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Abstract

Since Kreps and Scheinkman’s seminal article a large number of papers
have analyzed capacity constraints’ potential to relax price competition.
However, the ensuing literature has assumed that products are either per-
fect or very close substitutes. Therefore none of them has investigated the
interaction between capacity constraints and substantial local monopoly
power. The aim of the present paper is to shed light on this question us-
ing a standard Hotelling setup. The high level of product differentiation
results in a variety of equilibrium firm behavior and it generates at least
one pure strategy equilibrium for any capacity level. Thus the presence of
local monopoly power challenges one of the most general findings about
Bertrand-Edgeworth competition: the non-existence of pure strategy equi-
libria for some capacity levels.
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1 Introduction
The problem of capacity constrained pricing decision in oligopolies has received
considerable attention since Kreps and Scheinkman’s seminal article (1983).
Most of the work in the field of Bertrand-Edgeworth oligopolies focused on the
case of homogeneous goods and the capacities’ potential impact of relaxing
price competition(some recent examples are Acemoglu et al. (2009), De Frutos
and Fabra (2011) and Lepore (2012)). However, assuming horizontally differ-
entiated products beside the capacity constraints might lead to nontrivial and
sometimes counter-intuitive results. This observation was first articulated by
Wauthy (1996). Product differentiation in itself, just like capacity constraints,
might be sufficient for firms to avoid the zero profits predicted by the standard
Bertrand pricing model. Boccard and Wauthy (2010) investigate exactly this
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kind of interaction between capacities and Hotelling-type differentiation and
find the absence of an equilibrium in pure strategies for vast parameter regions.
Canoy (1996) also analyzes a similar Bertrand-Edgeworth model although he
models product differentiation in a very particular way.

To our best knowledge, all Bertrand-Edgeworth models with differentiated
product (apart from Canoy (1996)) make the following simplifying assumption:
the transportation cost is so small compared to the consumers’ willingness-to-
pay that the firms could profitably serve the whole market, even the consumer
located at its other extremity. This low level of product differentiation in
turn implies that the market is always covered in equilibrium. Therefore
these models do not have to take into account the consumers’ participation
constraints as in equilibrium they are never binding.

In this paper we investigate the interaction between the local monopoly
power and the capacities of firms. This interaction has so far been hidden by the
overly restrictive assumption of low product differentiation. Our findings about
the nature of equilibria are in striking contrast with the results of Boccard and
Wauthy (2010). In a qualitatively equivalent and thus comparable setting to
ours, they find that for low levels of product differentiation equilibrium in pure
strategies does not exist. Our main result is the complete characterization of
the equilibria for the case of intermediate product differentiation which shows
that at least one pure strategy equilibrium exists for any capacity level. We
note that this result also holds for the trivial case of high product differentiation
when both firms can act as local monopolies without interacting.

The aim of our paper is hence similar to the spirit of Canoy (1996)
that shows that a sufficient level of dissimilarity of goods might restore the
existence of a pure strategy equilibrium in a Bertrand-Edgeworth model.
The main differences are that firstly, we allow firms to use two-part tariffs
and secondly, we chose a more standard way of modeling product differentiation.

Furthermore, in the last decades nonlinear pricing has been increasingly
used in real markets partly because the share of services in the economy has
been continuously increasing (see e.g. Armstrong and Vickers (2010)). Thus
in our model we allow firms to use the simplest form of nonlinear pricing:
two-part tariffs. Just as in the case of the Bertrand-Edgeworth oligopolies, most
of the literature about two-part tariffs has not considered the possibility of
product differentiation. One notable exception is Yin (2004) that characterizes
equilibrium in two-part tariffs in a duopoly with differentiated goods. However,
this model does not take into account that the firms may be unable or unwilling
to serve the whole market, i.e. it implicitly assumes abundant capacities for
both firms.

