of the coalitional function form  of the game.   

                                                 
11 This market is an instance of the time sharing assignment game introduced in 
Sotomayor (2011). 
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Under the effectiveness form it is only possible to know that  y  is not 

in any subset of outcomes which can be enforced by  {p,q2}  against  x.  

Actually, there is no objection against  x,  so  x  is in the core of the 

effectiveness form of the game. 

Now observe that the details of the market rules concerning the nature 

of the agreements are not modeled, either by the effectiveness form or by 

the characteristic function form. Therefore, there is no way to conclude 

from these representations, which kind of agreement is being used in the 

negotiations. Although the nature of the agreements can be neglected in an 

analysis based upon the core, it cannot be ignored if the focus is on the 

cooperative equilibria. which makes it inefficient any cooperative 

equilibrium analysis of this market based on any of the two forms. In fact, 

if the agreements are rigid, it is easy to verify that there is no way for  p  to 

increase his total payoff by only trading with  q2.  In order to increase his 

total payoff,  p  must trade with both sellers, but there are no prices that 

can increase the current total payoffs of the three agents. Therefore, 

outcome  x  is a cooperative equilibrium when the agreements are 

rigid. Nevertheless, if the agreements are flexible and  x  is proposed, then 

buyer  p  and seller  q2  can counter-propose an alternative outcome that 

both prefer. At this outcome buyer,  p reduces, from  5  to  4,  the number 

of units to be acquired from  q1,  in order to trade with  q2. These actions 

are allowed by the rules of the market. The outcome  y  can be the 

resulting outcome if  q2  sells his item to  p  for  $1. The power of  p  of 

increasing his payoff  is due to the concurs of  q1,  which is assured by the 

flexible nature of the agreement with respect to the number of units 

negotiated. Therefore,  x  cannot be considered a cooperative 

equilibrium when the agreements are flexible.g 

 

3. THE DEVIATION FUNCTION FORM AND THE SOLUTION 

CONCEPT OF STABILITY 

In this section, motivated by Example 2.1, we propose the 

deviation function form, which provides a more general model than the 

effectiveness form for the purpose of cooperative equilibrium analysis.  

For a game represented in the deviation function form, we define a 
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solution concept, which captures the intuitive idea of cooperative 

equilibrium. It will be called stability, due to the fact that restricted to the 

matching models that have been presented in the literature since Gale and 

Shapley (1962), it coincides with the concept of stability that has been 

established for them.  

 Basically, this representation is obtained when we abstract from 

the rules of the game and focus on the outcomes that result if players act 

according to these rules. Here are the primitives of this model.  

(a) a set  N = {1, . . . ,n}  of players;  

(b) a set  C  of coalitions; 

(c) For each set  B  of coalitions in  C  whose union is  N 

(coalition structure), a set  XB  of feasible outcomes 

compatible with  B .  

(d) for each  p∈N, for each coalition structure  B  and  S∈ 

B, with  p∈S,  a utility function  UpS: XB → R.   

(e) An ordinal, vector-valued utility function  u: X≡∪ XB 

→ Rn. 

(f) For each  x∈X, a deviation function  φx,  which maps a 

coalition S⊆N in to a set  of feasible outcomes.  

  

Thus, a game in the deviation function form is represented by a 6-

tuple  (N, C, X, U, u, φ),  where  U  is the array of utility functions  UpS’s  

and  φ≡{φx, x∈X}.  The set  C  can be interpreted as the set of permissible 

coalitions, that is, the set of non-empty subsets of  N,  whose elements can 

develop some joint activity allowed by the rules of the game. It is assumed 

that  N∈C.  We can think of the feasible outcomes in  XB  as modeling the 

decisions (final agreements allowed by the rules of the game) that the 

players  of each coalition  B∈B  can take with respect to their participation 

in  B.  If  x∈XB  and  B∈B,  we will denote by  xB  the restriction of the 

outcome  x  to the coalition  B  and by  xp  the restriction of  x  to  B={p}.  

Given any sets  A  and  B,  we will denote by  A\B  the set of elements that 

are in  A  and are not in  B. 
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Note that, unlike the normal form of a cooperative game, a 

coalition structure is not necessarily a partition of  N  and the set of 

agreements established by a coalition is not, necessarily, restricted to a set 

of actions or strategies. In the two-sided matching models, for example, a 

coalition structure is a feasible two-sided matching, which, in the discrete 

case, can also model the corresponding feasible outcome.  

We can interpret  UpS(x)  as the utility level reached by  p  if he 

contributes to coalition  S  at the outcome  x.  The number  UpS(x)   is 

called  p’s individual payoff at  x  via coalition  S.  In many games, the 

utility level reached by a player via a coalition  S  does not depend on the 

agreements made by coalitions other than  S.  

Given an outcome  x, the coalition structure compatible with  x, 

together with the individual payoffs obtained at  x  by each player in each 

coalition he contributes, is called the payoff configuration associated to  x. 

It is feasible if  x  is feasible. 

The structure of preference for the players over the feasible 

outcomes is given by the utility function  u=(u1,…,un): X→Rn.  

The functions  φx  are called deviation function from  x  and the 

feasible outcomes belonging to  φx(S)  are called feasible deviations from  

x  via  S. These outcomes intend to reflect, in some sense, which feasible 

actions - that are allowed by the rules of the game - the members of  S  can 

take against  x.    

For each  y∈φx(S)  define the set  φ*x(S,y)  as follows. Let  B   be a 

coalition structure compatible with  y.  Set  S*(y)={B∈B; B∩S≠φ}.    Then 

φ*x(S,y)  is the set of all feasible deviations from  x  via  S  that 

agree with  y  on  S*(y).   

