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Abstract

Continuous action space games form a natural extension to normal form games with
finite action sets. However, whilst learning dynamics in normal form games are now well
studied, it is not until recently that their continuous action space counterparts have been
examined. We extend stochastic fictitious play to the continuous action space framework.
In normal form games the limiting behaviour of a discrete time learning process is often
studied using its continuous time counterpart via stochastic approximation. In this
paper we study stochastic fictitious play in games with continuous action spaces using
the same method. This requires the asymptotic pseudo-trajectory approach to stochastic
approximation to be extended to Banach spaces. In particular the limiting behaviour of
stochastic fictitious play is studied using the associated smooth best response dynamics
on the space of finite signed measures. Using this approach, stochastic fictitious play is
shown to converge to an equilibrium point in single population negative definite games,
two-player zero-sum games and N -player potential games, when they have Lipschitz
continuous rewards.

Keywords: stochastic fictitious play, learning in games, continuous action set games,
abstract stochastic approximation.

1. Introduction

Continuous action space games form a natural extension to normal form games with
finite action sets. However whilst learning dynamics in normal form games are now well
studied (e.g. Fudenberg and Levine, 1998) it is not until recently that their continu-
ous action space counterparts have been examined. Oechssler and Riedel (2001) and
Lahkar (2012) provide existence and uniqueness results for two of the most commonly
studied evolutionary dynamics; the replicator dynamics and logit best response, in the
single population scenario. Further results along similar lines are given by Oechssler and
Riedel (2002); Seymour (2002); Cressman (2005); Cressman et al. (2006) and Hofbauer
et al. (2009). Although these dynamics have been studied in continuous time for games
with continuous action spaces there are few existing convergence result for discrete time
learning: Hofbauer and Sorin (2006) show that in a two-player zero-sum continuous ac-
tion games the average action of a fictitious play process converges to a global attractor
of the best response dynamic; Chen and White (1998) investigate a seemingly impossible
stochastic fictitious play model (see Section 2.2 for a discussion). We study a stochas-
tic fictitious play learning processes in continuous action space games, developing the
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necessary stochastic approximation tools in the process. Extending the existing dynam-
ical systems results of Lahkar (2012) to the N -player case and combining this with our
enhanced stochastic approximation theory we study stochastic fictitious play for single-
population games and N -player games. Convergence of the single population is shown
in negative definite games and convergence of beliefs to mixed strategies is shown for
two-player zero-sum and N -player potential games with continuous action spaces and
Lipschitz continuous reward function. This extends the previous results of Hofbauer
and Sandholm (2002) and Hofbauer and Hopkins (2005) for stochastic fictitious play in
normal form games with finite action sets.

In a continuous action space game all actions are selected from an uncountably infinite
action set S. Often S is taken to be a compact subset of R, and this is the approach we
take throughout. In discrete-action games a mixed strategy is described by a probability
mass function on the action set. In continuous action space games this approach must be
extended. Let B denote the Borel σ-algebra on S. DefineMe(S,B) as the space of finite
signed measures on S, which is a Banach space when endowed with a suitable topology,
and let P(S,B) denote the subset of Me(S,B) consisting of all probability measures. In
a continuous action space game a mixed strategy is a probability measure in P(S,B).

As with normal form games, if the population interpretation is being used then
P ∈ P(S,B) is a particular population and selecting an action s ∈ S using P is inter-
preted as selecting a member in the population who plays pure strategy s. Alternatively,
the strategy interpretation can be used meaning that π ∈ P(S,B) is the strategy of a
particular player and an action s ∈ S is a random action selected using π. In Section 3
the single population interpretation is taken whilst in Section 4 we consider the strategy
interpretation in N -player games.

Dynamical systems, such as the replicator dynamics or logit best response, can be used
to study a population P as a process evolving in continuous time on the set of probability
measures P(S,B). The evolution of a population on a continuous action space has been
studied in recent years by Oechssler and Riedel (2001, 2002); Seymour (2002); Cressman
(2005); Cressman et al. (2006); Hofbauer et al. (2009) and Lahkar (2012). However, here
we are interested stochastic fictitious play in a continuous action game. In our stochastic
fictitious play learning process a player uses the logit best response to select an action.
Each player observes the joint action profile and directly uses these point observations to
update their beliefs of each player strategy. Let Pn ∈ P(S,B) be the beliefs at iteration
n and let sn+1 ∈ S be the action selected at iteration n+ 1. A stochastic fictitious play
process for continuous action space games is given by the recursion,

Pn+1 = Pn + αn+1

[
δsn+1

+ Pn

]
,

where δx is a Dirac measure at x ∈ S. This is the natural extension to the traditional,
normal form game, stochastic fictitious play of Fudenberg and Kreps (1993), Benäım and
Hirsch (1999), Hofbauer and Sandholm (2002) and Hofbauer and Hopkins (2005).

Many discrete time learning processes fit the stochastic approximation framework of
Benäım (1999). An iterative process {θn}n∈N is described by the process,

θn+1 = θn + αn+1

[
F (θn) + Un+1

]
, (1.1)

where F (·) : Θ → Θ is a continuous map, {Un}n∈N is a noise sequence and {αn}n∈N
are learning rates. If Θ = RK , and under some mild conditions, standard stochastic
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approximation results (e.g. Benäım, 1999) give that the limiting behaviour of (1.1) can
be studied using the ordinary differential equation (ODE)

dθ

dt
= F (θ). (1.2)

This is commonly known as the ODE method of stochastic approximation, originally
proposed by Ljung (1977) and extended by many authors including Kushner and Clark
(1978), Kushner and Yin (1987a,b) Borkar (1997, 1998, 2008), Benäım (1999) and Benäım
et al. (2003).

In order to produce a framework to study the limiting behaviour of an infinite di-
mensional, discrete time, stochastic learning process we extend the standard stochastic
approximation framework to allow the dynamics to be on a general Banach space Θ and,
in particular, the space of finite signed measures Me(S,B). This approach has previ-
ously been taken by Walk (1977); Berger (1986); Walk and Zsidó (1989); Shwartz and
Berman (1989); Koval (1998); Dippon and Walk (2006) for general Hilbert or Banach
spaces. Using standard functional analysis techniques the differential equation (1.2) can
be extended for θ ∈ Θ (Luenberger, 1969). In particular Shwartz and Berman (1989)
use a similar approach to the ODE method described above to extend stochastic ap-
proximation to general Banach spaces. We give an update of stochastic approximation
on a general Banach space (often called abstract stochastic approximation) to the now
common asymptotic pseudo-trajectory approach of Benäım (1999). The assumptions
used for standard stochastic approximation are generalised for a process in the form of
(1.1) with θn ∈ Θ. Under these generalised assumptions the linear interpolation of the
{θn}n∈N process is an asymptotic pseudo-trajectory to the ordinary differential equation
on the Banach space Θ given by (1.2).

One of the more challenging aspect of stochastic approximation is to verify that
the noise process {Un}n∈N satisfies the appropriate assumptions originally stated by
Kushner and Clark (1978); see assumption (A3) below. This is an area where the previous
work on abstract stochastic approximation has struggled. For example Koval (1998)
considers the simple case when {Un}n∈N is an i.i.d. noise process whilst Shwartz and
Berman (1989) prove a very weak convergence result for a particular process which
again uses independent noise. We provide criteria analogous to the martingale noise
assumptions in RK which guarantee that the noise condition holds on a class of Banach
spaces. This result is extended for a suitable noise condition on the space of finite signed
measures with the bounded Lipschitz norm. This gives criteria under which we can
study the limiting behaviour of noisy learning processes on P(S,B) ⊂Me(S,B) using a
deterministic dynamical system.

We combine our stochastic approximation results with the dynamical systems result of
Lahkar (2012) to prove convergence of a stochastic fictitious play-like process in negative
definite, single population games with Lipschitz continuous reward structure. In addition,
we extend the existence and uniqueness results of Lahkar (2012) to theN -population case.
This allows us to study a stochastic fictitious play algorithm for N -player continuous
action space games. We prove the global convergence of the logit best response dynamics
for two-player zero-sum and N -player potential games with continuous action spaces
and Lipschitz continuous reward function. Convergence of the stochastic fictitious play
algorithm follows by applying our stochastic approximation results.

This paper is organised in the following manner. Section 2 contains the background
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and an extension to the asymptotic pseudo-trajectory approach of Benäım (1999) for
stochastic approximation on a Banach space. This builds on the previous work in this
area by Shwartz and Berman (1989) and links the classical approach to abstract stochastic
approximation with the now more common asymptotic pseudo-trajectory approach to
stochastic approximation on RK . Importantly in Section 2.2 we give a set of conditions,
similar to the standard martingale difference noise assumptions on RK , such that we
can control the noise term for stochastic approximation on Me(S,B). In Section 3 we
consider the logit best response dynamic for single population, continuous action games.
The previous work on the continuous time dynamical system by Lahkar (2012) is briefly
reviewed before a learning variant is presented. Using the stochastic approximation
framework of Section 2 and the noise condition on Me(S,B) we are able to conclude
that for a wide class of games the limiting behaviour of our discrete time, stochastic
learning process can be studied using the deterministic, continuous time dynamics of
Lahkar (2012). In Section 4 we extend this analysis to N -player, continuous action
space games. We show that stochastic fictitious play will converge to an equilibrium for
two-player zero-sum and N -player potential games with continuous action spaces and
Lipschitz continuous reward function. Throughout this work many of the proofs are
relegated to an appendix.