Users of access services, like telecommunication, hospitals or fitness clubs
do not pay for the ownership of the good just for accessing its facilities. As
Essegaier, Gupta, and Zhang (2002) argue, access services are characterized
by all three main properties our model exhibits: the use of two-part tariffs,
the existence of potentially binding capacity constraints and differentiated
products. However, while their model is more general than ours in some aspects
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(e.g. heterogeneous demand), it is more restrictive in others, in particular it
is restricted to low levels of product differentiation. Furthermore, it assumes
a large difference in the demands of the two consumer-types, so none of our
results can be obtained as a limit case of their model.

It is also worth mentioning that the simplifying assumption of low levels
of product differentiation is also prevailing in models of competition in health
care markets. Most of this literature that use Hotelling-type product differen-
tiation assumes that the valuation of consumers is large with respect to the
transportation costs (see for example Lyon (1999), Gal-Or (1997) and Brekke
et al.(2006)). Another example of a model that uses (implicitly) the same
assumption is Ishibashi and Kaneko (2008) that describes price and quantity
competition in a mixed duopoly.

The paper is organized as follows. Section 2 describes the model, formulates
the profit function and identifies the potential equilibrium strategies. Section
3 contains the main result of the paper, the complete characterization of the
equilibria. Section 4 concludes.

2 The model

2.1 Setting
We analyze a duopoly with firms denoted x and y that produce substitute
products for identical marginal cost c. They have the possibility to use two-part
tariff pricing, i.e. they may charge an access fee ei independent of the quantity
purchased and a marginal price pi(i = x, y). As it is usual in the two-part tariff
literature we assume “one-stop shopping” i.e. every consumer buys from at
most one firm (thus avoiding paying the lump-sum access fee twice). Assume
the firms are located on the two extreme points of a unit-length Hotelling-line
(x at τ = 0, y at τ = 1) and transportation cost is linear. Moreover, consumers
are uniformly distributed along the line but are otherwise identical (e.g. they
dispose of the same wealth level that later we can omit from their indirect
utility function to simplify notation). The value of the outside option of not
buying the product is normalized to 0. In addition, the firms face rigid capacity
constraints kx, ky. The size of these capacities as well as the value of the
marginal cost are common knowledge. Firms’ objective is to maximize their
profit by choosing two-part tariffs. Yin (2004) investigated a similar model
without capacity constraints, consequently the first part of the subsequent
discussion follows his arguments.

Assume that consumer surplus is additively separable in the marginal price
and the access fee, i.e. a consumer located at point τ purchasing from firm x
will have a net surplus of

v(px)− ex − t · τ

while purchasing from firm y provides her a net surplus of

v(py)− ey − t · (1− τ)
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where v is the indirect utility function (satisfying v′ < 0 and v′′ > 0) and t
is the per unit transportation cost.

2.2 The profit function
Assuming rational consumers the following two constraints are straightforward.
The participation constraint (PC) ensures that consumers buy from firm x only
if their net surplus derived from this purchase is non-negative:

v(px) ≥ ex + t · τ (PC)

The individual rationality constraint (IR) ensures that consumers buy from
firm x only if this provides them a net surplus higher than buying from the
competitor:

v(px)− ex − t · τ ≥ v(py)− ey − t · (1− τ) (IR)

Let Tx be the marginal consumer who is indifferent whether to buy from
firm x or not. In the absence of capacity constraints it is easy to see that Tx is
the minimum of the solutions of the binding constraints (PC) and (IR). Let T x

be the consumer for whom both of the above constraints are binding. Thus this
consumer is indifferent among buying form x, buying from y and not buying
at all. The net surplus being decreasing in the distance from firm x implies
that (PC) is binding for Tx ≤ T x and (IR) is binding if Tx ≥ T x. (Symmetric
formulas apply to firm y.) Hence we know that in case capacities are abundant

ex =

{
v(px)− tTx if Tx ≤ T x,
v(px)− v(py) + ey + t− 2tTx if Tx ≥ T x.