Clearly,  y∈φ*x(S,y).  This set can be interpreted as the set of 

outcomes that could result if  S  deviated from  x  “by doing the same sort 

of things it does at  y”. That is, when faced with  x,  the coalition  S  can 

take actions that could restrict the negotiation process to any one of the 

subsets φ*x(S,y)’s.  This does not mean that  S  can determine the 

particular outcome in  φ*x(S,y)  that will result. 
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  The following example illustrates these concepts and the fact that 

the effectiveness function may be different from the deviation function. 

 

Example 3.1.  Consider an instance of the College Admission model 

where  c1  and  c2 are the colleges;  s1,…,s5  are the students; the quota of  

c1  is  3  and the quota of  c2  is  2.12 The only information about the 

preferences of the agents we will consider is that any partnership between 

a college and a student is acceptable to both agents. Let  x  be the feasible 

matching where  c1  is matched to  {s1,s2,s3}  and  c2  is matched to  {s4,s5}. 

Let  S={c1,s4}.  The set  φx(S)  is the set of feasible matchings that matches  

s4  to  c1  or that leaves both agents unmatched. Therefore, matching  y,  

where  c1  is matched to  {s1,s2,s4},  c2  is matched to  s3  and has one 

unfilled position  and  s5  is left unmatched, belongs to  φx(S).  The 

matching  z,  where  c1  is matched to  {s1,s2,s4}  and  c2  is matched to  s3  

and  s5,  also belongs to  φx(S).  The matching  w  at which  c1  is matched 

to  s4  and has two unfilled positions;  c2  is matched to  s1  and  s5;  s2  and  

s3  are left unmatched,  as well as the matching  w’  at which  all players 

are unmatched, are also in  φx(S).   The set of partnerships in  y  whose 

intersection with  S  is non-empty is  S*(y)={{c1,s1}, {c1,s2}, {c1,s4}}. The 

set  φ*x(S,y)  is the set of all feasible matchings at which  c1  is matched to  

{s1,s2,s4}.    Then,  z∈φ*x(S,y)  and  φ*x(S,y)=φ*x(S,z).  Clearly, the 

matchings  w  and  w’  are not in  φ*x(S,y).  

Suppose that, faced with matching  x,  c1 and  s4  take the following 

actions: c1 leaves its partnership with  s3;  s4  leaves his partnership with  

c2;  c1  and  s4  forms a partnership and  c1  retains its current partnerships 

with  s1  and  s2. In this case, the resulting outcome may be  y,  z, or any 

other matching in  φ*x(S,y). However, coalition  S  cannot propose any 

outcome of  φ*x(S,y)  as an alternative outcome. Observe that the 

effectiveness function is different from the deviation function in this 

example:  S  is not effective for  φ*x(S,y).  In fact,  S  cannot enforce  the 

set  φ*x(S,y)  against  x,  because  the members of  S  are not interacting 

only among themselves at  y.  There are two subsets of  φx(S)  that can be 
                                                 
12 See Roth and Sotomayor (1990) for an overview of this model. 
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enforced by  S:  φ*x(S,w)  and  φ*x(S,w’).  These two sets are the only ones 

for which  S  is effective. g 

  

In games in the deviation function form derived from cooperative 

decision situations, the intuitive meaning of a feasible deviation from an 

outcome  x  via some coalition  S  leads to the following natural 

assumptions.  

 

(P1) Let  x’∈φx(S).  If  x’∈XB’  then  ∀  p∈S  ∃  B’∈ B’  such that  p∈B’  

and  B’⊆S.                       

(P2) Let x’∈φx(S).  If  x∈XB,  x’∈XB’,  B’∈B’,  B’∩S≠φ  and  B’⊄S,  then  

B’=B,  for some  B∈B  and UpB(x’) ≤ UpB( x)  for all  p∈B.            

(P3) Let  x’  and  x” be feasible outcomes compatible with the coalition 

structures  B’  and  B’’  respectively. Let  C’  and  C” be the sets of 

coalitions in  B’  and  B’’,  respectively, whose intersection with  S  is non-

empty. If  C’=C”  then  x’∈φx(S)  if and only if  x’’∈φx(S).   

(P4) φx(φ)=φ     

(P5) Let  x’∈XB’,  such that if  B’∈B’,  B’∩S≠φ  then  B’⊆S.  Then  x’∈φx(S)  

for all feasible outcome  x.     

   

Assumption  P1 says that if  x’  is a feasible deviation from  x  via  

S,  which is compatible with the coalition structure  B’,   then every player 

in  S  belongs to a coalition at  B’  formed only with players in  S. P2 adds 

that if  a coalition  B  of  B’  contains elements of  S  and elements of  N\S  

then  B  must be some current coalition of  B.  Furthermore,  no player in  

B  gets a utility level for his participation in  B  at  x’ that is higher than the 

utility level he gets for his participation in  B  at the current outcome  x.  

P3 guarantees some internal consistency. P4 is a natural assumption. P5 

implies that all outcomes at which the players in  S  interact only among 

themselves are feasible deviations from any outcome  x  via  S.   

The intuitive idea of cooperative equilibrium is that 
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an outcome  x  is a cooperative equilibrium if there is no coalition, 

whose members, by acting according to the rules of the game, can 

profitably deviate from  x. 

The restriction of the concept of cooperative equilibrium to the 

matching models existent in the literature is captured by the concepts of 

stability already established for these models. For this reason, this 

notion, translated to the deviation function form of a game, is 

captured by the solution concept defined below and called stability.  

 For its definition we use a version of the domination relation 

introduced here.  

 

Definition 3.1: Let  (N, C, X, U, u, φ) be a game in the 

deviation function form. Let  x  and  y  be in  X.  Outcome  y  

φ-dominates outcome  x  via coalition  S  if: 

             (a) up(y) >up(x)   for all players  p∈ S  and   

 (b) y∈φx(S). 

