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Abstract I define a solution concept for strategic form games called
interdependent-choice equilibrium. It is an extension of correlated equi-
librium, in which the mediator is able to choose the timing of his signals
and observe the actions taken by the players. The set of interdependent-
choice equilibria is nonempty and is given by a finite set of affine inequal-
ities. It characterizes all the outcomes that can be implemented in single
shot interactions without the use of binding contracts or any other form
of delegation. The results can also be interpreted as robust predictions
for environments in which the rules of the game (e.g. order of play and
information structure) are unknown.
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This paper is concerned with the possibility of interdependent choices, that is, some
agents making choices that are a function of other agents’ choices. It is well understood
that interdependence is a powerful tool for generating incentives, for instance, in games
with contracts, repeated games and sequential games. In such settings, each agent might be
willing to choose some action not because of its direct consequences on payoffs, but because
of the way other agents will react to his choice. However, trying to explicitly account for
every source of interdependence might be fruitless in many instances. Instead, I propose a
solution concept that implicitly incorporate all such possibilities.

The environment is partially described by a finite strategic form game with complete
information. The description specifies the payoff-relevant actions and preferences, but says

∗Previously circulated with the title “Implementation through coordination in static environments without
commitment”. The nomenclature was modified to distinguish from coordination games.
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suggestions from Kalyan Chaterjee, Nail Kashaev, Vijay Krishna and Bulat Gafarov, as well as Wiroy
Shin and the attendants of the 1st Prospects in Economic Research Conference at the Pennsylvania State
University. Needless to say, all remaining errors are my own.
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nothing about the order of play nor the information structure. In particular, choices are
not assumed to be independent nor simultaneous. Instead, I only impose two structural
assumptions: (i) that the players cannot use binding contracts, delegate their authority
over their choices, or use any other form of commitment; and (ii) that the players cannot
use monetary transfers or any other payoff-relevant actions which are not already specified
in the action sets. The purpose is to characterize the set of outcomes (distributions over
payoff-relevant actions) that can be implemented as self-enforcing agreements.

Choice interdependence is particularly relevant in moral hazard environments in which
there are no Pareto efficient Nash equilibria. In such situations, agents have incentives to try
to extend the set of self-enforceable agreements. With complete information, moral hazard
is completely eliminated when agents can write and enforce complete contracts (Coase’
theorem), or when they interact repeatedly and are patient enough (folk theorems). This
is possible because written contracts or publicly observed histories serve as coordination
devices that allow for interdependence. However, my assumptions are specifically tailored
to rule out such possibilities. I only consider single-shot interactions without any form of
binding agreements, in order to show that the power of choice interdependence is orthogonal
to the means by which it is achieved.1

An illustrative example is provided in Nishihara (1997, 1999), showing that full coopera-
tion in an n-player prisoner’s dilemma can be implemented without contracts or repetition.
The salient features of Nishihara’s model are that players are uncertain about the order of
choices, and the information structure allows players to recognize past defections and react
to them. Section §1 shows how Nishihara’s information structure could be generated via
a mediator who helps to coordinate the agents’ choices through sequential private recom-
mendations. The rest of the paper extends the analysis to arbitrary environments through
a solution concept which I call interdependent-choice equilibrium.

Mediated games can be traced back to correlated equilibrium (Aumann, 1974, 1987). A
correlated equilibrium can be defined as a Nash equilibrium of a game with a mediator (she)
who gives private correlated signals to the players. In Aumann’s protocol, the signals are
transmitted during a preplay stage, before the actual choices are made. Instead, I consider
sequential protocols in which the mediator can choose the timing of choices and observe
the actions taken by the agents. This enables the following kind of sequentially mediated

mechanisms:

1. The game starts with the mediator privately choosing an order for the players and
an action profile to be implemented, according to some known distribution.

2. The mediator then visits the players in the chosen order. In each visit, she recom-
mends an action to the visited player and waits to see whether he complies.

3. As long as all players comply, the mediator recommends the actions in the chosen
profile. However, if a player deviates, the mediator recommends to the remaining

1There are different papers that study the effects of choice interdependence in single-shot interactions
allowing for different degrees of commitment. Since the cited works exhibit great variety in their purpose
and methodology, I defer the comparison with the current paper to section §6. In short, the salient features
of my model are that both the timing and the information structure are design variables, and that I do not
allow for side payments nor any form of commitment or delegation.
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players to punish him.

There are settings with institutional or legal restrictions that only allow for pre-play
mediation. My analysis is relevant for settings without such restrictions, in which the
mediator may operate sequentially, as in Kissinger’s ‘shuttle diplomacy’ (Hoffman, 2011).
One may be concerned that allowing the mediator to control the timing of choices might
be a strong assumption. I follow this lax approach in order to capture the full extent of the
power of choice interdependence in generating incentives. Of course, the model can easily
be adapted to settings in which the mediator can only choose the timing of her signals, see
section §7.1.

A mediated mechanism is incentive compatible if and only if following the mediator’s
recommendations constitutes a Nash equilibrium. An interdependent-choice equilibrium is
a distribution over action profiles induced by an incentive compatible mediated mechanism.
The set of interdependent-choice equilibria is characterized by a finite set of affine inequal-
ities and is thus a convex polytope that can be computed efficiently. Also, it is nonempty
because it contains the set of correlated equilibria, and it is always contained in the set of
individually rational outcomes.

Section §3 argues that interdependent-choice equilibrium captures the set of all outcomes
(distributions over action profiles) that can be implemented without commitment. For that
purpose, I define an extensive form mechanism to be any extensive form game that is
consistent with the available information about the environment (payoff-relevant actions
and preferences) and with the assumption that players are not able to commit. Theorem 1
states that an outcome can result from a Nash equilibrium of an extensive form mechanism
if and only if it is an interdependent-choice equilibrium. In the language of Forges (1986)
and Myerson (1986), Theorem 1 is a revelation principle showing that sequentially mediated
mechanisms constitute a complete canonical class for implementation without commitment.

The definition of interdependent-choice equilibrium assumes that players will always
be willing to punish deviations. However, this might not be ex-post optimal. After a
deviation, the player who is supposed to execute the punishment might be better off also
deviating. Secton §4 analyzes the set of outcomes that can be induced taking this issue
into account. I provide a sufficient condition for sequential implementation, as well as
complete characterizations of sequential implementation in 2 × 2 environments and Perfect
Bayesian implementation in arbitrary environments. The conditions simply restrict the set
of credible threats that the mediator can recommend as punishments. The restrictions are
rather permissive, since both the sequential structure and the off-path beliefs are design
variables, refinements have a relatively small impact.

1 Motivating example: a prisoner’s dilemma

The model is motivated by the following example adapted from Nishihara (1997), which
shows that cooperation can be implemented in a single-shot prisoner’s dilemma without
repetition nor commitment. Suppose that two suspects of a crime are arrested. The DA
has enough evidence to convict them of a misdemeanor but requires a written confession
to convict them of the crime they allegedly committed. The DA then offers each prisoner
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a sentence reduction in exchange for a confession. Each of the prisoners has to choose
whether to behave cooperatively (C) by remaining silent or to defect (D) by confessing.
Their preferences are summarized by the payoff matrix in Figure 1, where B < b < g < G.

C D

C g , g B , G

D G , B b , b

Figure 1 Payoff matrix for the prisoner’s dilemma

In the story told, there is no reason to assume that players will have to make a decision
at exactly the same time. Also, even if the prisoners cannot directly communicate with
each other, it is by no means clear that their choices need to be independent. Different
forms of interdependence could either arise naturally or be artificially constructed. Even
so, implementing cooperation remains a non-trivial task. The decision to confess cannot
be delegated, and the legal obligation to confess prevents the enforcement of contracts that
would bind them to remain silent. However, they could hire a lawyer who would schedule
and be present in all the negotiations with the DA and instruct him as follows:

“If the DA offers us a (prisoner’s dilemma) deal you must always recommend
that we do not confess, unless one of us has already confessed, in which case you
must recommend that we do confess. Other than those recommendations, you
must not provide us with any additional information.”
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Figure 2 A sequential mechanism for the prisoner’s dilemma

The resulting situation can be described by the extensive form game in Figure 2. In the
event that the first prisoner to move confesses, the second prisoner will be informed of this
choice before making his own. If the first player decides to cooperate, the second prisoner
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will remain uninformed about which of the two following events is true: (i) the event in
which he is the first prisoner to receive the offer, and (ii) the event in which he is the second
one and his accomplice remained silent.

Now consider the strategies represented by the red arrows. They support full cooperation
and constitute an equilibrium as long as G−g ≤ g−b. That is, as long as the benefit that a
player can obtain from unilaterally deviating from (C,C) is less or equal to the inefficiency of
both players confessing. This is possible because, along the equilibrium path, each prisoner
assigns sufficient probability to the event in which: (i) if he cooperates, then his accomplice
will remain uninformed and will also cooperate; and (ii) if he confesses, then his accomplice
will learn of his defection and will punish him by also confessing.

2 Environment and interdependent-choice equilibrium

The environment is described by E = (I, A, u). It represents a situation in which players
in a finite set I = {1, 2, . . . , n} are to make decisions, typical players are denoted by i. The
main body of the paper assumes n = 2, section §7.2 discusses the general case. Each player
i is to choose and perform one and only one action from a finite set Ai = {ai, a

′
i, . . .}. i’s

preferences over action profiles are represented by ui : A → R.
E is assumed to be common knowledge. At this point, this is the only information

assumed to be common knowledge. The description of the strategic environment is only a
partial characterization of the problem at hand. It says nothing about the order in which
choices will be made, nor about the information that each player will have at the moment
of making his choice. Also, it does not specify whether players will be able to communicate
or which sorts of randomization devices are available.

The salient aspect of choice interdependence is that, at the moment of choosing an action,
each player i can believe that some of his opponents might base their decisions on his own.
i’s beliefs on his opponents’ behavior can be described by a conjecture λi : Ai → ∆(A) which
assigns a distribution λi( · |ai) ≡ [λi(ai)]( · ) ∈ ∆(A−i) to each action ai ∈ Ai. λi(a−i|ai) is
i’s belief that his opponents will play a−i if he decides to play ai. Λi denotes the set of i’s
conjectures. His preferences over his own actions are represented by the expected utility
function Ui : Ai × Λi → R, defined by:

Ui(ai, λi) =
∑

a−i∈A−i

ui(ai, a−i) · λi

(

a−i|ai

)

(1)

Notice that a player weighs utilities with different weights depending on his choice. This is
why it is possible to implement strictly dominated actions.

When a conjecture λi is constant with respect to i’s choice, it is isomorphic to a dis-
tribution over A−i. Such conjectures are called degenerate and are identified with the cor-
responding distribution. For degenerate conjectures, equation (1) reduces to the standard
definition of expected utility.

Before proceeding, it is convenient to define the notion of action (sub)spaces. An action
space is a set of action profiles A′ ⊆ A that can be written as a Cartesian product A′ =
×i∈I A

′
i with A′

i ⊆ Ai for every player i. Let A ( 2A denote the set of action spaces. For each
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action space A′ ∈ A, Λi(A
′) denotes the set of i’s conjectures that assign full probability to

his opponents choosing actions in A′
−i, regardless of i’s own choice.

2.1 Interdependent-choice equilibrium

Interdependent-choice equilibrium is defined in terms of a simple class of extensive form
games in which a trusted mediator manages the players through private recommendations.
A (sequentially) mediated mechanism is a tuple (α, θ, B). α ∈ ∆(A) is a distribution over
action profiles to be implemented. θ : A → ∆(I) specifies a distribution over the order in
which players will move, conditional on the action profile to be implemented. B ∈ A is a
set of additional credible threats that the mediator can recommend as punishments when
some player fails to follow a recommendation. The adjective “additional” is important.
It means that they can be recommended as punishments regardless of whether they are
played along the equilibrium path. The mediator is always allowed to punish deviations
by recommending any action which is also recommended along the equilibrium path with
positive probability. The effective set of credible threats is thus B∗ = B ∪

(

×i suppαi

)

.2

A mediated mechanism represents the following extensive form game. The game begins
with the mediator choosing the action profile a∗ that she wants to implement, and the player
i to move first. She chooses a∗ according to α and i according to θa∗ . Then, the mediator
“visits” each of the players one by one, visiting i first and −i second. In each visit, she will
recommend an action and observe the action actually taken. Let ar denote the vector of
actions recommended by the mediator, and ap the vector of actions chosen by the players. At
the moment of making their choices, the players do not possess any information other than
the recommendation they receive. The mediator always recommends the intended action
to the first player, i.e. ar

i = a∗
i . She recommends the intended action to the second player

if the first player complied, and one of the worst available punishments in B∗
−i otherwise.

