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Abstract

This paper considers the estate division problem from a non-cooperative perspective. The integer
claim game initiated by O’Neill (1982) and extended by Atlamaz et al. (2011) is generalized by
allowing for an arbitrary sharing rule to divide every interval among the claimants. Our main
focus is on games that use the constrained equal awards rule, the constrained equal losses rule,
or the Talmud rule as sharing rule. A full characterization of the set of Nash equilibria with
corresponding payoffs is obtained for these games. It is shown that for a subset of problems, the
Talmud rule is the only rule from a particular family of rules that always results in an equilibrium
payoff. A variation on the claim game is considered by allowing for arbitrary instead of integer
claims.

1 Introduction

The estate division problem, also known as bankruptcy problem or rationing problem, concerns the
issue of dividing an estate among a group of claimants who have entitlements to the estate, when
the sum of these entitlements exceeds the size of the estate. A seminal paper on this problem is
O’Neill (1982). Subsequently, most research has focused on comparing different solution rules by
their properties. For an overview of this normative, axiomatic approach, see Thomson (2003).

The estate division problem can also be approach strategically, i.e., by a non-cooperative game.
O’Neill (1982) already formulates a non-cooperative game, associated with an estate division prob-
lem, in which players can use their entitlements to claim specific parts of the estate. More precisely,
think of an estate with size E as an interval [0, E]. Each player can partition this interval into
finitely many subintervals and on each of those subintervals put a claim such that the total amount
claimed is equal to his entitlement. O’Neill (1982) considers the Nash equilibria of this game. At-
lamaz et al. (2011) extend this game by allowing for multiple claims on every subinterval. Then
every subinterval is divided among the players according to the proportional rule with respect to
the claims. We generalize their game by allowing for other sharing rules to divide the subintervals.

We focus on the rules from the TAL-family (Moreno-Ternero and Villar, 2001) as sharing rules.
This family of rules contains three of the best-known rules, namely the constrained equal awards
rule, the constrained equal losses rule and the Talmud rule. See Herrero and Villar (2001) for a
comparative analysis between these three solutions and the proportional rule. The constrained
equal awards and the constrained equal losses rules implement the idea of equal division, the
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former rule with respect to awards and the latter rule with respect to losses. The Talmud rule (first
formulated by Aumann and Maschler, 1985) combines the underlying ideas of these two rules. The
Talmud rule behaves like the constrained equal awards rule if the estate is less than half of the total
entitlements and like the constrained equal losses rule if the estate is larger than half of the total
entitlements.

Although we use the estate division terminology, our model has applications other than the
division of a heritage or the leftovers of a bankrupt firm. For instance, think of the interval
[0, E] as representing a continuum of uniformly distributed consumers (cf. Hotelling, 1929), and
of the claimants as firms who provide services to the consumers, with total services equal to the
entitlements. Every claim can be thought of as an investment in a particular consumer segment.
Since we allow for multiple claims, this interpretation allows for competitive investments by different
firms in the same consumer segment. As we can choose the sharing rule, it is possible to allow for
different forms of competition among the firms. Aside from proportional division of the consumers,
one could think of a form of competition in which the firms that invest maximally in a given
segment, equally share the consumers in that segment – this is achieved by using the constrained
equal awards rule in our model. Or one could imagine a competition in which all investing firms
equally share a segment – achieved by using the constrained equal losses rule.

It is also possible (but postponed to future work) to extend to non-homogeneous preferences
over the estate, like in Pálvölgyi et al. (2010). This extension has several other applications like,
for example, land division problems (Berliant et al., 1992). Still other applications are political
elections (cf. Merolla et al., 2005) or auctions (cf. Cramton et al., 2003).

Our main focus is on restricted estate division problems, in which individual entitlements do
not exceed the size of the estate. In fact, for the sharing rules we consider, the unrestricted
problem can be solved conveniently with the help of the restricted problem. For the case in which
claims are integer-valued, we characterize all Nash equilibria of the associated claim game and
the corresponding payoffs in case we use the constrained equal awards rule, the constrained equal
losses rule or the Talmud rule as the sharing rule. Then we compare these equilibria and find
that for a subset of estate division problems (those for which the estate is larger than half of the
total entitlements), the equilibria and associated payoffs are the same, independent of the sharing
rule. We show that the Talmud rule is the only rule from the TAL-family that always results in an
equilibrium payoff for these kind of problems. This result can be seen as an equilibrium argument
to use the Talmud rule for the problems under consideration.

We also investigate what happens if we relax the assumption of placing integer-valued claims
and allow for arbitrary claim heights. Unlike for the proportional case (Atlamaz et al., 2011), the
claims profile in which every player has a uniform claim over the estate, is usually not the unique
equilibrium claims profile.

The organization of the paper is as follows. Section 2 explains the basic model and the relevant
sharing rules. In Section 3, we consider restricted problems and claim games in which players
are allowed to place integer-valued claims; in Section 4, players are allowed to place arbitrary
claims. Section 5 analyzes the relation between restricted and unrestricted problems and Section 6
concludes.
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2 The model

The set of players is N = {1, . . . , n}, where n ≥ 2. An estate division problem is a pair (E, c), where
E ∈ R, E > 0, is the estate and c = (c1, . . . , cn) ∈ RN with ci > 0 for all i ∈ N and

∑
i∈N ci ≥ E,

is the vector of entitlements. A payoff vector for (E, c) is a vector x = (x1, . . . , xn) ∈ RN+ with∑
i∈N xi ≤ E, where xi is the payoff to player i, and R+ := [0,∞).
The purpose of this paper is to find payoff vectors for estate division problems as equilibrium

outcomes of a suitable non-cooperative game. To this end, we first define a sharing rule to be a
function f that assigns to every b ∈ RN+ a vector f(b) ∈ [0, 1]N such that

∑
i∈N fi(b) ≤ 1. Given

a sharing rule f we associate with an estate division problem (E, c) a claim game, denoted by
(E, c, f). First, a strategy of player i ∈ N in this claim game consist of a finite division of the
interval [0, E] into subintervals and on each subinterval a non-negative number of claims, such that
the total amount claimed is equal to ci. It will be without loss of generality to assume that the
strategies of all players have the same division of [0, E] in common, since otherwise we can consider
the common refinement of the player divisions instead. The following definition therefore introduces
so-called claims profiles and, based on these, the game (E, c, f).

Definition 2.1. A claims profile for problem (E, c) is a triple (y, β,m), where

(i) m ∈ N,

(ii) y = (y0, . . . , ym) ∈ Rm+1 with 0 = y0 < y1 . . . < ym−1 < ym = E,

(iii) β = (β1, . . . , βn) with βi : {1, . . . ,m} → R+ such that

m∑
t=1

βi(t) · (yt − yt−1) = ci for all i ∈ N .

With a slight abuse of language, we refer to the interval (yt−1, yt) as interval t. We write β(t) =
(βi(t))i∈N , where βi(t) is interpreted as the amount that player i claims on interval t; and we write
M = {1, . . . ,m}. We now use the sharing rule f to distribute every interval t among the claimants
of the interval. Specifically, fi(β(t)) is the share of player i of interval t, and player i’s payoff is

determined by the payoff function ufi : (y, β,m) 7→ ufi (y, β,m) ∈ R defined by

ufi (y, β,m) =
∑
t∈M

fi(β(t)) · (yt − yt−1)

for every claims profile (y, β,m). We write uf = (uf1 , . . . , u
f
n). This concludes the definition of the

game (E, c, f).

Atlamaz et al. (2011) analyze this game with the proportional rule as the sharing rule. We gen-
eralize their results by considering different sharing rules. More precisely, we focus on sharing rules
derived from a particular family of rules, the TAL-family, to which the constrained equal awards
rule, the constrained equal losses rule and the Talmud rule belong. For the original definitions of
these rules see Remark 2.6

We first describe the constrained equal awards rule fCEA as a sharing rule.
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Definition 2.2. For every b ∈ RN+ and every i ∈ N ,

fCEAi (b) =

{
bi if

∑
j∈N bj < 1,

min{bi, λ} if
∑

j∈N bj ≥ 1,

where λ is the unique solution to the equation
∑

j∈N min{bj , λ} = 1.

The constrained equal awards rule assigns equal shares to all claimants subject to no one
receiving more than his claim. Note that fCEA(0, . . . , 0) = (0, . . . , 0). When used in a claim game
this implies that if a part (an interval) of the estate is not claimed, then it is not distributed. We

write uCEA instead of uf
CEA

.
The constrained equal losses rule fCEL (as a sharing rule) is defined as follows.

Definition 2.3. For every b ∈ RN+ and every i ∈ N ,

fCELi (b) =

{
bi if

∑
j∈N bj < 1,

max{0, bi − µ} if
∑

j∈N bj ≥ 1,

where µ is the unique solution to the equation
∑

j∈N max{0, bj − µ} = 1.

The constrained equal losses rule focuses on the loss each claimant incurs. The rule divides
these losses equally among all claimants subject to no one receiving a negative amount. Again, in
the claim game, if a part of the estate is not claimed, then it is not distributed. We write uCEL

instead of uf
CEL

.
The sharing rules from the TAL-family fθ, identified by a single parameter θ ∈ [0, 1], are defined

as follows.

Definition 2.4. Let θ ∈ [0, 1]. For every b ∈ RN+ and every i ∈ N ,

fθi (b) =


bi if

∑
j∈N bj < 1,

max{θbi, bi − µ} if
∑

j∈N bj ≥ 1 and θ
∑

j∈N bj < 1,

min{θbi, λ} if θ
∑

j∈N bj ≥ 1,

where µ and λ are the unique solutions to the equations
∑

j∈N max{θbj , bj−µ} = 1 and
∑

j∈N min{θbj , λ} =
1, respectively.

Every rule from the TAL-family combines the principles of the constrained equal awards rule
and the constrained equal losses rule. Namely, if the estate available does not exceed θ times the
aggregate claims, no one receives more than a fraction of θ of his claim. In this case, the constrained
equal awards rule is applied with θb as claims. If the estate available exceeds θ times the aggregate
claim, everyone receives at least a θ-fraction of his claim and the remainder is divided using the
constrained equal losses rule with (1 − θ)b as claims. This family of rules generalizes the Talmud
rule, for which this switch happens exactly halfway, so for θ = 1

2 . For every θ ∈ [0, 1], we write uθ

instead of uf
θ
. Note that f1 = fCEA and f0 = fCEL. We refer to f

1
2 as the Talmud sharing rule,

and denote the corresponding payoff function by uT .
For completeness, we define the proportional rule fP (as a sharing rule), used in Atlamaz et al.

