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ABSTRACT. We study a dynamic, all-pay auction under complete

information. At each round, two contestants (who may have dis-

tinct valuations for the prize) simultaneously pick effort levels.

The winner is the player with the highest accumulated effort at

the last round. The cost of effort is separable across rounds and

convex within each round. For two or more rounds, multiple

subgame perfect equilibria with varying degrees of rent dissipa-

tion may exist. Decreasing the elasticity of inter-temporal effort

substitution breaks down the equilibria with low rent dissipation,

whereas increasing valuation asymmetries breaks down the equi-

libria with high rent dissipation.
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1. INTRODUCTION

All-pay auctions are used to study: R&D races, lobbying, labor

tournaments, sports, and other types of contests. Our goal in this

paper, as contests often evolve over time, is to investigate the substi-

tution and dead-line effects. The first captures the idea that players

prefer to smooth out effort; whereas the second says players have

common-knowledge of the contest’s terminal date.

The substitution effect appears naturally in labor tournaments (e.g.,

the partnership track in law or consulting firms). It is plausible, nev-

ertheless, in other contexts as well: It may be less costly for a lobbyist

to raise a given amount of contributions over time rather than in a

single period. Likewise, it maybe easier for an R&D division to se-

cure steady research budgets rather than sudden funding spikes.

Although not prevalent in all applications (e.g., patent races and

tennis matches that are better suited to the tug-of-war or other en-

dogenous termination rule), the dead-line effect emerges in many

economic environments: In lobbying, one may think of the legisla-

tion’s calendar or referendum date; as for labor tournaments, con-

sider firms with partnership tracks or, alternatively, firms where an

announcement of senior management’s retirement date triggers the

contest.

In R&D procurement, the dead-line effect also matters. A histor-

ical example was the Nexflix Prize (Netflix, 2006) whose aim was

to improve the accuracy prediction of Cinematch, Netflix’s movie

recommendation algorithm. With a grand prize of one million dol-

lars (also progress prizes of fifty thousand dollars), the tournament

started in October, 2006. It was set to last until October, 2011 or thirty



4 JOFFRION AND PARREIRAS

days after one of the participants achieved a root means square er-

ror (RMSE) below the qualifying RMSE, which turned out to be the

case as the contest ended by September, 2009. Since then procure-

ment via crowd-sourcing contests platforms such as Topcoder (2013)

– used by Alcatel Lucent, AMD, DARPA, and NASA – or Freelancer

(2013), are widespread.

The model is a dynamic, all-pay auction under complete informa-

tion. At each round, two contestants (with possibly distinct valua-

tions for the contest prize) simultaneously choose effort levels. At the

last round, the winner is the player with the highest accumulated

effort. The cost of effort is separable across rounds and the convex

within each round.

As it is well known (Baye et al., 1996; Hillman and Riley, 1989;

Siegel, 2013), one-shot contests have a unique (mixed strategy) equi-

librium where the highest valuation player – henceforth, player 1 or,

the favorite, gets positive payoff while player 2 or, the underdog, gets

0 payoff. For symmetric valuations (and no head-starts), rent dissi-

pation is complete: both players receive 0 payoff.

Although in dynamic all-pay auctions (Harris and Vickers, 1985;

Konrad, 2011; Konrad and Kovenock, 2009; Leininger, 1991), the def-

inition of favorite must be adjusted to account for head-starts and/or

first mover’s advantage1, again as in the static models: the favorite

1A major contribution of Harris and Vickers (1985) is to characterize the fa-

vorite, who is not necessarily the highest valuation player. For example in the R&D

race of Leininger (1991), the entrant earns positive payoff provided she moves be-

fore the incumbent and her research budget is higher than the incumbent’s and

thus, one might argue here that the entrant is the favorite.
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obtains positive payoffs whereas the underdog gets 0 payoff. Fur-

thermore, the favorite’ remains active till she clinches the prize. As

for the underdog, he remains inactive with possibly the exception of

the first round (Harris and Vickers, 1985; Leininger, 1991).

An alternative to the all-pay auction, the contest success func-

tion approach, assumes winning probabilities are ‘proportional’ to

the players’ efforts. 2 In this setting and with an endogenous or-

der of moves, Leininger (1993) obtains an unique equilibrium where

the underdog leads. A crucial assumption, however, is that each

player moves only once. With two periods and simultaneous moves,

there is a continuum of equilibria, yet the Stackelberg strategy pro-

file where the underdog leads is never an equilibrium (see Yildirim,

2005).