That is:

ar
−i = a∗

−i if ap
i = ar

i

ar
−i ∈ arg min

a−i∈B∗

−i

ui(a
p
i , a−i) if ap

i 6= ar
i

A mediated mechanism is incentive compatible if and only if following the mediator’s
recommendations constitutes a Nash equilibrium. Since only Nash incentive compatibility
is required, there are no incentive constraints for the punishments, which occur off the
equilibrium path. This is why the mediator can always recommend the worst available
punishment without any consideration of the player actually performing it.

Nash incentive compatibility is characterized by a finite set of affine inequalities. Namely,
for every action ai that is recommended with positive probability, i’s expected utility from
complying should be greater or equal to the expected utility from deviating to an alterna-
tive action a′

i. The expected utility from complying is given by
∑

a−i
α(a−i|ai)ui(a). The

2The only purpose of restricting the set of credible threats, is to ensure that the punishments are incentive
compatible, see section §4. Actions that are chosen along the equilibrium can always be used as punishments
because the player who performs the punishment will remain uninformed of the deviation and believe that
he is along the equilibrium path.
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expected utility from deviating equals
∑

a−i
α(a−i|ai)ui(a

′
i, a−i) if i is the second player to

move (in which case it is too late to punish him). Otherwise, it is given by wi(a
′
i, B

∗) ≡
min

a−i∈B∗

ui(a
′
i, a−i). The set of interdependent-choice equilibria can thus be defined as follows.

Definition 1 A distribution over action profiles α ∈ ∆(A) is an interdependent-choice

equilibrium with respect to a set of credible threats B ∈ A, if and only if there exists some
θ : A → ∆(I) such that (α, θ, B) is incentive compatible, i.e. such that for every player i ∈ I
and every pair of actions ai, a

′
i ∈ Ai:

∑

a−i∈A−i

α(a)
(

ui(a) −
(

1 − θa(i)
)

ui(a
′
i, a−i) − θa(i)wi(a

′
i, B

∗)
)

≥ 0

IE(B) denotes the set of interdependent-choice equilibria with respect to B. When B = A, I
omit the reference to it and simply say that α ∈ IE is an interdependent-choice equilibrium.

The inequalities that define interdependent-choice equilibria resemble those which define
other solution concepts involving choice interdependence. By setting θa(i) = δ ∈ (0, 1) for
all i and a, and imposing some restrictions on w, one recovers the recursive characterization
of payoff corresponding to SPNE of repeated games due to Abreu et al. (1990), hereafter
APS. If one sets θa(i) = 0 for all i and a, then players cannot readjust their intended plans
in order to punish deviations. This case results in the definition of correlated equilibrium.
In the opposite extreme, if θa(i) = 1 for all i and a, then players are always able to punish
deviations. This case results in interim individual rationality: each player’s expected payoff
conditional on his own action should be greater or equal to his minimax value. It also
coincides with the notion of conjectural variations equilibrium adapted to finite games and
deprived of any consistency restrictions (Figuiéres et al., 2004).

From the previous analysis, it follows that the inequalities defining interdependent-choice
equilibrium are tighter than those of individual rationality, and weaker than those of corre-
lated equilibrium. Hence the set of interdependent-choice equilibria is always contained in
the set of individually rational outcomes, and always contains the set of correlated equilibria
(and is thus never empty). Also, it is straightforward to show that IE is monotone with
respect to the set of credible threats. The following example, adapted from Aumann (1987),
illustrates that the containments between these different solution concepts can be strict.

Example 1 Two partners decide whether to work (W) or shirk (S) in a joint-venture, their
payoffs are depicted in Figure 3. The figure shows the sets of payoffs corresponding to
individual rationality, Nash equilibrium with public randomization, correlated equilibrium,
and interdependent-choice equilibrium. In this particular example, the set of SPNE payoffs
of the repeated game with perfect monitoring and public randomization coincides either with
the convex hull of the set of Nash equilibrium payoffs or with the set of individually rational
payoffs, depending on the discount factor. Also, all the Pareto efficient outcomes correspond
to interdependent-choice equilibria, and all but one interdependent-choice equilibria are
sequential equilibria of the corresponding mediated game.
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Figure 3 Equilibrium payoffs for the chicken game

The existence statement about θ makes Definition 1 appear complicated. However,
interdependent-choice equilibrium can also be defined in terms of joint distributions γ ∈
∆(A × I) satisfying the inequalities:

∑

a−i∈A−i

[

γ(a)ui(a) − γ(a, i)wi(a
′
i, B

∗) − γ(a,−i)ui(a
′
i, a−i)

]

≥ 0

This implies that, knowing w, the set of interdependent-choice equilibria with respect to B
is characterized by a finite set of affine inequalities. This makes it very easy to compute.
For small games it can be computed by hand and for moderate games it can be accurately
approximated by a computer in fractions of a second. An additional difficulty may arise
when B 6= A, because w depends on B∗ which in turn may depends on the support of the
marginal of γ over A. This difficulty disappears when this support is guaranteed to be a
subset of B.

3 Nash implementation without commitment

Interdependent-choice equilibria are equilibrium outcomes of mediated games. They are
implementable whenever the players can hire a mediator who can control the order of choices,
observe the choices made, and generate private recommendations. A natural question is
whether there are other mechanisms which can implement additional outcomes and are still
consistent with our assumptions. The answer is no. Every equilibrium outcome of a single-
shot interaction without commitment or side payments, corresponds to an interdependent-
choice equilibrium (the precise meaning of ‘no commitment’ is formalized in the definition
of extensive form mechanisms in section §3.2).
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3.1 Extensive form games

Extensive form games are defined as in Osborne and Rubinstein (1994), with some dif-

ferences in notation. An extensive form game is a tuple G =
(

M,X, ι,H, σ∗
0, v

)

. M denotes

a set of moves. X ⊆ ∪t∈NM
t denotes a finite set of histories or nodes. ≤ denotes prece-

dence among nodes. M(x) = {m ∈ M | (x,m) ∈ X} is the set of moves available at x.
ι(x) ∈ I ∪ {0} is the agent moving at x, where 0 represents Nature (or a mediator). Z and
Yi are the sets of terminal nodes and i’s decision nodes respectively. Z(x) = {z ∈ Z |x ≤ z}
is the set of terminal nodes that can be reached after x. Hi partitions i’s decision nodes into
information sets and satisfies perfect recall. σ∗

0 specifies the players’ common prior beliefs
about Natures’ choices. Finally, vi : Z → R represents i’s preferences over terminal nodes.
Notice that attention is restricted to finite games with perfect recall.

A pure strategy for i is a function si : Hi → M , with si(Hi) ∈ M(Hi) for every Hi ∈ Hi.
A mixed strategy for i is a distribution σi over his pure strategies, it is strictly mixed if it has
full support. Si, Σi and Σ+

i denote the sets of i’s pure, mixed and strictly mixed strategies
respectively. Given that Nature chooses according to σ∗

0, a strategy profile σ induces a
distribution over nodes ζ( · |σ, σ∗

0) ∈ ∆(X). ζ(x|σ, σ∗
0) is the probability that the game will

reach x if players choose according to σ and Nature chooses according to σ∗
0. When there

is no ambiguity, I omit the reference to σ and σ∗
0 and simply write ζ(x). Expected payoffs

Vi : Σ → R are defined in the obvious way. A Nash equilibrium (NE) is a strategy profile
σ∗ such that Vi(σ

∗) ≥ Vi(σ
′
i, σ

∗
−i) for every i and σ′.

3.2 Extensive form mechanisms

Loosely speaking, an extensive form mechanism is any extensive form game which is
consistent with the partial characterization of the environment (players, action spaces and
preferences) and with the assumption that players cannot commit nor delegate the authority
over their choices. The first requirement for an extensive form game to be an extensive form
mechanism is that it must preserve the outcome and preference structure of the environment.
That is, there must be a preference-preserving map from terminal nodes (outcomes of the
game) to action profiles (outcomes of the environment).

Definition 2 An outcome homomorphism from an extensive form game G to E is a
function τ from terminal nodes onto action profiles preserving preferences, i.e. such that
v(z) = u(τ(z)) for every terminal node z. G is outcome equivalent to E if it admits an
outcome homomorphism.

Outcome equivalence does not capture the assumption that players cannot commit. For
this purpose, each player should freely choose his own action at some point in the game.
To eliminate commitment, there must exist a relationship that relates moves (choices in the
game) with actions (choices in the environment), preserving the choice structure in a precise
sense discussed ahead. For the remainder of this section, let G be outcome equivalent to
E . The subsequent definitions all depend on a fixed outcome homeomorphism τ . To keep
the notation simple, I omit explicit references to this dependence. Also, for every player i,
τi : Z → Ai denotes the projection of τ onto Ai.
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For every player i and every corresponding decision node yi, τ induces a representation

relationship ≈yi
from the set of moves available at yi in the game to the set of i’s actions in

the environment. A move m ∈ M(yi) represents action ai ∈ Ai at yi, if and only if choosing
such move at node yi in the game has the same effect in (payoff-relevant) outcomes as
choosing ai in the environment. This idea is formalized by the following definition.

Definition 3 Given a player i ∈ I and a decision node yi ∈ Yi, a move m ∈ M(yi)
represents an action ai ∈ Ai at yi if and only if:

1. τi(z) = ai for every z ∈ Z(yi, m)

2. There exist m′ ∈ M(yi) and z ∈ Z(yi, m
′) such that τi(z) 6= ai

The representation relationship is denoted by m ≈yi
ai, and Mai(yi) denotes the set of

moves that represent ai at yi. A move is pivotal at yi if it represents some action.

The first requirement is that, if i chooses m at yi, then the game will end at a terminal
node which is equivalent to ai according to τi. This is regardless of any previous or future
moves by either i or his opponents. The second requirement is that, after the game reaches yi,
i could still choose a different move m′ after which the game remains open to the possibility
of ending at a terminal node that is not equivalent to ai.

In the strategic environment, player i must choose one and only one action in Ai. A
decision node yi is pivotal for i according to τ if and only if it represents an analogous
choice problem. That is, if and only if for every ai ∈ Ai there is a move available at yi which
represents ai.

Definition 4 A decision node yi ∈ Yi is pivotal for player i ∈ I with respect to τ if and
only if Mai(yi) 6= ∅ for every ai ∈ Ai. Let Di ⊆ Yi denote the set of pivotal nodes for i.

It seems natural to require that players should always know whether their moves repre-
sent an action. (G , τ) satisfies full disclosure of consequences if and only if ≈yi

=≈y′

i
whenever

yi and y′
i belong to the same information set.3 When (G , τ) satisfies full disclosure of con-

sequences, the previous definitions can be extended to talk about information sets instead
of nodes. In particular one can say that m represents ai at Hi, or that Hi is pivotal, and
Mai(Hi) can be defined in the obvious way. A extensive form mechanism for E can now
be defined as an extensive form game G that admits an outcome homomorphism (outcome
equivalence), satisfying full disclosure of consequences, and such that the payoff-relevant
components of every terminal node are determined at pivotal nodes (strategic equivalence).

Definition 5 A extensive form mechanism for E is a tuple
(

G , τ
)

consisting of an ex-
tensive form game G and an outcome homomorphism τ that satisfies full disclosure of
consequences and such that for every terminal node z and every player i, there exists a
pivotal node yi ∈ Di and a pivotal move m ∈ M τi(z) such that z ∈ Z(yi, m).