(1)

Naturally, the existence of capacity constraint means for firm x that it cannot
serve more than kx consumers. We assume that after each consumer chooses
the firm to buy from (or not to buy), firms have the possibility to select which
consumers to serve. In our setting this corresponds to the assumption of efficient
rationing, which is extensively used in the literature. It is easy to see that due to
the increasing transportation costs firms prefer to serve the consumers located
the closest to them so that they can extract a higher surplus. Therefore the
additional constraints caused by the fixed capacity levels can be written as:

Tx ≤ kx and 1− Ty ≤ ky (CC)

It is important to notice that in some cases, when firm y is capacity con-
strained, firm x can extract a higher surplus from some consumers by knowing
that they cannot purchase from the rival even if they wanted to since it does not
serve them. Practically, this means that the participation constraint (PC) will
always be binding on

[
T x, 1− ky

]
whenever this interval exists, i.e. whenever

the rival’s capacity is sufficiently small: ky ≤ 1−T x. Using this observation, one
can reformulate (1) for any capacity level:

ex =

{
v(px)− tTx if Tx ≤ max{T x, 1− ky} ,
v(px)− v(py) + ey + t− 2tTx if Tx > max{T x, 1− ky}

(2)
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Given the competitor’s capacity, choice and its own price, determining the
access fee ex is equivalent to determining the marginal consumer Tx. The obser-
vation that prices and quantities can be used interchangeably will simplify the
solution of the model. Firms’ profit can be written as the sum of the access fees
collected and the marginal prices charged minus the production cost c:

πx = ex · Tx + (px − c) ·X(px, Tx) (3)

where X(px, Tx) is the total demand of firm x. The assumption of uniformly
distributed, identical consumers implies that X(px, Tx) = x(px) · Tx where
x(px), the individual demand of all consumers is equal. It can be derived from
the indirect utility function using Roy’s identity: x(px) = −v′(px).

Lemma 1. Firms use marginal cost pricing, i.e. px = py = c.

Proof. The objective of the firms is to maximize their profits by choosing (ei, pi)
or equivalently (Ti, pi). The first order condition of optimality according to the
marginal price for firm x is:

∂πx
∂px

= v′(px) · Tx + x(px) · Tx + (px − c) · Tx · x′(px) = 0

which implies

(px − c) · x′(px) = 0

which in turn implies px = c since x′ < 0 due to the strict convexity of the
indirect utility function. The same argument applies for firm y.

This result shows that in this setting the pricing decision of firms is
greatly simplified as they will always choose per unit prices equal to marginal
costs. Notice that marginal cost pricing is a standard result in the literature
of nonlinear pricing in telecommunication networks (see e.g. Laffont et al.
(1998a,1998b), Dessein (2003) and Hahn (2004)).

By using the notation v = v(c) = v(px) = v(py) and the above results, one
can rewrite (3) as

πx(Tx) =

{
πLM
x = (v − tTx) · Tx if Tx ≤ max{T x, 1− ky},
πC
x = (ey + t− 2tTx) · Tx if Tx > max{T x, 1− ky}

(4)

The optimization problem of the firm consists of finding the value Tx which
maximizes the above expression satisfying the capacity constraint (CC). The
superscript LM stands for Local Monopoly because the firm extracts all the
consumer surplus from the marginal consumer when (PC) binds. Similarly, the
superscript C stands for Competition since the marginal consumer is indifferent
between the offer of the two firms whenever (IR) binds.

Notice that this simplified problem is formally equivalent with assuming
consumers with unit demand choosing between firms that offer standard linear
prices. The linear prices correspond to ex and ey, the access fees in our model.
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As the model of Boccard and Wauthy (2010) analyzes exactly this kind of set-
ting, our results are directly comparable with its findings. The main difference
lies in the fact that we will investigate the case of higher degrees of product
differentiation, as specified below.

Assumption. Assume v/t ≤ 1.5 i.e. the products of the firms are substantially
different from one another. Furthermore, to get rid of some trivial cases we
will assume 1 < v/t ≤ 1.5 and refer to it as intermediate level of product
differentiation.