Our first set of main results proves the existence of multiple equi-

libria. In particular, we characterize equilibria where the underdog

leads the race and earns positive payoffs while the favorite slacks

and earns 0 payoff. We refer to these equilibria as tortoise-hare equi-

libria. Key ingredients for tortoise-hare equilibria are: 1) multiple

periods; 2) simultaneous moves; 3) increasing marginal cost of ef-

fort; 4) players’ valuations are not ‘too far apart’; and 5) the elasticity

of inter-temporal effort substitution is ‘moderate’.

The intuition for why multiple periods and increasing marginal

cost are required is simple. As player 2 builds a lead then it is costly

for player 1 to close the gap; and moreover, when player 1 does not

exert effort at the initial rounds, player 2 has incentive to spread the

effort. Of course, were the valuation of player 1 ‘too high’ relatively

2A large literature following Dixit (1987), applies this approach to dynamic set-

tings; see Konrad (2011) for references.
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to player 2’s valuation, the size of the lead require to deter player

1 from exerting effort would be so high hence as to make unprof-

itable any player 2 attempt to create a lead. Hence, the intuition for

valuations not ‘too far apart’ is straightforward.

Obviously when effort substitution is perfectly elastic between rounds,

it is not that costly for player 1 to try to catch up with player 2. As

a matter of fact, the linear cost case is not interesting as any equilib-

rium is outcome equivalent to the equilibrium of the static model.

The intuition behind the requirement of a ‘too low’ inter-temporal

elasticity of effort is, however, slightly more subtle. Why does the

tortoise-hare equilibrium break down in the inelastic case? Now

player 2 will build an advantage that is too small (even as he ex-

pects player 1 to not exert effort) because the marginal cost of effort

is higher in the inelastic case. But then, player 1 will have incentives

to catch up.

Our second set of main results have several empirical implica-

tions:

First, we classify the equilibria set regarding the degree of rent dis-

sipation. In one pole, we may have equilibria where one of the play-

ers is active at T− 1 and the other slacks. We refer to these equilibria

as collusive equilibria since rent dissipation is minimal. In particu-

lar, tortoise-hare equilibria are collusive equilibria where the underdog

leads. On the other pole, we may have an equilibrium where both

players use symmetric continuous3 mixed strategies at T − 1. We

refer to it as the competitive equilibrium since rent dissipation is max-

imal – both players get 0 payoff. In between, the collusive and the

3That is, continuous for effort levels in the interior of the support since we may

have atoms at 0.
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competitive equilibrium, we show that there are asymmetric, mixed

strategy equilibria where players randomize over finite effort levels.

Rent dissipation is linked to the size of the support: the larger the

support, the more rent is dissipated.

Second, we show that if valuation asymmetries are introduced,

the competitive equilibrium breaks down. As valuation asymme-

tries increase, near-competitive equilibria also start to break down.

And not surprisingly if asymmetries keep increasing, collusive equi-

libria where the underdog leads (tortoise-hare equilibria) also cease

to exist. For sufficiently high asymmetries, the only equilibrium is

the equilibrium where players always choose 0 effort before the last

round. In this case, the outcome is identical to the one-shot game.

Third, we show that as the inter-temporal elasticity of effort substi-

tution decreases (provided valuation asymmetries are ‘small’), collu-

sive equilibria break down.

In sum, valuation asymmetries and the inter-temporal elasticity of

effort substitution allows us to predict the range of rent dissipation.

2. THE MODEL

For T rounds, players 1 and 2 simultaneously choose effort levels,

e1
t and e2

t ∈ [0,+∞) at every round. After the last round effort levels

are cast, the prize is awarded to the player with highest accumulated

effort, ∑T
t=1 ei

t. Ties are randomly broken. Player 1 values the prize

at v1 while 2 values it at v2 with v1 ≥ v2 ≥ 0, when v1 > v2 we may

refer to player 1 player 2 as respectively the favorite and the underdog.

The cost of effort is separable across rounds and convex. The win-

ner’s and loser’s, say player i and j, respective payoffs are: vi −

∑T
t=1 c(ei

t) and −∑T
t=1 c(ej

t) where c (·) is the cost of effort function.
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We assume c is identical for both players and that it satisfies: c(0) =

0, c′(x) > 0, and c′′(x) ≥ 0 for all x > 0.