 

Definition 3.2: Let  (N, C, X, U, u, φ)  be a game in the 

deviation function form. The feasible outcome  x  is 

destabilized by coalition  S  if there is some  y∈φx(S)  such 

that  x  is φ-dominated by every outcome in  φ*x(S,y)  via 

coalition  S. An outcome  x∈X  is stable for  (N, C, X, U, u, 

φ)  if it is not destabilized by any coalition.  

 

 A payoff configuration is stable if it is associated to a stable 

outcome.  

 

4. MODELING COOPERATIVE GAMES IN THE df-FORM 

Let us consider an environment with a finite set  N  of agents.  These 

agents are able to freely communicate and want to form coalitions (e.g. a 

matching market). In some situations, once a coalition is formed, the 

agents overtake an activity which generates some income which is split 

among them. In some of these cases, the division of the income among the 
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agents is negotiated by them (e.g., the assignment game of Shapley and 

Shubik, 1972); in other cases, it is pre-fixed (e.g., the college-admission 

model of Gale and Shapley, 1962). More generally, the agents involved in 

a coalition try to make agreements (or to sign contracts) on the terms that 

will regulate their participation in that coalition. These terms may consist, 

for example, of the partnerships that should be formed, of the time of 

participation in the coalition, of the activity that should be developed, of 

the distribution of resources among the members of the coalition, of the 

actions that will be taken, of the choice of location, price or quality, etc.   

There are rules specifying which actions a coalition can take and 

which ones it cannot take. Thus, for example, in a buyer-seller market the 

rules might require that a buyer is not allowed to acquire more than one 

object from the same seller and is not obliged to acquire any of the objects 

of a seller. In a labor market of firms and workers they might specify the 

total number of units of labor time available to each worker, and how a 

firm hires a given set of workers: in block or through individual and 

independent trades. If the trades are in block then any change in the group 

nullifies the whole trade; otherwise, a firm can keep some of the 

individual trades while dissolving some others, etc.  

One can imagine that during the negotiation process, each agent tries 

to convince his potential partners that, in some sense, he is strong, by 

using his ability in showing that he has other, perhaps better, alternatives. 

Therefore, a sequence of “offers” and “counter offers” or “threats” and 

“counter threats”, should culminate with a feasible set of coalitions 

together with an agreement  for each coalition. The questions that 

naturally emerge are: 

What coalitions should be formed? What agreements could be 

achieved? 

It is reasonable to expect that the agreements that will be reached in a 

coalition should reflect in some sense the power of the members of that 

coalition. It then seems that a certain kind of equilibrium occurs if, ex-

post, that is, after the agreements have been reached, there is no set of 

actions that the members of a coalition “are allowed to take” to profitably 

deviate from the set of agreements obtained. 
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A mathematical model for the cooperative decision situation which 

configures in such environment, if one abstracts from the negotiation 

process and focuses on the set of resulting outcomes, that is, if one focuses 

on what each coalition can obtain without specifying how to obtain, is 

what game theorists call cooperative game. 

 This session is devoted to the modeling of a cooperative game in 

the df- form, as defined in section 2. The df-form of a cooperative game 

can be used as vehicle for any equilibrium analysis based on the notion of 

stability.  

In the representation of a cooperative decision situation in the df-

form, the set of players13is the set  N  of participants. The collection of 

coalitions  C  is the set of non-empty subsets of  N,  which the rules of the 

game allow to be formed. The elements of  C  are called permissible 

coalitions (coalitions, for short).  

A set of feasible agreements (agreements, for short)  ∇S  is 

associated to each coalition  S∈C. An agreement  ∂S∈∇S  models a final 

coalitional interaction among the players belonging to  S, whether and 

when  S  forms, and that  is feasible to be reached  if these players act 

according to the rules of the game. An agreement must specify the part of 

it that is due to each player in  S.  We will denote by  ∇  the collection of  

∇S’s,  for  S∈C. 

A set  B   of permissible coalitions whose union is  N  is called 

coalition structure. Given a coalition structure  B={B1,B2,…,Bk}, a 

k-tuple  ∂=(∂1,…, ∂k),  with  ∂j∈∇Bj,  is called agreement structure 

for  B.   

Once the final result  x is reached in the negotiation process among the 

players, it may exist several pairs  (∂;B)  that can be used to represent  x. 

The question is then 

What pairs   (∂;B)   should be used to adequately model an outcome? 

For the game-theorectic analysis purpose, it will be convenient to model 

an outcome as a pair  (∂;B)  such that all coalitions in  B  are minimal in 

the sense defined below. 
                                                 
13 For simplicity of exposition we will refer to a player as “he”. 
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Definition 4.1. Let  B  be a coalition structure and let  ∂  be an  

agreement structure for  B.   Coalition  S∈B  is a minimal 

coalition at (∂,B)  if its members cannot reach the part of  ∂S  

due to them by rearranging themselves in proper sub-coalitions 

(not necessarily pairwise disjoint) of  S. If every coalition in  B  

is minimal then  B  is called minimal coalition structure. 

 

Definition 4.2. An agreement configuration is a pair  (∂;B) ≡ 

((∂1,B1)…, (∂k,Bk)),  where  B  is a coalition structure and  ∂  is 

an agreement structure for  B,  such that  Bj  is a minimal 

coalition at (∂,B),  for all  j=1,…,k.   

 

If  (∂;B)=((∂1,B1)…, (∂k,Bk))  is an agreement configuration, we say that   

B  is compatible with  ∂,  and vice-versa. It must be clear that if  B  has the 

maximum number of coalitions among all coalition structures of pairs   

(∂;B)’s,   which can be used to represent a given outcome, then  B  is a 

minimal coalition structure, but the converse is not always true.  

For technical convenience we will consider that if some minimal 

coalition has only one player then this player is reaching an agreement 

with himself. In this case we say that the player is single in this coalition.  

In a matching market of firms and workers, for example, an agreement 

configuration is given by the matching, which specifies who works to 

whom, and the agreement structure, given by the corresponding arrays of 

payoffs, which specify  the salaries a worker should receive from the firms 

which hire him.  