Although Boccard and Wauthy (2010) restrict their attention to situations
in which v/t > 2, their findings extend easily to the case of v/t > 1.5 as shown
in a later section. Note that v/t ≤ 1 is not interesting since it trivially leads to
a situation where both firms behave as local monopolies without interacting.

2.3 Potential equilibrium strategies
Define TLM

x = argmaxTx
πLM
x and TC

x = argmaxTx
πC
x .

The relative order of the five variables

TLM
x , TC

x , T x, 1− ky and kx

is crucial in solving the maximization problem. The main difficulty of the solu-
tion comes from the fact that the values of T x =

ey−v+t
t and TC

x =
ey+t
4t depend

on the choice of the other firm, ey. The following lemma simplifies the solution
considerably.

Lemma 2.
TLM
x ≤ T x implies TC

x ≤ T x and TC
x ≥ T x implies TLM

x ≥ TC
x ≥ T x.

The proof of the lemma is relegated to the Appendix. The form of firm x’s
profit function hinges on the relative order of T x and 1 − ky. Therefore in the
following discussion we will separate two cases: In Case A the capacity of firm
y is relatively large, 1 − ky < T x. In Case B 1 − ky ≥ T x which means that
firm x may be able to take advantage of the fact that its adversary is relatively
capacity constrained.

Case A: 1 − ky < T x. When the capacity of firm y is relatively large, (1)
shows the relation between the access fees ex charged by firm x and its demand
(captured by the marginal consumer Tx). Using Lemma 2 three different sub-
cases can be identified depending on the parameter values of the model and the
competitor’s choice.

Lemma 3. Assume 1− ky < T x. Then

(A1) if TLM
x ≤ T x then the optimal choice of firm x is min(TLM

x , kx),

(A2) if TC
x ≥ T x then the optimal choice of firm x is min(TC

x , kx),

(A3) if TC
x ≤ T x ≤ TLM

x then the optimal choice of firm x is min(T x, kx).

6



Figure 1: Illustration of Case A2 (TC
x < kx)

π

• •

•

TxTLM
xTC

xTx1-ky kx

πC πLM

Considering Lemma 2 it is easy to see that cases A1, A2 and A3 provide
a complete partitioning of Case A. Hence for any parameter values in Case 1
and for every possible behavior of the competitor, the lemma identifies the best
response strategy of firm x. Symmetric formulas apply for firm y. The complete
proof of this lemma is relegated to the Appendix.

However, for an intuition, first notice that the two parts of the profit
function, πLM

x and πC
x are both quadratic functions of Tx that by definition

cross at 0 and at T x. Then depending on the values t, v and Ty one of the
three possibilities above will hold. As an illustration of Case 1b when TC

x < kx
see Figure 1. Using Lemma 2 the condition of the case TC

x ≥ T x immediately
implies TLM

x ≥ T x. We know that the profit function is composed of the
function πLM

x on the interval [0, T x] then it switches to function πC
x . The

actual profit function is thus the thick red curve in the figure. Then using
the figure it is straightforward to find the optimal choice of firm x. Since the
two quadratic and concave functions cross before either of them reaches its
maximum, the maximal profit will be attained on the second segment where
πx = πC

x . By definition, argmaxTx
πC
x = TC

x is the optimal choice, and the
assumption TC

x < kx makes this feasible.

Case B: T x ≤ 1− ky. In Case B, the rival of firm x disposes of relatively low
capacity. Therefore firm x might be inclined to take advantage of the fact that
firm y is not capable of serving consumers located on the interval [0, 1−ky]. On
this segment firm x does not have to care about it’s competitor’s price and the
individual rationality constraint (IR), it is only threatened by some consumers
choosing the outside option of not buying the product (PC) and eventually by

7



its own capacity constraint.