2. Stochastic Approximation on a Banach Space

In normal form games stochastic approximation is used to study the limiting be-
haviour of stochastic fictitious play via the continuous time smooth best response dy-
namics. In a continuous action space game the beliefs will be a probability measure
in the set P(S,B) ⊂ Me(S,B) which will evolve over time. When associated with an
appropriate distance metricMe(S,B) is a Banach space containing all finite signed mea-
sures. Therefore, in order to study the limiting behaviour of stochastic fictitious play
in continuous action space games the standard stochastic approximation framework is
extended to the Banach space setting.

The ideas in this paper build on a rich history of work on stochastic approximation. In
particular we make use of the asymptotic pseudo-trajectory framework of Benäım (1999).
Throughout this section we will use (M,d) to represent a metric space and (Θ, ‖·‖Θ) will
denote a Banach space. For simplicity these are often written as M and Θ respectively.
Since any Banach space is a metric space it should be clear that any statements for M
also hold for Θ, whilst the reverse statement is not true in general.

2.1. Asymptotic Pseudo-Trajectory Approach

To begin we present and describe asymptotic pseudo-trajectories which were first
introduced in stochastic approximation by Benäım and Hirsch (1996) and expanded
upon by Benäım and Hirsch (1999) and Benäım (1999).

Definition 2.1. A semiflow Φ on M is a continuous map Φ : R+ ×M → M , (t, θ) →
Φt(θ), such that,

(1) Φ0(θ) = {θ};

(2) Φt+s(x) = Φt
(
Φs(θ)

)
, for any t, s ≥ 0.
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We assume unless otherwise stated that Φ is a semiflow.

Definition 2.2. A continuous function ψ : R+ →M is an asymptotic pseudo-trajectory
for Φ if for any T > 0,

lim
t→∞

sup
0≤s≤T

d
(
ψ(t+ s),Φs

(
ψ(t)

))
= 0.

Intuitively for any T > 0, s ∈ [0, T ] the map ψ(t+ s) remains close to the semiflow Φ
with arbitrary precision for large enough t.

The ω-limit set of a semiflow Φ and the limit set of an asymptotic pseudo-trajectory
ψ are defined in the same manner,

ω(Φ) :=
⋂
t≥0

Φ[t,∞] and L(ψ) :=
⋂
t≥0

ψ
(
[t,∞]

)
.

Luenberger (1969) outlines the standard functional analysis techniques which can be
used to extend the differential equation (1.2) defined on a Euclidean space to the more
general Banach space setting. If Θ is a Banach space and we have a uniformly continuous
map F (·) : Θ→ Θ then as in (1.2) let

dθ

dt
= F (θ). (2.1)

As in the standard Euclidean space case (2.1) will define a semiflow on Θ, and the limiting
behaviour of an asymptotic pseudo-trajectory to this semiflow can be studied through
the deterministic differential equation (2.1).

We now define a discrete time process on Θ in the form of a stochastic approximation
process of Benäım (1999). Let θ0 ∈ Θ. Define {θn}n∈N via the recursive process,

θn+1 = θn + αn+1

[
F (θn) + Un+1

]
, (2.2)

where Un+1 ∈ Θ is a random term in Θ. This will mean that for all n ∈ N, θn ∈ Θ.
Let τ0 := 0, τn :=

∑n
k=1 αk and m(t) := sup{k ≥ 0; t ≥ τk}. Define the continuous time

interpolation of {θn}n∈N such that for s ∈ [0, αn+1),

θ̄(τn + s) := θn +
s

αn+1

[
θn+1 − θn

]
. (2.3)

We will need the following assumptions;

(A1) For all n ∈ N, θn ∈ Ω, where Ω ⊂ Θ is compact.

(A2) F (·) : Θ→ Θ is a uniformly continuous map such that for all θ ∈ Ω, ‖F (x)‖Θ < C
for some 0 < C <∞.

(A3) For all T > 0

lim
n→∞

sup
k

{∥∥∥∥∥
k−1∑
i=n

αi+1Ui+1

∥∥∥∥∥
Θ

; k = n+ 1, . . . ,m(τn + T )

}
= 0.
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(A4) A unique solution to the differential equation in (2.1) exists in Ω given any initial
choice of θ0 ∈ Ω.

Theorem 2.3. Under the assumptions (A1)-(A4), θ̄(·) : R+ → Θ, defined in (2.3), is
an asymptotic pseudo-trajectory to the semiflow Φ induced by the differential equation
(2.1).

Proof. The proof is omitted as, other than the Euclidean norm ‖ · ‖ being replaced with
the norm ‖ · ‖Θ, the proof is identical to Benäım (1999, Proposition 4.1).

We note that assumptions (A1)-(A4) are extensions to those used by Benäım (1999)
for standard stochastic approximation and are similar to those given by Shwartz and
Berman (1989) for their convergence result for Banach space stochastic approximation.
However, verifying these for a general Banach space as opposed to a Euclidean space can
be difficult. In particular in Section 2.2 we provide conditions to verify the challenging
assumption in (A3) for martingale noise in a Banach space which is suitable for studying
learning in continuous action games.

Many further results can be taken from Benäım (1999) to characterise the behaviour of
asymptotic pseudo-trajectories. Here we present an example of how a Lyapunov function
can be used to prove the global convergence of an asymptotic pseudo-trajectory. Initially
we introduce a notion of stability for a dynamical system on M before presenting a result
from Benäım (1999).

Definition 2.4. A set A is positively invariant if Φt(A) ⊂ A for any t ∈ R+. The set
A is invariant if Φt(A) = A for all t ∈ R+. A point θ̃ ∈ M is an equilibrium point if
Φt(θ̃) = θ̃ for all t ≥ 0.

Definition 2.5. Let Λ ⊂M be a compact invariant set for the semiflow Φ. A continuous
function V : M → R is called a Lyapunov function for Λ if for all t ∈ R+ the function
V (Φt(θ)) is constant for all θ ∈ Λ and strictly decreasing for all θ ∈M\Λ.

Theorem 2.6. Let Λ ⊂M be a compact invariant set for the semiflow Φ and V : M → R
be a Lyapunov function for Λ, where V (Λ) ⊂ R has an empty interior. If ψ(·) : R+ →M
is an asymptotic pseudo-trajectory to Φ then both the ω-limit set of Φ and the limit set
of ψ are contained in Λ.

In Theorem 2.6 we have a method of determining the stability of a dynamical system
on Θ and Theorem 2.3 gives criteria under which a discrete time stochastic process can
be studied using this dynamical system on Θ. The remaining challenge is to show that
the assumptions of Theorem 2.3 hold. In particular, (A3) is a challenging condition to
verify. This is the focus of the following section.

2.2. Noise Criteria: The Space of Finite Signed Measures

It is natural to represent probability distributions on S as a measure since continuity
does not have to be assumed as is the case when using density functions. In particular
atoms, corresponding to positive probability on a particular action s ∈ S, can be ac-
commodated. With S ⊂ R and B the Borel σ-algebra on S, define Me(S,B) to be the
vector space of finite signed measures. This means that for µ ∈ Me(S,B) there exists
two finite measures on (S,B), ν1 and ν2, such that for all A ∈ B, µ(A) = ν1(A)− ν2(A).
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The space of probability measures can be viewed as a subset of the vector space of finite
signed measures. By using an appropriate norm we can consider the Banach space of
finite signed measures, and in particular the subset of probability measures on this space.

The notion of convergence of a probability measure depends on the distance metric
used onMe(S,B). Often this space is assigned the variational norm metric which induces
the strong topology, see Oechssler and Riedel (2001) or Seymour (2002). However, we
take the now more common approach to use the weak topology and many of the reasons
for this approach are discussed in detail by Oechssler and Riedel (2002).

Two metrics have commonly been used to induce the weak topology on Me(S,B).
Oechssler and Riedel (2002) and Hofbauer et al. (2009) use the Prohorov distance met-
ric whilst Lahkar (2012) uses the bounded Lipschitz norm. Convergence in either of
these metrics implies convergence in the other, meaning they induce the same topology.
We follow the approach of Lahkar (2012) in using the bounded Lipschitz norm. For a
bounded, Lipschitz continuous function g : S → R define

‖g‖BL := sup
x∈S
|g(x)|+ sup

x 6=y

|g(x)− g(y)|
|x− y|

. (2.4)

Now let

BL := {g; g bounded & Lipschitz continuous with ‖g‖BL ≤ 1}, (2.5)

be the set of bounded Lipschitz continuous functions with BL-norm bounded by 1. The
dual BL∗-norm on Me(S,B) is defined for µ ∈Me(S,B) as

‖µ‖BL∗ := sup
g∈BL

∣∣∣∣∫
S

g(x)µ( dx)

∣∣∣∣ . (2.6)

Here we consider the space (Me(S,B), ‖ · ‖BL∗) which Lahkar (2012) shows is a Banach
space. For the remainder of this paper we refer toMe(S,B) as opposed to (Me(S,B), ‖ ·
‖BL∗) with the understanding that Me(S,B) will always be equipped with the weak
topology induced by the bounded Lipschitz norm.