 

Remark 4.1. It is worth to point out that the specification of the minimal 

coalitions in the description of an outcome allows, for instance, to 

distinguish whether a player interacts individually with each of his 

partners or in block. A consequence of Definition 3.1 is that, when agents 

make agreements in block, each agent enters only one minimal coalition. 
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If, say,  player  p  belongs to several minimal coalitions at an agreement 

configuration, then the agreements reached by  p  in each minimal 

coalition are independent. This is the case of the two-sided matching 

markets in which the players form multiple partnerships and the utilities 

are additively separable. In these markets, a minimal coalition at any 

outcome is formed by a pair of players from opposite sides or by single 

players. In the well known College Admission model of Gale and Shapley, 

a minimal coalition is formed by one student and one college, or only by a 

single student or a single college. g 

 

In the cooperative decision situations as those we want to model, it is 

reasonable to expect that an outcome, at which some coalition takes 

actions that are injurious to its own welfare, will never arise from a 

negotiation process among its members. E.g., one cannot expect to 

observe an outcome where a player gets less in some of the minimal 

coalitions he belongs than the minimum he can “assure” to himself by 

playing as a single player. The same way, one cannot expect to observe an 

outcome where a sub-coalition of a minimal coalition get less than it can 

get by playing in separate. More specifically, only outcomes at which the 

players take rational decisions and do not violate the rules of the game are 

feasible to occur. These are the feasible outcomes. Formally, 

 

Under the assumption that the players take rational decisions and 

act according to the rules of the game, a feasible agreement 

configuration is a representation of a possible outcome of the game. 

The set of feasible outcomes compatible with a given coalition 

structure  B  will be denoted by  XB;  the set of feasible outcomes,  X,  is 

the union of all  XB’s.  

  

Given a feasible agreement configuration  (∂;B) and a coalition  

B∈B, the utility level enjoyed by  an agent  p  belonging to  B, at  (∂;B) ,  

for his contribution to  B,  is given by a utility function  UpB: XB → R.  The 
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number  UpB((

                                                

∂;B))  is called p’s individual payoff at (∂;B)  associated to  

B.14  

 

A minimal coalition structure, together with the individual payoffs 

obtained by each agent in each coalition he contributes is called payoff 

configuration. A payoff configuration is feasible if it is derived from a 

feasible outcome  (∂;B). In this case we say that it is compatible with  B.  

In the Multiple partners assignment game of Sotomayor (1992), the 

partners must agree on the division of the worth of the pair and a player 

may contribute to more than one partnership. Then a player derives payoff 

in each partnership he enters. In this model, a feasible outcome is given by 

a feasible payoff configuration, given by a feasible many-to-many 

matching together with an array of individual payoffs for each player.  

In the mathematical model we are building, the players have 

preferences over outcomes. A player compares two outcomes by 

comparing the corresponding payoff configurations; he compares two 

payoff configurations by comparing the corresponding arrays of individual 

payoffs; he compares two arrays of individual payoffs by comparing the 

level of utility he derives from each one.  Thus,  

 the structure of preferences over the outcomes is given by an ordinal 

payoff function  u  which associates an |N|-tuple of utility payoffs  

u(x)=(u1(x),…,u|N|(x)) to each outcome  x.  

Then, player  p  prefers the feasible outcome  x  to the feasible 

outcome  y  if  up(x)>up(y); he is indifferent between the two outcomes if  

up(x)=up(y).  

 
14 In some situations, as those represented by a matching market, 

the value  UpB((∂;B))  only depends on the agreements made by the players 

in  B. In some other situations, as those that can be represented in the 

cooperative normal form, such value may also depend on the agreements 

reached in the minimal coalitions that do not contain  p.  
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The translation of the definition of the set of feasible deviations 

from an outcome  x  via coalition  S given in section 3 requires some 

preliminaries. Let  S  be a non-empty subset of  N.  A player is called a 

partner of  S  under an agreement configuration  y=(∂,B),  if he is member 

of a coalition B∈B  such that  B∩S≠φ. If  S={p},  the partners of  {p}  are 

all players belonging to the coalitions in  B  that contain  p  and so they 

may not be concentrated in the same minimal coalition.   

We will use the notation  P[S; y]  to denote the set of all partners of  

S  at  y. Therefore, 

 

P[S; y]={p∈N; p∈B for some B∈B and B∩S≠φ} 

 

That is, P[S; y]=∪Bj ,  over all  Bj∈B  such that Bj∩S≠φ.                   

Note that  S⊆ P[S; y]; i.e., each member of  S is also a partner of  S.   

Given a coalition  S  and an agreement configuration  y=(∂,B),  the 

sets  S*(y)  and  φ*x(S,y)  are translated to our model as follows. 

 

S*(y)≡{Bj∈B; Bj⊆P[S;y]} and ∂S*(y)≡{∂Bj∈∂; Bj∈S*(y)}.   

           

That is, ∂S*(y)  is the set of agreements reached in the minimal 

coalitions at  y  whose intersection with  S  is non-empty. Define   

 

  yS*≡(∂S*(y),S*(y))  and  yB\S*≡(∂\∂S*(y), B\S*(y)).  

                                  

That is,  yS*  and  yB\S*  are, respectively, the restrictions of  y  to the set 

of partners of  S  and to the set of non-partners of  S.  Then we can 

decompose  y  in two parts and represent  it  as  y=(yS*, yB\S*). 

In the cooperative decision situations we want to model it is assumed 

the following principle:  

 

Confronted with a feasible outcome  x,  the players of a coalition  S  

will “deviate from  x”  by taking actions against  x (even in case these 

actions involves current partners out of the coalition),  allowed by the 
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rules of the game, whenever any one of the resulting outcomes can benefit 

all players in  S.  On the other hand, no coalition of players is able to 

profitably deviate from a cooperative equilibrium outcome, by acting 

according to the rules of the game.   