Effort choices are perfectly observable, and the description of the

game is common-knowledge.

The state variable ∆t
def
=

t−1
∑

k=1
e1

t − e2
t summarizes the favorite’s ad-

vantage over the underdog at the start of period t. Evidently the fa-

vorite is at an disadvantage for ∆t < 0 thus −∆t is the underdog’s

advantage.

The equilibrium concept used thru this paper is Markov perfect

equilibria; the state is (∆t, t). For T = 1 or T = 2 this is without

loss of generality because the set of Markov perfect equilibria coin-

cides with the set of subgame perfect equilibria. However for T ≥ 3

as there is a continuum of equilibria, it is hard to establish whether

Markov perfect equilibria imposes additional restrictions.

Despite valuation asymmetries, most proofs of statements regard-

ing player 1 have a mirror version regarding player 2: one produces

the mirror proof by, in the original proof, mechanically swapping

the variables in the following manner: player 1 for player 2, v1 for

v2, and ∆t for −∆t.

3. THE LAST ROUND

The last round is a particular case of Siegel (2013), nonetheless for

completeness and reader convenience, we describe its unique (sub-

game perfect) equilibrium in facts 1, 2 and 3.

For moderate values the absolute value of ∆T, the contest remains

competitive as neither player has a decisive advantage and so con-

testants play a mixed strategy profile. In contrast, for extreme values

of ∆T as the winner is already determined, both players exert 0 effort.
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Let G1 and G2 denote the respective cumulative distribution func-

tions of the mixed strategies played at the last round in some subgame-

perfect Nash equilibrium. The following lemmata characterize G1

and G2.

Fact 1. If either ∆T ≤ −c−1(v1) or c−1(v2) ≤ ∆T both players choose 0

effort. In the first case, player 1’s stage-T payoffs is 0 and player 2’s is v2

while in the second case, stage-T payoffs are respectively v1 and 0.

Fact 2. If−c−1(v1) ≤ ∆T ≤ c−1(v2)− c−1(v1) players use mixed strate-

gies:

G1(e) =


v2−c(c−1(v1)+∆T)

v2
for e ∈ [0,−∆T],

v2−c(c−1(v1)+∆T)+c(e+∆T)
v2

for e ∈
(
−∆T, c−1(v1)

]
,

1 for e ≥ c−1(v1).

and

G2(e) =


c(e−∆T)

v1
for e ∈

[
0, c−1(v1) + ∆T

]
,

1 for e ≥ c−1(v1) + ∆T.

And stage−T payoffs are u1
T = 0 and u2

T = v2 − c(c−1(v1) + ∆T).

Fact 2 says that when player 2 has a moderate, advantage player 1

still competes in the last round. More exactly player 1 uses a discon-

tinuous strategy, she chooses 0 effort with positive probability and

high effort levels (e > −∆T) with positive density but intermediate

effort levels 0 < e ≤ −∆T are not chosen. Player 2 also chooses 0

effort with positive probability but unlike player 1 the range of his

effort choices is continuous.
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Fact 3. If c−1(v2)− c−1(v1) ≤ ∆T ≤ c−1(v2) equilibrium CDFs are:

G1(e) =


c(e+∆T)

v2
if e ∈

[
e1, c−1(v2)− ∆T + e1

]
,

1 otherwise.

G2(e) =


v1−c(c−1(v2)−∆T)+c(e1)

v1
if e ≤ e2,

v1−c(c−1(v2)−∆T)+c(e−∆T)
v1

if e ∈
(
e2, c−1(v2)

]
,

1 otherwise.

where e1 = max(−∆T, 0), e2 = max(∆T, 0). Stage payoffs are:

u1
T = v1 − c(c−1(v2)− ∆T) and u2

T = 0.

4. CONTINUATION PAYOFFS AT T − 1

Since all our main results require than one round and two rounds

suffice to illustrate all our results, we shallalso analyze the T− 1 case

apart. For simplicity, we omit time subscripts and refer to a T − 1

subgame as the game Γ(∆, v1, v2) with payoffs given by:

u1(e1, e2|∆, v1, v2) =



−c(e1) if e1 − e2 + ∆ ≤ c−1(v2)− c−1(v1);

v1 − c(c−1(v2)− e1 + e2 − ∆)− c(e1) if

c−1(v2)− c−1(v1) ≤ e1 − e2 + ∆ ≤ c−1(v2);

v1 − c(e1) if c−1(v2) ≤ e1 − e2 + ∆.

and

u2(e1, e2|∆, v1, v2) = u1(e2, e1| − ∆, v2, v1).