Let P(S,B) be the subset ofMe(S,B) consisting of the probability measures. We can
use the abstract stochastic approximation result of Theorem 2.3 for a process {θn}n∈N
such that θn ∈ P(S,B) for all n ∈ N. Under the weak topology on Me(S,B)

‖µ‖BL∗ = 1,

for any probability measure µ ∈ P(S,B), meaning the boundedness assumption in (A2)
will be satisfied for a process in P(S,B). One additional reason to use the weak topology
which is not explicitly given by Oechssler and Riedel (2002) is that under the weak
topology the set of probability measures, P(S,B), is a compact subset of the space of
signed measuresMe(S,B). Assumption (A1) requires that the iterative process remains
in a compact set, which is clearly satisfied for processes in P(S,B) when Me(S,B) is
equipped with the weak topology. As observed by Oechssler and Riedel (2002), this
compactness result does not remain true for the strong topology which immediately
makes it more difficult to combine the strong topology on Me(S,B) with the stochastic
approximation framework from Section 2.

On the Banach spaceMe(S,B) the noise term Un+1 is a random signed measure. Let
(Ω,F ,P) be a probability space and {Fn}n∈N a filtration on F .
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Proposition 2.7. Consider the stochastic approximation process given in (2.2) on the
Banach space Me(S,B). Assume that

(B1) {αn}n∈N is deterministic with
∑
n∈N α

2
n <∞.

(B2) For all n ∈ N, Un+1 is adapted and measurable with respect to Fn.

(B3) For all n

Un+1 = δsn+1 − Pn,

where Pn ∈ P(S,B) is a bounded, absolutely continuous measure which is deter-
ministic given Fn and with associated density pn. sn+1 ∈ S is randomly drawn
from the probability density function pn.

Then

lim
n→∞

sup

{∥∥∥∥∥
k−1∑
i=n

αi+1Ui+1

∥∥∥∥∥
BL∗

; k = n+ 1, . . . ,m(τn + T )

}
= 0, w.p. 1.

The proof of this result comes from approximating the Dirac delta in Un with a spike
centered on the Dirac measure for all iterates. This spike and the absolutely continuous
function pn can then be studied in L2. By applying the convergence result in Proposition
A.1 for L2 we conclude. This proof is given in Appendix B. We note that the earlier
result of Chen and White (1998) assumes that beliefs are updated towards a symmetric,
absolutely continuous distribution centered on the observed action sn+1 ∈ S to ensure
that Pn ∈ L2 for all n ∈ N. However, no such distribution exists if sn+1 is on the
boundary of S, so their process is actually impossible. Instead we consider distributional
beliefs, and approximate these with L2 spikes only in the proof of Proposition 2.7.

As already noted the space of probability measures, P(S,B), is compact under the
weak topology on Me(S,B). Providing the map F (·) : P(S,B) → P(S,B) is uniformly
continuous (A1) and (A2) will be satisfied. Proposition 2.7 can be used to verify (A3).
As already demonstrated by Lahkar (2012), the infinite dimensional Picard-Lindelof the-
orem, proved by Zeidler (1986), provides a method for verifying (A4), the uniqueness
of the solution to the differential equation on Me(S,B) corresponding to (2.1). Hence,
we have straightforward conditions under which we can apply the abstract stochastic
approximation results of Theorem 2.3 to study the limiting behaviour of an iterative
process (2.2) which remains in P(S,B). This will be our approach to analysing discrete
time learning in continuous action space games.

3. Single Population, Continuous Action Space Games

In this section we present an application of Theorem 2.3 and Proposition 2.7 to
a stochastic fictitious play-like learning algorithm, based on the logit best response,
in single population continuous action games. This therefore generalises the results of
Hofbauer and Sandholm (2002).
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Recall that in a single population continuous action game, actions are taken from
a compact action set S ⊂ R and let B be the Borel σ-algebra on S. A population is
given by the combined play of its members and is a probability measure defined over the
measurable space (S,B). So for A ∈ B, P (A) is the proportion of players using a strategy
in A. P(S,B) represents the set of all populations on S.

Finally, the game has a payoff function r(x, y) for x, y ∈ S. In a single realisation
of this game two players are selected randomly from the population. Each player has
an associated pure strategy in S which, combined with r(·, ·), is used to determine the
reward of each player. The expected payoff of an action x ∈ S against a population
Q ∈ P(S,B) is

E(x,Q) =

∫
S

r(x, y)Q( dy). (3.1)

In a similar manner, the expected payoff of the population P against a population Q is

E(P,Q) =

∫
S

∫
S

r(x, y)P ( dx)Q( dy). (3.2)

In a standard abuse of notation we write E(x,Q) ≡ E(δx, Q) where δx is a Dirac measure
which places all the probability mass at the action x ∈ S.

3.1. The Logit Best Response Dynamics

The stochastic fictitious play-like learning algorithm presented in Section 3.2 will be
shown to approximate the logit best response dynamic. This dynamical system has been
studied for continuous action, one population games by Lahkar (2012) and is discussed
here. In normal form games the logit best response is the most studied of the smooth best
response functions. Smooth best response functions arise from maximising perturbed
payoff functions. When the perturbations are the entropy function the smooth best
response becomes the logit best response (see Hofbauer and Sandholm (2002) for a full
discussion). The full construction of the logit best response is given by Lahkar (2012)
for the single population, continuous action case and we extend these details in Section
4 for the N -player scenario.

For A ∈ B and fixed η > 0 the logit best response to a population P is given by

LBRη(P )(A) :=

∫
A

exp{η−1E(z, P )} dz∫
S

exp{η−1E(u, P )} du
. (3.3)

Lahkar (2012) shows that for any population LBRη(P ) is absolutely continuous and
therefore has a density,

lη(P )(x) :=
exp{η−1E(x, P )}∫

S
exp{η−1E(u, P )}du

. (3.4)

Let P (t) denote the population at time t > 0 and P (t)(A) denotes the mass of the
probability measure on the set A ∈ B at time t > 0. The logit best response dynamic on
Me(S,B) is given by the differential equation,

Ṗ (t)(A) = LBRη
(
P (t)

)
(A)− P (t)(A). (3.5)
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Let LEη be the set of logit equilibria of (3.5) for a single population game. Lahkar (2012)
gives criteria for LEη to be non-empty and for the logit best response dynamic to have
a unique solution. We show in Corollary C.3 that these conditions are satisfied if r(x, y)
is Lipschitz continuous in y for all x ∈ S, and throughout this section we shall assume
that this is the case.

In addition, Lahkar (2012) provides a global convergence result for the logit best
response. Firstly, we require the following definition which is taken from Hofbauer et al.
(2009). We note that Lahkar (2012) presents this definition in the more general setting
where games can be non-linear which is the extension to the notion of a stable game used
by Hofbauer and Sandholm (2007). It suffices here to present the definition for linear
games of Hofbauer et al. (2009).

Definition 3.1. A linear, single population game is negative definite if for all P,Q ∈
P(S,B)

E(P −Q,P −Q) < 0.

The game is negative semi-definite if the inequality is replaced with a non-strict inequal-
ity.

As discussed by Hofbauer et al. (2009) the class of negative semi-definite games in-
cludes many common games including, for example, symmetric zero-sum games. The
following result is taken from Lahkar (2012), where we note that by Corollary C.3 the
assumptions of Lahkar (2012, Theorem 7.2) are satisfied under the assumptions here.

Theorem 3.2. Assume that r(x, y) is Lipschitz continuous in y for all x ∈ S, and that
the game is negative semi-definite. Then a Lyapunov function, Vη(·) : P(S,B) → R,
exists for the logit best response dynamics (3.5) with attracting set of LEη and Vη(LEη)
has an empty interior.

The stochastic approximation framework in Section 2 will allow Theorem 3.2 to be
applied to our stochastic fictitious play-like learning algorithm in Section 3.2.

3.2. Logit Best Response Learning
In this section we consider a single population stochastic fictitious play-like process

analogous to that of Hofbauer and Sandholm (2002) but with a continuous action space.
On each iteration of the game a proportion of the population revise their strategy, and
adjust to a new action which is selected according to a logit best response to the current
population. Alternative interpretations of the learning process are available (see Hofbauer
and Sandholm (2002) for details). This discrete time logit best response learning process
is therefore given by

Pn+1 = Pn + αn+1

[
δsn+1

− Pn
]
, (3.6)

where the action sn+1 is an action selected randomly from the logit best response density,
lη(Pn).1 The following theorem states the convergence result for the iterative process in

1We note that if r(x, y) = xg(y) + h(y) for bounded g(·), h(·) : S → R the cumulative distribution
function (CDF) inversion method can used to select an action from the density lη(Pn) and if r(x, y) =
f(y)x2 + xg(y) + h(y), for bounded, positive f(·) : S → R, then an action can be selected from lη(Pn)
using a truncated normal distribution. For other reward functions more advanced techniques would be
required, which we do not address here.
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(3.6) which is based upon the logit best response dynamic.

Theorem 3.3. Assume that r(x, y) is bounded and Lipschitz continuous in y for all
x ∈ S and ∑

n∈N
αn =∞,

∑
n∈N

α2
n <∞.

Then a linear interpolation of the stochastic fictitious play-like process (3.6) is an asymp-
totic pseudo-trajectory to the logit best response dynamic (3.5).

Proof. Firstly, note that for

Vn+1 := δsn+1
− LBRη(Pn),

(3.6) can be written as

Pn+1 = Pn + αn+1

[(
LBRη(Pn)− Pn

)
+ Vn+1

]
, (3.7)

which fits the general stochastic approximation form used in Theorem 2.3. Hence the
claim will follow if we verify that (A1)-(A4) hold for (3.7).