 

The several types of coalitional interactions the members of  S  are 

allowed to perform against  x,  in order to deviate from  x,  are specified by 

the rules of the game situation. They lead to the set  φx(S) of feasible 

deviations from  x  via  S.  If  x∈X  and  y∈φx(S),  the set  φ*x(S,y)  is the 

set of feasible deviations from  x  via  S   generated by  yS*.  That is,  

   

φ*x(S,y)≡{z∈φx(S); zS*=yS*}.                            

 

Of course,  y∈φ*x(S,y),  so  φ*x(S,y)≠φ.  Also,  φx(S)=∪ φ*x(S,y), taken  

over all y∈φx(S). 

Faced with  x,  if coalition  S  deviates from  x  according to  yS*,  

φ*x(S,y)  is the set of  outcomes that might result.  Excepting the 

case in which  φ*x(S,y)  is a singleton, the members of  S  are not 

able to determine which particular outcome in  φ*x(S,y)  will arise. 

We say that  S  destabilizes  x  if  all members of  S  prefer every 

feasible deviation of  φ*x(S,y)  to  x.  The feasible outcome  x  is 

stable if it is not destabilized by any coalition. Therefore, the 

cooperative equilibria for the cooperative games are the stable 

outcomes defined in section 3.  

Thus, in order to check instabilities we have to know the kinds 

of deviations which are feasible (and may be expected) to a given 

coalition of players. We present below three cases with the 

intention of merely suggesting the kind of details of the rules of the 

game that can be captured by the deviation function form. In all of 

them,  (P1)-(P5)  are clearly satisfied.  

 

1st case. The minimal coalition structures compatible with the feasible 

outcomes are partitions of  N.  In this case the players are allowed to enter 
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one minimal coalition at most.  It is then implied by  (P1) that, given x∈X  

and  S∈C, for all y∈φx(S),  there is no minimal coalition that contains 

elements of  S  and elements of  N\S.  Hence, at all y∈φx(S),  all partners of  

S  are in  S.    

On the other hand, at all y∈φx(S), the players of  S  only perform 

standard coalitional interactions against  x: they discard all current 

agreements at  x  and perform some  ∂S∈∇S, compatible with a new 

feasible set of minimal coalitions whose union is  S  and whose pairwise 

intersection is the empty set.  

There are two approaches of interest. Under the first one, if  S  

deviates from  x,  the agreements chosen by the players in  N\S  do not 

affect the new utility levels of the players in  S.  Thus, the feasible 

deviations of  S  from  x  are independent of   x  and are given by:   

 

φ(S)≡ { y∈X; S=P[y,S]}. 

 

Under this approach the coalitional function is given by: 

 

V(S)={u∈R|S|; up=UpB(y), with  y∈φ(S), B∈S*(y) and p∈B}      

 

The other approach is appropriated when the cooperative decision 

situation is that derived from a strategic game. In such situation, the utility 

levels reached by the players in  S  when they act against  x  also depend 

on the actions taken by the players that are not partners of  S  at  x.  In 

these cases, the players in  S  might reasonably expect that their non- 

partners at  x  would continue, at least in a first round, to play their part at 

x.  Thus,  

 

 y=(∂,B)∈ X   is a feasible deviation  from  x=(γ,D)  via  S   

if  (i)  S=P[y,S]  and  (ii) if  Bj∈B  and  Bj∩P[S,x]=φ,  then  

Bj=Dk,  for some  Dk∈D,  and  ∂j=γk.   
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Example 4.1, at the end of this section, illustrates this case. 

g 
 

 In the following two cases, the players are allowed to enter more 

than one minimal active coalition and may perform non-standard 

coalitional interactions. 

 

2nd case: The coalition structures associated to the outcomes are not, 

necessarily, partitions of  N and the agreements are flexible. 

The kind of flexibility that is allowed is specified by the rules of 

the game situation that is being modeled. In Example 2, the agreement 

between the buyer and a seller only concerns the price of one unit of the 

good. Once this price is set, the number of units demanded by the buyer is 

always accepted if this demand can be satisfied by the seller. It might then 

be the case that the buyer wanted to reduce the number of items that was 

being proposed at  x,  by keeping the current price of one item. Coalitional 

interactions of this sort are called agreement reformulations. We can 

model this type of flexibility in Example 2 by considering that the term on 

the price and the term on the number of items to be negotiated are 

independent.   

In general, when agreements are flexible, some players may want 

to keep some of its current partnerships, which contain partners out of  S, 

and to reformulate some of the current agreements of these partnerships. 

Agreement reformulations are not considered new agreements. That is, 

given  x=(γ,D)  and  Dj∈D,  a new agreement  ∂j  for  Dj   with respect to  x    

is not only an agreement different from  γj, but it is also an agreement that 

is not a reformulation of  γj,  so at least one player in  Dj   prefers   ∂j   to  γj. 

Then, under flexible agreements,  

 

y=(∂,B) is a feasible deviation  from  x=(γ,D)  via  S   if for 

every   (∂j,Bj)∈yS* either  (i)Bj=Dk  for some  Dk∈D  and  

∂j=γk  or (ii) Bj=Dk  for some  Dk∈D,  with  Bj⊄S  and  ∂j  is 
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a reformulation of  γk  or (iii)Bj⊆S  and  ∂j  is a new 

agreement. Furthermore,  S=∪Bk  over all  Bk   with  Bk⊆S.     

In this case,  φ*x(S,y)  is the set of feasible outcomes  y’  

which agree with  y  on  S*(y).  

 

Note that in  (i)  it is not required that  Bj⊄S. In Example 2, 

outcome  y  is a feasible deviation from  x  via  S={p,q2}  when the 

agreements are flexible. There, as well as in Example 1, the power of 

coalition  S  also depends on interactions among some of its members with 

some current partners out of the coalition. g 

 

3rd case: The coalition structures associated to the outcomes are not, 

necessarily, partitions of  N and the agreements are rigid. 