Lemma 4. Assume T x ≤ 1− ky. Then

(B1) if TLM
x ≤ T x then the optimal choice of firm x is min(TLM

x , kx),

(B2) if T x ≤ TC
x ≤ 1− ky then the optimal choice of firm x is

min(1− ky, TLM
x , kx),

(B3) if T x ≤ 1− ky ≤ TC
x then the optimal choice of firm x is

either min(1− ky, kx) or min(TC
x , kx),

(B4) if TC
x ≤ T x ≤ 1− ky ≤ TLM

x then the optimal choice of firm x is
min(1− ky, kx).

(B5) if TC
x ≤ T x ≤ TLM

x ≤ 1 − ky then the optimal choice of firm x is
min(TLM

x , kx).

Notice that case B1 corresponds exactly to case A1 of Lemma 3 and B5
also describes a very similar situation. However, the other cases are affected
by the limited capacity of the rival firm. The case corresponding most to case
A2 pictured above is case B2. The only difference is in the size of the rival
firm’s capacity, here it is assumed to be much smaller. As an illustration of this
situation, see Figure 2 (where we assumed kx large in order to draw a clearer
picture). As it is clear from the figure and true in general, πLM

x (τ) > πC
x (τ)

whenever τ > T x i.e. to the right of the crossing point of the two curves. Hence
the profit function is not only non-differentiable as in the above case, it is
also discontinuous at 1 − ky. Therefore the assumption TC

x ≤ 1 − ky ≤ TLM
x

immediately implies that 1− ky is the optimal choice of firm x, i.e. it produces
up to the capacity of the other firm. The profit curve and the optimal solution
are shown in thick red on Figure 2.

The most interesting case is arguably B3 where 3 different best replies may
arise depending on the exact parameters of the model and the competitor’s
choice. This is also the most problematic case in Boccard and Wauthy (2010) in
the sense that this discontinuity inhibits the possible existence of pure strategy
equilibrium. As we will show below, case B3 never arises in equilibrium when
assuming intermediate levels of product differentiation.

The next section describes the numerous equilibria of the game using the
conditional best replies of firms described above.

3 Equilibria
In this section we will determine which kinds of equilibria may arise in the
intermediate product differentiation case as a function of firms’ capacities and
the other parameters of the model (v and t). The calculations will be based on
the results of Lemmas 3 and 4 that describe the firms’ conditional best responses.
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Figure 2: Illustration of Case B2 (1− ky < TLM
x < kx)
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As it is clear from those lemmas, there are 5 potential equilibrium strategies
for both firms:

TLM
x , TC

x , T x, 1− ky and kx

The exercise of finding all equilibria consists of comparing the conditions for
potential equilibrium strategies (described in cases A1-A3 and B1-B4) of firm
x to those of firm y one-by-one and determining whether the conditions are
compatible. In case they are, we also have to formulate the conditions in terms
of the parameters of the model. Since the cases described in the two lemmas are
exhaustive, this method finds all the existing equilibria of the game. These case-
by-case calculations are by nature tedious so we relegate them to the Appendix.
The following proposition summarizes the main result of the paper.

Proposition 1. For intermediate levels of product differentiation, i.e. for 1 <
v/t ≤ 1.5 there exists at least one equilibrium in pure strategies for any capacity
pair (kx, ky). The nature of the equilibria depends on the relative size of the
capacity levels, and the relative value of consumers’ willingness-to-pay v and
their transportation cost t.

Proposition 1 is in striking contrast to the existing results about Bertrand-
Edgeworth oligopolies. The usual finding in the existing literature is that there
is at least one region of capacity levels for which there does not exist a pure
strategy equilibrium. This clearly shows that the presence of substantial local
monopoly power changes Bertrand-Edgeworth competition drastically. Even
Boccard and Wauthy (2010) who investigate the case of slightly differentiated
products face the problem of non-existence of pure strategy equilibrium, indeed,
their main contribution is a partial characterization of the mixed strategy
equilibrium.
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Figure 3: Equilibria with substantial product differentiation (1 < v/t ≤ 1.2)
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We provide a complete characterization of the equilibria of our model.
Figure 3 illustrates the different types of equilibria that arise as a function of
the parameters. For simplicity the figure depicts only the case of 1 < v/t ≤ 1.2.
(The complement case of 1.2 < v/t ≤ 1.5 is qualitatively equivalent, the same
type of equilibria arise, the only difference is in the ordering of the different
values on the axes.)