We have already shown the compactness assumption (A1) to hold and the mean field
continuity and boundedness assumption (A2) will also hold since the logit best response
mean field, LBRη(Pn)− Pn is uniformly continuous (Lahkar, 2012).

With r(x, y) Lipschitz continuous in y for all x ∈ S we have proved the existence,
uniqueness and continuity of solutions in Corollary C.3. This verifies that the existence
of solution assumption (A4) holds.

Finally, we need to verify that the assumptions in Proposition 2.7 hold to show that
the noise assumption (A3) holds. Let Fn represent the history of the iterative process
(3.6) up to iteration n ∈ N. The learning rate assumption (B1) is true since

∑
n α

2
n <∞

by choice of {αn}n∈N. Clearly for all n ∈ N, Vn+1 is measurable with respect to Fn
and hence will satisfy (B2). Now since r(x, y) is bounded we know a maximum and a
minimum value, rmax and rmin, exist. As a result, for any n ∈ N and x ∈ S

lη(Pn)(x) <
exp{η−1rmax}
|S| exp{η−1rmin}

<∞.

This confirms that {LBRη(Pn)}n∈N is bounded. The absolute continuity of this measure
is shown by Lahkar (2012). Hence the noise process fits the structure given in (B3).
Applying Proposition 2.7 gives that the noise assumption (A3) holds. Applying Theorem
2.3 concludes the proof.

Theorem 3.4. If r(x, y) is Lipschitz continuous in y for all x ∈ S, and the game is
negative semi-definite, then the single population stochastic fictitious play-like process in
(3.6) will converge to LEη.

Proof. The result follows immediately by combining Theorem 3.2 and Theorem 3.3 with
Theorem 2.6.

To conclude this section we present a simple example of a classic evolutionary game
which has been extended to a continuous action space for which CDF inversion can be
used to generate samples from lη(Pn).

11



Example 3.5. We consider a linear extension to the standard hawk-dove game. For
C > V let

r(x, y) =
[
1− (y − x)

]V
2
− xyC

2
,

and S = [0, 1]. An action in S corresponds to an aggression level, so x = 1 corresponds
to playing ‘hawk’ in the classic game and x = 0 corresponds to playing ‘dove’. The first
term in the reward function represents the likelihood of obtaining a resource of value V
and the second term is the ‘injuries’ sustained in contesting the resource. Both of these
terms depend linearly on how aggressively each of the players contests the resource.

It is straightforward to show that this continuous hawk-dove game is negative semi-
definite in the sense of Definition 3.1. A consequence of Theorem 3.4 is that the stochastic
fictitious play-like process in (3.6) will converge to a logit equilibrium.

This game has infinitely many Nash equilibria but has a unique logit equilibrium.2

Let P̃ ∈ P(S,B) be a logit equilibrium, with associated density p̃. Because the reward
function r(x, y) for this continuous hawk-dove game is a linear in x it follows that for
any P ∈ P(S,B), lη(P )(x) ∝ ekx, for some k ∈ R. Normalisation implies that

p̃(x) =
kekx

ek − 1
. (3.8)

Knowing that p̃(x) = lη(P̃ )(x) for all x ∈ S and combining it with (3.8) and (3.4) allows
us to calculate the exact value of k. Note that when C = 2V , a uniform distribution
over S is the logit equilibrium. A simulation of this game with V = 1, C = 4 and
η = 0.005 is shown in Figure 1. In the discrete action hawk-dove game with V = 1,
C = 4 the Nash equilibrium is for 3/4 of the population to play ‘dove’. With these
same parameters the logit equilibrium here is also skewed towards the ‘dove’ action,
capturing this particular feature of the traditional hawk-dove game. In Figure 1 the
population starts as a uniform distribution and after 4000 iterations this population,
which evolves according to the stochastic fictitious play-like process in (3.6), is close to
the logit equilibrium for the game.

4. N-Player, Continuous Action Space Games

For finite N ∈ N, N -player and N -population games can be defined in the same
manner with differing interpretations. In an N -player (N -population), continuous action
space game game we use i = 1, . . . , N to denote the players (populations) and in a
standard abuse of notation if i denotes one player (population) then use −i to denote all
the others. Let Si ⊂ R be a compact action set and let Bi denote the Borel σ-algebra
on Si. Following the notation of Section 3, let P(Si,Bi) be the set of all probability
measures on Si for i = 1, . . . , N . In an N -population game P(Si,Bi) is thought of as the
set of all possible distributions of population i; in a N -player game it should be thought
of as the set of all possible strategies for Player i. In this section we follow the strategy
interpretation, although we note that the logit best response dynamic remains the same

2It is straightforward to check that P = 1/2δV/C+ε + 1/2δV/C−ε is a Nash equilibrium for any
ε ∈ [0,min{V/C, 1− V/C}], which shows that there are infinitely many Nash equilibria.
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under the population interpretation. πi is the strategy of Player i where πi(Ai) denotes
the probability of player i selecting an action in the set Ai ∈ Bi.

For i = 1, . . . , N , P(Si,Bi) is a subset of the space of signed measuresMe(Si,Bi). As
in Section 3 we equip Me(Si,Bi) with the weak topology using the bounded Lipschitz
norm from (2.6). BLi and ‖ · ‖BL∗

i
are defined as BL and ‖ · ‖BL∗ in (2.5) and (2.6)

respectively, but with all integrals over Si as opposed to S. As previously noted, when
equipped with the BL∗i -norm the space of finite signed measures is a Banach space and
P(Si,Bi) is a compact subset of Me(Si,Bi).

For si ∈ Si and s = (s1, . . . , sN ), an N -player game has a reward structure ri(s) ∈ R,
i = 1, . . . , N . We will assume throughout that for i = 1, . . . , N , ri(s) is Lipschitz
continuous in the joint action s. This can be used to define the expected reward similarly
to (3.1) and (3.2). If we have strategies πi ∈ P(Si,Bi),

Ei(π1, . . . , πN ) = Ei(π) =

∫
S1

. . .

∫
SN

ri(s)π1( ds1) . . . πN ( dsN ),

and as before for si ∈ Si, Ei(si, π−i) = Ei(δsi , π
−i).

Now consider the Cartesian product Σ := Me(S1,B1) × . . . ×Me(SN ,BN ). If π :=
(π1, . . . , πN ) represents an element of Σ we use the norm

‖π‖Σ := max{‖π1‖BL∗
1
, . . . , ‖πN‖BL∗

N
},

to metrize Σ. Hence if we have π, ρ ∈ Σ the distance between these points in Σ is given
by,

‖π − ρ‖Σ = max{‖π1 − ρ1‖BL∗
1
, . . . , ‖πN − ρN‖BL∗

N
}.

Under this norm Σ is a Banach space. This represents the product topology on Σ; hence
a sequence πn → π if and only if for i = 1, . . . , N , πin → πi on Me(Si,Bi). It will be
useful to let ∆ := P(S1,B1)× . . .×P(SN ,BN ). ∆ is a compact subset of Σ and the joint
strategies for a N -player game will evolve on ∆.

4.1. N-Player, Logit Best Response Dynamics

Now we will consider the logit best response dynamic for N -player games. We note
that the dynamics for N -population games is the same, although the situations in which
these arise will be different. This section is a natural extension of the single population
logit best response dynamic described in Section 3.1. We can now define the logit best
response dynamic for joint strategies on Σ. For Ai ∈ Bi and fixed η > 0 the logit best
response of player i to strategy π−i is given by

LBRiη(π−i)(Ai) :=

∫
Ai

exp{η−1Ei(z, π−i)} dz∫
Si

exp{η−1Ei(u, π−i)} du
. (4.1)

For convenience we will take LBRη(π) := (LBR1
η(π−1), . . . , LBRNη (π−N )). It is well

known that

LBRiη(π−i) := arg max
πi∈P(Si,Bi)

{
Ei(πi, π−i)− ηνi(πi)

}
.
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where νi(πi) is the entropy of πi. The full construction of this, including the definition
of νi(·), is given in Appendix D. Following identical logic to Lahkar (2012) the logit
best response for player i as defined in (4.1) has an associated density function which is
denoted

liη(π−i)(x) :=
exp{η−1Ei(x, π−i)}∫

S
exp{η−1Ei(u, π−i)} du

. (4.2)

Let π(t) ∈ ∆ denote the joint strategy at time t > 0 and π(t)(A) denote the mass of the
probability measure on the set A = (A1, . . . , AN ) at time t > 0, where Ai ∈ Bi. The
N -player logit best response dynamic on Σ is given by

π̇(t)(A) = LBRη
(
π(t)

)
(A)− π(t)(A). (4.3)

Lahkar (2012) proves the existence and uniqueness of a solution to the single population
logit best response dynamics in (3.5) under certain conditions. These proofs are extended
to the N -player scenario in Appendix C.

Let LENη be the set of logit equilibria for the N -player dynamical system (4.3). In

Appendix C we show that LENη will be non-empty for jointly Lipschitz continuous re-
wards. We proceed to describe the continuous action space extensions of two prominent
discrete action games.

Definition 4.1. A continuous action space game with reward functions ri(·) : S1× . . .×
SN → R for i = 1, . . . , N is

(1) a two-player zero-sum game if N = 2 and

r1(s) = −r2(s),

for every s ∈ S1 × S2.

(2) an N -player identical interest game if for every i = 1, . . . , N and s ∈ S1× . . .×SN ,

ri(s) = r(s),

for some r(·) : S1 × . . .× SN → R.3

It remains to present a global convergence result for the logit best response dynamics
(4.3) in two-player zero-sum and N -player potential games with continuous action spaces
and Lipschitz continuous reward function. These are the natural extensions of the discrete
action case given by Hofbauer and Sandholm (2002) and Hofbauer and Hopkins (2005)
to the continuous action space.