  Under a rigid agreement, if some of the terms is altered, then the 

whole agreement is nullified. In this case, some members of  S  may want 

to keep some of its current agreements with partners out of  S. Then it is 

possible that the members of  S  arrange themselves into a feasible set of 

minimal active coalitions  (i) by discarding some current minimal active 

coalitions of partners (not necessarily all),  if needed; (ii) by keeping some 

others with their respective agreements; and (iii) by forming new sets of 

partners, with new agreements, only among themselves.   

Thus,  

 

 y=(∂,B) is a feasible deviation  from  x=(γ,D)  via  S   if for 

every   (∂j,Bj)∈yS* either (i)Bj=Dk  for some  Dk∈D  and  

∂j=γk  or (ii)Bj⊆S  and  ∂j  is a new agreement. Furthermore, 

S=∪Bk  over all  Bk   with  Bk⊆S.     

In this case,  φ*x(S,y)  is the set of feasible outcomes  y’  

which agree with  y  on  S*(y).  

 

Note that in  (i)  it is not required that  Bj⊄S. g  
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When the agreement structures of the feasible outcomes are given 

by arrays of individual payoffs, one array for each player, then if  y=(u,β)  

is a feasible deviation from  x=(v,γ)  via  S,  we say that  u  is a feasible 

deviation from  v  via  S. In this case we also say that  u  is stable if the 

corresponding agreement configuration  (u,β)  is stable.  

 The following example illustrates these definitions. 

 

EXAMPLE 4.1. Consider a game in the deviation function form derived 

from the cooperative normal form where  N={1,2}  and the sets of 

strategies are given by  ∇1={σ1, σ2}, ∇2={γ1, γ2}, ∇12={σ1γ1, σ1γ2, σ2γ1, 

σ2γ2}. A feasible outcome is given by any partition  β  of  N  together with 

any compatible combination of strategies  ∂. The payoff function  

U(y=(∂;β)  is given by:   

U({σ1},{γ1},{1},{2})=U({σ1γ1},{1,2})=(4,3); 

U({σ1},{γ2},{1},{2})=U({σ1γ2},{1,2})=(3,4); 

U({σ2},{γ1},{1},{2})=U({σ2γ1},{1,2})=(2,5); 

U({σ2},{γ2},{1},{2})=U({σ2γ2},{1,2})=(5,2). 

Consider  x=({σ1},{γ1},{1},{2})  and  S={2}. If we expect that 

player  1  will choose any of his strategies when player  2  deviates from  

x, then  φx(S)={y,z}=φ*x(S,y)=φ*x(S,z),  where  y=({σ1},{γ2},{1},{2})  and 

z=({σ2},{γ2},{1},{2}).  We have that  U2(x)=3,  U2(y)=4  and  U2(z)=2.  

Then,  U2(y)>U2(x)>U2(z),  so  x  is φ-dominated by  y  via  S  and is not φ-

dominated by  z  via  S. Hence,  {2}  does not destabilize  x  according to 

Definition 2.2. It is a matter of verification that  {1}  does not destabilize  

y. Also, no deviation from  x  via  {1,2}  is preferred to  x  by both players, 

so  {1,2}  does not destabilize  x. Thus,  x  is stable under this approach.  

However, if the players are faced with this game, they might claim 

that the demand for stability is too strong. They could rather relax this 

demand and still gain something from the game. Player  2, for example, 

might expect that player 1 would keep, at least temporarily, his strategy  

σ1  and so  y  would arise.  It then seems reasonable to consider that φx(S)= 

φ*x(S,y)={y}.  Under this approach,  {2}  destabilizes  x  and so  x  is not 

stable. g  
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In a wide class of games, which includes many of the matching 

models, given  y∈φx(S), the payoffs of the players in  S  only depends on 

the part  yS*  of  y,  so the players in  S  are indifferent between any two 

outcomes in  φ*x(S,y).  This class of games will be denoted by G*.  In the 

games of this class, if  x  is φ-dominated by  y  via coalition  S, then  x  is 

φ-dominated via  S  by every element of   φ*x(S,y).  Then we can rewrite 

Definition 2.2 as follows: 

 

Definition 4.3: An outcome  x  is stable for the game 

(N,X,U,u,φ)∈G* if it is feasible and it is not φ-dominated 

by any feasible outcome via some coalition. 

 

 Therefore,  

 

the restriction of Definition 4.3 to the matching models 

belonging to  G*  is equivalent to the definition of stability 

that has been established for these models.   

 

5. THE EFFECTIVENESS FUNCTION AND THE CONCEPT OF 

CORE OF A GAME IN THE df-FORM. 

Let  Γ=(N,C,X,U,u,φ)  be a game in the df-form. Given a feasible 

outcome  x  and a coalition  S  define  

 

Eφx(S)≡{y=(∂,B)∈X; y∈φx(S) and if B∈B  then either B⊆S or Bj⊆N\S}              

(C3)  

 

That is, Eφx(S)  is the set of feasible deviations from  x  via  S  in 

which  the elements of  S  interact only among themselves, so  

P[y,S]=S.  The functions  Eφx  are called the effectiveness functions 

of   Γ.   It must be pointed out that the level of utility reached by a 

player in  S  at an outcome in  Eφx(S)  may also depend on the 

agreements made by players in  N\S. Property  P5  asserts that  
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Eφx(S) ⊆ φx(S)  for all feasible outcome  x. In the situation described 

in Example 3.1,  Eφx(S)= φ*x(S,w)∪φ*x(S,w’). 

Given  Γ=(N,C,X,U,u,φ),  the 6-tuple  (N,C,X,U,u,Eφ),  where  

Eφ≡{Eφx, x∈X},  is called the effectiveness function form of  Γ. It 

must be understood that the effectiveness function form of a game 

fully represents this game if and only if  Eφx(S)=φx(S)  for every  

x∈X  and every  S⊆N.   