(2011).
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Figure 1: An illustration of the outcome of different sharing rules for b = (1, 1
2 ,

1
4). The height of

every bar represents the claim height and the number in the bar is the name of the player of that
claim. (a) The constrained equal awards rule: the height of the shaded area of the bar represents
the share of the player. (b) The constrained equal losses rule: the share of each player is represented
by the height of the shaded area of the bar. (c) The Talmud rule: every player receives a share of
1
2bi plus the height of the shaded area of the bar.

Definition 2.5. For every b ∈ RN+ and every i ∈ N ,

fPi (b) =

{
0 if bi = 0,

bi∑
j∈N bj

if bi > 0.

We denote the corresponding vector of payoff functions by uP .

Remark 2.6. The original constrained equal awards rule assigns to player i in an estate division
problem (E, c) the amount min{ci, λ}, where λ solves

∑
j∈N min{cj , λ} = E. Recall that, by

assumption,
∑

j∈N cj ≥ E. The original constrained equal losses rule assigns to player i the amount
max{0, ci − λ}, where λ solves

∑
j∈N max{0, cj − λ} = E. The original TAL-rule with parameter

θ ∈ [0, 1] assigns to player i the amount max{θci, ci − µ} if θ
∑

j∈N bj < E, and min{θci, λ} if
θ
∑

j∈N cj ≥ E, where µ and λ are the unique solutions to the equations
∑

j∈N max{θcj , cj−µ} = E
and

∑
j∈N min{θcj , λ} = E, respectively. The original proportional rule assigns the player i the

amount ci∑
j∈N cj

E.

The payoffs assigned by the original rules in Remark 2.6 are also obtained by applying the
associated sharing rules to the claims profile in which each player puts a constant claim ci

E on the
entire estate. We call this claims profile, the profile (y, β, 1), the uniform claims profile.

Example 2.7. Consider the estate division problem (E, c) with E = 4 and c = (4, 2, 1). The payoffs
assigned to the players by the (original) constrained equal awards rule, the constrained equal losses
rule and the Talmud rule are found by considering the uniform claims profile, that is, β(1) =
(1, 1

2 ,
1
4). Figure 1 illustrates the three sharing rules. The associated shares are fCEA(β(1)) =

(3
8 ,

3
8 ,

1
4), fCEL(β(1)) = (3

4 ,
1
4 , 0) and fT (β(1)) = (5

8 ,
1
4 ,

1
8). The corresponding payoffs are uCEA =

(11
2 , 1

1
2 , 1), uCEL = (3, 1, 0) and uT = (21

2 , 1,
1
2).
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Our purpose is to analyze Nash equilibrium outcomes of the claim game under different sharing
rules. The following definition is standard.

Definition 2.8. A claims profile (y, β,m) is a Nash equilibrium profile (NEP) in (E, c, uf ) if each
player maximizes his own payoff, given his opponents’ claims.

Hence, in an NEP, no player can increase his payoff by reshuffling his claims. Let the marginal
gain or loss be defined as the gain or loss per unit interval from increasing or decreasing one’s
claim on that interval with a smallest claim unit, which is 1 in the case that only integer claims
are allowed, and infinitesimal otherwise. Then, in an NEP, the marginal loss of decreasing one’s
claim on some interval should be at least as large as the marginal gain of increasing one’s claim on
some other interval. For proportional sharing this condition is also sufficient for a claims profile to
be an NEP (Atlamaz et al., 2011), but this does not hold in general. Suppose, as an example, that
claims are restricted to be integer-valued – a case that we will study extensively in Section 3 – and
that the constrained equal losses rule is used as the sharing rule; and suppose that βi(t) = 2 for
some player i and interval t, whereas βj(t) = 0 for all j 6= i. If player j 6= i places a claim of size 1
on t his gain on t is zero, hence his marginal gain is zero. If, however, j places a claim of size 2 on
t his gain on t is 1

2 and, thus, his average gain is 1
4 (times the length of interval t). In Section 3 we

present a characterization of NEP in terms of average – rather than marginal – gains and losses in
claim games with fθ, 0 ≤ θ ≤ 1, as sharing rules.

We are interested in the payoffs associated with NEP’s with respect to different sharing rules.
For every claim game (E, c, f) we denote the set of equilibrium payoffs by

U(E, c, f) =
{(
ufi (y, β,m)

)
i∈N
| (y, β,m) is an NEP in (E, c, f)

}
.

A restricted problem is an estate division problem (E, c) with ci ≤ E for all i ∈ N . O’Neill
(1982) considers claim games with the proportional sharing rule for restricted problems, in which
βi(t) ∈ {0, 1} for each claims profile (y, β,m), each i ∈ N , and each t ∈M . We generalize to multiple
and not per se integer claims and different sharing rules. We start with restricted problems and
multiple integer claims in the next section.

Notation. We introduce some convenient notation, related to a claims profile (y, β,m). For all
t ∈M , we denote P (t) = {i ∈ N | βi(t) > 0}, βmin(t) = min i∈P (t) βi(t), βmax(t) = max i∈P (t) βi(t),
and βN (t) =

∑
i∈N βi(t).

3 Restricted problems and integer claims

In this section we consider restricted problems (E, c), i.e., ci ≤ E for all i ∈ N , and integer claims
in each associated claim game, i.e., βi : M → {0} ∪ N for every claims profile (y, β,m) and every
i ∈ N . This is the setting also considered in O’Neill (1982), with the difference that βi(t) > 1 is
allowed.

In the following lemma we characterize Nash equilibrium profiles (Definition 2.8) for claim
games with sharing rule fθ, in terms of average gains and losses. Fix 0 ≤ θ ≤ 1 and let (y, β,m)
be a claims profile. For i ∈ N and t ∈M with i ∈ P (t), and ∆ ∈ N with 1 ≤ ∆ ≤ βi(t), define

ALi(∆, t) =
uθi (y, β,m)− uθi (y, β′,m)

(yt − yt−1)∆
,
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where (y, β′,m) is a claims profile in the problem (E, c′) such that β′ is equal to β except that
β′i(t) = βi(t)−∆, and c′ is equal to c except that c′i = ci − (yt − yt−1)∆. Similarly, define

AGi(∆, t) =
uθi (y, β

′′,m)− uθi (y, β,m)

(yt − yt−1)∆
,

where (y, β′′,m) is a claims profile in the problem (E, c′′) such that β′′ is equal to β except that
β′′i (t) = βi(t) + ∆, and c′′ is equal to c except that c′′i = ci + (yt − yt−1)∆. Hence, ALi(∆, t) is
the average loss to player i ∈ N of removing ∆ claims from interval t ∈ M , and AGi(∆, t) is the
average gain of adding ∆ claims to interval t ∈M , both measured per unit interval. Observe that
for ∆ = 1 we obtain the marginal loss and the marginal gain.

Lemma 3.1. Let θ ∈ [0, 1]. A claims profile (y, β,m) is an NEP in (E, c, fθ) if and only if
βN (t) ≥ 1 for all t ∈M and for every i ∈ N we have

min
t∈M :i∈P (t)

min
∆∈{1,...,βi(t)}

ALi(∆, t) ≥ max
t∈M

max
∆∈N

AGi(∆, t). (1)

Proof. (i) Let claims profile (y, β,m) be an NEP. Suppose, contrary to what we want to show,
that there exists a t ∈ M with βN (t) = 0. Since

∑
i∈N ci ≥ E, there exists a t′ ∈ M such that

βN (t′) ≥ 2. Suppose i ∈ P (t′). Player i’s gain from putting a claim of size 1 on interval t equals
1, whereas his loss incurred from claiming interval t′ one time less is always strictly less than 1,
since βN (t′) ≥ 2.1 Hence, player i can improve, which contradicts that (y, β,m) is an NEP. Thus,
βN (t) ≥ 1 for all t ∈M .

Next suppose, contrary to (1), that there is a player i for which there exist t, t′ ∈ M with
i ∈ P (t), ∆1 ∈ {1, . . . , βi(t)} and ∆2 ∈ N, such that ALi(∆1, t) < AGi(∆2, t

′). Taking away ∆1

claims from (a part of) interval t and placing ∆2 claims on (a sufficiently small part of) interval t′

implies an improvement for player i, which contradicts that (y, β,m) is an NEP.
(ii) Now assume that βN (t) ≥ 1 for all t ∈M and (1) is satisfied. We show that (y, β,m) is an

NEP.
Consider a claims vector β̄i 6= βi for player i ∈ N (potentially resulting in a different partition

of [0, E], but in that case we consider the common refinement of both partitions). We argue that
the payoff from claims vector βi is at least as large as the payoff from β̄i. The difference in payoff
between the two claims profiles arises from intervals on which the numbers of claims of player i
differ. Let Ml = {t ∈M | βi(t) > β̄i(t)} and Mh = {t ∈M | βi(t) < β̄i(t)}, respectively denote the
intervals with a lower and a higher amount of claims when going from βi to β̄i. Note that the total
difference in claim on intervals from Ml is equal to the total difference in claim on intervals Mh,
because player i must use his full entitlement. Moreover, the average loss from intervals from Ml

is at least as high as the average gain from intervals from Mh, due to (1). Hence the claims vector
βi is a best response, as it results in a payoff at least as high as the payoff from all other claims
vectors.

In the rest of the paper we will often use (sometimes without explicit mentioning) Lemma 3.1
instead of Definition 2.8 when determining Nash equilibria of claim games based on sharing rules
from the TAL-family. The following lemma is useful for computing average gains and losses.

1In this argument and in many arguments in the sequel, we mean, implicitly, that a player may shift a claim
amount from a small enough subinterval of some interval s to a small enough subinterval of some interval s′.
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Lemma 3.2. Let θ ∈ [0, 1]. Let (y, β,m) be a claims profile for the game (E, c, fθ). Then for all
i ∈ N and t ∈M ,

min
∆∈{1,...,βi(t)}

ALi(∆, t) =

{
ALi(βi(t), t) if θβN (t) < 1 and i ∈ P (t),
ALi(1, t) if θβN (t) ≥ 1 and i ∈ P (t),

(2)

and

max
∆∈N

AGi(∆, t) =


max{AGi(1, t), AGi(βmax(t)− βi(t), t),
AGi(βmax(t) + 1− βi(t), t)}

if θβN (t) < 1 and i /∈ Pmax(t)
AGi(1, t) otherwise .

(3)

Proof. We first prove (2). For intervals t with θβN (t) < 1, fθi (βi(t)) = θβi(t) if i /∈ Pmax(t). So the
marginal loss for player i ∈ P (t) equals θ if i /∈ Pmax(t) and is strictly larger than θ if i ∈ Pmax(t).
Thus, the marginal loss either decreases or remains constant as i removes more claims from t. Hence
in all such situations, the minimum average loss is obtained when i reduces his claim to zero, i.e.,
∆ = βi(t).