The capacities of firm x and y are shown on the horizontal and the vertical
axis, respectively. The values written in every parameter region show the
equilibrium strategy of firm x and y, respectively. Note that the figure is
symmetric which is sensible since the firms are identical apart from their
capacities.

Capacity constrained equilibria The simplest case is the one where kx
and ky are both very low (kx + ky < 1) which inhibits the interaction between
the two firms, they maximize their profits independently by producing up
to their capacity. Therefore (kx, ky) is the unique equilibrium in this region.
Assuming a similarly small capacity for firm y (ky < 1 − v

2t ) but a larger one
for firm x (kx ≥ v

2t ), one gets to the region where firm x cannot profitably
increase its production and implements its unconstrained local monopoly profit
TLM
x = v

2t . Hence (TLM
x , ky) is the unique equilibrium here.

Capacity constrained secret handshake equilibria The most interesting
region is arguably the one where the capacity of one firm is not very low but
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not very high either (max(1− v
2t ,

v
3t ) < ky < min(1− v

3t ,
v
2t )) and the industry

capacity is sufficient to cover the market (kx + ky ≥ 1). Firm y producing up
to its capacity and firm x deciding to serve the remaining 1 − ky consumers is
a pure strategy equilibrium of this region. Notice that the size of their capacity
would allow firms to enter into direct competition, however, it would not be
profitable for firm x. Instead it prefers to match the residual demand of the
market. Essegaier et al. (2002) find similar equilibrium behavior in their model
with heterogeneous demand and call it a “secret handshake” equilibrium. Notice
that in the triangle-shaped region kx, ky < min(1 − v

3t ,
v
2t ) and kx + ky ≥ 1

either firm producing up to its capacity with the other one engaging in the
secret handshake constitutes an equilibrium. Thus in this region 2 pure strategy
equilibria coexist with mixed strategy equilibria.

Unconstrained secret handshake equilibria Lastly, when both capacities
are large (kx, ky > min(1 − v

3t ,
v
2t )) there is a continuum of equilibria in pure

strategies. As T x depends on ey and thus on Ty and vice versa, the location
of the indifferent consumer (T x = 1 − T y) may take any values in between
max(1− v

2t ,
v
3t ) and min(1−

v
3t ,

v
2t ). Furthermore, these equilibria could also be

described as a type of secret handshake since here T x + T y = 1 holds so the
market is exactly covered by the two firms. We also note that the multiplicity
of equilibria is a standard result for Hotelling models with substantial product
differentiation without capacity constraints, so its presence is natural for the
case of abundant capacities.

4 Conclusion
We analyze a Bertrand-Edgeworth duopoly with exogenous capacity constraints
and a non-negligible degree of product differentiation where firms are allowed to
choose two-part tariffs. The complete characterization of the model’s equilibria
was feasible and showed that there exists at least one pure strategy equilib-
rium for any capacity level. This contrasts with the usual result of existing
Bertrand-Edgeworth models that find the nonexistence of such equilibria for
some capacity levels. Thus our main finding illuminates the importance of local
monopoly power in the price setting of capacity constrained industries.

Due to our assumption of consumers’ identical indirect utility functions
firms do not use two-part tariffs in equilibrium, they resort to marginal
cost pricing and maximize their profit by collecting only the access fees. A
natural next step would be to relax this assumption and look at the case of
heterogeneous consumers. Another extension would be to endogenize capacities
by introducing a first period of simultaneous capacity choice into the model,
although this analysis would be considerably complicated by the multiplicity of
equilibria for some capacity pairs.
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Appendix
Proof of Lemma 2 It is easy to see that

TLM
x =

v

2t
, T x =

ey − v + t

t
and TC

x =
ey + t

4t
.