If  x∈X  and  y∈Eφx(S), the set of feasible deviations from  x  via  S   

according to  yS* can be identified with the set of outcomes that is enforced 

by  S  against  x  via  y,  which will be denoted by  E*φx(S,y).  That is, 

 

E*φx(S,y) ≡φ*x(S,y)={z∈Eφx(S); zS*=yS*}                                        

         

The feasible outcome  x  is in the core of a game in the df-form if there 

is no coalition  S  and no  y∈Eφx(S),  such that any outcome that can be 

enforced by  S  via  y  is preferred by all players in  S  to the current 

outcome  x.  Formally, 

 

Definition 5.1: Let  Γ=(N,C,X,U,u,φ)  be a game in the 

deviating function form. The feasible outcome  y  dominates 

the feasible outcome  x  via coalition  S  if: 

             (a) up(y) >up(x)  ∀p∈ S  and   

 (b) y∈Eφx(S). 

 

Definition 5.2: Let  Γ=(N,C,X,U,u,φ).  The feasible outcome  x  

is blocked by coalition   S  if there is some  y∈Eφx(S)  such that  

x  is dominated by every outcome in  E*φx(S,y).  An outcome is 

in the core of the game (N,C,X,U,u,φ) if it is not blocked by any 

coalition. 
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In games of  G*,  if  x  is dominated by some feasible outcome  y  

then  x  is dominated by every element of  φ*x(S,y). For these games we 

can rewrite the definition above:   

 

Definition 5.3:  Let  Γ=(N,C,X,U,u,φ) ∈G*.  An outcome is in the 

core of  Γ  if it is feasible and it is not dominated by any feasible 

outcome via  some coalition. 

 

6. CONNECTION BETWEEN THE STABILITY AND THE CORE 

CONCEPTS FOR GAMES IN df-FORMS. 

Theorem 6.1 provides the link between the core and the stability 

concepts in a game in the df-form: the stability concept can be viewed as a 

refinement of the core concept. Theorem 6.2 assures the equivalence 

between the two concepts when the effectiveness function form that can 

be derived from the df-form of the game can adequately represent this 

game. 

 

Theorem 6.1. In a game  Γ=(N,X,φ,u), the set of core outcomes contains 

the set of stable outcomes. 

Proof. It is immediate from Definitions 5.1, 5.2, 2.1 and 2.2 and 

the fact that  Eφx(S) ⊆ φx(S)  that if   S  blocks  x  then  S  

destabilizes  x. g  

 

In games in which the coalition structures are partitions of  N,  each 

player is allowed to enter one minimal coalition at most. Proposition 6.1 

implies that, in this case, the effectiveness function form captures all the 

relevant details of the game for the purpose of cooperative equilibrium 

analysis. 

  

Proposition 6.1. Suppose the coalition structures associated to the 

feasible outcomes for a game  Γ=(N,C,X,U,u,φ)  are partitions of  N. 

Then, Eφx(S) =φx(S), for any feasible outcome  x  for  Γ. 
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Proof.  It is implied by  (P5)  that  Eφx(S)⊆φx(S)  for any feasible outcome  

x.  Thus we only have to show the inclusion in the other direction. It 

follows from the hypothesis that the players are allowed to enter one 

minimal coalition at most. Therefore, (P1)  implies that if  y∈φx(S)  then 

there is no minimal coalition at  y that contains elements of  S   and 

elements of N\S.  It is then implied by (P5) that  y∈Eφx(S).  Hence,  φx(S)⊆ 

Eφx(S)  and the proof is complete.g 

 

Theorem 6.2. Let  Γ=(N,C,X,U,u,φ).  Suppose  that, for every coalition  S 

and feasible outcome  x for the game  Γ,  Eφx(S) =φx(S). Then, in  Γ,  the 

set of core outcomes equals the set of stable outcomes.    

Proof.   Let  x  be in the core of   Γ. Then  x  is stable, for otherwise 

Definition 2.2 implies that there is some  y∈φx(S)  such that  x  is φ-

dominated, via  S, by every outcome in  φ*x(S,y).  Since  y∈Eφx(S),  by 

hypothesis, it follows from Definition 5.1 that  x  is dominated via S  by 

every outcome  in  Eφ*x(S,y),  so Definition 5.2 implies that  x  is blocked 

by  S,  which is a contradiction. The other direction follows from Theorem 

1. Hence the proof is complete. g 

 

Corollary 6.1. Suppose the coalition structures associated to the feasible 

outcomes for a game  Γ=(N,C,X,U,u,φ)  are partitions of  N. Then, in this 

game, the set of core outcomes equals the set of stable outcomes.    

Proof. It is immediate from Proposition 6.1 and Theorem 6.2. g  

 

 The converses of Theorem 6.2 and Corollary 6.1 are not true. In 

the many-to-one assignment game with additively separable utilities 

(Sotomayor 1992) the core coincides with the set of stable outcomes. 

Nevertheless, the players of one of the sides may enter more than one 

minimal active coalition. For this model, it is easy to construct examples 

in which  Eφx(S)≠φx(S) for some outcome  x.   

 

7. COALITIONAL GAMES 
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The deviating function form is a mathematical model to represent 

cooperative decision situations in which the object of interest is an 

agreement configuration. However, it is possible that a game is given a 

priori in the characteristic function form  (N,V,H), where an outcome is a 

payoff-vector of  R|N| and the coalition structure is not specified. In this 

section we will see how our theory applies to such games.  

The df-form derivation is made under the assumption that the game is 

a coalitional game, i.e., the characteristic function form is a reasonable 

description of the decision problem in consideration. Then, if the S-vector  

uS∈V(S),  it can be interpreted that  S  can take some joint action which 

yields itself at least  uS.  This payoff does not depend on the actions taken 

by non-members of  S. It is then convenient to consider that  H=V(N),  so 

the coalitional game is described by  (N,V)  ( see the discussion concerning 

this assumption in Rosenthal (1972), page 96).  