On the other hand, if θβN (t) ≥ 1 then the marginal loss for player i ∈ P (t) never decreases as i
removes claims from t such that θβN (t) ≥ 1. Moreover, the marginal loss is at most θ if θβN (t) ≥ 1
and at least θ if θβN (t) < 1. These two observations combined imply that the minimum average
loss on those intervals is equal to the marginal loss for player i, i.e., ∆ = 1.

We next prove (3). If θβN (t) < 1 and i /∈ Pmax(t) then the maximum average gain on the
interval is either the marginal gain (in case θ (βN (t) + βmax(t)− βi(t)) ≥ 1), or the average gain of
increasing the claim to βmax(t) (such that i shares the remainder of 1− θ (βN (t) + βmax(t)− βi(t))
with the other players j ∈ Pmax(t)), or the average gain of increasing his claim to βmax(t) + 1 (such
that i is the only player with the largest claim and thus has no incentive to increase his claim any
further).

In all other situations, where either i ∈ Pmax(t) (no incentive to add more than one claim) or
θβN (t) ≥ 1 (marginal gain can only decrease if i adds more claims), the maximum average gain is
equal to the marginal gain of player i.

3.1 Constrained equal awards

In this subsection we analyze the game (E, c, fCEA). Since claims are restricted to be integer valued
and, thus, βi(t) ≥ 1 for all i ∈ P (t), we obtain for each t ∈M :

fCEAi (β(t)) =

{
1
|P (t)| if i ∈ P (t),

0 otherwise.

The following lemma states that in an NEP each interval is claimed at most once by a player.

Lemma 3.3. Let (y, β,m) be an NEP. Then βi(t) ∈ {0, 1} for every i ∈ N and t ∈M .

Proof. Let (y, β,m) be an NEP. Suppose, contrary to what we wish to prove, that βi(t) > 1 for
some i ∈ N and some t ∈ M . Since ci ≤ E, there exists an interval t′ ∈ M with βi(t

′) = 0. The
loss of removing one claim from t is zero and thus there is a positive gain for player i when shifting
one claim from (a part of) t to (a part of) t′, contradicting the assumption that (y, β,m) is an
NEP.
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Since each interval t is claimed at most once by each player in equilibrium, we end up in the
same situation as considered by O’Neill (1982). We obtain the following theorem.

Theorem 3.4. Let (y, β,m) be a claims profile for the restricted problem (E, c). Equivalent are:

(i) (y, β,m) is an NEP in (E, c, fCEA),

(ii) there exists a k ∈ N such that for all t ∈ M , |P (t)| ∈ {k, k + 1} and βi(t) ∈ {0, 1} for every
i ∈ N .

Proof. Suppose (y, β,m) is an NEP in (E, c, fCEA). Since
∑

i∈N ci ≥ E, every part is claimed at
least once. Lemma 3.3 implies that every player puts at most one claim on each interval. Consider
interval t with the minimum number of claimants and let k = |P (t)|. It is sufficient to show that
each interval has either k or k + 1 claimants. Suppose, contrary to what we wish to prove, that
there exists an interval t′ ∈ M which is claimed at least k + 2 times. If player i with βi(t

′) = 1
claims (a part of) t instead of t′, his net gain will be at least 1

k+1 −
1

k+2 = 1
(k+1)(k+2) > 0, which is

a contradiction.
For the converse implication, suppose there exists a k ∈ N such that for all t ∈ M , |P (t)| ∈

{k, k + 1} and βi(t) ∈ {0, 1} for every i ∈ N . The marginal gain for every player of adding a claim
to an interval yet unclaimed by that player is at most 1

k+1 , and the marginal gain of placing a

second claim is zero. As the marginal loss for every player is at least 1
k+1 , (1) in Lemma 3.1 is

satisfied. Hence, this claims profile is an NEP.

The result that each interval is claimed either k or k + 1 times is similar to the result found
by Atlamaz et al. (2011) for the proportional case. In that case, however, it is possible that a
player claims an interval twice, which does not happen in the equilibria in the game (E, c, fCEA).
This means that the set of NEPs when using the constrained equal awards rule is a subset of the
equilibria found for the proportional rule. Moreover, if βi(t) ∈ {0, 1} for every i ∈ N then both
rules result in the same payoff vectors. Thus, we have the following result.

Corollary 3.5. Let (E, c) be a restricted problem. Then

U(E, c, fCEA) ⊆ U(E, c, fP ).

In order to describe the associated payoff vectors, let R ∈ R denote the length of the part that
is claimed k + 1 times and E − R the length of the part that is claimed k times. Then we may
assume 0 ≤ R < E and we can write∑

i∈N
ci = k(E −R) + (k + 1)R = kE +R.

Notice that k and R are uniquely determined by E and
∑

i∈N ci. To find the payoff of each player,
let ri denote the part of player i’s claim invested in intervals with k+ 1 claims. Then, ci− ri is put
on intervals with k claims. Clearly, 0 ≤ ri ≤ ci, ri ≤ R and the sum of all ri should equal (k+ 1)R.
On the other hand, ci − ri ≤ E −R. Summarizing, each NEP corresponds to a vector (r1, . . . , rn)
satisfying:∑

i∈N
ri = (k + 1)R and max{ci − (E −R) , 0} ≤ ri ≤ min{ci, R} for every i ∈ N.

9



Conversely, each such vector gives rise to an NEP: distribute parts of the entitlement with sizes ri
on the interval [0, R] and distribute the remaining parts of the entitlements ci − ri on the interval
[R,E] such that every part is claimed at most once by each player, [0, R] is claimed by k + 1
players, and [R,E] is claimed by k players. Note that although there are many NEPs associated
with the same vector (r1, . . . , rn), the corresponding payoff vector is the same in all of them, namely
v = (vi)i∈N , given by

vi =
ri

k + 1
+
ci − ri
k

=
ci
k
− ri
k(k + 1)

for every i ∈ N . This implies that the set of payoff vectors attainable by NEPs is determined by
linear inequalities and, in particular, is a polytope.

Example 3.6. Consider the restricted problem (E, c) with E = 4, n = 4, and c = (4, 3, 2, 1). For
this problem, k = 2 and R = 2, and thus r1 = 2, 1 ≤ r2 ≤ 2, 0 ≤ r3 ≤ 2 and 0 ≤ r4 ≤ 1, while
r1 + r2 + r3 + r4 = 6. Hence, in an NEP in (E, c, fCEA) player 1’s payoff is 12

3 , player 2’s payoff
is in [11

6 , 1
1
3 ], player 3’s payoff is in [2

3 ,
5
6 ] (since, more precisely, 1 ≤ r3 ≤ 2, as r3 = 0 contradicts

with r1 + r2 + r3 + r4 = 6), and player 4’s payoff is in [1
3 ,

1
2 ]. An example of such a claims profile is

represented in Figure 2. The corresponding equilibrium payoffs are given by (12
3 , 1

1
6 ,

5
6 ,

1
3).

1 2 30

2 3

3 4

t = 1 t = 2 t = 3 t = 4 4

1 1 1 1

2 2

Figure 2: An illustration of a Nash equilibrium claims profile (y, β,m) for problem (E, c) with
E = 4 and c = (4, 3, 2, 1). Each square corresponds to a claim: the number in the square is the
name of the player who puts that claim on the interval. Here r1 = 2, r2 = 2, r3 = 1 and r4 = 1.

3.2 Constrained equal losses

In this subsection we analyze the game (E, c, fCEL). We write Pmax(t) = {i ∈ N | βi(t) = βmax(t)}
for all t ∈ M . Since βi(t) ∈ N for every i ∈ P (t), only those players i ∈ Pmax(t) obtain a positive
share from interval t. Observe the resemblance with a first-price auction in which the winners have
equal probability to win the object. More precisely, for every i ∈ N and all t ∈M :

fCELi (β(t)) =

{
1

|Pmax(t)| if i ∈ Pmax(t),

0 otherwise.

For the next two lemmas, let claims profile (y, β,m) be an NEP of (E, c, fCEL). The first lemma
implies that every part is claimed by at most two different players.

Lemma 3.7. For all t ∈M , we have |Pmax(t)| ∈ {1, 2}.

10



Proof. Since βN (t) ≥ 1 for all t ∈ M , we suppose that |Pmax(t)| ≥ 3 for some t ∈ M and derive a
contradiction. Consider a player i with βi(t) = βmax(t). The marginal loss on t is equal to 1

|Pmax(t)|
and the marginal gain on t is equal to 1− 1

|Pmax(t)| . Since |Pmax(t)| ≥ 3, we have that the marginal
loss is smaller than the marginal gain, which contradicts Lemma 3.1.

The second lemma states that every interval is claimed at most once by the same player.

Lemma 3.8. For every i ∈ N and all t ∈ M , we have βi(t) ∈ {0, 1}. Consequently, |Pmax(t)| =
|P (t)| for all t ∈M .

Proof. The proof is by contradiction. Suppose there exists an interval t ∈M with βmax(t) ≥ 2. By
Lemma 3.7, |Pmax(t)| ∈ {1, 2}. We derive a contradiction for both cases.

Suppose |Pmax(t)| = 1 and consider player i with βi(t) = βmax(t) ≥ 2. If |P (t)| = 1, then
player i can reduce his claim on t without loss and achieve a positive gain by putting the free claim
amount on a part of the estate for which he is not yet the sole winner. If |P (t)| > 1 then player
j ∈ P (t) \ Pmax(t) can reduce his claim on t without any loss and put the free claim amount on a
part of the estate for which he is not yet the sole winner.

Suppose that |Pmax(t)| = 2 with βi(t) = βj(t) ≥ 2 for i, j ∈ Pmax(t) and i 6= j. The minimum
average loss of i on t is 1

2βi(t)
, while the marginal gain equals 1

2 . Since βi(t) ≥ 2, this contradicts
Lemma 3.1

Since βi(t) ∈ {0, 1} for all i ∈ N and t ∈ M , the second statement of the lemma follows
immediately.

The main result of this subsection is the following theorem, which presents a full characterization
of the NEPs.

Theorem 3.9. Let (y, β,m) be a claims profile for the restricted problem (E, c). Equivalent are:

(i) (y, β,m) is an NEP in (E, c, fCEL),

(ii) for all t ∈M , |P (t)| ∈ {1, 2} and βi(t) ∈ {0, 1} for every i ∈ N .

Proof. Suppose (y, β,m) is an NEP in (E, c, uCEL). Lemmas 3.7 and 3.8 imply that |P (t)| ∈ {1, 2}
and βi(t) ∈ {0, 1} for every i ∈ N and all t ∈M .

Conversely, suppose for all t ∈ M , |P (t)| ∈ {1, 2} and βi(t) ∈ {0, 1} for every i ∈ N . If
|P (t)| = 1, player i ∈ P (t) is never able to gain by deviating from t. If |P (t)| = 2, player i ∈ P (t)
faces a marginal loss of 1

2 if he reduces his claim. The marginal gain of placing one claim on either
the same or a different interval is at most 1

2 and the average gain of placing two claims is also at
most 1

2 . Hence, Lemma 3.1 implies that (y, β,m) is an NEP.