3As discussed by Hofbauer and Sandholm (2002), potential games often include payoffs which are
common up to a shift. As in the discrete action case a payoff shift for player i which is of the form
ri(s) = r(s) + ui(s−i), for ui(·) : S−i → R, will not affect the continuous action logit best response.
Hence the results for identical payoffs here naturally extend to weighted potential games akin to those
described by Monderer and Shapley (1996).
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Theorem 4.2. Assume that for i = 1, 2, ri(x, y) is Lipschitz continuous in the joint
action (x, y). For π = (π1, π2) ∈ ∆ take

Vη(π) :=

2∑
i=1

[
Ei
(
LBRiη(π−i), π−i

)
− ηνi

(
LBRiη(π−i)

)]
−

2∑
i=1

[
Ei
(
πi, π−i

)
− ηνi

(
πi
)]
.

Then Vη(·) is a Lyapunov function for (4.3) for any two-player zero-sum, continuous
action game and (4.3) has attracting set LE2

η.

The proof combines elements of the proof by Lahkar (2012, Theorem 7.2) for negative
definite, single population games and the work on stochastic fictitious play by Hofbauer
and Hopkins (2005) and is contained in Appendix D.

Theorem 4.3. Assume that for i = 1, . . . , N , ri(x, y) is Lipschitz continuous in the
joint action (x, y). For π = (π1, . . . , πN ) ∈ ∆ take

Vη(π) := E
(
π
)
− η

N∑
i=1

νi
(
πi
)
.

Then Vη(·) is a Lyapunov function for (4.3) for any N -player identical interest game

with continuous actions and (4.3) has attracting set LENη .

The proof follows on from the proof of Theorem 4.2 and is also given in Appendix D.

4.2. Stochastic Fictitious Play

Now we will consider a stochastic fictitious play algorithm based on the logit best
response. Using the stochastic approximation framework from Section 2 we analyse the
limiting behaviour of this stochastic fictitious play process using the logit best response
dynamic in (4.3).

The beliefs of each player at iteration n, denoted by σin, are the empirical frequencies
with which the actions in Si have been played. In an N -player game we assume that
Player i selects an action sin+1 ∈ Si at iteration n + 1 using the logit best response
LBRiη(σ−in ). For i = 1, . . . , N and αn = 1/(n+ 1), the beliefs of the stochastic fictitious
play process are given by

σin+1 = σin + αn+1

[
δsin+1

− σin
]
.

Let σn := (σ1
n, . . . , σ

N
n ) ∈ ∆. We can consider σn as an iterative process on a compact

subset of the Banach space Σ. This will mean that the logit variant of stochastic fictitious
play is defined as

σn+1 = σn + αn+1

[(
δs1n+1

, . . . , δsNn+1

)
− σn

]
, where sin+1 ∼ liη(σ−in ). (4.4)

We note that it is costless to consider a more general learning rate process {αn}n∈N, and
so we do so in the following.
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Theorem 4.4. Assume that for every i = 1, . . . , N , ri(s) is bounded and Lipschitz
continuous in the joint action s and∑

n∈N
αn =∞,

∑
n∈N

α2
n <∞.

Then a linear interpolation of the stochastic fictitious play process (4.4) is an asymptotic
pseudo-trajectory to the N -player, logit best response dynamics (4.3).

Proof. The proof here is the natural extension to the proof of Theorem 3.3 and as such
follows a similar pattern.

Firstly, we note that Σ is a Banach space with respect to ‖ · ‖Σ and that ∆ is a
compact subset of Σ. This will imply that the compactness assumption (A1) will always
hold for a learning process which remains in ∆. For

V in+1 = δsin+1
− LBRiη(σ−in ),

and Vn+1 = (V 1
n+1, . . . , V

N
n+1), (4.4) can be written as,

σn+1 = σn + αn+1

[(
LBRη(σn)− σn

)
+ Vn+1

]
, (4.5)

which fits the general stochastic approximation form used in Theorem 2.3. Hence the
claim will follow if we verify that (A1)-(A4) hold for (4.5).

We have already shown the compactness assumption (A1) to hold. The boundedness
assumption (A2) will hold since the logit best response mean field in (4.5), (LBRη(σn)−
σn), is uniformly continuous.

With ri(s) Lipschitz continuous in the joint action s for i = 1, . . . , N the existence
and uniqueness results in in Appendix C verify that the existence of solution assumption
(A4) holds.

In order to verify that the noise assumption (A3) holds we will show that for i =
1, . . . , N the assumptions of Proposition 2.7 hold for {V in}n∈N. Let Fn represent the
history of the iterative process (4.4) up to iteration n ∈ N. The learning rate assumption
(B1) is true since

∑
n α

2
n <∞ by choice of {αn}n∈N. Clearly for all n ∈ N, V in+1 is mea-

surable with respect to Fn and hence will satisfy (B2). Using the same arguments as in
the proof of Theorem 3.3 we ascertain that {LBRiη(σn)}n∈N is a bounded and absolutely

continuous measure on Σ and hence the noise process {V in}n∈N fits the structure given
in (B3). Applying Proposition 2.7 gives that for i = 1, . . . , N ,

lim
n→∞

sup


∥∥∥∥∥∥
k−1∑
j=n

αj+1V
i
j+1

∥∥∥∥∥∥
BL∗

i

; k = n+ 1, . . . ,m(τn + T )

 = 0, w.p. 1.

Since

∥∥∥∥∥∥
k−1∑
j=n

αj+1Vj+1

∥∥∥∥∥∥
Σ

= max


∥∥∥∥∥∥
k−1∑
j=n

αj+1V
1
j+1

∥∥∥∥∥∥
BL∗

1

, . . . ,

∥∥∥∥∥∥
k−1∑
j=n

αj+1V
N
j+1

∥∥∥∥∥∥
BL∗

N

 ,
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we conclude that (A3) holds. Applying Theorem 2.3 concludes the proof.

The following theorem provides a global convergence result for the logit variant of
stochastic fictitious play in (4.4) for two-player zero-sum and N -player identical interest
continuous action space games with jointly Lipschitz continuous rewards. This extends
the well known result for stochastic fictitious play in normal form zero-sum and potential
games originally presented by Hofbauer and Sandholm (2002) and Hofbauer and Hopkins
(2005).

Theorem 4.5. In a continuous action space game assume that for every i = 1, . . . , N ,
ri(s) is Lipschitz continuous in the joint action s. If

(1) the game is a two-player zero-sum then the beliefs in the logit variant of stochastic
fictitious play from (4.4) will converge to LE2

η;

(2) the game is an N -player identical interest game and LENη is at most countably
infinite then the beliefs in the logit variant of stochastic fictitious play from (4.4)
will converge to LENη .

Proof. In zero-sum games, the Lyapunov function takes value 0 at all elements of LE2
η.

The additional assumption here on the countability of LENη for identical interest games

ensures that V (LENη ) has empty interior. Therefore, the results follow immediately by
combining Theorem 4.4 and Theorem 4.2/Theorem 4.3 with Theorem 2.6.

As in Section 3, we conclude this section with an example which extends two-player
matching pennies to the continuous action case.

Example 4.6. We consider a linear extension to the standard matching pennies games.
Let r1(x, y) = (x− 1/2)(y − 1/2) and r2(x, y) = −r1(x, y), where Si = [0, 1] for i = 1, 2.
There is a unique logit equilibrium with σ̃i ∼ Unif(0, 1) for i = 1, 2. Theorem 4.5
gives that the beliefs in the stochastic fictitious play process (4.4) will converge to this
equilibrium. This convergence is demonstrated in Figure 2.

5. Discussion

In this work we present a method for studying the limiting behaviour of iterative
learning processes with an uncountably infinite action space. This extends the work of
Fudenberg and Kreps (1993), Benäım and Hirsch (1999), Hofbauer and Sandholm (2002)
and Hofbauer and Hopkins (2005) to games with actions selected from a continuous set.

To achieve this we have developed new tools for stochastic approximation. These build
on the asymptotic pseudo-trajectory approach to stochastic approximation of Benäım
(1999) and extend the abstract stochastic approximation approach presented by Shwartz
and Berman (1989) to this now more common framework. As a suitable space for con-
tinuous strategies we study the space of finite signed measuresMe(S,B) under the weak
topology induced by the bounded Lipschitz norm. Unlike Shwartz and Berman (1989)
we provide simple conditions in the spirit of Benäım (1999) as to when the difficult
martingale noise assumption will hold on Me(S,B).

In Section 3 we present the motivation and key application of this framework to single
population games. A mixture of theoretical results and simulations are provided for the
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stochastic fictitious play-like algorithm to demonstrate convergence in continuous action
space games, analogous to the convergence already known to occur in finite action spaces
(Fudenberg and Kreps, 1993; Benäım and Hirsch, 1999; Hofbauer and Sandholm, 2002;
Hofbauer and Hopkins, 2005).