In such a game, it is not specified a coalition structure, but the 

existence of some coalition structure that can be associated to a given 

payoff-vector is always guaranteed (the coalition  N  can always be 

formed). Since each player receives only one payoff, then any coalition 

structure compatible to some payoff-vector of V(N)  must be a partition of  

N  into pairwise-disjoint minimal coalitions. Thus a feasible outcome is a 

payoff configuration  (u,∂)  such that  u∈V(N)⊆R|N|  and  ∂  is a partition 

of  N.  

Within this context, it can be then interpreted that the actions that the 

members of a coalition  S  are allowed to take against a given outcome  x  

are restricted to the interactions among themselves  and do not depend on  

x.  Therefore, let  X  be the set of the feasible outcomes. Define   

Eφ(S)={(u,∂)∈X;  uS∈V(S)} 

From our intuitive discussion of feasible deviations via a coalition  S  

we should require that  Eφ(S)≡φx(S),  for every feasible outcome  x.   

Since every coalition structure is a partition of  N, Corollary 

6.1 implies that  the core equals the set of stable payoffs in   

Γ=(N,C,X,U,u,φ) and so does in  (N,V). Therefore we have proved 

that 

 31 



 

Theorem 7.1. Let  (N,V)  be a coalitional game. Then, in this game, the 

set of core payoffs equals the set of stable payoffs. 

 

As it was seen in Example 2.1, Theorem 7.1 does not hold when  

(N,V)  is not a coalitional game.    

 Let  x  and  y  be feasible outcomes for the df-game   

Γ=(N,C,X,U,u,φ)  associated to the coalitional game  (N,V). Clearly, if the 

players in  S  prefer some outcome in φ*x(S,y)  to  x,  then they prefer 

every outcome in  φ*x(S,y)  to  x.  The stability definition can then be 

rewritten as follows: 

 

Definition 7.1:  A feasible payoff-vector  u  is stable for 

(respectively, in the core of) the coalitional game  (N,V)  if 

there is no coalition  S  and no payoff-vector  v∈V(N)      

such that vi>ui  for all  i∈S  and  vS∈V(S).  

 

 This is the usual concept of core for coalitional games.  

 

8. FINAL REMARKS 

Following the approach of Gale and Shapley, some attempt has 

been done in the mathematical modelling of the matching markets 

presented in the literature, in the sense that the concept of stability be 

established as the concept that captures the intuitive idea of equilibrium 

for the market in consideration: an outcome is stable if it is not up set by 

any coalition. This idea of equilibrium for matching markets is identified 

with the idea of cooperative equilibrium when these matching markets are 

mathematically modeled as cooperative games.15 

 However, the concept of stable outcome has been locally defined 

for each matching model that has been studied. It should not then be 

surprising that in this process, the definition of stability has not always 

                                                 
15 See, for example, Roth and Sotomayor (1990), chapter 8, where the Assignment game 
of Shapley and Shubik (1971) is treated as a matching market of buyers and sellers and as 
a cooperative game in the coalitional function form. 

 32 



been associated, and it has not always been correctly associated, to the 

idea of cooperative equilibrium. In the past literature, some confusion has 

been due to an incorrect definition of stability in Roth (1984). In the recent 

literature, the term stable outcome has been used, some times, in new 

models, without any justification, especially among some applied 

specialists who very rarely pose questions regarding the appropriateness of 

the solution concept they use. The author simply decides that the outcomes 

with certain properties will be called “stable”. The intuition behind the 

definition is not discussed. Therefore, a general definition of stability, 

which establishes the concept of stability for every matching model, fills 

an important gap in the literature.  

This work grew out of the attempt to formulate mathematically the 

following principle, on which we believe the theory of cooperative 

equilibrium should be supported: “faced with a feasible outcome  x,  a 

coalition will take any action against  x  (even in case this action involves 

current partners out of the coalition), whenever such action is allowed by 

the rules of the game and propitiates to all members of the given coalition 

a more profitable outcome than  x; on the other hand, no coalition of 

players is able to profitably deviate from a cooperative equilibrium 

outcome, by acting according to the rules of the game”.    

The mathematical formulation of this principle led to the concept 

of cooperative equilibrium. In order to properly define it we observed that 

the intuitive idea of stability for matching models would also apply to a 

non-matching game if, instead of pairwise interactions the players 

interacted with coalitions of any size. We then brought out a new form of 

representing those games whose feasible outcomes can be supported by a 

coalition structure of minimal coalitions. In this model, the kinds of 

actions that a coalition is allowed to take against an outcome are naturally 

expressed by a deviation function. We showed that some features of 

certain cooperative game situations, which can be expressed under the 

deviation function form, may fail to be captured in the coalitional function 

form and in the effectiveness form, yielding incorrect conclusions in both 

game forms. We analyzed the correlation between the set of core 

outcomes and the set of stable outcomes. The main result is that, in any 
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cooperative game, the stability concept is a refinement of the core concept 

and it is stronger than the core concept, as it happens in the matching 

models.  

In practical terms, the theory developed here provides a 

mathematical model to represent adequately a variety of cooperative 

decision situations. From the conceptual point of view, to focusing on the 

stability concept rather than on the core concept, propitiates that new 

subjects of investigation be certainly created. 

The idea of making accessible the matching theory to games which 

are endowed with a coalition structure, not necessarily a matching 

structure, was first considered in Sotomayor (2010-b). The concept of 

stability was defined by the first time for a class of games, where utilities 

are additively separable and, unlike the matching games, the coalition 

structure is given by coalitions of any size.  In these games the set of 

stable outcomes may be a proper subset of the set of core outcomes.  
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