Theorem 3.9 shows that the set of NEPs when using the constrained equal losses rule is a
subset of the equilibria found for the constrained equal awards rule, which was again a subset of
the equilibria found for the proportional rule. Moreover, since βi(t) ∈ {0, 1} for every i ∈ N , all
three rules result in the same payoff vectors. We thus have the following result.

Corollary 3.10. Let (E, c) be a restricted problem. Then

U(E, c, fCEL) ⊆ U(E, c, fCEA) ⊆ U(E, c, fP ).

Another consequence of the Theorem 3.9 is an existence condition for NEP.
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Corollary 3.11. An NEP exists in the game (E, c, fCEL) if and only if
∑

i∈N ci ≤ 2E.

Proof. The only-if part follows from Theorem 3.9. For the if-part, note that if
∑

i∈N ci ≤ 2E,
we can iteratively, from left to right, put the claim of each player on a part of the estate which
is not claimed yet and start over again on the left if the complete estate is claimed once. Since
we consider restricted problems, we will end up with a claims profile satisfying the conditions of
Theorem 3.9.

The final result in this subsection describes every payoff vector in the set of equilibrium payoff
vectors.

Corollary 3.12. The following two statements are equivalent:

(i) v = (vi)i∈N ∈ U(E, c, fCEL),

(ii) there exists a vector r = (r1, . . . , rn) such that 0 ≤ ri ≤ min{ci,
∑

i∈N ci−E} for every i ∈ N
and

∑
i∈N ri = 2

(∑
i∈N ci − E

)
with vi = ci − 1

2ri for every i ∈ N .

Proof. Suppose (y, β,m) is an NEP in (E, c, fCEL). In view of Theorem 3.9, we let R ∈ R denote
the length of the part that is claimed by two different players and E − R the length of the part
that is claimed only once. Since

∑
i∈N ci = 2R + (E −R), we have R =

∑
i∈N ci − E. To find the

payoff of each player, let ri denote the part of player i’s claim invested in intervals with two claims.
Then, ci− ri is put on intervals with only one claim. Clearly, 0 ≤ ri ≤ ci, ri ≤ R and the sum of ri
should equal 2R. These are exactly the conditions of the corollary. The corresponding payoff for
each player i in such a claims profile is equal to

1

2
ri + ci − ri = ci −

1

2
ri.

Conversely, suppose there exists a vector r satisfying the above conditions. Each such vector r
gives rise to an NEP: distribute parts of the entitlement with sizes ri on the interval [0,

∑
i∈N ci−E],

such that two players claim each part once; and distribute the remaining parts of the entitlements
ci − ri on the interval [

∑
i∈N ci − E,E], such that each part is claimed once by one player. To

see that this distribution is feasible, note that since
∑

i∈N (ci − ri) =
∑

i∈N ci − 2
(∑

i∈N ci − E
)

=
2E−

∑
i∈N ci together with ri ≤ ci, implies that ci− ri ≤ 2E−

∑
i∈N ci. Hence we found a feasible

claims profile that satisfies the conditions of Theorem 3.9, that is, we have an NEP.

3.3 TAL-family

In this subsection we consider the game (E, c, fθ) with θ ∈ [0, 1] and generalize some of the results
of the previous two subsections.

First, we assume θ ∈ [1
2 , 1]. Let (y, β,m) be a claims profile. Note that if |P (t)| ≥ 2 for t ∈M ,

then the constrained equal awards rule with θβ(t) as entitlements is used to determine the shares.
As θ ≥ 1

2 , this implies that the interval is equally divided among the claimants. Thus, for θ ∈ [1
2 , 1]

and for each i ∈ N and each t ∈M :

fθi (β(t)) =

{
1
|P (t)| if i ∈ P (t),

0 otherwise.

12



This is exactly the same sharing rule as for the game (E, c, fCEA). Accordingly, the same analysis
applies.

If θ ∈ [1
3 ,

1
2 ], then the induced sharing rule is different, but we still obtain the same set of NEPs.

(We omit the formal proof, in which the main observation is that if |P (t)| = 2 for t ∈ M , then
βi(t) ≤ 2 for all i ∈ N and otherwise βi(t) ≤ 1 for all i ∈ N and all t ∈ M . This is mainly due to
the constrained equal awards part of these rules.)

Lemma 3.13. Any rule in the TAL-family with θ ∈ [1
3 , 1] results in the same set of NEPs and in

the same set of equilibrium payoffs in the game (E, c, fθ), equal to U(E, c, fCEA).

The following theorem characterizes all NEPs for estate division problems with
∑

i∈N ci ≤ 2E,
for any TAL-rule fθ with 0 ≤ θ ≤ 1.

Theorem 3.14. Let (E, c) be a restricted problem with
∑

i∈N ci ≤ 2E, let θ ∈ [0, 1], and let
(y, β,m) be a claims profile. Equivalent are:

(i) (y, β,m) is an NEP in (E, c, fθ),

(ii) |P (t)| ∈ {1, 2} and βi(t) ∈ {0, 1} for all for all t ∈M and i ∈ N .

Proof. By Theorems 3.4 and 3.9 and Lemma 3.13, we can restrict ourselves to θ ∈ (0, 1
3).

Suppose (y, β,m) is an NEP in (E, c, fθ) with θ ∈ (0, 1
3). Notice that βN (t) ≥ 1 for all t ∈ M .

Since we consider restricted problems, βN (t) = 1 if |P (t)| = 1. Hence it is sufficient to show that
βN (t) ≤ 2 for all t ∈M .

Suppose that βN (t) ≥ 3 for some t ∈ M . We obtain a contradiction by showing that (1) in
Lemma 3.1 is not satisfied. More precisely, since

∑
i∈N ci ≤ 2E there must exist an interval t′ with

|P (t′)| = 1. It is sufficient to prove that at least two players i ∈ P (t) have a marginal loss strictly
less than 1

2 on t, since this implies that at least one of them has a marginal gain of 1
2 on t′ by

putting a claim on t′, as |P (t′)| = 1; which establishes the contradiction. In order to do so, we
distinguish two cases: |P (t)| = 2 and |P (t)| ≥ 3.

For the first case, suppose that βN (t) ≥ 3 with |P (t)| = 2. If βi(t) = βj(t) ≥ 2 for i, j ∈ P (t)
and i 6= j, then both i and j’s shares are equal to 1

2 . So both i and j have a marginal loss strictly
less than 1

2 , as the share on t remains positive after removing one claim.
If, on the other hand, βi(t) > βj(t) = 1, then 0 < fj(β(t)) < 1

2 and thus 1
2 < fi(β(t)) < 1. Since

j’s share is strictly less than 1
2 , his loss of removing one claim is strictly less than 1

2 . If i reduces
his claim by one, then βi(t) ≥ βj(t) which means that i’s share remains at least 1

2 . Hence also his
loss in share is strictly less than 1

2 .
For the second case, assume that P (t) ≥ 3. Since fi(β(t)) > 0 for all i ∈ P (t), there must be at

least two players in P (t) with fi(β(t)) < 1
2 , and then these two players face a marginal loss strictly

less than 1
2 .

For the converse, assume that |P (t)| ∈ {1, 2} and βi(t) ∈ {0, 1} for all for all t ∈M and i ∈ N .
If |P (t)| = 1, player i ∈ P (t) is never able to gain by changing his claim on t. If |P (t)| = 2, player
i ∈ P (t) faces a marginal loss of 1

2 if he reduces his claim, whereas the average gain from placing
one or two claims is at most 1

2 . Hence this claims profile satisfies (1) in Lemma 3.1, and thus is an
NEP.

The only claim games that we have not discussed yet, are those associated to problems with∑
i∈N ci > 2E and a sharing rule fθ with 0 < θ < 1

3 . It turns out that in this case an NEP need
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not always exist. The precise existence conditions are still unclear, but the next lemma provides a
sufficient condition, namely a condition under which a claims profile with βN (t) ∈ {k, k + 1} and
βi(t) ∈ {0, 1} for all i ∈ N constitutes an NEP.

Lemma 3.15. Let
∑

i∈N ci > 2E. Let θ ≥ k2−k−1
k3−k , where k = max{k′ ∈ N |

∑
i∈N ci > k′E}. Then

there exists an NEP in (E, c, fθ).

Proof. Let (y, β,m) be a claims profile such that for all t ∈M , |P (t)| ∈ {k, k+1} and βi(t) ∈ {0, 1}
for all i ∈ N . We show that this profile is an NEP. We consider two cases: θ ≥ 1

k+1 and k2−k−1
k3−k ≤

θ < 1
k+1 .

First, suppose that θ ≥ 1
k+1 . Note that every interval t ∈ M with k + 1 claimants uses the

constrained equal awards rule as sharing rule, which implies that there is no incentive to put a
second claim on those intervals. Moreover, the loss of removing one claim is at least 1

k+1 (on an
interval with k + 1 claimants). This implies that claiming an unclaimed interval does not result in
a positive gain (as this gain is at most 1

k+1), and that the gain of placing a second claim is at most
2

k+1 −
1
k (on an interval with k claimants and if θ = 1

k+1), which is also not profitable. Hence the
claims profile is an NEP.

Second, suppose that k2−k−1
k3−k ≤ θ <

1
k+1 . The loss of removing one claim is at least 1

k+1 (on an
interval with k + 1 claimants). The only possible way for a player i to gain is by placing a second
claim on an interval t with k claimants and with i ∈ P (t) (in all other cases the maximum average
gain is at most 1

k+1). As θ(k + 1) < 1 and as i becomes the only player with two claims on the

interval, the gain of this second claim is equal to 1− θ(k− 1)− 1
k . Since θ ≥ k2−k−1

k3−k , we have that
1

k+1 ≥ 1− θ(k − 1)− 1
k and thus no deviation is profitable.

A consequence of Lemma 3.15 is that if θ ≥ 5
24 – which is the maximum attained by k2−k−1

k3−k ,
namely for k = 3 – then there always exists an NEP.

Another unsolved problem is the question of how to characterize NEPs for claim games (E, c, fθ)
with 0 < θ < 1

3 (in case they exist). The following example shows that such a characterization will
be different from the one for the games (E, c, fCEA) or (E, c, fP ). The claims profile in the example

is an NEP in (E, c, f
3
10 ), although it has a different form and payoffs compared to the equilibria of

the other two games.