With respect to e1, the payoff is continuous and although not glob-

ally concave. It is concave within the two regions where e1 is either

below or above c−1(v2)− c−1(v1) + e2 − ∆.
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u1(e1, e2|∆)

e1

u1

1
4

5
8

5
4

∆ = 0, c(e) = e2, v1 = v2 = 1, e2 = 1
4

u1(e1, e2|∆)

e1

u1

3
4

∆ = 0, c(e) = e2, v1 = v2 = 1, e2 = 3
4

FIG. 1. Continuation payoffs of player 1 given player 2 chooses low effort

(left) or high effort (right).

Definition 1. Given player 2’s choice, player 1’s dead-zone is the re-

gion of player 1’s low positive effort levels, (0, c−1(v2)− c−1(v1) +

e2 − ∆); the active zone is the region of high effort levels, (c−1(v2)−
c−1(v1) + e2 − ∆, c−1(v2) + e2 − ∆); and the safe zone is the region

(c−1(v2) + e2 − ∆,+∞).

Notice that the marginal payoff is discontinuous only at the fron-

tier of the dead and active zones but continuou between the active

and safe zones.

The best response of the favorite is:

BR1(e2, ∆) =


c−1(v2) + e2 − ∆

2
if 2c−1(v1/2) ≥ c−1(v2) + e2 − ∆ ≥ 0

0 otherwise.
;

Proof. See section A.1 in the Appendix. �

For the underdog, the dead zone and best-response are similarly

defined.
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5. PURE STRATEGY PLAY: COLLUSIVE EQUILIBRIA.

We refer to the pure strategy equilibria of the game at T− 1 as col-

lusive since at least one player remains inactive and the other players

(possibly active) player achieves his or her highest subgame perfect

equilibrium payoff.

Lemma 1. In any pure strategy equilibrium of Γ(∆, v1, v2) at least one

player exerts 0 effort.

Proof. Let (e∗1 , e∗2) be a pure-strategy Nash eq. At least one of the

players, say player j payoff is−c(e∗j ). But for e∗j to be a best-response,

it ought be the the case that e∗j = 0 otherwise e∗j > 0 implies

−c(e∗j ) < −c(0) = 0. �

Proposition 1. (1) If either ∆ ≥ c−1(v2) or ∆ ≤ −c−1(v1), the 0

effort profile (0, 0) is the only Nash equilibrium of Γ(∆, v1, v2).

Parts (2) & (3) below assume the complementary case where:

−c−1(v1) < ∆ < c−1(v2).

(2) Define: IC2 = 4c−1( v2
2 )− 2c−1(v1)− c−1(v2),

IR1 = c−1(v2)− 2c−1( v1
2 ), IC1 = 2c−1(v2)+ c−1(v1)− 4c−1( v1

2 ),

and IR2 = 2c−1( v2
2 )− c−1(v1).

For any ∆∗ ∈ [max(IR1, IC2), min(IR2, IC1)], the profile:

e1(∆) =


c−1(v2)−∆

2 if ∆∗ ≤ ∆ < 2c−1( v2
2 )− c−1(v1)

0 otherwise;
and

e2(∆) =


c−1(v1)+∆

2 if c−1(v2)− 2c−1(v1/2) ≤ ∆ < ∆∗,

0 otherwise.
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is a Nash equilibrium of Γ(∆, v1, v2).

(3) When min(IR2, IC1) < max(IR1, IC2) part (2) above is vacuous,

and moreover:

(a) Γ(∆, v1, v2) has no pure strategy equilibrium if min(IR2, IC1) <

∆ < max(IR1, IC2).

(b)
(

c−1(v2)−∆
2 , 0

)
is the only pure strategy eq. for ∆ ≥ max(IR1, IC2).

(c)
(

0, c−1(v1)+∆
2

)
is the only pure strategy eq. for ∆ ≤ min(IR2, IC1).

Proof. See Appendix A.1. �

Part (1) of Proposition 1 says that at the last but one stage both

players will choose 0 effort if the advantage of any given contestant

is too large.