Then for any t > 0

TLM
x ≤ T x ⇐⇒

v

2t
≤ ey − v + t

t
⇐⇒ ey ≥

3

2
v − t

and similarly

TC
x ≤ T x ⇐⇒

ey + t

4t
≤ ey − v + t

t
⇐⇒ ey ≥

4

3
v − t

also
TLM
x ≤ TC

x ⇐⇒ v

2t
≤ ey + t

4t
⇐⇒ ey ≥ 2v − t

This proves the two parts of the lemma for any v > 0.

Proof of Lemma 3

(A1) First assume TLM
x < kx. By Lemma 2 the condition TLM

x < T x implies
TC
x < T x. By definition TLM

x is the profit maximizing quantity on the
πLM
x curve. Hence

πLM
x (TLM

x ) ≥ πLM
x (T x) = πC

x (T x) ≥ πC
x (τ) for all τ > T x

where the last inequality holds because TC
x < T x means that πC

x is
decreasing on the interval in question.

kx is clearly the optimal choice when TLM
x ≥ kx as πLM

x is increasing up
to TLM

x .

(A2) is proved in the main text.

(A3) Assume T x < kx. Firstly, TC
x ≤ T x implies that

πLM
x (T x) = πC

x (T x) ≥ πC
x (τ) for all τ > T x

Secondly, T x ≤ TLM
x implies that

πLM
x (τ) ≤ πLM

x (T x) = πC
x (T x) for all τ < T x

This means that the profit function is increasing up to T x and then it is
decreasing. Again, kx is clearly the optimal choice when T x ≥ kx as πLM

x

is increasing up to T x.

12



Proof of Lemma 4

(B1) The proof of case (B1) is identical to the proof of case (A1) above.

(B2) is proved in the main text.

(B3) T x ≤ 1 − ky ≤ TC
x implies that firm x must compare πLM

x (1 − ky) to
πC
x (T

C
x ) which are the two local maxima of the profit function, except if

kx is low, then the capacity might be the optimal choice.

(B4) Given the condition T x < 1− ky, the constraint (PC) binds on [0, 1− ky].
The profit function πLM

x is increasing up to 1 − ky since TLM
x > 1 − ky.

Moreover, πLM
x (1 − ky) > πC

x (1 − ky) and also πC
x is decreasing above

1− ky.

(B5) Given the condition T x < 1− ky, the constraint (PC) binds on [0, 1− ky].
The unconstrained optimum at TLM

x (< 1− ky) is feasible for x whenever
its capacity is sufficiently large.

Proof of Proposition 1 The proof builds heavily on the results of Lemmas
3, 4 that identify parameter regions in which one of the 5 potential equilibrium
strategies dominate any other strategy for a given firm. In the following we
check the conditions of the 15 possible combinations of the potentially dominat-
ing strategies of the two firms and determine whether they are compatible or not.

Firstly, notice that any case where kx + ky ≤ 1 is trivial: the firms do not have
sufficient capacity to cover the market, they can never enter into competition.
Hence πi = πLM

i and the only possible equilibrium is both firms playing
min(TLM

i , ki).

Consider the 5 cases in which firm x plays TLM
x :

TLM
y : When firm y plays TLM

y both firms play v/2t and their price is equal to
ex = ey = v/2. This may only happen if the conditions of (A1) or (B1) are
satisfied for both firm. Those conditions imply ei > 3

2v − t which in turn
implies v/t < 1 which contradicts our main assumption of intermediate
degree of product differentiation. Therefore this case will never arise in
equilibrium.

TC
y : Firm x playing TLM

x while firm y plays TC
y can never happen since by

definition this would entail (IR) binding for firm y and slack for firm x
which is a contradiction.

T y: Firm y cannot play T y for the same reason it cannot play TC
y .