Example 3.16. Consider the four-player problem (E, c) with E = 2 and c = (2, 2, 1, 1). Consider
the claims profile represented in Figure 3: let [0, 1] be claimed twice by player 1 and once by player
3, and let [1, 2] be claimed twice by players 2 and once by player 4. This claims profile satisfies the

condition in Lemma 3.1 for θ = 3
10 and thus is an NEP in (E, c, f

3
10 ). The corresponding payoff

vector is ( 7
10 ,

7
10 ,

3
10 ,

3
10). Note that since k = 3 and R = 0, the unique equilibrium payoff vector in

the game (E, c, fCEA) or in the game (E, c, fP ) is (2
3 ,

2
3 ,

1
3 ,

1
3), hence ( 7

10 ,
7
10 ,

3
10 ,

3
10) /∈ U(E, c, fP ).

14



0

1

1

3

1

2

2

4
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Figure 3: An illustration of a Nash equilibrium claims profile (y, β,m) for (E, c, u
3
10 ) with E = 2

and c = (2, 2, 1, 1). Each square corresponds to a claim: the number in the square is the name of
the player who puts that claim on the interval. Notice that both player 1 and 2 claim an interval
twice although R = 0.

3.4 Comparison of the results for restricted problems with integer claims

In order to compare the different characterizations of NEPs in claim games with integer claims,
associated with restricted problems, we assume that

∑
i∈N ci ≤ 2E. For these problems, Theorem

3.14 shows that existence of NEPs is assured for all rules from the TAL-family. Surprisingly, if we
compare the results of Atlamaz et al. (2011) with Theorem 3.14 for these estate division problems,
then we see that all considered rules: the proportional rule and all TAL-family rules, result in the
same set of NEPs. In these NEPs every player claims each interval at most once and each interval
is claimed by either one or two players. Moreover, for these claims profiles all considered rules yield
the same payoff vector. We obtain the following result.

Corollary 3.17. Let
∑

i∈N ci ≤ 2E. Then the proportional rule and any rule from the TAL-family
results in the same set of NEPs, and in the same set of equilibrium payoff vectors, as described in
Corollary 3.12.

Remark 3.18. If there are two players (n = 2) then it is easy to see that in an NEP the claims
should have minimal overlap. So the only choice for (r1, r2) is r1 = r2 = c1 +c2−E, resulting in the
unique equilibrium payoffs (E+c1−c2

2 , E+c2−c1
2 ). These payoffs coincide with the payoffs assigned by

concede-and-divide (Thomson, 2003).

The following example presents an estate division problem for which the Talmud rule is the
only rule from the TAL-family that assigns an equilibrium payoff vector to the problem. Also
the proportional rule does not result in an equilibrium payoff vector for this problem. (Atlamaz
et al., 2011, give a different example to show that the proportional rule need not be obtained in
equilibrium.)

Example 3.19. Consider the restricted problem (E, c) with E = 4 and c = (4, 2, 1), cf. Example
2.7. Since r1 = 3, r2 = 2 and r1 = 1, there is a unique equilibrium payoff vector (see Figure 4). The
payoffs in this equilibrium are equal to (21

2 , 1,
1
2). The constrained equal awards rule assigns the

payoff vector (11
2 , 1

1
2 , 1), the constrained equal losses rule assigns the payoff vector (3, 1, 0), and the

Talmud rule assigns the payoff vector (21
2 , 1,

1
2) to the problem (E, c), see Example 2.7. Moreover,

it can be shown that every rule from the TAL-family with θ ∈ [0, 1] assigns a payoff of exactly
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θ to player 3. Hence the only payoff vector attainable in equilibrium is assigned by the Talmud
rule. The payoff vector of the proportional rule is equal to (22

7 , 1
1
7 ,

4
7), which is not in the set of

equilibrium payoff vectors either.

2 30

2 3

4

1 1 1

t = 1 t = 2 t = 3

Figure 4: An illustration of a Nash equilibrium claims profile (y, β,m) for problem (E, c) with
E = 4 and c = (4, 2, 1). Here r1 = 3, r2 = 2 and r1 = 1.

Example 3.19 shows that that the rules of the TAL-family except the Talmud rule, and also
the proportional rule, need not result in an equilibrium payoff vector in the claim game with these
rules as sharing rules. The next result shows that the Talmud rule, applied to an estate division
problem with

∑
i∈N ci ≤ 2E, always leads to an equilibrium vector in the associated claim game

based on this rule. This result may be seen as an equilibrium argument in favor of the Talmud
rule, at least within the family of TAL-rules and the proportional rule.

Theorem 3.20. Let
∑

i∈N ci ≤ 2E. Then the Talmud rule applied to (E, c) results in an equilibrium
payoff vector in (E, c, fT ).

Proof. We show that there exists a vector (r1, . . . , rn), satisfying the conditions of Corollary 3.12,
with the same payoffs as the Talmud rule.

Note that for the Talmud rule, we have two sets of players. Let J denote the set of players j
who receive strictly more than 1

2cj , then players i ∈ N \ J receive exactly 1
2ci. The Talmud rule

solves the following equation: ∑
j∈J

(cj − µ) +
∑
i∈N\J

1

2
ci = E,

which implies that µ = 1
|J |

(∑
j∈J cj +

∑
i∈N\J

1
2ci − E

)
if J 6= ∅. Thus, the Talmud rule prescribes

a payoff of cj − µ to player j ∈ J and 1
2ci to player i ∈ N \ J .

Consider the vector (r1, . . . , rn) with rj = 2µ for j ∈ J and ri = ci for i ∈ N \ J . Note the
following properties:

(i) 2µ ≥ 0 ,

(ii) 2µ < cj for all j ∈ J , since cj − µ > 1
2cj ,

(iii) if J 6= ∅, then ci ≤ 2µ ≤
∑

i∈N ci − E for all i ∈ N \ J , since cj ≤ E for j ∈ J if |J | = 1 and
(|J | − 1)

∑
i∈N ci −

∑
j∈J cj ≥ (|J | − 2)

∑
i∈N ci ≥ (|J | − 2)E if |J | ≥ 2 ,

(iv)
∑

i∈N ri =
∑

j∈J 2µ+
∑

i∈N\J ci = 2
(∑

i∈N ci − E
)
.
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The vector (r1, . . . , rn) satisfies the conditions of Corollary 3.12, which means that the corresponding
claims profile (in which ri is distributed on intervals that are claimed twice and ci−ri is distributed
on intervals that are claimed once) is an NEP. Moreover, the payoff to player j ∈ J is cj − µ, and
to player i ∈ N \ J it is 1

2ci.

For problems with
∑

i∈N ci > 2E, different sharing rules in general result in different sets of
equilibrium payoffs. The following example shows that the payoff vector from the Talmud rule does
not need to be an equilibrium payoff vector in games (E, c, fθ) with θ ∈ [0, 1] or in (E, c, uP ).

Example 3.21. Consider the restricted problem (E, c) with n = 3, E = 4, and c = (4, 4, 1). The
payoff vector of the Talmud rule is (11

2 , 1
1
2 , 1). Since k = 2 and R = 1, the unique NEP payoff

vector (see Figure 5) in the game (E, c, fCEA) or in the game (E, c, fP ), is equal to (15
6 , 1

5
6 ,

1
3).

Moreover, note that for sharing rules fθ with θ ∈ (0, 1
3) it is impossible to have an interval t′ with

|P (t′)| = 1, as there always exists an interval t with βN (t) ≥ 3. Thus, player 3’s payoff is strictly
less than 1 in equilibria in the associated games. Hence, the payoff vector assigned by the Talmud
rule is not attainable in any equilibrium, in any of these games.

10

3

4

1 1

2 2

t = 1 t = 2

Figure 5: An illustration of a Nash equilibrium claims profile (y, β,m) for problem (E, c) with
E = 4 and c = (4, 4, 1). Here r1 = 1, r2 = 1 and r1 = 1.

4 Restricted problems and arbitrary claims

Consider the set of restricted problems, and let (y, β,m) be a claims profile in (E, c). We now
assume that βi : M → R+ for all i ∈ N . In particular, Lemma 3.1 no longer applies.

Recall that the uniform claims profile is the claims profile in which each player puts a claim
of size ci

E on the complete interval [0, E]. Also recall that the payoffs assigned by any rule from
the TAL-family or by the proportional rule to the estate division problem (E, c) are equal to the
payoffs in the claim game associated with that rule under the uniform claims profile.2

4.1 Constrained equal awards

In this subsection we analyze the game (E, c, fCEA). Recall that Definition 2.2 gives the corre-
sponding sharing rule. The first lemma shows that the uniform claims profile is an NEP.

2The crucial property here is scale invariance of a rule, see Thomson (2003).
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Lemma 4.1. The uniform claims profile (y, β, 1) is an NEP in (E, c, fCEA).

Proof. Consider player i ∈ N , then either uCEAi (y, β, 1) = ci or uCEAi (y, β, 1) < ci. In the former
case, it is impossible for i to improve. In the latter case, note that because of the uniform claims
profile, βi(t) > λ for all t ∈M (with λ as in Definition 2.2). This implies that player i cannot gain
by deviating. So (y, β, 1) is an NEP.

The following example shows that the uniform claims profile is not necessarily the unique NEP.

Example 4.2. Consider the two-player problem (E, c) with E = 2 and c = (13
4 ,

3
4). Suppose player

1 puts a claim of 3
4 on [0, 1] and a claim of 1 on [1, 2]; and player 2 puts a claim of 1

2 on [0, 1] and
a claim of 1

4 on [1, 2]. This claims profile is an NEP, although it is not the uniform claims profile.
Observe that λ = 1

2 on [0, 1] and λ = 3
4 on [1, 2], so that the associated payoffs are (11

4 ,
3
4). These

are the same payoffs the players obtain if the constrained equal awards rule is applied to (E, c).

In this example the equilibrium payoffs are equal to the payoffs assigned by the constrained
equal awards rule. The following theorem shows that this is true in general.

Theorem 4.3. All NEPs result in the same payoffs, equal to the payoffs assigned by the constrained
equal awards rule.

Proof. Suppose (y, β,m) is an NEP in (E, c, fCEA). Suppose there exists a player i ∈ N and
t, t′ ∈ M with βi(t) > λ and βi(t

′) < λ. We derive a contradiction. If i decreases his claim on t
to λ, by definition he will not incur any loss. However, since βi(t

′) < λ, increasing his claim on t′

leads to a positive gain, which is in a contradiction with the NEP assumption.
So in an NEP, we have two sets of players: let J denote the set of players with βj(t) ≥ λ for all

t ∈M , where at least one of the inequalities is strict, and let N \ J denote the set of players with
βi(t) ≤ λ for all t ∈M .

Note that for all t ∈M , fCEAj (β(t)) = λ for all j ∈ J , and fCEAi (β(t)) = βi(t) for all i ∈ N \ J .
In other words, all players i ∈ N \ J receive exactly their claim. All players j ∈ J receive the same
payoff, which is at least as much as the players i ∈ N \ J , but strictly less than their claim. This
is precisely the payoff each player obtains from the constrained equal awards rule applied to the
estate division problem (E, c).