3≈yi
=≈y′

i

means that m ≈yi
ai if and only if m ≈y′

i

ai for all m ∈ M(yi) = M(y′
i) and all ai ∈ Ai.
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The notion of extensive form mechanisms attempts to capture the most general class of
extensive form games that do not allow for any form of commitment. The definition might
appear to be overly complicated or unnatural. For example, one could define a pivotal node
for player i simply by requiring that M(yi) = Ai. However, this would exclude possibilities
which, ex ante, could have interesting consequences.

Consider for instance a generic 2 × 2 environment with Ai = {ai, a
′
i} for i ∈ {1, 2}, and

the two mechanisms illustrated in Figure 4. In the first one, player 1 has the option of either
making a definitive decision at the beginning of the game, or waiting to see his opponent’s
choice before making his own (endogenous timing). In the second one, player 1 has the
option of partially revealing some information about his choice to player 2 (endogenous
signaling). Our main results imply that these features are irrelevant, in that the set of
implementable outcomes remains unchanged with or without them. However, this is a
result, not an assumption.

b b b b
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2

Figure 4 Valid extensive form mechanisms

3.3 Nash implementation

A distribution over action profiles α ∈ ∆(A) is (Nash, sequentially, . . . ) implementable
if and only if there exist a extensive form mechanism (G , τ) and a (Nash, sequential, . . . )
equilibrium σ∗ ∈ Σ that implements it, i.e. such that for every a ∈ A:

α(a) = ζ∗
(

τ−1(a)
)

=
∑

z∈Z

ζ(z, σ∗, σ∗
0) · 1

(

τ(x) = a
)

The following theorem asserts that the set of mediated mechanisms constitutes a complete
canonical class for Nash implementation.

Theorem 1 A distribution over action profiles is Nash implementable if and only if it is

an interdependent-choice equilibrium.

This result is analogous to the central results in Aumann (1987) and other related papers
(Bergemann and Morris, 2011a, Forges, 1986, 1993, Myerson, 1986). All of these results
follow from similar arguments: given a general mechanism and an equilibrium, it is possible
to construct a canonical mechanism that replicates the strategic features but gives players
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the minimal amount of information needed to follow the plan of action. By reducing their
information, each player’s ability to deviate profitably also diminishes.

For interdependent-choice equilibrium, the proof requires two additional considerations.
The first one is that in mediated mechanisms players always use the worst available punish-
ments off the equilibrium path. This implies that the distribution of actions played can be
replicated only along the equilibrium path. However, this is not an issue because using the
worst available punishments only relaxes the incentive compatibility constraints.

A more complicated issue is that, in order to keep the definition general, I allowed for
mechanisms that cannot be transformed into canonical mechanisms in a straightforward
manner. For instance, players can delay their choices or partially reveal or acquire informa-
tion from past play. This is not a significant issue. Intuitively, all the non-pivotal choices
can be delegated to the mediator in order to obtain more tractable mechanisms. For in-
stance, to deal with the mechanisms presented in Figure 4, one could consider the simpler
mechanisms shown in Figure 5. While this turns out to be insignificant for the result, it
does complicate the notation required for the proof.
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Figure 5 Simple mechanisms corresponding to the general mechanisms from figure 4

4 Credible threats and the problem of perfection

The goal was to to find the set of outcomes that can be implemented without commit-
ment, and yet interdependent-choice equilibrium is defined as if the players were able to
commit themselves to punish deviations. In particular, one might be concerned with the
willingness of a player to carry on a punishment when, ex-post, it might be in his best
interest not to do so. This may occur because interdependent-choice equilibrium is defined
in terms of Nash incentive compatibility, which only imposes optimality requirements along
the equilibrium path. This section addresses this issue by focusing on outcomes that can
be implemented as sequential equilibria of extensive form mechanisms.4

4A very different justification for the commitment to punish can be found in the context of psychological
games. For instance, one may assume that players actually derive utility from punishing those who deviated
in the past (Dufwenberg and Kirchsteiger, 2004, Vyrastekova and Funaki, 2010).
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4.1 A sufficient condition for sequential implementation

The sufficient condition for sequential implementation provided here is based three ob-
servations. First suppose that α is a interdependent-choice equilibrium with respect to
B = ∅ (as a set of additional credible threats). In the corresponding mediated game, all
the actions which are recommended as punishments are also recommended along the equi-
librium path. This implies that every information set is reached with positive probability.
Consequently, following the mediator recommendations constitutes a sequential equilibrium
and α is sequentially implementable.

Secondly, given two extensive form mechanisms, one can construct a new mixed mech-
anism with a first stage in which nature randomizes between them. If the outcome of the
randomization is publicly announced, then the incentives remain unchanged. This implies
that there is some sequentially implementable distribution αS with full support, meaning
that αS

i (ai) > 0 for every ai ∈ AS
i , where AS denotes the action space consisting of actions

that are played with positive probability in some sequentially implementable distribution.
Also, together with the first observation, this implies that every interdependent-choice equi-
librium with respect to AS can be arbitrarily approximated by sequentially implementable
distributions.

The two previous observations are true not just for sequential equilibrium, but also for
finer refinements which only impose additional restrictions off the equilibrium path, such as
perfect and proper equilibria. Specializing the analysis to sequential equilibrium allows for
less stringent sufficient conditions. Let AR be the set of first-order rationalizable actions and
recall that sequential equilibrium does not impose any restrictions on the relative likelihood
of different deviations. This suggests that any action in AR can be used as a credible threat.
For instance, if a1 is a best response to a2, then one can construct a mediated game in which,
whenever 1 is asked to play a1, he will believe that it is because 2 deviated by choosing a2.

5

The preceding discussion suggests sufficient conditions for sequential implementation,
if α ∈ IE(∅), α ∈ IE(AR) or α ∈ IE(AS), then α is (almost) sequentially implementable.
However, these conditions are unsatisfactory because they may become intractable in com-
putational terms. On one hand, IE(∅) and α ∈ IE(AR) can be hard to compute because
the set of effective threats may depend on the support of the equilibrium distribution and,
consequently, the corresponding inequalities are no longer linear nor continuous. On the
other hand, there is no obvious way of finding AS. Instead, I propose a recursive proce-
dure, much in the spirit of APS, to find a set AIE ⊆ AS with the property that every
interdependent-choice equilibrium with respect to AIE is sequentially implementable.

Define T : A → A as T(A′) = ×i∈I Ti(A
′), where:

Ti(A
′) =

{

ai ∈ Ai

∣

∣

∣ ∃α ∈ IE(A′ ∪AR) such that αi(ai) > 0
}

5In other words, since off-path beliefs are design variables, then can be chosen as to generate ex-post
incentives for punishment. Consider for instance the following example from The Godfather (1972), dealing
with the relationships inside the Italian mafia. After offering a truce agreement, Vito Corleone remains
concerned about the wellbeing of his son and makes the following announcement: “I am a superstitious

man, and if some unfortunate accident should befall him. . . if he’s struck by a bolt of lightning, then I’m

going to blame some of the people in this room.” He is announcing what his interim beliefs would be after
observing an hypothetical unexpected event. By doing so, any best response to such beliefs becomes a
credible threat.
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In words, T(A′) is the action space which includes only those actions which can be im-
plemented in some extensive from mechanism with respect to A′ ∪ AR. Now define the
sequence {An}n∈N by A1 = A and An+1 = T(An). The following proposition ensures that
An+1 converges in finite time to the largest fixed point of T.

Proposition 2 An is a decreasing sequence converging in finite time to a nonempty limit

AIE, such that AIE = T(AIE) and A′ ⊆ AIE whenever A′ ⊆ T(A′).

Since IE(AIE ∪ AR) is convex and AIE = T(AIE), it follows that there is a maximum-
support interdependent-choice equilibrium αIE ∈ IE(AIE) such that supp(αIE

i ) = AIE
i for

every player i. All the information sets are reached with positive probability in the medi-
ated game corresponding to αIE. Therefore, following the mediator’s recommendations con-
stitutes a sequential equilibrium. This means that αIE is sequentially implementable, and
consequently, AIE ⊆ AS. Hence the following theorem obtains, which provides a tractable
sufficient condition for sequential implementation.6

Theorem 3 If α is an interdependent-choice equilibrium with respect to AIE ∪AR, then it

is sequentially implementable.

This sufficient condition for sequential implementation is very tractable. The fact that
the iterative procedure is monotone is important. It means that in each state, if α ∈
IE(An ∪AR) then supp(α) ⊆ An. Hence, the set of effective threats coincides with the set of
additional threats, and IE(An∪AR) is characterized by a finite set of affine inequalities. With
this in mind, finding AIE is much simpler in computational terms than the APS algorithm.
First, only pure actions are eliminated at each iteration. The elements of the sequence can
thus be described with finite information. Also, T(An) is defined by a decreasing number of
affine inequalities. In each iteration, the inequalities corresponding to an eliminated action
ai may be replaced with αi(ai) = 0. Finally, the convergence of the current procedure occurs
in finite time and, since interdependent-choice equilibria is a permissive solution concept,
the number of required iterations in most cases should be small (if positive at all).

It is worth to note that the condition is also very permissive. Since both the sequential
structure and the off-path beliefs are design variables, restricting attention to sequential
equilibria has a relatively small impact. For example, in environments with no strict domi-
nance, AIE ∪AR = AR = A, and thus Nash and sequential implementability coincide, hence
the following corollary.

Corollary 4 When there are no strictly dominated actions, a distribution is sequentially

implementable if and only if it is an interdependent-choice equilibrium.

6For the theorem to be true, there must be at least three players, or it must be feasible for Nature or the
mediator to make mistakes (null choices). Otherwise, instead of having that α is sequentially implementable,
one can only guarantee that for every ε > 0, there exists a sequentially implementable distribution α′ such
that ‖α− α′‖ < ε. The reason for this is made apparent in the last step of the proof.
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L C D R

T 3 , 0 0 , k 0 , 0 0 , 3

C k , 0 6 , 6 2 , 9 k , 0

D 0 , 0 9 , 2 5 , 5 0 , 0

B 0 , 3 0 , k 0 , 0 3 , 0

Figure 6 Payoff matrix for examples 2 and 3.

Example 2 Consider the environment described by the payoff matrix in Figure 6 with k = 2.
The central part of the matrix corresponds to a prisoner’s dilemma in which cooperation
cannot be achieved through mediation. Adding the additional actions, allows cooperation to
be implemented by using T and R as punishments. Furthermore, following recommendations
is a sequential equilibrium, as long as the players consider B and L to be the most likely
trembles. However, T and R cannot be played with positive probability in any equilibrium.
Hence AIE = {(D,D)} 6= AS, and (C,C) is sequentially implementable despite the fact that
it is not an interdependent-choice equilibrium with respect to AS.

It is possible to construct more complicated examples which admit distributions that
can be properly implementable only if, off the equilibrium path, some agents choose actions
outside of AS ∪ AR. This implies that the condition in Theorem 3 is not sufficient. I
can show that there exists a set of credible threats BS such that the set of sequentially
implementable outcomes coincides with IE(BS). However, the conditions that define BS are
intractable. For proper and perfect implementation it is no longer enough to specify a set
of credible threats. The enforceable punishments might actually depend on the equilibrium
actions and the specific deviations being punished. In any case, providing conditions that
are both sufficient and necessary for arbitrary refinements and arbitrary environments is a
complicated task. Instead, the remainder of this section focuses on 2 × 2 environments.

4.2 C-rationalizability and 2 by 2 environments

A natural restriction on the set of credible threats is that every punishment should be
rationalizable, i.e. it should be a best response to some rational belief of the player perform-
ing the punishment (Bernheim, 1984, Pearce, 1984). However, when choice interdependence
is possible, the relevant notion of rationalizability is not with respect to simple beliefs but
instead with respect to conjectures.