Our framework can also be used to study learning variants of the replicator dynamics,
such as in Narendra and Thathachar (1989), Börgers and Sarin (1997) and Leslie (2003,
Chapter 2). Although the replicator dynamics are studied more frequently, especially in
the continuous action space literature (see Oechssler and Riedel (2001, 2002); Seymour
(2002); Cressman (2005)), the framework has limitations. In particular, the replicator
dynamics does not generate new strategies, so that the limit point of a trajectory will
always depend on the initial conditions. Even when exploration of the state space can
be guaranteed convergence of an associated learning process is generally very slow. In
contrast, the logit best response is absolutely continuous and assigns some probability to
every part of the action space which makes it more straightforward to study associated
learning processes. This is true of the discrete action case, where fictitious play and
stochastic fictitious play are more frequently studied than similar discrete time variants
of the replicator dynamics, and remains true for the continuous action case.

In addition, in Section 4 we extend the existence and uniqueness results of Lahkar
(2012) to the N -player case. As a consequence we can study a logit variant of stochastic
fictitious play for continuous action space games. We prove the convergence of stochastic
fictitious play for two-player zero-sum and N -player potential games with continuous
action spaces and Lipschitz continuous reward function. This extends the previous re-
sults of Hofbauer and Sandholm (2002) and Hofbauer and Hopkins (2005) for stochastic
fictitious play in normal form games with finite action sets.

Appendices

A. Noise Criteria: L2

It is important for us to be able to verify that the noise condition (A3) on Me(S,B)
holds so that stochastic approximation can be performed on this Banach space. Doing so
is not straightforward and requires us to use the intermediate result, proving that (A3)
holds on L2, presented in this appendix. When stochastic approximation is performed
in a Euclidean space the noise process is often assumed to be a martingale difference
sequence. The proof for Euclidean space (Benäım, 1999, Proposition 4.2) relies on the
Burkholder-Davis-Gundy inequality to study the martingale difference sequence and this
inequality can be extended for certain Banach spaces, notably L2. Let (Ω,F ,P) be a
probability space and {Fn}n∈N a filtration on F .

Proposition A.1. Consider the stochastic approximation process given in (2.2) on the
Banach space of L2 functions with associated norm ‖ · ‖L2 . If for some q ≥ 2,

(1) {αn}n∈N is deterministic with
∑
n∈N α

1+q/2
n <∞,

(2) {Un}n∈N is adapted and measurable with respect to Fn for all n such that
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E [Un+1|Fn] = 0, sup
n

E
[
‖Un‖qL2

]
<∞,

then

lim
n→∞

sup

{∥∥∥∥∥
k−1∑
i=n

αi+1Ui+1

∥∥∥∥∥
L2

; k = n+ 1, . . . ,m(τn + T )

}
= 0, w.p. 1.

Because the Burkholder-Davis-Gundy inequality can be extended for L2-valued mar-
tingales the proof of this result follows a similar pattern to of Benäım (1999, Proposition
4.2) for martingales in Euclidean space.

Proof. Brzeźniak (1997) shows that the Burkholder-Davis-Gundy inequality can be ex-
tended for a class of Banach spaces which includes L2. This means that for any q ∈ (1,∞)
there exists a Cq > 0 such that for an L2-valued martingale {Yn}n∈N and stopping time
N > 0 then

E
[

sup
n≤N
‖Yn‖qL2

]
≤ CqE

( N∑
n=1

‖Yn − Yn−1‖2L2

)q/2 . (A.1)

The remainder of the proof is an extension to the proof of Benäım (1999, Proposition
4.2) for L2 using (A.1) rather than the original Burkholder-Davis-Gundy inequality. Let
Wn,m :=

∑m
i=n αi+1Ui+1 for m ≥ n. Since Ui+1 ∈ L2 then Wn,m ∈ L2. Now fixing

n ∈ N, we have that

E [Wn,m|Fm] = Wn,m−1,

and hence Wn,m is a martingale in L2. Using (A.1) there exists some constant Cq > 0
such that

E

[
sup

n≤k≤m(τn+T )

‖Wn,k‖qL2

]
≤ CqE


m(τn+T )∑

i=n+1

‖Wn,i −Wn,i−1‖2L2

q/2
 .

Now by noticing that ‖Wn,i−Wn,i−1‖L2 = αi+1‖Ui+1‖L2 and using the original definition
of Wn,m gives

E

[
sup

n≤k≤m(τn+T )

∥∥∥∥∥
k∑
i=n

αi+1Ui+1

∥∥∥∥∥
q

L2

]
≤ CqE


m(τn+T )−1∑

i=n

α2
i+1‖Ui+1‖2L2

q/2
 .

The remainder of the proof continues exactly as in Benäım (1999, Proposition 4.2) with
the only difference being the norm used here is ‖ · ‖L2 and in Benäım (1999, Proposition
4.2) this is the standard Euclidean norm.
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Remark A.2. Brzeźniak (1997) shows that the Burkholder-Davis-Gundy inequality can
be extended for a class of Banach spaces which includes Lp-spaces for any p ∈ [2,∞).
The result in Proposition A.1 for L2 can be extended to any Banach space in the class
for which Brzeźniak’s result holds with no alteration to the proof.

B. Proof of Proposition 2.7

If we could show that Me(S,B) is in the class of Banach spaces for which Brzeźniak
(1997) proves the Burkholder-Davis-Gundy inequality can be extended then the proof
of Proposition 2.7 would be identical to the proof of Proposition A.1. However, we
have been unable to show this and so we are forced to take a different approach. Here we
approximate all Dirac measures with a spike of fixed width. This will allow us to consider
functions with proper density functions in L2. We are then able to use Proposition A.1
to show the convergence and show the additional error term from this approach is not
significant.

Proof of Proposition 2.7. Fix γ > 0. We will approximate atoms in S by measures that
have a spike density with base width 2γ. Hence we need to consider an expanded space
S̄ to accommodate spikes near the boundary of S.4. Suppose S ⊆ [a, b] ⊂ R, and define
S̄ := [a − γ, b + γ]. Let ‖ · ‖BL, B̄L and ‖ · ‖B̄L∗ be as defined in (2.4)-(2.6) but with
integrals over S̄ and B̄ the Borel σ-algebra over S̄. Me(S̄, B̄) is the space of finite signed
measures on S̄ and is equipped with the weak topology using ‖ · ‖B̄L∗ .

Consider arbitrary z̃ ∈ S ⊂ S̄, let h̄ be a spike density on S̄ centered on z̃ defined as

h̄(z, z̃) :=


1
γ

(
z − (z̃ − γ)

)
, z ∈ [z̃ − γ, z̃]

1− 1
γ

(
z − z̃

)
, z ∈ (z̃, z̃ + γ]

0, otherwise

, (B.1)

and let H̄(z̃) be the measure in Me(S̄, B̄) associated with density h̄(·, z̃). We will firstly
show that

‖δz̃ − H̄(z̃)‖B̄L∗ ≤ γ

First note that if ḡ ∈ B̄L then ḡ has a Lipschitz constant that is not more than 1, so
|z − y| ≤ γ ⇒ |ḡ(z)− ḡ(y)| ≤ γ. Conversely if |z − y| ≥ γ then h̄(z, y) = 0. Hence

4This is a particular issue which Chen and White (1998) did not address when using probability
densities on L2.
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∣∣∣∣∫
s̄

ḡ(z)
(
δz̃ −H(z̃)

)
dz

∣∣∣∣ =

∣∣∣∣ḡ(z̃)−
∫
s̄

ḡ(z)h̄(z, z̃) dz

∣∣∣∣ ,
=

∣∣∣∣∫
s̄

[
ḡ(z̃)− ḡ(z)

]
h̄(z, z̃) dz

∣∣∣∣ ,
≤
∫ z̃+γ

z̃−γ
|ḡ(z̃)− ḡ(z)| h̄(z, z̃) dz,

=

∫ z̃+γ

z̃−γ
γh̄(z, z̃) dz,

= γ. (B.2)

Hence

‖δz̃ − H̄(z̃)‖B̄L∗ = sup
ḡ∈B̄L

∣∣∣∣∫
S̄

ḡ(z)
(
δz̃ − H̄(z̃)

)
( dz)

∣∣∣∣ ≤ γ.
To use this within our stochastic approximation process we define H̄n := H̄(sn) so that
for all n ∈ N,

‖δsn − H̄n‖B̄L∗ ≤ γ. (B.3)

To examine the convergence of {Un}n∈N we also need to consider the convolution

q̄n(z) :=

∫
S

h̄(z, y)pn(y) dy, (B.4)

where h̄ is the spike density defined above and pn is the density of measure Pn and z ∈ S̄.
Let Q̄n be the measure on Me(S̄, B̄) associated with q̄n. This is useful since h̄n+1 can
be viewed as an L2-valued random variable and importantly we have that

E
[
h̄n+1|Fn

]
= q̄n. (B.5)

Since both h̄n+1 and q̄n are in L2(S̄), (B.5) will mean that h̄n+1 − q̄n is an L2-valued
martingale.