4.2 Constrained equal losses

In this subsection we analyze the game (E, c, fCEL). Recall that Definition 2.3 defines the corre-
sponding sharing rule. The following example shows that the uniform claims profile is not always
an NEP.

Example 4.4. Consider the three-player problem (E, c) with E = 4 and c = (4, 2, 1). The payoffs
in the uniform claims profile are (3, 1, 0). If player 3 puts one claim on [0, 1] instead, he receives
payoff 1

2 . Thus, the uniform claims profile is not an NEP in (E, c, fCEL).

The following lemma provides a necessary condition for an NEP in the game (E, c, fCEL).

Lemma 4.5. Let (y, β,m) be an NEP. Then βN (t)− βmin(t) ≤ 1 for all t ∈M .
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Figure 6: An illustration of the level of µ on the first and second half of t. The value of r represents
the amount of claim transferred from the first to the second half of t. The line µ1(r) denotes the
level of µ on the first half of t and the line µ2(r) denotes the level of µ on the second half of t. The
line βi(t)− r represents the amount of claim of player i left on the first half of the interval. Notice
that the slope of µ1(r) is −1

|P (t)| until r∗ and the slope of µ2(r) is 1
|P (t)| until r∗.

Proof. Let t ∈ M . The statement trivially holds in case |P (t)| = 1. For the other cases, we argue
by contradiction.

Suppose that βN (t)− βmin(t) > 1, which implies that |P (t)| ≥ 2. We will show that a player i
with βi(t) = βmin(t) can gain by deviating. Observe that in an NEP: fj(β(t)) > 0 for all j ∈ P (t).
Otherwise, a player j with fj(β(t)) = 0 could put his claim on a sufficiently small subinterval of t
in order to gain a positive amount. Let player i divide t into two equally large intervals. We will
now show that player i can transfer an amount of r from his claim on the first half to the second
half, such that his share on the first half equals zero but without changing anyone’s total share of
the interval. The remaining claim on the first half can then be used to increase his total share of
t, since the marginal loss on the first half after the transfer is zero.

Since the losses are equally distributed among all claimants, the decrease in claim on the first
half, leads to a decrease in µ (with µ as in Definition 2.3) at a constant rate of 1

|P (t)| . On the second

half, the increase in claim increases µ at a constant rate of 1
|P (t)| , until some claimant’s share drops

to zero. We will show that during this procedure all claimants’ shares remain positive on the second
half, which implies that total share of every player on t stays the same. To this end, see Figure 6.

At the point r = r∗ = |P (t)|(βi(t)−µ)
|P (t)|−1 , we see that µ1(r) – i.e., the new value of µ on the first half

after a transfer of r – intersects with the line βi(t) − r. This means that we are at the point at
which the share of player i dropped to zero on the first half. In order to see what happens on the
second half, note that

µ2(r∗) =
1

|P (t)|
r∗ + µ =

βi(t)

|P (t)| − 1
+

(|P (t)| − 2)µ

|P (t)| − 1
.

Because of the right-hand side of the expression, we will first treat the case |P (t)| = 2 separately.
If |P (t)| = 2 with βi(t) = βj(t) > 1 for i, j ∈ P (t), then µ2(r∗) = βi(t) = βj(t) – where µ2(r) is,
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analogously, the new value of µ on the second half. This implies that the share of player j dropped
to zero on the second half after the transfer, which means that i has a share of one on the second
half and j has a share of one on the first half. Notice that the remaining claim of µ1(r∗) = βi(t)−1
on the first half can be placed on a sufficiently small subinterval of the first half such that i gains a
positive amount on this first half as well. This, however, means that i is able to gain by deviating,
which is a contradiction.

On the other hand, if |P (t)| = 2 with βi(t) < βj(t) for i, j ∈ P (t) or if |P (t)| ≥ 3 then
µ2(r∗) < βj(t) for all j ∈ P (t) \ i. This means that the share of every player j ∈ P (t) \ i remains
positive on the second half after the transfer of i. This conclusion is obvious for |P (t)| = 2 with
βi(t) < βj(t), since then µ2(r∗) = βi(t) < βj(t). For |P (t)| ≥ 3, notice that it is sufficient to show
that µ2(r∗) < βi(t) (as βi(t) ≤ βj(t) for all j ∈ P (t) \ i), which is equivalent to showing µ < βi(t).
This is true since fj(β(t)) > 0 for all j ∈ P (t), thus in particular for player j himself.

In order to show that i can actually gain by deviating, observe that since µ1(r∗) = βN (t)−βi(t)−1
n−1 >

0 by assumption, player i could decrease his claim by an additional positive, but sufficiently small,
amount of r on the first half without any loss, while having a marginal gain of 1 − 1

|P (t)| on the

second half. This contradicts that (y, β,m) is an NEP.

As a corollary to the previous lemma, we obtain a necessary and sufficient condition for the
uniform claims profile to be an NEP.

Corollary 4.6. The uniform claims profile is an NEP in (E, c, fCEL) if and only if
∑

i∈N ci −
mini∈Nci ≤ E.

Proof. If the uniform claims profile is an NEP, then Lemma 4.5 implies
∑

i∈N
ci
E −mini∈N

ci
E ≤ 1,

which is the only-if statement. For the if-part, suppose that
∑

i∈N ci −mini∈Nci ≤ E and consider
the uniform claims profile. The average gain of any increase on an interval is at most n−1

n , as
the increased loss is equally divided among all players as long as the shares remain positive. The
average loss of a decrease is at least n−1

n by similar arguments. Hence, no player has a profitable
deviation.

The following theorem gives a full description of every possible NEP. We restrict our attention
to those estate division problems with

∑
i∈N ci > E. The reason for this is that if

∑
i∈N ci = E

then in equilibrium every interval t ∈ M satisfies βN (t) = 1, which means that everyone receives
his claim.

Theorem 4.7. Let (y, β,m) be a claims profile for the restricted problem (E, c) with
∑

i∈N ci > E.
Then the following statements are equivalent:

(i) (y, β,m) is an NEP in (E, c, fCEL).

(ii) Let k = max{ |P (t)| | t ∈M}. Then k ≥ 2 and the following three conditions are satisfied:

(a) For all t ∈M , if |P (t)| < k, then βN (t) = 1.

(b) For all t ∈ M , if |P (t)| = k and P (t) = P (t′) for all t′ ∈ M with |P (t′)| = k, then
1− βmin(t) ≤ βN (t)− βmin(t) ≤ 1.

(c) For all t ∈ M , if |P (t)| = k and P (t) 6= P (t′) for some t′ ∈ M with |P (t′)| = k, then
βN (t)− βmin(t) = 1.
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Proof. For the implication (i)⇒ (ii), let (y, β,m) be an NEP in (E, c, fCEL) and define k as in (ii).
Observe that since a player can not be the sole winner of every interval, βN (t) = 1 if |P (t)| = 1.
This implies that k ≥ 2 and that we only need to consider intervals t ∈ M with |P (t)| ≥ 2. By
Lemma 4.5 and since βN (t) ≥ 1 for all t ∈M , we have that all t ∈M with |P (t)| ≥ 2 satisfy

1− βmin(t) ≤ βN (t)− βmin(t) ≤ 1. (4)

This proves (b).
Lemma 4.5 only considers deviations within a specific interval. The following claim, which is

used to prove (a) and (c), considers deviations between two different intervals. For the remainder
of this proof, we denote β(1)(t) ≥ β(2)(t) ≥ . . . ≥ β(|P (t)|)(t) > 0 for all t ∈M .

Claim. Let there exists a player i ∈ P (t′), i /∈ P (t), where t, t′ ∈ M with 2 ≤ |P (t′)| ≤ |P (t)|
satisfy (4) with βN (t′) > 1. Then

∑|P (t′)|−1
i=1 β(i)(t) ≥ 1.

Proof of claim. In a NEP, player i is not able to gain by putting some of his claim of interval t′ on
interval t. The average loss of a sufficiently small decrease in claim on t′ equals 1− 1

|P (t′)| .

The best player i can do on t is to place a claim such that µ = β(|P (t′)|)(t), meaning that at
most |P (t′)| − 1 other players have a positive share left. Player i can not do better, since a further
increase would lead to a marginal gain of at most 1− 1

|P (t′)| , whereas placing a lower claim would

mean that the opportunity of a marginal gain of at least |P (t′)|
|P (t′)|+1 will be ignored. More precisely,

let player i put a claim of size βi(t) = |P (t′)|β(|P (t′)|)(t) −
∑|P (t′)|−1

j=1 β(j)(t) + 1 on a δ-fraction of

t, where 0 < δ ≤ 1 is chosen such that the average loss on t′ does not exceed |P (t′)|−1
|P (t′)| . His loss in

payoff from t′ is then equal to the total amount of claim needed times the average loss:

βi(t)δ(yt − yt−1)

(
1− 1

|P (t′)|

)
=

|P (t′)|β(|P (t′)|)(t)−
|P (t′)|−1∑
j=1

β(j)(t) + 1

 δ(yt − yt−1)
|P (t′)| − 1

|P (t′)|
.

Since µ = β(|P (t′)|)(t), the gain in payoff from t is equal to

(βi(t)− µ) δ(yt − yt−1) =

(|P (t′)| − 1)β(|P (t′)|)(t)−
|P (t′)|−1∑
j=1

β(j)(t) + 1

 δ(yt − yt−1).

Since the loss in payoff must be at least as large as the gain in payoff, we get after tedious rewriting:

|P (t′)|−1∑
i=1

β(i)(t) ≥ 1.

This completes the proof of the Claim.

For (a), suppose that βN (t′) > 1 for t′ ∈ M with |P (t′)| < k. We will derive a contradiction.
Consider an interval t with |P (t)| = k. Observe that there cannot be a player i ∈ P (t′) ∩ P (t)
(since then his marginal loss on t′ would be smaller than his marginal gain on t). So there exists a
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player i ∈ P (t′), i /∈ P (t). From the claim,
∑|P (t′)|−1

j=1 β(j)(t) ≥ 1. This, however, contradicts with
(4), since

βN (t)− βmin(t) =
k−1∑
j=1

β(j)(t) =

|P (t′)|−1∑
j=1

β(j)(t) +
k−1∑

j=|P (t′)|

β(j)(t) ≥ 1 +
k−1∑

j=|P (t′)|

β(j)(t) > 1.