1− kx: Firm y playing 1 − kx is incompatible with x playing TLM
x . Notice that

the latter induces
v

2t
< kx ⇐⇒ 1− kx < 1− v

2t
= T y

where the last equality follows from ex = v/2. But the inequality above
contradicts with (B2), (B3) and (B4) so 1 − kx can never be optimal for
firm y.
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ky: Firm y playing ky is the only case that arises in equilibrium when firm
x plays TLM

x . Notice that ex = v/2 and ey = v − t · ky. The optimality
conditions imply ky < 1− v/2t. Also, it is easy to see that

1− TC
y < 1− T y < 1− TLM

y

which means by Lemma 4 that y should play min(T y, ky). Since
T y = 1− v/2t it is indeed optimal for firm y to play ky.

The conditions for a (TLM
x , ky)-type equilibrium are hence the following:

kx > v/2t and ky < 1− v/2t. Notice that these are exactly the conditions
required for case (B5).

Now consider the 4 cases where firm x plays 1 − ky. (The remaining fifth such
case is symmetric to one case analyzed above.) This may only be optimal for the
firm if one of the conditions (B2), (B3) or (B4) holds. Notice that it is common
among these conditions that T x ≤ 1− ky, moreover, 1− ky is only played when
(PC) binds so ex = v − t · (1− ky).

ky: If firm y plays ky, ey = v − t · ky always holds. Conditions for (B2) imply
ey <

4
3v − t and T

C
x < 1 − ky which imply 1 − v/3t < ky < 1 − v/3t so

(B2) is not compatible with ky.

Conditions for (B3) require that πLM
x (1− ky) > πC

x (T
C
x ) which is equiva-

lent to

0 >
(v + t(1− ky))2

8t
− (v − (1− ky)(1− ky)) ⇐⇒ 0 > [v − 3t(1− ky)]2

which is impossible, so (B3) is also incompatible with ky.

Conditions for (B4) are in turn compatible with y playing ky. The condi-
tions for a (1− ky, ky)-type equilibrium are the following:

max(1− v

2t
,
v

3t
) < ky < min(1− v

3t
,
v

2t
) and kx + ky > 1.

T y: Notice that when firm y plays T y and firm x plays 1 − ky, T y = ky so
the cut-off value for firm y exactly coincides with its capacity. This means
that this case is identical to the one above.

TC
y : Notice that TC

y is only played by firm y if TC
y > T y which implies ex <

4
3v − t which is equivalent to ky < v/3t. However, TC

y < ky which entails
ky > v/3t is also necessary. This shows that TC

y is incompatible with firm
x playing 1− ky.

1− kx: Firm y playing 1− kx is incompatible with x playing 1− ky. Notice that
T y = ky and T x = kx. Moreover, the optimality of these strategies requires
T x ≤ 1 − kx and T y ≤ 1 − ky which then entails kx, ky ≤ 1/2 which is
impossible.

Now consider the 3 cases when firm x plays T x.
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T y: Notice that when firm y plays T y and firm x plays T x, the conditions
of optimality translate to ex + ey = 2v − t and also 4

3v − t < ey <
3
2v− t. Furthermore, conditions concerning the capacities require kx, ky ≥
min(1− v

3t ,
v
2t ).

ky: Firm y playing ky and firm x playing T x is possible only if ky = T y

otherwise the (IR) constraint would bind for the one firm but not for the
other. If this is true, the case is naturally identical to the case above.

TC
y : Firm y playing TC

y is impossible when firm plays T x because then the
constraint (IR) would be binding for firm x and slack for firm y which is
a contradiction.

Now consider the 2 cases when firm x plays TC
x .

TC
y : Both firms playing the competitive strategy leads to ex = ey = t and both

firms serving exactly 1/2 of the market. However, this requires product
differentiation to be low, v/t > 1.5 which case is not the object of the
present paper.

ky: Firm y playing ky and firm x playing TC
y is possible only if ky = TC

y

otherwise the (IR) constraint would bind for the one firm but not for the
other. If this is true, the case is naturally identical to the case above.

The remaining case is when both firms play up to their capacity. Of course this
is impossible when kx+ky > 1. Otherwise the (kx, ky)-type equilibrium is played
which is already described above.
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