Finally, we need to define Ūn+1 = δsn+1
− P̄n, which is the extension of Un+1 to S̄,

where

P̄n :=

{
Pn, on S
0, on S̄\S ,

and P̄n has a density function p̄n. For fixed T > 0 it is clear for k = n+ 1, . . . ,m(τn+T )
that
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∥∥∥∥∥
k−1∑
i=n

αi+1Ui+1

∥∥∥∥∥
BL∗

=

∥∥∥∥∥
k−1∑
i=n

αi+1Ūi+1

∥∥∥∥∥
B̄L∗

≤

∥∥∥∥∥
k−1∑
i=n

αi+1

(
δsi+1 − H̄i+1

)∥∥∥∥∥
B̄L∗

+

∥∥∥∥∥
k−1∑
i=n

αi+1

(
H̄i+1 − Q̄i

)∥∥∥∥∥
B̄L∗

+

∥∥∥∥∥
k−1∑
i=n

αi+1

(
Q̄i − P̄i

)∥∥∥∥∥
B̄L∗

. (B.6)

We address each of these terms in turn. Using (B.3) we see that∥∥∥∥∥
k−1∑
i=n

αi+1

(
δsi+1

− H̄i+1

)∥∥∥∥∥
B̄L∗

≤
k−1∑
i=n

αi+1γ ≈ Tγ. (B.7)

The definition of ‖ · ‖B̄L∗ implies that ‖ · ‖B̄L∗ ≤ ‖ · ‖L1 , and a standard result for
the L1-norm, which follows from Hölder’s inequality, is that if S̄ is a compact subset of
R then ‖ · ‖L1 ≤ |S̄|1/2 ‖ · ‖L2 . Hence∥∥∥∥∥

k−1∑
i=n

αi+1

(
H̄i+1 − Q̄i

)∥∥∥∥∥
B̄L∗

≤ |S̄|1/2
∥∥∥∥∥
k−1∑
i=n

αi+1

(
h̄i+1 − q̄i

)∥∥∥∥∥
L2

. (B.8)

We have already observed that h̄n+1− q̄n is an L2-valued martingale sequence, and under
the assumptions of Proposition 2.7, since pn is bounded q̄n is also bounded, and there
exists C > 0 such that

sup
n

E
[ ∥∥h̄n+1 − q̄n

∥∥2

L2

]
≤ sup

n

{
E
[ ∥∥h̄n+1

∥∥2

L2

]}
+sup

n

{
E
[
‖q̄n‖2L2

]}
<

1

γ2
|S̄|+C2|S̄| <∞

Using Proposition A.1 immediately gives

lim
n→∞

sup

{∥∥∥∥∥
k−1∑
i=n

αi+1

(
h̄i+1 − q̄i

)∥∥∥∥∥
L2

; k = n+ 1, . . . ,m(τn + T )

}
= 0. (B.9)

Finally, following a similar approach to that used in obtaining (B.2), the definition
of q̄n(·) in (B.4) tells us that for any ḡ ∈ B̄L
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∣∣∣∣∫
S̄

ḡ(z)
[
q̄n(z)− p̄n(z)

]
dz

∣∣∣∣ =

∣∣∣∣∫
S̄

ḡ(z)
[ ∫

S̄

h̄(z, y)p̄n(y) dy − p̄n(z)
]

dz

∣∣∣∣ ,
=

∣∣∣∣∫
S̄

[ ∫
S̄

ḡ(z)h̄(z, y) dz − ḡ(y)
]
p̄n(y) dy

∣∣∣∣ ,
≤
∫
S̄

∣∣∣∣∫
S̄

ḡ(z)h̄(z, y) dz − ḡ(y)

∣∣∣∣ p̄n(y) dy,

=

∫
S̄

∣∣∣∣∫
S̄

[
ḡ(z)− ḡ(y)

]
h̄(z, y) dz

∣∣∣∣ p̄n(y) dy,

≤
∫
S̄

γp̄n(y) dy,

= γ.

It then follows that

‖Q̄n − P̄n‖B̄L∗ ≤ γ, (B.10)

and from this ∥∥∥∥∥
k−1∑
i=n

αi+1

(
Q̄i − P̄i

)∥∥∥∥∥
B̄L∗

≤
k−1∑
i=n

αi+1

∥∥Q̄i − P̄i∥∥B̄L∗ ≤ Tγ. (B.11)

Taking the appropriate limit and supremum of (B.6) and substituting (B.7)-(B.9)
and (B.11) gives,

lim
n→∞

sup

{∥∥∥∥∥
k−1∑
i=n

αi+1Ui+1

∥∥∥∥∥
BL∗

; k = n+ 1, . . . ,m(τn + T )

}

≤ 2Tγ + |S̄|1/2 lim
n→∞

sup

{∥∥∥∥∥
k−1∑
i=n

αi+1

(
h̄i+1 − q̄i

)∥∥∥∥∥
L2

; k = n+ 1, . . . ,m(τn + T )

}
,

= 2Tγ.

Noting that the initial choice of γ > 0 was arbitrary completes the proof.

C. Logit BR Dynamics for Multiple Populations

In this section the existence and uniqueness results of Lahkar (2012) are extended
for two-population games. It is clear from the construction here that these techniques
naturally extend to N -population games for finite N ∈ N, but the additional complication
to the notation is not required here. By noting that the logit best response dynamic for
N -population games and N -player games are identical (simply different interpretations)
we obtain the existence and uniqueness of a solution to the logit best response dynamics
(4.3) from the results in this section.
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The framework for dual population games is identical to the notation used in Section
4 for two-player games with the change in interpretation of P(Si,Bi) to be the set of
all populations. To emphasize the difference between Section 4 we let P ∈ P(S1,B1),
Q ∈ P(S2,B2) represent the two populations throughout. The distance between two
elements (P1, Q1), (P2, Q2) ∈ Σ is given by

‖(P1, Q1)− (P2, Q2)‖Σ = max{‖P1 − P2‖BL∗
1
, ‖Q1 −Q2‖BL∗

2
}.

The dual population logit best response dynamic in this case is similar to (4.3) and is
given by

Ṗ (A1) = LBR1
η(Q)(A1)− P (A1),

Q̇(A2) = LBR2
η(P )(A2)−Q(A2).

(C.1)

With the framework for two population, continuous action space games established we
focus on proving existence and uniqueness of solutions to the dynamical system (C.1).
For i = 1, 2 let

M2
i := {P ∈Me(Si,Bi) : ‖P‖BL∗

i
≤ 2}.

The following definition is taken form Lahkar (2012) but is extended for two populations.

Definition C.1. The expected payoff Ei(·, ·) : Σ → R is Lipschitz continuous on M2
j ,

j 6= i, uniformly in z ∈ Si, with respect to the weak topology if there exists a constant
K > 0 such that

|Ei(z, P )− Ei(z,Q)| ≤ K‖P −Q‖BL∗
j
,

for all P,Q ∈M2
j , j 6= i, z ∈ Si.

When Definition C.1 is satisfied Lahkar (2012) shows the existence and uniqueness
of a solution to the single population logit best response dynamics given in (3.5). We
present a new result which gives a straightforward criteria on the reward function for
Definition C.1 to be satisfied. This holds for both the single and dual population cases.

Lemma C.2. Assume that for x ∈ S1 (y ∈ S2) r1(x, z) (r2(z, y)) is Lipschitz continuous
in z. Then for all x ∈ S1 (y ∈ S2) Definition C.1 will hold for E1(x, ·) (E2(·, y)).

Proof. Fix x ∈ S1. Firstly, from the definition we have

∣∣E1(x,Q1)− E1(x,Q2)
∣∣ =

∣∣∣∣∫
S2

ri(x, z)(Q1 −Q2)( dz)

∣∣∣∣ . (C.2)

Now r1(x, z) is Lipschitz continuous in z with Lipschitz constant C(x). In addition
let m(x) := maxz∈S2{|r1(x, z)|} < ∞ which exists since S2 is compact and r1(x, z) is
Lipschitz continuous in z. Now define

C := max
x∈S1

C(x) <∞, and M := max
x∈S1

m(x) <∞.

Now for all x ∈ S1, y ∈ S2 let
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r̃1(x, y) :=
r1(x, y)

M + C
.

It is straightforward to show that for all x ∈ S1, r̃1(x, z) is Lipschitz continuous in z with
a Lipschitz constant C/(M + C) and maximum value M/(M + C). This gives that for
all x ∈ S1, r̃1(x, z) ∈ BL2. Now we extend (C.2) using r̃1(x, y),

∣∣E1(x,Q1)− E1(x,Q2)
∣∣ = (C +M)

∣∣∣∣∫
S2

r̃i(x, z)(Q1 −Q2)( dz)

∣∣∣∣ ,
≤ (C +M) sup

g∈BL2

∣∣∣∣∫
S2

g(z)(Q1 −Q2)( dz)

∣∣∣∣ ,
≤ (C +M)‖Q1 −Q2‖BL∗

2
.

Finally, we note that no restrictions were placed on Q1, Q2 and hence this will hold for
Q1, Q2 ∈ M2

2. This completes the proof for x ∈ S1 and Lipschitz continuous r1(x, z).
The proof for y ∈ S2 and Lipschitz continuous r2(z, y) follows an identical structure.

Before we proceed with the dual population analysis we state a corollary of Lemma
C.2 for the single population case which is used throughout Section 3.

Corollary C.3. In the single population game described in Section 3, if for all x ∈ S
r(x, y) is Lipschitz continuous in y then from each initial condition P (0) ∈ P(S,B) there
exists a unique solution to the logit best response dynamic (3.5) for all time. Furthermore,
the semiflow induced by this dynamical system is continuous with respect to the weak
topology on Me(S,B) and LE is non-empty.

Proof. By Lemma C.2 the reward structure will satisfy Definition C.1 and the claim
follows immediately from Lahkar (2012, Theorem 4.1, Theorem 5.2).

Now we proceed to show the existence of a logit equilibrium on Σ and the uniqueness
and continuity of a solution for the dual population dynamical system (C.1). Let LE2

η ⊂
∆ be the set of logit equilibria for the dual population logit best response dynamics
in (C.1). The following proofs follow directly from the corresponding single population
results of Lahkar (2012).