Definition 6 [Conjectural rationalizability]

◦ An action a∗
i ∈ Ai is C-rationalizable with respect to A′ ∈ A if and only if there

exists some conjecture λi ∈ Λi(A
′) for which a∗

i ∈ arg maxai∈Ai
Ui(ai, λi). Let

CRi(A
′) denote the set of i’s actions that are C-rationalzable with respect to A′

◦ An action space A′ ∈ A is self C-rationalizable if and only if every action profile inA′

consists of actions that are C-rationalizable with respect to A′, i.e. if A′ ⊆ CR(A′).
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◦ The space of C-rationalizable action profiles ACR ∈ A is the largest self C-rationali-
zable action space.

ACR is guaranteed to exist because CR( · ) is ⊆-monotone. Consequently, the union of
all self C-rationalizable sets is also self C-rationalizable. It is nonempty because it always
contains the set of rationalizable action profiles. C-rationalizability is analogous in many
ways to the notion of rationalizability for environments with independent choices. ACR can
be found in a tractable way using the notion of absolute dominance, which is analogous to
the standard notion of strict dominance.7

Definition 7 Given two actions ai, a
′
i ∈ Ai, ai absolutely dominates a′

i with respect to
A′ ∈ A if and only if maxa−i∈A′

−i
ui(a

′
i, a−i) < mina−i∈A′

−i
ui(ai, a−i).

In other words, ai is absolutely dominated by a′
i if and only if the best possible payoff

from playing ai is strictly worse than the worst possible payoff from playing a′
i. Absolute

dominance is much simpler than strict dominance in computational terms because a player
can conjecture different reactions for each alternative action, and hence mixed actions need
not be considered. Since ex-post minimization can be achieved, there is no need for interim
minimization. In order to find the set of absolutely dominated actions one simply has to
find the pure-action minimax payoff ui = maxai∈Ai

mina−i∈A′

−i
ui(ai, a−i), and then eliminate

those actions ai such that maxa−i
ui(ai, a−i) < ui. The following proposition ensures that

CR(A′) can be obtained by eliminating absolutely dominated actions, and ACR can be found
by repeating this process iteratively.

Proposition 5 An action is C-rationalizable with respect to A′ if and only if it is not

absolutely dominated in A′, and the iterated removal of all absolutely dominated actions is

order independent and converges to ACR.

In 2 × 2 environments without repeated payoffs there are two possibilities. If there are
no absolutely dominated actions, then there is an interdependent-choice equilibrium with
full support and hence AIE = AS = A. Otherwise, there is a unique interdependent-choice
equilibrium with respect to AIE; namely, a player chooses his (unique) dominant action and
his opponent chooses the (unique) best response to it. In view of Theorem 3, this results in
the following characterization of sequential implementation for 2 × 2 environments.

Proposition 6 In generic 2×2 environments, a distribution is sequentially implementable

if and only if it is a interdependent-choice equilibrium with respect to ACR.

Example 1 [continued] In the teamwork example, there are no dominated actions and hence
AIE ∪ AR = A. This implies that every interdependent-choice equilibrium is sequentially

7Absolute dominance is closely related to the payoff-dominant cylinders in Lee (2011). The main differ-
ence is that he is interested in dominant action profiles instead of dominated actions.
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implementable. Indeed, (S,W) and (W, S) are NE of the simultaneous move game. Every
other IE except the one that places full probability on (W,W) has full support, and hence all
the punishments are also used along the equilibrium path and following recommendations
is a sequential equilibrium of the mediated game. The case of (W,W) is more complicated.
Suppose that players rule out mistakes by the mediator. Then if a player deviates in
the mediated game, the other player will become informed of this deviation and his best
response is to choose S. (W,W) is still sequentially implementable allowing mistakes from
the mediator or considering more complicated mechanisms. In any case, (W,W) can be
arbitrarily approximated by completely mixed sequentially implementable distributions.

5 Perfect Bayesian implementation

This section defines a form of perfect Bayesian equilibrium (PBE) which is weaker than
sequential equilibrium, and provides sufficient and necessary conditions for PB implementa-
tion. Since sequential equilibria are PBE, these conditions are also necessary for sequential
implementation. My focus on PBE is partially motivated by the fact that it is the finer
refinement for which I can provide a complete characterization. However, PBE might be an
interesting solution concept in its own right, see section §5.2.

Sequential equilibrium is defined in terms of sequential rationality and belief consis-
tency. Sequential rationality requires choices to be optimal at the interim stage for every
information set in the game. As for belief consistency, Bayes rule no longer applies after
receiving unexpected news, but it is still possible to require players to update their beliefs
in accordance with some prior assessment of the relative likelihoods of different trembles
or mistakes. Belief consistency requires this to be the case, and requires that the prior
assessments should be common to all players. My definition of PBE imposes sequential
rationality and requires beliefs to be consistent with trembles, but allows players to disagree
about which deviations are more likely.8

It is useful to allow for mechanisms in which Nature assigns zero probability to some
of its available moves. This is because, when faced with a null event, a player can believe
that it was Nature who made a mistake instead of necessarily believing that an opponent
deviated (intentionally or by accident) from the equilibrium.9 In order to define consistent
beliefs, it is necessary to introduce new notation to denote players’ beliefs about Nature’s
choices, other than σ∗

0. Let Σ0 and Σ+
0 denote the sets of mixed strategies and strictly mixed

strategies for Nature.
A conditional belief system for i in G is a function ψi : Hi → ∆(Yi) with

[

ψi(Hi)
]

(Hi) = 1

for every Hi ∈ Hi. ψi(yi|Hi) ≡
[

ψi(Hi)
]

(yi) is the probability that i assigns to being in yi

8This definition is stronger than other notions of weak PBE in the literature. See for instance chapter
§8 in Fudenberg and Tirole (1991), in particular, the examples corresponding to figures 8.1 and 8.9.

9It is often assumed that Nature assigns positive probability to all of its available moves, but I am
unaware of any good arguments to maintain this assumption. Consider for instance the following quote
from Kreps and Wilson (1982): “To keep matters simple, we henceforth assume that the players initial
assessments [on Nature’s choices] are strictly positive”, page 868. For further discussion see section §7.3.
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whenever he is in Hi. Let Ψi denote the set of i’s conditional belief systems. An assessment
is a tuple (ψ, σ) ∈ Ψ × Σ that specifies both players’ (common) prior beliefs on strategies
and interim beliefs about the position of the game. An extended assessment is a tuple
(ψ, σ, σ0) ∈ Ψ × Σ × Σ0 that also specifies prior beliefs on Nature’s choices. Given an
assessment (ψ, σ), an information set Hi for player i and a move m ∈ M(Hi), let Vi(m|Hi)
denote i’s expected payoff from choosing m at Hi. The expectation is taken given his interim
beliefs ψi(Hi) regarding the current state of the game and assuming that future choices will
be made according to σ.

Definition 8 [Perfect Bayesian equilibrium]

◦ An assessment (ψ, σ) ∈ Ψ × Σ is weakly consistent if and only if for every player
there exists a sequence of strictly mixed extended assessments (ψn, σn, σn

0 ) which
satisfy Bayes’ rule and converge to (ψ, σ, σ∗

0).

◦ An assessment (ψ, σ) ∈ Ψ ×Σ is sequentially rational if and only if Vi(s(Hi)|Hi) ≥
Vi(m|Hi) for every Hi ∈ Hi, every m ∈ M(Hi), and every strategy si ∈ Si such
that σi(si) > 0

◦ A perfect Bayesian equilibrium (PBE) of G is an assessment (ψ, σ) that is both
sequentially rational and weakly consistent.

Before proceeding to the characterization, it is helpful to understand the requirements
implied by PBE. Sequential rationality requires that the choices that occur off the equi-
librium path should be optimal. This implies that players must always believe that the
future choices of their opponents will be rational, and this fact is common knowledge. How-
ever, off the equilibrium path, PBE imposes no restrictions on beliefs about past choices,
nor agreement of beliefs across different players. Hence, the difference between PBE and
Nash equilibrium can be thought of as a form of forward-looking rationalizability off the
equilibrium path.10

5.1 Credible threats and PB implementation

The previous discussion suggests that there are two kind of actions which can always
be enforced as credible punishments for PB implementation. Any punishment which is C-
rationalizable is admissible because PB implementation does not require that off-path beliefs
across agents should agree. Hence, it is always possible to ensure that the player performing
the punishment has the conjectures which rationalize it. Additionally, since PBE only
imposes belief of rationality for future choices, a player can always hold arbitrary beliefs
about past deviations by his opponents. This suggests that best responses to arbitrary
degenerate conjectures are also admissible. Our characterization results from combining
these two ideas, using the notion of forward-looking conjectural rationalizablity.

10Though related, this is different from forward induction, requiring rationality and strong belief of
rationality (Battigalli and Siniscalchi, 2002). Besides forward-looking rationality, forward induction also
requires players to try to rationalize past deviations of their opponents as if they had been intended,
whenever possible.

18



Definition 9 [Forward-looking conjectural rationalizability]

◦ An action a∗
i ∈ Ai is FC-rationalizable with respect to an action sub-space A′ ∈ A if

and only if there exists some conjecture λ1
i ∈ Λi(A

′), some degenerate conjecture
λ0

i ∈ ∆(A−i), and some µ ∈ [0, 1] for which a∗
i ∈ arg maxai∈Ai

Ui(ai, λi), where
λi = µλ0

i + (1 − µ)λi ∈ Λ(A). Let FRi(A
′) denote the set of i’s actions that are

FC-rationalzable with respect to A′.

◦ An action sub-space A′ ∈ A is self FC-rationalizable if and only if A′ ⊆ FR(A′).

◦ The space of FC-rationalizable action profiles AFR ∈ A is the largest self FC-
rationalizable action space.

As before, AFR is guaranteed to exist because FR( · ) is ⊆-monotone and thus the union
of all self FC-rationalizable sets is also self FC-rationalizable. Also, it is non-empty because
it always contains the set of C-rationalizable action profiles.

Intuitively, one can think of λ0
i as the arbitrary beliefs (degenerate conjectures) over past

deviations, and think of λ1
i as the conjectures about future FC-rationalizable choices. With

this interpretation, an action ai is FC-rationalizable with respect to an action space A′ ∈ A
if it is a best response to some conjecture λi ∈ Λi that assigns full probability to actions in
A′

−i, only for choices that occur in the future. λi can assign positive probability to any action,
provided that this probability is independent from i’s choice. The set of FC-rationalizable
actions is exactly the set of credible threats that characterizes PB implementation.

Theorem 7 A distribution over action profiles is PB implementable if and only if it is an

interdependent-choice equilibrium with respect to AFR.

There are two interesting corollaries of this result. First, since sequential implementabil-
ity implies PB implementability, Theorem 7 implies that sequentially implementable distri-
butions belong to IE(AFR). Hence the result can be interpreted as a necessary condition for
sequential implementation in arbitrary environments.

Corollary 8 Every sequentially implementable distribution is an interdependent-choice

equilibrium with respect to AFR.

Second, since C-rationalziable actions are also FC-rationalizable, then, in games with
no absolute dominance a distribution is PB implementable if and only if it is a coordinated
equilibrium. This means that requiring PB instead of Nash constraints has a small impact,
because most games of interest have no absolutely dominated actions.

Corollary 9 When there are no absolutely dominated actions, then a distribution is PB

implementable if and only if it is an interdependent-choice equilibrium.

Example 3 Consider the environment described by the payoff matrix in Figure 6, but now
suppose that k = 5. Now, player 1 is willing to choose T only if he believes with probability
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at least 2/3 that he is the first player to move and player 2 chooses L. However, player 2 is
only willing to choose L if he believes with probability at least 2/3 that he is the first player
to move and player 1 chooses B. Also, player 1 is only willing to choose B if he believes
with probability at least 2/3 that he is the first player to move and player 1 chooses T.
Finally, player 2 is only willing to choose T if he believes with probability at least 2/3 that
he is the first player to move and player 1 chooses L. Hence T and L can only be played if
the players disagree about the order of play in a way that is not consistent with sequential
implementation. Therefore T and L cannot be used for sequential implementation, and the
only sequentially implementable outcome is (D,D). However, since there is no absolute
dominance, T and L are credible threats for PB implementation and thus (C,C) is PB
implementable.