Hence we have shown (a).
For (c), note that all t ∈M with |P (t)| < k satisfy βN (t) = 1. This combined with

∑
i∈N ci > E,

implies that there exists an interval t′ ∈M with |P (t′)| = k and
∑

i∈P (t′) βi(t
′) > 1. Consider such

interval t′ together with an interval t ∈M with |P (t)| = k and P (t′) 6= P (t). Then there is a player
i such that i ∈ P (t′) and i /∈ P (t). Combining the result of the claim with (4) implies that

βN (t)− βmin(t) =

k−1∑
j=1

β(j)(t) = 1,

which shows (c).
For the implication (ii)⇒ (i), suppose that the claims profile satisfies the conditions of (ii). It

is sufficient to check that players have no incentive to deviate from intervals t ∈M with |P (t)| = k
(since for all other intervals the marginal loss equals one, as βN (t) = 1). Due to Lemma 4.5 it is
not profitable to deviate within the same interval, as the loss of removing ∆ is at least k−1

k ∆ (since

the losses are equally divided) and the gain of placing it elsewhere is at most k−1
k ∆. By similar

arguments, it follows that there is also no incentive do deviate to an interval with a smaller or equal
number of claimants.

So the only interesting case arises if there is a player i ∈ P (t), i /∈ P (t′) where t′ ∈ M with
|P (t′)| = k. As the minimum average loss on t equals k−1

k , the most profitable claim to put on t′ is
the claim which assures that each player j ∈ P (t′) with βj(t

′) = βmin(t′) gets a share of zero. An
additional increase in claim results in a marginal gain of at most k−1

k and is thus not profitable.

A lower claim does not take the marginal gain of k
k+1 into account, which means that the claim is

not the most profitable one. More precisely, the claim needs to have a size of kβmin(t′), as then
µ = βmin(t). The total gain on t′ then equals (k − 1)βmin(t′), whereas the total loss is at least
k k−1

k βmin(t′). This proves that no profitable deviation between intervals is possible.

The following corollary presents the existence condition for an NEP.

Corollary 4.8. The game (E, c, fCEL) has an NEP if and only if
∑

i∈N ci ≤ 2E.

Proof. Let (y, β,m) be an NEP. If |P (t)| = 1, then βN (t) = 1. If |P (t)| ≥ 2, we have by Lemma
4.5 that βN (t) − βmin(t) ≤ 1 for all t ∈ M . So |P (t)|βmin(t) − βmin(t) ≤ βN (t) − βmin(t) ≤ 1,
which implies that βmin(t) ≤ 1

|P (t)|−1 and thus βN (t) ≤ 1 + 1
|P (t)|−1 ≤ 2. Together this implies that∑

i∈N ci =
∑

t∈M βN (t) ≤ 2E.
Suppose

∑
i∈N ci ≤ 2E. We construct an NEP in the following way: every player claims

every interval at most once and every interval is claimed either once or twice. If we distribute the
entitlements iteratively from left to right and start again on the left for the second claims, then one
can check that the claims profile satisfies the conditions of Theorem 4.7.
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Remark 4.9. We can also use Lemma 4.5 to derive an upper bound on the number of claimants
on an interval in an equilibrium as in Corollary 4.8. If

∑
i∈N ci = E, then βN (t) = 1 for all

t ∈ M in equilibrium, and only n is an upper bound. Now let ` ∈ R, ` > 1 be such that(
1 + 1

`

)
E <

∑
i∈N ci ≤ 2E. Then ` is an upper bound, which can be seen as follows. If |P (t)| = 1,

then clearly |P (t)| < `. If |P (t)| ≥ 2, we have by Lemma 4.5 that βN (t) ≤ 1+βmin(t) ≤ 1+ 1
|P (t)|−1

for all t ∈M . This implies that(
1 +

1

`

)
E <

∑
i∈N

ci =
∑
t∈M

βN (t) ≤
(

1 +
1

|P (t)| − 1

)
E,

which in turn implies |P (t)| ≤ `.

In order to be able to describe the equilibrium payoffs, we show that in equilibrium any interval
can be redistributed such that the payoffs for the players remain unchanged and only intervals with
one or two claimants are used.

Lemma 4.10. For every NEP in (E, c, fCEL) there exists a payoff-equivalent NEP such that
|P (t)| ≤ 2 and βi(t) = 1 for all t ∈M and i ∈ P (t).

Proof. Let (y, β,m) be an NEP. We will show that we can redistribute the claims on every interval
t ∈M such that |P (t′)| ≤ 2 and βi(t

′) = 1 for all i ∈ P (t′), for every subinterval t′ of t, but without
changing a player’s total share of the interval t. This generates a new finer claims profile which is
still an NEP.

We only need to consider intervals t ∈ M with |P (t)| ≥ 2, since βi(t) = 1 for i ∈ P (t) if
|P (t)| = 1. By Lemma 4.5, every interval t with |P (t)| ≥ 2 satisfies the following inequality:
1− βmin(t) ≤ βN (t)− βmin(t) ≤ 1. The share of each player i ∈ P (t) for such an interval is

fi(β(t)) = βi(t)−
βN (t)− 1

|P (t)|
.

We show that for some α with yt−1 < α < yt, we can reshuffle all the claims on (yt−1, yt)
such that each subinterval of (yt−1, α) is claimed once by two players, each subinterval of (α, yt) is
claimed once by one player, and all shares of players i ∈ P (t) remain unchanged. The procedure
we use here is similar to the way we describe the payoffs in Corollary 3.12, using the vector r, only
now applied to the specific interval t. Since βN (t) (yt − yt−1) = 2 (α− yt−1) + (yt − α), we have
α = yt−1 + (βN (t)− 1) (yt − yt−1).

Let xi = 2(βN (t)−1)
|P (t)| for i ∈ P (t) denote the part of the claim of player i distributed on (yt−1, α)

such that every part is claimed once by two players, and let βi(t)−xi be distributed on (α, yt) such
that every part is claimed by one player.

In order to see that we have a feasible redistribution, note the following properties:

(i) xi = 2(βN (t)−1)
|P (t)| ≥ 0.

(ii) xi = 2(βN (t)−1)
|P (t)| ≤ βN (t)−1 ≤ βmin(t) ≤ βi(t), where the first inequality follows since |P (t)| ≥ 2

and the second inequality follows from Lemma 4.5.

(iii)
∑

i∈P (t) xi = 2(βN (t)− 1).
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Moreover, the share of player i ∈ P (t) is

1

2
xi + βi(t)− xi = βi(t)−

1

2
xi = βi(t)−

βN (t)− 1

|P (t)|
= fi(β(t)).

If we reshuffle every interval in the above way, we end up with an equilibrium claims profile without
changing the shares of the players.

Lemma 4.10 makes it possible to describe the payoffs associated with NEPs: all these payoffs
can be found by only using intervals with either one or two claimants. Hence the set of payoff
vectors is equal to the set found in Corollary 3.12.

4.3 Talmud

In this subsection we analyze the game (E, c, fT ): see Definition 2.4 for the definition of fT = f
1
2 .

We consider two cases: estate division problems with
∑

i∈N ci > 2E and those with
∑

i∈N ci ≤ 2E.
We start with the former case.

Theorem 4.11. Let
∑

i∈N ci > 2E. Then all NEPs result in the same payoffs, equal to the payoffs
assigned by the Talmud rule to (E, c).

Proof. Suppose (y, β,m) is an NEP. Recall that βN (t) ≥ 1 for all t ∈ M . Let J denote the set of
players with 1

2βj(t) > λ for some t ∈ M with βN (t) ≥ 2. Since βN (t) > 2 for some t ∈ M , there
exists a player j ∈ P (t) with 1

2βj(t) > λ, which shows that J 6= ∅. We first prove the statement for
|J | = 1 and afterwards for |J | ≥ 2.

Suppose that |J | = 1. Since j ∈ J can reduce his claim on t to λ without any loss (since the
constrained equal awards rule is applied on this interval), it should not be possible for him to gain
a positive amount from an increase in claim on a different interval t′ 6= t.

If βN (t′) ≥ 2, this implies that 1
2βj(t

′) ≥ λ for j ∈ J , and that 1
2βi(t

′) ≤ λ for all i ∈ N \ {j} by
definition of J .

If βN (t′) < 2, this implies by similar arguments that 1
2βj(t

′) ≥ µ for j ∈ J , while for all other
players i ∈ N \ {j}, we have that 1

2βj(t
′) ≤ µ, as otherwise j ∈ J could increase his claim on t′

with a positive gain.
Hence in equilibrium every player i ∈ N \ {j} receives half of his claim, whereas the remainder,

which is at least as much as the payoff of every i ∈ N \ {j}, is for player j. These are the same
payoffs the players obtain if the Talmud rule is applied to the original estate division problem.

Suppose that |J | ≥ 2. First, we will argue that βN (t) ≥ 2 for all t ∈ M . By definition of the set
J , for every player j ∈ J there exists an interval t ∈ M with βN (t) ≥ 2 and 1

2βj(t) > λ. On this
interval t, j can reduce his claim to λ without any loss (again because of the constrained equal
awards rule). Since we consider an NEP, this means that it must not be possible for j to gain from
an increase on any other interval.

Suppose there exists a t′ ∈ M with βN (t′) < 2. If there is at most one player j ∈ J with
1
2βj(t

′) ≥ µ, then one of the other players in J gains a positive amount by increasing his claim on
t′. If there are at least two players from J with 1

2βj(t
′) ≥ µ, then then either of these players gains

a positive amount by increasing his claim on t′. Since we consider an NEP, these intervals can not
exist in equilibrium.
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Next we show that 1
2βj(t) ≥ λ for all j ∈ J and for all t ∈ M . Suppose, contrary to what

we wish to prove, that 1
2βj(t

′) < λ for some t′ ∈ M . Since j can reduce his claim on some t 6= t′

without any loss, he can make a positive gain by increasing his claim on t′. This is a contradiction.
Hence in equilibrium, for all t ∈M , 1

2βj(t) ≥ λ for all j ∈ J and 1
2βi(t) ≤ λ for all i ∈ N \ J by

definition of J . This means that all players i ∈ N \ J receive half of their claim on every interval,
while all players j ∈ J receive an equal amount which is at least as much as what the players in
N \ J receive. Again, these payoffs are equal to the payoffs assigned by the Talmud rule to the
original estate division problem.

The following lemma is convenient for finding the equilibrium payoffs in case
∑

i∈N ci ≤ 2E. It
is the analogue of Lemma 4.10.

Lemma 4.12. Let
∑

i∈N ci ≤ 2E. For every NEP in (E, c, fT ) there exists a payoff-equivalent
NEP such that |P (t)| ≤ 2 and βi(t) = 1 for all t ∈M and i ∈ P (t).

Proof. Let (y, β,m) be an NEP. We will show that we can redistribute the claims on every interval
t ∈M such that |P (t′)| ≤ 2 and βi(t

′) = 1 for all i ∈ P (t′), for every subinterval t′ of t, but without
changing any player’s total share of the interval t. This generates a new finer claims profile which
is still an NEP.

Observe that βN (t) ≥ 1 for all t ∈ M , and that βi(t) = 1 for i ∈ P (t) if |P (t)| = 1. Thus for
this lemma, we only consider intervals with two or more claimants.