Part (3) of the proposition says that if the advantage is large (but

not ‘too’ large), the player with an advantage builds a lead while the

other player chooses 0 effort; it also states when the advantage is

‘moderate’ but marginal cost of effort increases too fast, there are no

collusive equilibria, for further discussion see section 7.

Finally, part (2) states that if the advantage is ‘moderate’ and the

marginal cost of effort does not increase too fast nor too low then

it is possible to support either player leading while the other slacks

as an equilibrium: The condition ∆ > IR1 implies it is profitable

for player 1 to build an advantage when she expects 2 to exert 0

effort; while the other condition, ∆ > IC2, implies it does not payoff

for player 2 to try to catch up with player 1 when 2 expects 1 to
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FIG. 2. One player takes

‘small’ effort levels at non-

terminal rounds, the other

choses no effort.a

FIG. 3. At the last round, the laggard either

gives up or tries to catch-up and surpass the

leader; who tries to keep the advantage.b

build an advantage. The combination of the two conditions, ∆ ≥
max(IR1, IC2), means that we can support as (part of) a equilibrium,

the action profile where player 1 builds an advantage while 2 places

no effort at T − 1. Similarly, we can support player 2 building an

advantage while 1 choses no effort when ∆ ≤ min(IR2, IC1).

a. Fig. 2.: illustration by Harrison Weir (1824-1906). Available online at http:

//www.gutenberg.org/files/18732/18732-h/18732-h.htm.

b. Fig. 3: illustration by Milo Winter (1886-1956). Available online at http:

//www.gutenberg.org/files/19994/19994-h/19994-h.htm.

6. MIXED STRATEGY PLAY

6.1. Competitive Equilibria. We now study equilibria of Γ(∆, v1, v2)

where players choose positive effort levels accordingly to continu-

ous distributions.

http://www.gutenberg.org/files/18732/18732-h/18732-h.htm
http://www.gutenberg.org/files/18732/18732-h/18732-h.htm
http://www.gutenberg.org/files/19994/19994-h/19994-h.htm
http://www.gutenberg.org/files/19994/19994-h/19994-h.htm
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Let Gi(·|∆, v1, v2) denote the cumulative probability distribution

function of player i’s effort at ∆T−1. Hereafter for simplicity we write

Gi(·) for the CDF and, gi(·) for the corresponding PDF whenever it

is well defined.

Proposition 2. Assume power cost functions, c(e) = eθ with θ ∈ Z+,

identical valuations, and 0 head-starts. There is a unique, symmetric,

mixed strategy, Nash equilibrium. Furthermore, in this equilibrium: play-

ers’ payoff is 0, gi is increasing, and Gi is given by,

Gi(x) = (−1)θ−1 +
θ−1

∑
k=1

Ck · exp (ck · x) .

The complex-valued constants in the expression for Gi are charac-

terized in the proposition’s proof, see appendix B.1.

Example 1. For θ = 2, the symmetric equilibrium is given by:

Gi(x) =

exp
(

x√
v

)
− 1 for 0 ≤ x ≤ ln(2)

√
v

1 for x ≥ ln(2)
√

v

Example 2. For θ = 3, the symmetric equilibrium is,

Gi(x) =


1 +

(
sin
(

x

v
1
3

)
− cos

(
x

v
1
3

))
exp

(
x

v
1
3

)
for 0 ≤ x ≤ π

4 v
1
3

1 for x ≥ π
4 v

1
3

6.2. Ranked Equilibria. Besides competitive and collusive equilib-

ria, we may have asymmetric, mixed strategy equilibria. To describe

these equilibria, we need some additional notation.

First, consider the set of mixed strategy equilibria of the symmetric

game Γ(v, v, 0) that have finite support and where player 2’s payoff

is 0, E . Second, define the set of equilibria in E where players 1 and
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2 use respectively m and n actions:

σ(m, n) = {σ ∈ E : #supp (σ1) = m and #supp (σ2) = n} .

When σ(m, n) is a singleton, we abuse notation and identify it with

its element.

Proposition 3. For the symmetric game with quadratic costs and m and n

positive integers less or equal than 5:

(a) #σ(m, n) = 1 if n = m or n = m + 1,

(b) #σ(m, n) = 0 otherwise

(c) v
2 = u1 (σ(1, 1)) > u1 (σ(1, 2)) > u1 (σ(2, 2)) > u1 (σ(2, 3)) >

> u1 (σ(2, 3)) > u1 (σ(3, 4)) > u1 (σ(4, 4)) > u1 (σ(4, 5)) >

> u1 (σ(5, 5)) > 0.