This section concludes with a characterization of the operator FR. Loosely speaking,
the following proposition shows that it is equivalent to the elimination of strictly dominated
actions in an auxiliary game. Hence finding AFR is no more complicated than finding the
set of rationalizable actions of a finite game.

Proposition 10 An action ai ∈ Ai is FC-rationalizable with respect to an action subspace

A′ ∈ A if and only if there is no αi ∈ ∆(Ai) such that:

1. max
{

ui(ai, a−i)
∣

∣

∣ a−i ∈ A′
−i

}

< min
{

ui(αi, a−i)
∣

∣

∣ a−i ∈ A′
−i

}

2. ui(ai, a−i) < ui(αi, a−i) for every a−i ∈ A−i\A
′
−i

5.2 A rationale for PB equilibrium

Loosely speaking, equilibrium refinements such as sequential equilibrium pretend to
capture the restriction that choices should be in equilibrium, not only along the equilibrium
path, but also in every ‘subgame’.11 In contrast, the notion of PB equilibrium here proposed
requires equilibrium only along the equilibrium path, and only imposes rationalizability in
every ‘subgame’. I believe that there are situations in which this former approach is more
adequate.

Equilibrium is not a straightforward consequence of rational behavior. Assuming ratio-
nality and common certainty of rationality only guarantees that choices are rationalizable, it
order to guarantee equilibrium one must also assume mutual knowledge of beliefs or strate-
gies (Brandenburger, 1992). Mutual knowledge of beliefs is usually justified in terms of:
focal points, communication or repetition. For instance Lewis (1969), provides an eloquent
analysis of these justifications in the context of coordination games. These justifications
appear less appealing when it comes down to strategies and beliefs off the equilibrium path.

Determining whether an equilibrium is sequential or not is a difficult task. Hence, it
seems hard to come up with a universal argument to defend sequential equilibria as focal
points. Furthermore, there are complexity issues related to finding equilibria. Planning for

11I am using the word ‘subgame’ informally to refer to different decision points even if they do not
correspond to proper subgames.
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all possible contingencies or agreeing on their likelihood seems an arduous task, specially
when null events are concerned. Finally, there may be natural dynamic processes which
converge to equilibrium, Players beliefs might become concordant not because of planning
but because of experience. However, repetition provides no experience about null events
which only happen off the equilibrium path (Fudenberg and Levine, 1993). Therefore there
might be situations in which (i) it makes sense to assume mutual knowledge of beliefs
exclusively along the equilibrium path; and yet (ii) rationality and common certainty of
rationality may also be defended in every subgame. In such situations, PBE is a more
natural solution concept than sequential equilibrium.

6 Related literature

The incentives arising from choice interdependence have been studied in a variety of
ways, that differ from the current paper both in methodology and purpose. This section
compares the present work with a sample of representative papers within the related lit-
erature. The discussion is divided into three sections. Section §6.1 considers papers in
which interdependence is modeled explicitly as the result of sequential mechanisms. Section
§6.2 considers papers that allow for tacit choice interdependence without being too explicit
about the mechanisms behind it. Section §6.3 discuses papers on robust predictions that
are independent from structural assumptions.

6.1 Explicit interdependence

Revision games Perhaps the model closest to ours is that of Kamada and Kandori (2009,
2012). Kamada and Kandori consider an environment in which players choose their actions
during a continuous time interval and, before the actual play of the game, they might
learn the intended actions of their opponents and have a chance to revise their own. The
revision opportunities are stochastic and exogenous. This model is particularly appealing in
settings in which actions are not instantaneous, for instance because a considerable amount
of planning or preparation is involved. In such settings there is a time lapse from the
moment of choosing an action to the moment of performing it. During this time lapse, an
agent could receive unexpected information and change his mind.

I contrast, choices in my model are instantaneous. This is captured by the fact that,
once a player makes reaches a pivotal decision point and makes a move representing an
action, the decision is final. Instantaneous choices is an adequate assumption for settings in
which the amount of time between choosing and performing an action is short, and hence
the possibility of revision during such interval is negligible. The results of the current paper
show that a phenomenon similar to the revision effects of Kamada and Kandori may prevail
in such settings, provided that choices do not happen exactly at the same time.

Another difference is in the nature of the results. Kamada and Kandori take both
the timing and the sequential structure as given, and ask which outcomes are possible in
equilibria of the corresponding game. In contrast, I take the timing and information as
design variables and ask which outcomes are possible in equilibria of some extensive form
mechanism.
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Mediators There are different extensions of Aumann (1974, 1987) which also increase the
power of the mediator. Perhaps the closes example can be found in Myerson (1986), who
allows for sequential mediation and dependence on past play, but takes the timing of choices
and recommendations as exogenous. Hence my mechanisms extend those in Myerson’s
model. On the other hand, several papers have considered mediated games in which the
players can either commit ex-ante to follow the mediators’ recommendations (Forgó, 2010,
Moulin and Vial, 1978), or delegate their choice to the mediator who can then commit
to follow pre-specified instructions (Ashlagi et al., 2009, Monderer and Tennenholtz, 2009).
In both cases, the mediator serves as a commitment mechanism drastically reducing or
completely eliminating moral hazard. In contrast, I do not allow for any form of commitment
or delegation from part of the players.

Pre-play negotiations There are a number of papers that allow pre-play negotiation phase
in which players can make binding agreements. This literature can be traced back to Kalai
(1981), for more recent analyses see Bade et al. (2009), Kalai et al. (2010), Renou (2009). In
other papers, actions are not contractible, but players can sign binding agreements on action-
contingent monetary transfers, e.g. Jackson and Wilkie (2005). In contrast, my model refers
to situations without enforceable contracts nor monetary transfers. Environments without
commitment can be easily thought of. Monetary transfers or other form of side punishments
or compensations are much harder to rule out. One could think of intermediate situations in
which transfers are possible but actions are not verifiable. In such settings, transfers would
have to occur freely without the use of contracts. This extension is left as an open problem.

Distributed games The work of Monderer and Tennenholtz (1999), introduces a model of
distributed games mimicking software interaction in networks. The sequential and incentive
structure in their model is similar to mine. There are two important differences. First, the
signals are generated by players and not by a mediator, which is only possible because they
consider information structures which do not satisfy perfect recall. Also, each player plays
the game a number of times on different locations, while my model considers single-shot
interactions.

Sequential choices The role of choice interdependence is also present in some models re-
lated to Stackelberg equilbirium, resulting from games in which players move sequentially
and actions may be observed at each stage. The literature on endogenous timing and
price leadership (e.g. Van Damme and Hurkens (1999)), allows oligopolistic firms to choose
whether to publicly announce their prices early on, or to wait to see other firm’s prices be-
fore choosing their own. Also related is Solan and Yariv (2004), which considers sequential
games in which the second player to move can acquire signals about the choices of the first
player. In both cases, choice interdependence results from the timing and information struc-
ture, but only a restricted class of mechanisms is considered. The literature on endogenous
leadership takes the information structure is given, while the literature on espionage takes
the sequential structure as given. In contrast, the current work extends both models by
taking both the sequential and the information structures as design variables.
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Quantum games The literature on quantum games endows the players with quantum ran-
domization devises. Players’ choices can thus be contingent on quantum states that are
entangled in a functional relationship. This enables for different forms of choice interdepen-
dence (Eisert et al., 1999). However, the precise interpretation of quantum randomization
for human decision making remains an open problem.

Extensive form mechanisms There are different notions of extensive form mechanisms else-
where in the literature differ from ours in that they allow for commitment. For example, the
literature on exact implementation with incomplete information uses what I call outcome
equivalent extensive form games (Moore and Repullo, 1988, Serrano and Vohra, 1997). An-
other example can be found in the work of Kalai (2004, 2006) on robust predictions. Kalai’s
definition requires that: (i) every player gets to move along each history of play and (ii) each
player i has a strategy that guarantees τ(z) = ai independently of his opponent’s choices
for each ai ∈ Ai. The following example illustrates the forms of commitment implicit in
Kalai’s definition.

Consider a generic 2 × 3 environment with A1 = {a1, a
′
1} and A2 = {a2, a

′
2, a

′′
2}. Figure

7 illustrates extensive forms that fit the definition of Kalai but allow for total and partial
commitment respectively. The left panel shows a mechanism in which player 1 can choose an
action but, in the event that player 2 chooses a2 he can then review his original choice. This
means that player 1 can commit to choosing an action conditional on player 2 not choosing
a2. The definition of representing moves rules out this possibility. The right panel shows
a mechanism in which player 2 can commit to not using a2 before making a final choice
between a′

2 and a′′
2. I rule out this possibility by requiring that payoff-relevant choices are

made in pivotal nodes.

b b b b

b b b b b b

b b

bc1

2 2

1 1

a1a′
1

a2
a′

2

a′′
2 a2

a′
2

a′′
2

a1 a′
1 a1 a′

1

b b b b

b b b b

b b

bc2

1 1

2 2

not a2 a2

a1 a′
1 a1 a′

1

a′
2 a′′

2 a′
2 a′′

2

Figure 7 Mechanisms with commitment

6.2 Tacit interdependence

The results of this paper are driven not by actual interdependence but by conjectural
beliefs. It is not important whether players choices depend on each other, it only matters
that each player believes that the choices of his opponents might depend on his own. There
are papers that study tacit choice interdependence without being too specific about the
mechanism which generates it. In conjectural variations equilibrium (CVE), see for instance
Figuiéres et al. (2004), all the players act as Stackelberg leaders, as if they where the first
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player to move and other players could react to their choices. A similar idea results in the
notion of cooperative equilibrium from Halpern and Rong (2010) and in Rapoport (1965)’s
account of the prisoner’s dilemma. In what follows I argue that, such behavior is hard to
justify in any extensive form game corresponding to a single interaction.12 For simplicity,
the exposition is phrased in terms of Rapoport’s framework.

Rapoport argues that the two prisoners are identical ex-ante and the situation is sym-
metrical. Consequently, each prisoners believes that his opponent’s choice will match his
own. In practical terms, this means that he is not really choosing between cooperating or
defecting, but between the outcomes (D,D) and (C,C) the former one being strictly better.
This argument is considered to be equivalent to an individual choice problem known as
Newcomb’s paradox, and it has been questioned for conflicting with the notion that players
have independent free wills (Gibbard and Harper, 1980, Lewis, 1979).

Rapoport’s solution is not consistent with the sequential nature of my model. In an
extensive form mechanism, the choice of i can only influence the choice of j if it precedes
it. Since precedence is asymmetric, in a state of the world in which i influences j, j cannot
influence i. In contrast, Rapoport requires both choices to be entangled in a functional
relationship, that is, they have to influence each other simultaneously. In particular, re-
call that in the prisoner’s dilemma example it is only possible to sustain cooperation as
an interdependent-choice equilibrium when G − g ≤ g − b. This is because an extensive
form mechanism can generate incentives for a player to cooperate only when he is the first
mover (otherwise he will take his accomplice’s action as given and the domination argument
holds). Hence, interdependent-choice equilibrium can be thought of as a refinement of mod-
els with tacit choice interdependence, which requires that the players’ conjectures should be
consistent with the acyclic nature of sequential choices.

Unrestricted tacit cooperation can still arise if one is willing to assume that: (i) players
move at the same time and their choices are affected by a common force, such as a quantum
randomization devices; or (ii) the order in which choices are made depends on the chosen
actions as in revision games;13 or (iii) players disagree on their prior assessments about
the order of choices, for instance, consider the following parable showing that unconditional
cooperation could arise in the mechanism from Figure 2, if the common prior assumption
was relaxed.

Suppose that the prisoners agree in believing that the DA will always visit the prisoner
with the higher profile first, but also agree to disagree about their reputations. Each pris-
oner is certain that he is more famous than his opponent, that his opponent is certain of
the opposite fact and these beliefs are also common certainty. With this subjective prior
assessments, the strategy to remain silent unless you receive evidence that your accomplice
has confessed is always sequentially rational and cooperation can be sustained without any
additional restrictions on payoffs.