Suppose there is some t ∈ M with βN (t) > 2. There can only be one player j with 1
2βj(t) > λ

(otherwise one of such players can gain by increasing his claim on t′ 6= t with βN (t′) < 2). Because
j can reduce his claim to λ without any loss and since we consider an NEP, j can increase his claim
on any t′ 6= t without any gain. As

∑
i∈N ci ≤ 2, it is thus possible to redistribute j’s claims such

that all t ∈M satisfy βN (t) ≤ 2 but without changing the shares of the players.
Thus, w.l.o.g., we can assume that all t ∈M satisfy 1 ≤ βN (t) ≤ 2. For all t ∈M , divide P (t)

into two different groups. Let J(t) denote the set of players j for who βj(t) − µ > 1
2βj(t), then

P (t) \ J(t) is the set of players i for who βi(t) − µ ≤ 1
2βi(t). This means that the share of player

j ∈ J(t) is equal to βj(t)− µ and the share of player i ∈ P (t) \ J(t) is equal to 1
2βi(t), where

µ =
1

|J(t)|

 ∑
j∈J(t)

βj(t) +
∑

i∈P (t)\J(t)

1

2
βi(t)− 1

 if J(t) 6= ∅.

We show that for some yt−1 < α < yt, we can reshuffle all the claims on (yt−1, yt) such that
every subinterval of (yt−1, α) is claimed once by two players, every subinterval of (α, yt) is claimed
once by one player, and all shares of players i ∈ P (t) remain unchanged. The procedure we
use here is similar to the way we describe the payoffs in Corollary 3.12, using the vector r, only
now applied to the specific interval t. Since βN (t) (yt − yt−1) = 2 (α− yt−1) + (yt − α), we have
α = yt−1 + (βN (t)− 1) (yt − yt−1).

Let xj = 2µ for j ∈ J(t) and xi = βi(t) for i ∈ P (t)\J(t) denote the part of the claim distributed
on (yt−1, α) such that every part is claimed once by two players, and let βj(t)− xj for all j ∈ J(t)
be distributed on (α, yt) such that every part is claimed by one player.

In order to see that we have a feasible redistribution, note the following properties:

(i) 2µ ≥ 0.
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(ii) 2µ < βj(t) for all j ∈ J(t), since βj(t)− µ > 1
2βj(t).

(iii) If |J(t)| ≥ 1, then βi(t) ≤ 2µ ≤ βN (t) − 1 for all i ∈ P (t) \ J(t). Since βj(t) ≤ 1 for
j ∈ J(t) if |J(t)| = 1 and (|J(t)| − 1)βN (t)−

∑
j∈J(t) βj(t) ≥ (|J(t)| − 2)βN (t) ≥ (|J(t)| − 2)

if |J(t)| ≥ 2.

(iv)
∑

i∈P (t) xi =
∑

j∈J 2µ+
∑

i∈P (t)\J βi(t) = 2 (βN (t)− 1).

Moreover, the share of player j ∈ J(t) is

1

2
xj + βj(t)− xj = βj(t)− µ,

and for player i ∈ P (t) \ J(t) it is
1

2
xi =

1

2
βi(t).

If we reshuffle every interval in the above way, we end up with an equilibrium claims profile without
changing the shares of the players.

We are now able to describe the payoffs associated with every NEP. If
∑

i∈N ci > 2E, then
Theorem 4.11 applies, which means that the equilibrium payoffs are equal to the payoffs from the
Talmud rule. If

∑
i∈N ci ≤ 2E, by Lemma 4.12 all NEP payoffs can be found by only using intervals

with either one or two claimants. Hence the set of payoff vectors is equal to the set in Corollary
3.12.

5 Unrestricted problems

In this section we discuss how NEPs for unrestricted problems. That is, players i ∈ N may have
entitlements with ci > E.

5.1 Constrained equal awards

If the constrained equal awards rule is used as sharing rule and we assume integer claim heights,
then we obtain the following lemma, which says that in equilibrium every player with an entitlement
of at least the estate, claims the complete estate once.

Lemma 5.1. Let (y, β,m) be an NEP. If ci ≥ E for player i, then βi(t) ≥ 1 for all t ∈M .

Proof. Let (y, β,m) be an NEP. Suppose, to the contrary, that player i does not claim interval
t ∈ M . Since ci ≥ E, there exists an interval t′ ∈ M with βi(t

′) ≥ 2. The net gain of removing
one claim from t′ and putting it on (a part of) t is positive, which contradicts that (y, β,m) is an
NEP.

Hence, under integer claims, every player i with ci ≥ E claims the estate once and is indifferent
where to put his remaining claims, as this remainder does not affect his nor his opponents’ payoffs.
So in fact, we are allowed to ignore the part of the entitlement that is above the amount of the
estate without changing the equilibrium outcome. Therefore, we can solve the unrestricted problem
as a restricted problem where the entitlement of every player i with ci ≥ E is equal to E. For the
analysis of these problems see Subsection 3.1. We obtain the following theorem.
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Theorem 5.2. Under integer claims, U(E, c, fCEA) = U(E, c′, fCEA), where c′i = min{ci, E} for
all i ∈ N .

Also if arbitrary claims are allowed, both the restricted and unrestricted problems result in the
same analysis: all NEPs result in the same payoffs, equal to the payoffs assigned by the constrained
equal awards rule. Hence, Theorem 4.3 still applies.

5.2 Constrained equal losses

If the constrained equal losses rule is used as sharing rule, the main observation is that no NEP
exists if there is some player i with ci > E, independent of whether we consider integer or arbitrary
claims.

Theorem 5.3. If there is a player i with ci > E, then the game (E, c, fCEL) with integer or with
arbitrary claims has no NEP.

Proof. We first prove the statement for integer claims and afterwards for arbitrary claims.
Let player i have ci > E, and suppose that (y, β,m) is an NEP in the game with integer claims.

We derive a contradiction. It can be checked that Lemmas 3.7 and 3.8 also apply for unrestricted
problems, which implies that in equilibrium βj(t) ≤ 1 for all j ∈ N and all t ∈M . However, since
ci > E for player i, there must exist some interval t ∈M with βi(t) > 1. This is a contradiction.

Next, let again player i have ci > E, and suppose that (y, β,m) is an NEP in the game with
arbitrary claims. We again derive a contradiction. Note that βN (t) = 1 if |P (t)| = 1, as a free
claim can always be used to gain a positive amount somewhere else. Lemma 4.5 (which can be
seen to hold also for unrestricted problems) implies that βj(t) ≤ 1 for all j ∈ N and all t ∈M with
|P (t)| ≥ 2. However, since ci > E for player i, there must exist some interval t ∈M with βi(t) > 1.
This is a contradiction.

5.3 Talmud rule

If the Talmud rule is used as sharing rule in the game with integer claims, then recall that this rule
is equal to the constrained equal awards sharing. Thus, the same analysis applies.

In case of arbitrary claims, we obtain the following theorem.

Theorem 5.4. If there is a player i with ci > E, then all NEPs result in the same payoffs, equal
to the payoffs assigned by the Talmud rule.

Proof. Note that if
∑

i∈N ci > 2E, the presence or absence of a player i with ci > E does not make
a difference for the analysis in Theorem 4.11. Hence this result still holds.

If
∑

i∈N ci ≤ 2E, then a player i with ci > E claims the complete estate once, so that the share
of each player j ∈ N \ {i} is at most 1

2βj(t) for every t ∈ M . Since
∑

j∈N cj ≤ 2E, every player

j ∈ N \ {i} is able to assure a share of 1
2βj(t) on all t ∈ M , so that in equilibrium every player

j ∈ N \{i} receives 1
2cj and i receives E−

∑
i∈N\{i}

1
2ci. This is precisely what every player obtains

if the Talmud rule is applied to the estate division problem.
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6 Summary and conclusion

We have analyzed the estate division problem as a non-cooperative game, in which every player
uses his entitlement to claim specific parts of the estate. Every part is then distributed based on
these integer valued or arbitrary claims, according to a sharing rule. We have investigated the
payoffs associated with the equilibrium outcomes of this game. The sharing rules we consider are
all rules from the TAL-family, among which are the constrained equal awards rule, the constrained
equal losses rule and the Talmud rule.

Restricted and Restricted, Restricted, Unrestricted
integer claims arbitrary claims and arbitrary claims and∑

i∈N ci ≤ 2E
∑

i∈N ci > 2E

fCEA vi = ci
k −

ri
k(k+1) CEA-payoff CEA-payoff Solve (E, c′, fCEA),

(Subsection 3.1) (Theorem 4.3) (Theorem 4.3) where c′i = min{ci, E}
(Theorem 5.2)

fCEL vi = ci − ri
2 vi = ci − ri

2 No NEPs No NEPs
(Corollary 3.12) (Lemma 4.10) (Corollary 4.8) (Corollary 5.3)

fT vi = ci
k −

ri
k(k+1) vi = ci − ri

2 Talmud-payoff Talmud-payoff

(Lemma 3.13) (Lemma 4.12) (Theorem 4.11) (Theorem 5.4)

Table 1: A summary of the equilibrium payoffs for the three main sharing rules for different
problems. For clarification, we refer to the corresponding references.

The main results of the paper are summarized in Table 1. The first (most left) column describes
the possible NEP payoffs in integer claim games associated with restricted problems. The payoff
from the CEL sharing rule arises from taking k = 1: NEPs exist if and only if

∑
i∈N ci ≤ 2E. Under

the latter condition, all sets of NEPs coincide, and the same is true for all associated payoffs. For all
restricted problems, we have the following relation between the different sets of equilibrium payoffs:

U(E, c, fCEL) ⊆ U(E, c, fCEA) = U(E, c, fT ) ⊆ U(E, c, fP ).

The second column maintains the condition
∑

i∈N ci ≤ 2E, but allows for arbitrary claims: this
does not essentially effect the payoffs under CEL or Talmud: but for CEA, all payoffs coincide with
the payoffs assigned by the CEA rule to the original estate division problem. The third column
concerns arbitrary claims under the condition

∑
i∈N ci > 2E. The fourth column collects some

results for unrestricted problems.
Another interesting result is that for integer claim games associated with restricted problems

for which
∑

i∈N ci ≤ 2E, the Talmud rule is the only sharing rule in the TAL-family for which
there is always an NEP with payoffs equal to the payoffs assigned by the Talmud rule to the estate
division problem. This raises the question whether there are other rules outside the TAL-family
for which there is always an NEP in the associated claim game resulting in the same payoffs as
those assigned by the rule directly. The proportional rule is not a candidate for this, as already
established in Atlamaz et al. (2011).

28



Another interesting, general question is whether one can find axiomatic, normative justifications
for the various sets of NEP payoffs, possibly related to the axiomatic justifications of the underlying
rules.
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