Theorem C.4. If for all x ∈ S1, r1(x, y) is Lipschitz continuous in y and for all y ∈ S2,
r2(x, y) is Lipschitz continuous in x, then LE2

η is non-empty.

Proof. The proof is omitted since it is a straightforward extension to the proof of Lahkar
(2012, Theorem 4.1).

Theorem C.5. Assume that for all x ∈ S1, r1(x, y) is Lipschitz continuous in y and that
for all y ∈ S2, r2(x, y) is Lipschitz continuous in x. Then for each initial population in
(P (0), Q(0)) ∈ ∆ there exists a unique solution (P (t), Q(t)) on Σ to the dual population
logit best response differential equation (C.1) for all time t ∈ [0,∞). In addition the
semiflow Φt

(
(P (0), Q(0))

)
:= (P (t), Q(t)) is continuous with respect to the topology on

Σ.
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Proof. The proof is omitted since it is a straightforward extension to the proof of Lahkar
(2012, Theorem 5.2).

D. Convergence of the Logit Best Response Dynamic

In this section we prove the global convergence results of Theorem 4.2 and Theorem
4.3 for the N -player logit best response dynamics in (4.3). These proofs are extensions
to similar work of Lahkar (2012, Appendix A.2). We begin by introducing some useful
notation and proving two lemmas which will be used to prove Theorem 4.2 and Theorem
4.3.

A general smooth best response is defined as the probability measure maximising a
perturbed payoff function

βi(π−i) := arg max
πi∈P(Si,Bi)

{
Ei(πi, π−i)− ηνi(πi)

}
.

The logit best response is a particular form of the smooth best response which uses the
entropy as a perturbation term. Firstly, we note that if πi is not absolutely continuous
then we can still define a sequence of absolutely continuous probability measures πik
with associated densities pik such that {πik}k∈N convergences in distribution to πi. It is
convenient here to use the density notation pi, pik in place of the measure notation πi, πik.
From this the logit best response can be defined using the perturbation term,

νi(πi) :=

{ ∫
Si
pi(z) log

(
pi(z)

)
dz πi absolutely continuous,

limk→∞
∫
Si
pik(z) log

(
pik(z)

)
dz πi not absolutely continuous.

(D.1)

Now following the arguments of Lahkar (2012), if πi is not absolutely continuous then
νi(πi) = ∞. As a consequence, when using the logit best response we can restrict
ourselves to the case where πi is absolutely continuous.

Define the tangent space for player i as

TiP(Si,Bi) :=

{
µ ∈Me(Si,Bi);

∫
Si

µ( dz) = 0

}
.

Recall from (4.2) that the logit best response density is given by

liη(π−i)(z) :=
exp{η−1Ei(z, π−i)}∫

S
exp{η−1Ei(u, π−i)}du

. (D.2)

Let π be absolutely continuous and let the time derivative of liη(π−i) be l̇iη(π−i). Clearly

l̇iη(π−i) is in the tangent space. The existence of l̇iη(π−i) follows from the absolute
continuity of π (Lahkar, 2012).

Similarly we can take the derivative of the νi(πi) terms with respect to πi. Firstly,
let ∇νi(πi) : P(Si,Bi) → TiP(Si,Bi) be the derivative of νi(πi) which maps from
Me(Si,Bi) to the tangent space. Extend the definition from (D.1) by letting νiz(π

i) :=
pi(z) log(pi(z)). We note from Lahkar (2012) that

∇νiz(πi) = log
(
pi(z)

)
−
∫
Si

log
(
pi(u)

)
du

|Si|
. (D.3)
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Lemma D.1. Let π be absolutely continuous. Then for i = 1, . . . , N

Ei
(
l̇iη(π−i), π−i

)
= η

∫
Si

∇νiz(LBRiη(π−i))l̇iη(π−i)(z) dz.

Proof. The proof is omitted since it is a straightforward extension to the first part of the
proof of Lahkar (2012, Lemma A.1).

Lemma D.2. Let π be absolutely continuous. Then for i = 1, . . . , N∫
Si

[
Ei(z, π−i)− η∇νiz(πi)

]
π̇i( dz) ≥ 0

with equality only when π = LBRη(π).

Proof. The proof is omitted since it is a straightforward extension to the proof of Lahkar
(2012, Lemma A.1).

Proof of Theorem 4.2. Firstly it is straightforward to show that Vη(π) ≥ 0 with equality
when π = LBRη(π). Now, let

w1
η(π) = E1

(
LBR1

η(π2), π2
)
− ην1

(
LBR1

η(π2)
)
− E1(π1, π2) + ην1

(
π1
)
,

w2
η(π) = E2

(
π1, LBR2

η(π1)
)
− ην2

(
LBR2

η(π1)
)
− E2(π1, π2) + ην2

(
π2
)
.

This will give that

Vη(π) = w1
η(π) + w2

η(π),

and hence

V̇η(π) = ẇ1
η(π) + ẇ2

η(π).

Taking the derivative of these terms we begin with

d

dt
Ei(π1, π2) = Ei(π̇1, π2) + Ei(π1, π̇2), (D.4)

Recalling that l̇iη(π−i) ∈ TiP(Si,Bi) is the time derivative of liη(π−i),

d

dt
E1
(
LBR1

η(π2), π2
)

= E1
(
LBR1

η(π2), π̇2
)

+ E1
(
l̇1η(π2), π2

)
, (D.5)

and similarly

d

dt
E2
(
π1, LBR2

η(π1)
)

= E2
(
π̇1, LBR2

η(π1)
)

+ E2
(
π1, l̇2η(π1)

)
. (D.6)

Taking the derivative of νi(πi) gives

d

dt
νi(πi) =

∫
Si

∇νiz(πi)π̇i( dz), (D.7)

and similarly
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d

dt
νi(LBRiη(π−i)) =

∫
Si

∇νix(LBRiη(π−i))l̇iη(π−i)(x) dx, (D.8)

Combining the results from (D.4)-(D.8) we get that

ẇ1
η(π) = E1

(
LBR1

η(π2), π̇2
)

+ E1
(
l̇1η(π2), π2

)
− η

∫
S1

∇ν1
x(LBR1

η(π2))l̇1η(π2)(x) dx

− E1(π̇1, π2)− E1(π1, π̇2) + η

∫
S1

∇ν1
x(π1)π̇1( dx),

ẇ2
η(π) = E2

(
π̇1, LBR2

η(π1)
)

+ E2
(
π1, l̇2η(π1)

)
− η

∫
S2

∇ν2
y(LBR2

η(π1))l̇2η(π1)(y) dy

− E2(π1, π̇2)− E2(π̇1, π2) + η

∫
S2

∇ν2
y(π2)π̇2( dy),

Now consider ẇ1
η(π). It is straightforward to show that

E1
(
LBR1

η(π2), π̇2
)
− E1(π1, π̇2) = E1(π̇1, π̇2).

Using this and Lemma D.1 will give,

ẇ1
η(π) = E1(π̇1, π̇2)− E1(π̇1, π2) + η

∫
S1

∇ν1
x(π1)π̇1( dx).

Expanding the final two terms and applying Lemma D.2 gives,

ẇ1
η(π) = E1(π̇1, π̇2)−

∫
S1

[
E1(x, π2)− η∇ν1

x(π1)
]
π̇1( dx),

≤ E1(π̇1, π̇2),

with equality only when π = LBRη(π). Identical arguments will give that

ẇ2
η(π) ≤ E2(π̇1, π̇2).

Following this we get

V̇η(π) ≤ E1(π̇1, π̇2) + E2(π̇1, π̇2) ≤ 0,

with the final cancellation following because the game is zero sum. Equality holds only
when π = LBRη(π).

This shows that Vη(π) is a Lyapunov function for (4.3) for any two-player zero-
sum, continuous action space game when π is absolutely continuous. The continuity of
the solution flow of the logit best response dynamics from Theorem C.5 completes the
proof.

Proof of Theorem 4.3. Assume π is absolutely continuous. With

Vη(π) := E
(
π
)
− η

N∑
i=1

νi
(
πi
)
.

28



we take the derivative of each of the terms as in (D.4) and (D.7) to give

V̇η(π) =

N∑
i=1

[
E
(
π̇i, π−i

)
− η

∫
Si

∇νiz(πi)π̇i( dz)

]
,

=

N∑
i=1

∫
Si

[
E
(
z, π−i

)
− η∇νiz(πi)

]
π̇i( dz).

Using Lemma D.2 will give that V̇η(π) ≥ 0 with equality only when π = LBRη(π). The
continuity of the solution flow of the logit best response dynamics from Theorem C.5
completes the proof.
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(a) 0 iterations (b) 1000 iterations (c) 2000 iterations

(d) 3000 iterations (e) 4000 iterations

Figure 1: Evolution of our stochastic fictitious play-like process for Example 3.5 with V = 1, C = 4,
αn = (n + 20)−1 and η = 0.005. In each plot a sample from the population is shown along with the
logit equilibrium of the game.
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(a) 5,000 iterations: Player 1 (b) 5,000 iterations: Player 2

(c) 20,000 iterations: Player 1 (d) 20,000 iterations: Player 2

Figure 2: Evolution of our stochastic fictitious play process for Example 4.6 with σ1
0 = δ0, σ2

0 = δ1,
αn = (n+ 20)−1 and η = 0.005. In each plot a sample from the beliefs of the associated player is shown
along with the logit equilibrium of the game.
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