Along the equilibrium path, each prisoner will cooperate because he will be certain about
the following events: (i) that he is the first player to move, (ii) that if he confesses then

12It it should be noted that CVE are often thought of as reduced forms of a repeated game, see for
instance Kalai and Stanford (1985).

13For a more concrete example, consider a two firm Stackelberg duopoly in which the first firm to set a
price also offers a price matching guarantee.
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his accomplice will learn about his defection before making his choice and will also confess,
and (iii) that if he cooperates then his opponent will (mistakenly) think that he is the
first mover and will remain silent. Although the justification is different, unrestricted coop-
eration arises because players hold exactly the same conjectures postulated by Rapoport.
Notice that, although one of the prisoners is necessarily mistaken, the prisoners’ prior as-
sessments of the outcome coincide and thus this ‘equilibrium’ is self-confirming in the sense
of Fudenberg and Levine (1993), as long as the realized order is not revealed.

6.3 Robust predictions

Thus far I have analyzed interdependent choices from an implementation perspective.
However, the analysis also admits a positive perspective. Game theoretic predictions are
very sensitive to the rules of the game (e.g. order of play and information structure) which
are often unknown to the Economist. This point has been stressed out for instance in the
seminal work of Sutton (1991) who looks for detail-free robust predictions in IO. Given
Theorem 1, the set of interdependent-choice equilibria can be interpreted as a weak but
robust predictions indicating anything that is possible in equilibrium independently of any
structural or informational assumptions other than no commitment.

Going back to the prisoner’s dilemma story, suppose for instance that the prisoners are
taken to different cells. The DA (she) visits each one of them sequentially to offer them the
deal. The prisoners believe that they are both equally likely to be the first one to receive the
offer. Also, assume that the (non-strategic) DA will always try to convince each prisoner
that his accomplice has already confessed. This norm of behavior is common knowledge to
the prisoners who will only believe the words of the DA when they are true, e.g. because
only then will she be able to show a written confession as evidence of her claim.14 This
would result in the mechanism from Figure 2, which could very well arise naturally even
though an outside observer might be tempted to assume that choices are independent.

The empirical results from Rapoport (1997) and Muller and Sadanand (2003) suggest
that choice interdependence has significant effects in actual decision making. In an exper-
imental setting, they find significant differences in behavior across different extensive form
games with a common reduced form. For instance, they consider bargaining games with
different orders of play and private actions. Since the actions of the first mover are not
observable, they have no effect on the set of equilibria. However, they observe significant
differences between the first and second movers. They rationalize this phenomenon by in-
troducing uncertainty about the independence of choices. See also Vyrastekova and Funaki
(2010).

Thinking of robust predictions, the current work is similar to Bergemann and Morris
(2011a,b), with the difference that they deal with adverse selection instead of moral hazard.
They study environments with incomplete information and are interested in robustness with

14The choices of the DA are in fact enabling coordination. Alternatively, one could assume that the DA
is young and unexperienced. That this is her first big case and that obtaining a confession might provide a
big boost to her career. Hence, she will remain nervous unless she obtains a confession, in which case she
will become confident. The prisoners will not believe anything the DA says because they know that talking
is cheap. However, they can observe whether she is nervous or confident and use this signal to coordinate
their actions.
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respect to hierarchies of beliefs (Wilson (1987) doctrine). They define a notion of Bayesian
correlated equilibrium which characterizes the distributions over outcomes that can result
as an equilibrium of the Bayesian game corresponding to some belief structure.

With this interpretation, this paper is also closely related to Kalai (2004). However, the
nature of the results is significantly different. Using my language, Kalai’s main result is that,
under some anonymity and continuity assumptions, the set of equilibria of the simultaneous

move game are robust in that they remain to be approximate Nash equilibria of any extensive
form mechanisms as long as the number of players is large enough. In contrast, I find the
set of outcomes that can arise in some extensive form mechanism. Interdependent-choice
equilibria might not be robust to changes in the rules of the game, but in some cases they
can Pareto dominate all the Nash equilibria of the simultaneous move game. Kalai’s work
shows the limits of coordination in anonymous games with many players, while the present
work shows the possibilities of coordination in games with few players.

7 Summary and discussion

The current paper proposes a model to analyze the role of choice-interdependence as
a mechanism to generate incentives in moral hazard environments. It proposes a class of
mediated mechanisms in which a mediator manages the game through private recommen-
dations. Two salient aspects of the model are that the recommendations are sequential and
occur during the actual play of the game, and that they can depend on previous choices.
The interdependence between choices and signals may generate powerful incentives that, for
instance, allow for cooperation in the prisoner’s dilemma.

Interdependent-choice equilibrium is defined as a Nash equilibrium of a mediated mech-
anisms. The set of interdependent-choice equilibria admits a canonical characterization
consisting of a finite set of affine inequalities. The paper also provides conditions for imple-
mentation according to different equilibrium refinements that take into account the problem
of perfection. The conditions simply restrict the set of credible threats that the mediator
can recommend as credible threats off the equilibrium path. Different sets of credible threats
offer necessary and/or sufficient conditions for different solution concepts. The implications
are summarized in Figure 8.

Interdependent-choice equilibrium can also be interpreted as a refinement of other so-
lution concepts involving tacit choice-interdependence, or as a robust solution concept for
environments in which the information and sequential structure are unknown. The rest of
this section discusses some limitations and extensions of the model.

7.1 Alternative restrictions

In order to characterize the possibilities of choice interdependence, I imposed minimal
restrictions on our set of extensive form mechanisms. Essentially, I only require that payoff-
relevant choices have to be made at pivotal information sets. This of course would not be
useful in environments in which further restrictions apply. Additional restrictions can be
incorporated by adjusting the worst punishment functions wi.

For instance, mediated mechanisms attribute a great amount of power to the mediator
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who can control the order in which players make their choices and perfectly observe the
choices made. Instead of assuming that the mediator controls the order of choices, it is
much more plausible to assume that she can control the order of her recommendations but
that players remain open to the possibility of acting before or after they encounter the
mediator. In such cases, the mediator could not recommend action-specific punishments.
A player who intended to deviate would make his choice after the mediator has left and
thus the mediator could no longer observe the specific deviation. I claim that the set of
implementable outcomes under these conditions can be characterized by replacing wi with
the constant minimax punishment w′

i(a
′
i) = minα−i∈∆(B∗) maxai∈Ai

ui(a, α−i). Notice that
this modification makes no difference when each player has at most two actions, including
the prisoner’s dilemma and the team work example considered previously.

To give another example, suppose that all deviations from equilibrium are publicly ob-
served. In that case, one could replace the worst punishments function wi with the weaker
version w′

i(a
′
i) = min{ui(a

′
i, a−i) | a−i ∈ BR−i(a

′
i)} where BR−i is −i’s best response corre-

spondence. In any case, ones would still obtain an interesting solution concept that would
lie between the set of correlated equilibria and the set of interdependent-choice equilibria.

7.2 Many players

The results of the paper extend naturally to n-player games. However the required
notation becomes significantly cumbersome. For one thing, when the mediator chooses an
ordering of the players she is no longer choosing the player who moves first but an entire
enumeration n of i. Hence θa must be a distribution over such enumerations. The incentive
constraints then become:

∑

a−i∈A−i

α(a)ui(a) ≥
∑

a−i∈A−i

∑

n

α(a)θa(n) · min
{

ui

(

a′
i, a

′
n+(i), an−(i)

) ∣

∣

∣

∣

an+(i) ∈ B∗
n+(i)

}

where n+(i) =
{

j ∈ I
∣

∣

∣ n(j) > n(i)
}

and n−(i) =
{

j ∈ I
∣

∣

∣ n(j) < n(i)
}

are the set of players
that move before and after i according to n respectively. While the solution concepts
can be extended to environments with many players, it is not entirely clear whether their
interpretation remains valid. I have assumed that coordination is costless and monitoring
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is perfect. These assumptions might not carry on to environments with large number of
players, in which small frictions might add up or propagate. In some cases, the effectiveness
of choice interdependence might dissipate as the number of players increases.

7.3 Mistakes by nature

I have allowed players to attribute deviations from the equilibrium path to unexpected
moves by Nature (or a mediator). In equilibrium, when an agent finds himself in the
equilibrium path he may believe that is is because Nature made a mistake and not because
his opponent decided to deviate. This feature because it makes the analysis tractable and
because I am unaware of any solid argument against it. Since this is not a common feature
in other models, it requires some justification.

Consider for instance the hypothetical situation of a loving marriage after the wife finds
unfamiliar lingerie mixed in the laundry. A plausible explanation is that the husband
deviated from the marital arrangement by involving in an extramarital relationship, and
made the mistake of bringing home evidence of his deviation. However, more often than
not, a trusing wife is likely to ignore this story and instead recur to intricate explanations
involving unexpected chance events. Back to our abstract environment, each player i knows
that his opponents cannot gain from deviating, as long as he sticks to his equilibrium
strategy. Hence he has no reason to be suspicious about them, and attributing deviations
to Nature seems reasonable.

A key element in this previous example is the trusting nature of the relationship. This
line of thought might find less favor in situations in which the agents have reasons to be
suspicious about each other. A extramarital affair is bound to be the favored explanation
by a suspicious wife who expects to be cheated. The sense in which allowing for null chance
moves is sensible might depend on the level of trust or suspicion among the agents. However,
the example here provided describes a common situation in which I judge this feature to be
both appropriate and necessary for explaining observed behavior. In any case, one could
strict attention to refinements that exclude this possibility. In particular, the sufficient
condition for sequential implementation in Theorem 3 can be easily adapted to exclude of
null chance moves, see footnote 6.

7.4 Incomplete information

An important part of the implementation literature focuses on the important problem
of eliciting private information. In contrast, I consider a complete information environment
in order to emphasize the role of interdependent choices in generating incentives to pre-
vent moral hazard. Moral hazard is often ruled out by assuming that a principal has all
the bargaining power and can commit to enforce any individually rational and incentive
compatible mechanism. An extension of interdependent-choice equilibrium to incomplete
information environments could account for the set of outcomes that are implementable
when commitment is not possible. It could also be used as a set of admissible coalition
deviations for collusion-proof implementation as in Lamy (2008). The resulting definition
would be adequate for settings in which legal restrictions prevent the agents from enforc-
ing side contracts. Preliminary analysis shows that in the simplest single object allocation
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problems, the second price auction is collusion-proof while the first price auction is not.

7.5 Mediation technology

The definition of interdependent-choice equilibrium relies on games with a non-strategic
trusted mediator who manages the play and can observe actions perfectly. Changing these
assumptions may affect the set of implementable outcomes. With imperfect monitoring,
the need to punish deviations might necessarily introduce inefficiency as it does in repeated
games (Green and Porter, 1984). When non-strategic mediators are out of the question, an
interesting question is whether the mediator can be replaced by cheap-talk (Vida and Forges,
2013), or whether it is possible to generate the required information structures with trans-
parent mediators (Izmalkov et al., 2005).
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A Notation

For every player i, let −i = I\{i}. For every collection of sets {Xi | i ∈ I}, for every function
f : Y → R

I and for every set of players J ⊆ I, let XJ = {xJ , x
′
J , . . .} = ×i∈J Xi, and let

fJ : B → R
J denote the projection of f on R

J . In particular, X = {x, x′, . . .} ≡ XI = ×i∈I Xi,
X−i = {x−i, x

′
−i, . . .} = ×j∈I\{i}Xj .

For every finite set X, ∆(X) = {ξ ∈ R
X
+ | ‖ξ‖1 = 1} denotes the set of distributions on

X. ξ(Y ) =
∑

x∈Y ξ(x) denotes the probability of the event Y ⊆ X according to ξ. When X =
×i∈I Xi is a Cartesian product, ξi(xi) and ξ(x−i|xi) denote marginal and conditional distributions
respectively.

B Proofs

B.1 Nash implementation

Proof of Theorem 1. The sufficiency follows straight from the definitions: a mediated game is an
extensive from mechanism and interdependent-choice equilibria result from NE of mediated games.
To establish necessity, fix a mechanism (G , τ), a NE σ∗ and let α be the induced distribution. We
will show that α is an interdependent-choice equilibrium.

For that purpose consider any pair of actions a∗
i , a

′
i ∈ Ai with αi(a

∗
i ) > 0 and a′

i 6= a∗
i . For

each information set Hi ∈ Hi, let M∗(Hi) be the moves that represent a∗
i at Hi and are chosen

with positive probability. Also let Hi
∗ be the set of information sets along the equilibrium path in

which i chooses a move representing a∗
i with positive probability, i.e.:

M∗(Hi) =
{

m ∈ Ma∗

i (Hi)
∣

∣

(

∃si ∈ Si

)(

σ∗
i (si) > 0 ∧ si(Hi) = m

)

}

Hi
∗ =

{

Hi ∈ Hi

∣

∣ ζ∗(Hi) > 0 ∧ M∗(Hi) 6= ∅
}

where ζ∗ is the distribution over nodes induced by σ∗. All expectations and conditional distribu-
tions used in the proof are with respect to ζ∗.

Now consider some Hi ∈ Hi
∗. Since Hi must be a pivotal information set, there exists some

m′ ∈ Ma′

i(Hi). Since σ∗ is a NE we know that for each m∗ ∈ M∗(Hi) we have:

E
[

ui(a
∗
i , a−i)

∣

∣Hi,m
∗ ]

≥ E
[

ui(a
′
i, a−i)

∣

∣Hi,m
′ ]

(2)

where Hi,m denotes the set of nodes Hi × {m} for m ∈ {m∗,m′}.
Now let let ΦHi ⊆ Hi denote the event that τ−i is already determined at Hi, i.e.:

ΦHi =
{

yi ∈ Hi

∣

∣

∣

(

∀z, z′ ∈ Z(yi)
)(

τ−i(z) = τ−i(z
′)

)

}

(3)

and let Φ̄Hi = Hi\ΦHi . Notice that the probability of ΦHi and the probability of τ−1
−i (a−i) condi-

tional on ΦHi are independent from i’s choice at Hi. Hence:

E
[

ui(a
′
i, a−i)

∣

∣Hi,m
′ ]

= ζ∗
(

ΦHi

∣

∣Hi,m
′
)

E

[

ui(a
′
i, a−i)

∣

∣Hi,m
′,ΦHi

]

. . .(4)

. . . + ζ∗
(

Φ̄Hi

∣

∣Hi,m
′
)

E

[

ui(a
′
i, a−i)

∣

∣Hi,m
′, Φ̄Hi

]

= ζ∗
(

ΦHi

∣

∣Hi,m
∗
)

E
[

ui(a
′
i, a−i)

∣

∣Hi,m
∗ ]

. . .
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. . . + ζ∗
(

Φ̄Hi

∣

∣Hi,m
∗
)

E

[

ui(a
′
i, a−i)

∣

∣Hi,m
′, Φ̄Hi

]

≥ ζ∗
(

ΦHi

∣

∣Hi,m
∗
)

E
[

ui(a
′
i, a−i)

∣

∣Hi,m
∗ ]

+ ζ∗
(

Φ̄Hi

∣

∣Hi,m
∗
)

wi(a
′
i)

Equations (2) and (4) together yield the following inequality which does not depend on m′:

E
[

ui(a
∗
i , a−i)

∣

∣Hi,m
∗ ]

≥ ζ∗
(

ΦHi

∣

∣Hi,m
∗
)

E
[

ui(a
′
i, a−i)

∣

∣Hi,m
∗ ]

+ ζ∗
(

Φ̄Hi

∣

∣Hi,m
∗
)

wi(a
′
i)

We can obtain one of these inequalities for each point in the game in which i chooses a∗
i with positive

probability according to σ∗. To obtain the desired inequality we simply have to “integrate” over
them in order to obtain:

∑

a−i∈A−i

ζ∗(a∗
i , a−i)ui(a

∗
i , a−i) ≥

∑

a−i∈A−i

[

ζ∗(−i, a∗
i , a−i)ui(a

′
i, a−i) + ζ∗(i, a∗

i , a−i)wi(a
′
i)

]

since this was for arbitrary i, a∗
i and a′

i, it follows that α is a CE. �

B.2 C-rationalizability and FC-rationalizability

Proof of Proposition 5. C-rationalizable actions are clearly not absolutely dominated. For the
opposite direction, fix an action a∗

i ∈ A′
i that is not absolutely dominated in A′, we will show

that a∗
i ∈ CR(A′). Let a∗

−i ∈ arg maxa−i∈A′

−i

ui(a
∗
i , a−i). For each a′

i ∈ A′
i there exists some

a−i(a
′
i) ∈ A′

−i such that ui(a
∗
i , a

∗
−i) ≥ ui

(

a′
i, a−i(a

′
i)

)

(otherwise we would have a′
i ≻A′ a∗

i ). Hence
a∗

i is a best response to λi ∈ Λi(A
′) with λi(a

∗
−i|a

∗
i ) = 1 and λi(a−i(a

′
i)|a

′
i) = 1 for all a′

i ∈ A′
i\{a∗

i }.
Now let An be the sequence of action subspaces generated by iteratively removing all absolutely

dominated actions. For each n ∈ N fix some arbitrary action profile a0 ∈ An and for every i let
a∗

i be a best response to a0
j (it exists because the game its finite). Clearly, a∗ is in An+1. Thus,

by induction, An is weakly decreasing sequence of nonempty acton subspaces. Since A is finite,
this implies that An must converge in finite time to some nonempty limit A∞. Since undominated
actions are C-rationalizable, this implies that A∞ is self C-rationalizable and thus A∞ ⊆ ACR.
Now recall that ACR is C-rationalizable with respect to itself. This implies that for every n, if
ACR ⊆ An then ACR ⊆ An+1. Since ACR ⊆ A = A1, by induction we have that ACR ⊆ An for all
n ∈ N and therefore ACR ⊆ A∞.

We still have to show order independence. For that purpose, define an absolute-dominance
elimination operator to be any function U : A → A (U(A′) is the space of actions that are not
eliminated) such that for every A′ ∈ A: (i) never adds new actions, i.e. U(A′) ⊆ A′; (ii) never
eliminates undominated actions, i.e. CR(A′) ⊆ U(A′); and (iii) if there are dominated actions then
it always eliminates at least one, i.e. CR(A′) 6= A′ implies U(A′) 6= A′. Now define Am = Um(A).
As before, the monotonicity of U and the finiteness of A imply that Am converges to a limit A∞

in finite time. By (ii) we know that ACR ⊆ A∞ and by (iii) we know that A∞ ⊆ CR(A∞) and
thus A∞ ⊆ ACR. �

Proof of Proposition 10. We know that ai ∈ FRi(A
′) if and only if it is a best response to some

conjecture λi = µλ0
i + (1 −µ)λ1

i with λ0
i ∈ ∆(A−i\A

′
−i), λ

1
i ∈ Λi(A

′
−i) and µ ∈ [0, 1]. Without loss

of generality we can choose a conjecture λ1
i that makes a∗

i more attractive, i.e.:

λ1
i (a−i|ai) = 1

(

ai = a∗
i , a−i = ā−i

)

+ 1

(

ai 6= a∗
i , a−i = a−i(a

′
i)

)

(5)
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with ā−i ∈ arg maxa−i∈A′

−i

ui(a
∗
i , a−i) and a−i(ai) ∈ arg mina−i∈A′

−i

ui(ai, a−i). Hence we have

a∗
i ∈ FRi(A

′) if and only if:

(1 − µ) max
a−i∈A′

−i

{

ui(a
∗
i , a−i)

}

+
∑

a−i∈A−i\A′

−i

µλ0
i (a−i)ui(a

∗
i , a−i)(6)

≥ (1 − µ) min
a−i∈A′

−i

{

ui(a
′
i, a−i)

}

+
∑

a−i∈A−i\A′

−i

µλ0
i (a−i)ui(a

′
i, a−i)

for every a′
i ∈ A−i. That is, if and only if it is a best response to some independent belief in the

game (I, Ã, ũ) with Ãi = Ai, Ã−i =
(

A−i\A
′
−i

)

∪ {a0
−i} and ũ : Ã → R given by:

ũi(ai, a−i) =























ui(ai, a−i) if a−i ∈ A−i\A
′
−i

maxa−i∈A′

−i

ui(a
∗
i , a−i) if ai = a∗

−i ∧ a−i = a0
−i

mina−i∈A′

−i

ui(ai, a−i) if ai 6= a∗
−i ∧ a−i = a0

−i

(7)

The result then follows from the well known equivalence never between best responses and domi-
nated actions, cf. Lemma 3 in Pearce (1984). �

B.3 Sequential implementation

Proof of Proposition 2. Monotonicity of An is shown by induction. By definition A2 ⊆ A1 = A.
Now suppose that An+1 ⊆ An. Since IE is a monotone correspondence, then so is T. This
implies that An+2 = T(An+1) ⊆ T(An) = An+1. Hence by the induction principle it follows that
An+1 ⊆ An for all n ∈ N. Since A is finite and {An} is a monotone sequence in A, we know that
it converges in finite time to a limit, hence AIE is well defined.

Since the convergence occurs in finite time, there exists some m such that AIE = Am = T(Am),
which implies that AIE is nonempty and is indeed a fixed point of T. Also, since IE is nonempty-
valued, this implies that AIE is nonempty. Finally, let A′ ∈ A be such that A′ ⊆ T(A′). By
definition A′ ⊆ A = A1. Now suppose that A′ ⊆ An for some n ∈ N. Then, by monotonicity
of T, A′ ⊆ T(A′) ⊆ T(Acn) = An+1. Hence, by the induction principle, A′ ⊆ An for all n ∈ N.
Consequently, A′ ⊆ AIE = ∩n∈NA

n. �

Proof of Theorem 3. By Proposition 2, we know that AIE = T(AIE). The fact that AIE ⊆ T(AIE)
implies that supp(α) ⊆ AIE ⊆ AIE ∪ AR for every α ∈ IE(AIE ∪ AR). Therefore IE(AIE ∪ AR)
is characterized by a finite set of affine inequalities, and is thus a convex set. The fact that
AIE ⊇ T(AIE) implies that there exists some α∗ ∈ IE(AIE ∪ AR) such that α∗

i (ai) > 0 for every i
and every ai ∈ AIE

i .
Consider the mediated game G ∗ which implements α∗ using AIE ∪AR as the set of additional

credible threats. For every ai ∈ AR
i \AIE, let λi ∈ ∆(A−i) be a degenerate conjecture for which

ai is a best response. Every information set in which player i is asked to use ai occurs off the
equilibrium path, and i may believe that the most likely tremble leading to it corresponds to −i
choosing according to λi. Hence choosing ai is indeed sequentially rational. For ai ∈ AIE\AR, the
information set in which i is asked to choose ai is along the equilibrium path. Therefore, by the
definition of IE, choosing ai is optimal. Hence following recommendations constitutes a sequential
equilibrium.

Now consider any α ∈ IE(AIE ∪ AR) and the corresponding mediated game G . Let Ĝ be
the extensive form mechanism in which (i) the mediator randomizes between G and G ∗ with

34



probabilities (1−ε) and ε respectively; and (ii) players are only informed about recommendations,
in particular they are never told whether they are in G or G ∗. Now suppose that all players agree
that trembles in G ∗ are more likely than trembles in G . This means than, whenever they are asked
to perform an action in AIE∪AR, they will believe either that they are along the equilibrium path or
that they are in G ∗. From the previous analysis it follows that complying remains to be sequentially
optimal. And hence the distribution m̂ac = (1 − ε)α + εα∗ is sequentially implementable. Notice
that α̂ approximates α as ε approaches 0. Finally, if one allows for ε = 0 (meaning that the
mediator can make mistakes), then α̂ = α and thus α is sequentially implementable. �

Proof of Proposition 6. Let Ai = {ai, bi} for i ∈ I. If the game has no dominated strategies,
then it has a completely mixed NE, which is a also a proper equilibrium of the simultaneous
move game. Hence every action is properly implementable and the result follows form Theorem
3. Now suppose that some player i has an absolutely dominated strategy, say bi, and let a−i be
the unique best response to ai. Then (ai, a−i) is the unique CE with respect to ACR, and it is a
proper equilibrium of the simultaneous move game. In the remaining cases no player has absolutely
dominated strategies, but at least one player has a dominated strategy.

First suppose that player 2 has no dominated strategies but b1 is dominated by a1. Without
loss of generality assume that a2 is a best response to a1. Since the game has no repeated payoffs
and player 2 has no dominated strategies, this implies that (a1, a2) is a strict NE and that b2 is
the unique best response to b1. Since b1 is dominated but not absolutely dominated, then it is a
best response either to λ1 or λ′

1 with:

λ1(b2|b1) = 1 ∧ λ1(a2|a1) = 1

λ′
1(a2|b1) = 1 ∧ λ′

1(b2|a1) = 1

In the first case it suffices to have player 1 move first. By bacwkard induction he knows that player
2 will choose a2 if he chooses a1 and b2 if he chooses b1. Hence, choosing b1 is the best response.
Since the equilibrium is proper and the outcome is (b1, b2), it follows that every every action is
properly implementable and the result follow from Theorem 3.

bc

b

b

b

b

b

b

b b

b

b

b

b

b

bb

bb

b b b b

0
[

1 − ε− ε2
] [

ε2
]

[

ε
]

1

2

2

1

2

2

1

2 2

a1

b1

a2

a2

b2

b2

b1

a1 a2

a2

b2

b2

a1 b1

a2 b2 a2 b2

Figure 9 Implementation of b1 when it is the only dominated action.
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If b1 is a best response to λ′
1, then it can be implemented as an equilibrium of the mechanism

in Figure (9), when ε > 0 is small enough. The equilibrium strategies are represented with red
arrows. Player 1 is willing to choose a1 because it is a best response to a2. Player 1 is willing to
choose b1 because his conjectures at that moment are close enough to λ′

1 and, since there are no
repeated payoffs, b1 is a strict best response to λ′

1. Player 2 is willing to choose b2 because it is a
best response to b1. He is willing to choose a2 when ε is sufficiently close to 0, because (a1, a2) is
a strict NE. Since all the information sets are on the equilibrium path, the equilibrium is proper.
Hence every every action is properly implementable and, the result follow from Theorem 3.

The only remaining case to consider is when both players have dominated strategies, say b1

and b2. In this case (a1, a2) is a strict NE and there are two possibilities. Define λ1 and λ′
1 as

before and the corresponding conjectures for player 2:

λ2(b1|b2) = 1 ∧ λ2(a1|a2) = 1

λ′
2(a1|b2) = 1 ∧ λ′

2(b1|a2) = 1
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Figure 10 Implementation of b1 when b2 is also dominated.

If bi is a best response to λi, then it can be implemented as a NE of the game where i moves
first and −i chooses b−i along the equilibrium path and punishes deviations with a−i. If bi is a
best response to λ′

i, then it can be implemented as a NE of the mechanism depicted in Figure
10. These NE fail to be subgame perfect, however, consider an extended mechanism in which
Nature randomizes between the mechanism that implements b1 and b2. In this mechanism, all
actions are played with positive probability along the equilibrium path. Hence we can connect the
punishment nodes with the equilibrium path as to include them in the same information sets, and
the equilibrium becomes sequential. Hence every every action is properly implementable and, as
before, the result follow from Theorem 3. �

B.4 PB implementation

In this appendix we provide a proof for Proposition 7 regarding the necessary and sufficient
conditions for PB implementation. The proof is divided in two parts regarding necessity and
sufficiency respectivelly.

To establish necessity it suffices to show that given a PBE of an extensive form mechanism,
every action played with positive probability, either on or off the equilibrium path, is in AFR.
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Then the proof of Theorem 1 applies simply replacing wi(a
′
i, A) with wi(a

′
i, A

FR). This fact is
established by the following lemma. Given an extensive form mechanism and an equilibrium σ∗,
let A∗

i ⊆ Ai denote the set of actions that i plays with positive probability is some information
set, i.e.:

A∗
i =

{

ai ∈ Ai

∣

∣

∣

(

∃Hi ∈ Hi

)(

∃si ∈ Si

)(

σ∗
i (si) > 0 ∧ si

(

Hi

)

∈ Mai(Hi)
}

Lemma 11 For every PBE of an extensive form mechanism we have A∗ ⊆ AFR.

Proof. Fix some action a∗
i ∈ A∗

i that is chosen with positive probability in some information set
Hi ∈ Hi. Fix some move ma∗

i ∈ Ma∗

i (Hi) that represents a∗
i and is chosen with positive probability.

For every possible deviation a′
i ∈ Ai\{a∗

i } pick any move ma′

i ∈ Ma′

i(Hi) representing a′
i. Now

let µ = ψi

(

ΦHi

∣

∣Hi,m
∗
i

)

∈ [0, 1], where ΦHi is the event that τ−i is already determined at Hi, as

defined in equation (3). Finally, let λ0
i ∈ ∆(A−i) and λ1

i ∈ Λ(A∗) be the conjecture given by:

λ0
i (a−i) = ζi

(

τ−1
−i (a−i)

∣

∣Hi,Φ
Hi

)

λ1
i (a−i|ai) = ζi

(

τ−1
−i (a−i)

∣

∣Hi,m
ai , Φ̄Hi

)

and let λi = µλ0
i + (1 − µ)λ1

i . Sequential rationality together with the fact that ζi

(

ΦHi

∣

∣Hi,m
)

and ζi

(

τ−1
−i (a−i)|Hi,m,Φ

Hi

)

are independent from m, imply that for every deviation a′
i:

∑

a−i∈A−i

λi(a−i|a
∗
i )ui(a

∗
i , a−i) =

∑

a−i∈A−i

ζi

(

τ−1
−i (a−i)|Hi,m

a∗

i

)

ui(ai, a−i)

≥
∑

a−i∈A−i

ζi

(

τ−1
−i (a−i)|Hi,m

a′

i

)

ui(a
′
i, a−i)

=
∑

a−i∈A−i

λi(a−i|a
′
i)ui(a−i, a−i)

This means that a∗
i is a best response to the conjecture λi, and therefore a∗

i ∈ FR(A∗). Since this
is true for all i and all a∗

i ∈ A∗
i , it follows that A∗ ⊆ FR(A∗) and thus A∗ ⊆ AFR. �

Proof of sufficiency for Proposition 7. Let α be a CE with respect to AFR. We will construct an
extensive form mechanism (G , τ) and a PBE (σ, ψ) that implement α. We start with the mediated
game G 0 that implements α as a NE, and players choose only actions in AFR. Then we will add
new off-path histories that will make the off path-punishments be incentive compatible. Since we
are only adding nodes off the equilibrium path, it is straightforward that the strategies constitute
a NE that induces α. We only have to ensure that the choices that are made off the equilibrium
path are sequentially rational and that the beliefs is off-equilibrium information sets are consistent.

In our construction, all the players’ information sets are pivotal, have a unique pivotal move
representing each move in the environment, and all the moves in each pivotal information set are
pivotal, i.e. M(Hi) = ∪ai∈Ai

M τ,ai(Hi) and #M(Hi) = #Ai for every Hi ∈ Hi. We specify the
equilibrium strategies by labelling each information set with the distribution of actions that the
corresponding player is supposed to follow. For instance Hi

ai represents a pivotal information set
in which i is supposed to choose the only available pivotal move in Mai(Hi

ai). We then “join”
those information sets in which the same player chooses the same action, so that there are no
different information sets with the same label.15 This implies that the only information that a
player has at the moment of making his choice is the action that he is supposed to choose.

15This is possible because each player only makes one pivotal decision along each path, and all available
moves are pivotal. This implies that each player has one and only one decision node along each path and
perfect recall is trivially satisfied.
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Fix a player i and some action ai ∈ AFR
i \ supp(αi). Since AFR is self FC-rationalizable, we

know that there exist some conjecture λi ∈ Λi for which a0
i is a best response, and such that can be

written as λi = (1 − θ)λ0
i + θλ3

i for some θ ∈ [0, 1], some λ0
i ∈ ∆(A−i) and some λ3

i ∈ Λi(A
FR). We

can further decompose (1− θ)λ0
i as (1− θ)λ0

i = µλ1
i +ηλ2

i with µ, η ∈ [0, 1], λ1
i ∈ ∆(A−i\A

FR
−i ) and

λ2
i ∈ ∆(AFR

−i ). Without loss of generality we can assume that λ3
i (ā−i|a

0
i ) = 1 and λ3

i (a−i(a
′
i)|a

′
i) for

every a′
i 6= a0

i with ā−i ∈ arg maxa−i∈AFR
−i

{ui(a
0
i , a−i)} and a−i(a−i) ∈ arg mina−i∈AFR

−i

{ui(a
′
i, a−i)}.

The entire mechanism starts from an initial node where Nature chooses between the equilibrium
path or other paths. For each action ai ∈ FR∞

i \ supp(αi) we will construct a set of paths on which
player i is willing to choose such action and believe that the future choices of his opponents will be
restricted to FR∞

−i. These sets are all generic and they correspond to the ones depicted in Figure
11.
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Figure 11 Incentives for a0
i ∈ AFR

i \A∗
i

Within brackets, we have specified the sequence of mixed strategies that converges to the
equilibrium beliefs, given a sequence of numbers εn ∈ (0, 1) converging to 0 and the number of
FC-rationalizable actions Ni = #AFR

i .16 The limit of this sequence will generate weakly consistent
beliefs. Hence it only remains to verify the incentive constraints:

a) At nodes (1) and (2), player −i is willing to make choices according to λ2
i because he

believes that he is on the equilibrium path (where all the recommendations are incentive
compatible by construction).

b) At nodes (7) and (8) it might be the case that ā−i and a−i are not best responses to a0
i

or a′
i. However, they are in FR∞

−i and thus, either they are chosen along the equilibrium
path or they are chosen in other off-the equilibrium paths that are designed to generate

16This sequence is not strictly mixed, there are still a number of actions that have null probability, but
we are not interested in them. We could obtain strictly mixed sequences by assigning sufficiently small
probabilities to them (of order ε3 or lower) but this would only complicate the exposition unnecessarily.
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incentives for them. Since −i will consider the deviations in this path to be unlikely (of
order at most ε3), the incentives for these actions are independent from what happens in
this figure.

c) First suppose that the information sets for i are fully contained in the figure:

◦ At (3) player i is supposed to choose an action which is a best response to λ2
i (which

always exists by finiteness of the game. Hence this choice is trivially incentive
compatible.

◦ It is straight forward to see that equilibrium beliefs for player i would generate a
conjecture λi at Hi

0 and thus he would be willing to choose a0
i .

d) Now suppose that either Hi
0 or Hi

BR appear in other parts of the game. There are only
two possibilities:

◦ They appear as punishments to deviations from the equilibrium path or in some
analogous block corresponding to some a0

−i in the position analogous to (7) or (8).
Since all these possibilities have probability of order ε3 or lower, whatever happens
there is irrelevant for player i.

◦ They can appear in the equilibrium path, or in another block for some other a′
i in

the positions of (3) - (8). In any such case, the corresponding action will also be a
best response to the conditional beliefs and thus to the average beliefs.

The mechanics behind the argument are as follows. Every action a0
i ∈ FR∞

i can be rationalized
by some combination of equilibrium or arbitrary previous choices and future choices in FR∞

−i.
Whenever i is asked to choose a0

i we will be naive and believe that he is in exactly that situation
in which choosing a0

i is in his best interest. Since weak consistency does not imply any consistency
requirements across players, this can always be done even if it implies that i must be certain that

his opponent is or will be mistaken. �

Ü///
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