Proof. See Appendix B.2. �

7. COMPARATIVE STATICS

7.1. Elasticity of Effort Substitution. For collusive equilibria to ex-

ist, the marginal cost of effort can not increase ‘too fast’. In addi-

tion, for collusive equilibria where the underdog leads (i.e. tortoise-

hare equilibria) to exist, the marginal cost of effort can not increase

‘too slow’. Or in another words, the set of possible threshold lev-

els, (max(IR1, IC2), min(IR2, IC1)) in part (a) of proposition 1 that

determines which player leads is empty when the inter-temporal

elasticity of substitution of effort (which can also be interpreted as

risk-aversion) is either ‘too high’ or ‘too low’.

To illustrate consider the power cost case (where the elasticity of

effort substitution is given by 1
θ−1 ).
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IR1

IC2

IR2

IC1

θ

∆

−v1

v2

(1, 0)

FIG. 4. Collusive equilibria with power costs, Example 3.

Example 3. Let c(e) = eθ and v1 = 1 ≥ v2 = 0.9. In figure 4, the

green region depicts the parameter space where two collusive equi-

libria exist; the red region indicates where only collusive equilibria

with player 2 inactive exist; the blue region is where only collusive

equilibria with player 1 inactive exist; and finally, the white region

indicates where collusive equilibria do not exist.

For the symmetric case, it is easier to identify the role of the elas-

ticity of effort substitution.

Proposition 4. In the symmetric case v1 = v2, there are two pure strategy

Nash equilibria if and only if IC ≤ 0. In particular for power cost func-

tions, c(e) = eθ, pure strategy equilibria exist if and only if θ ≤ log(4/3)
log(2) .

Proof. In the symmetric case max(IR1, IC2) = −min(IR2, IC1) thus

by proposition 1 we have two pure strategy Nash equilibria if and

only if max(IR1, IC2) < 0. As in the symmetric case IR1 < 0 by con-

cavity of c−1, the necessary and sufficient condition for the existence

of a pure strategy eq. simplifies to IC ≤ 0. �
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FIG. 5. Cubic costs and symmetric set-up, Example 4: player 2 wants to deviate.

When the cost function is too ‘convex’, equilibria where the size

of supports is ’small’ may fail to exist. We already proved that for

cubic costs, the symmetric game has no pure-strategy equilibria. In

this case also there is no equilibria where supports have size two.

Example 4. In the symmetric case and cubic costs, there is no equi-

libria where supports have size two. The necessary first-order and

indifference conditions for an equilibrium with supports of size two

have a unique solution, however, this solution is not an equilibrium

as player 2 has incentives to deviate and choose higher higher effort

levels as Figure 5 illustrates:

However, despite the fact there is no collusive equilibria nor equi-

libria where strategies have supports with size two, there is an equi-

librium where supports have size three:

Example 5. Let c(e) = e3, v1 = v2 = 1, there is an mixed strategy

equilibrium where player 1 chooses the actions 0.3428, 0.5817 and

0.7335 with probabilities 0.3093, 0.3531 and 0.3375; while player 2
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U1(e1|G2)

e1, e2

U2

U1

∆ = 0, c(e) = e3, v1 = v2 = 1

FIG. 6. The asymmetric equilibrium with cubic costs of Example 5.

mixes between 0, 0.4799 and 0.6636 with probabilities 0.2723, 0.3604

and 0.3673. Figure 6 shows the corresponding expected payoffs.

7.2. Asymmetric Valuations.

Proposition 5. For the asymmetric case, ∆ , 0 or v1 > v2, and qua-

dratic costs, there is no mixed strategy Nash equilibrium where players use

a continuous distributions (with possibly an atom at 0).

Proof. See the appendix C.1 �

We conjecture the proposition is true for any polynomial cost func-

tion. Its proof for the case of power cost functions with integer coef-

ficients should be nearly identical to the quadratic case but notation-

ally cumbersome.



20 JOFFRION AND PARREIRAS

Moreover, in the asymmetric case the relatively more competitive

equilibria break down when asymmetries are sufficiently high:

Example 6. Assume quadratic costs, v1 = 1 and ∆ = 0. For v2 < 1
2

there is no equilibrium σ where player 2 gets zero payoff, supp (() σ1) =

1, and supp (() σ2) = 2. In contrast, the collusive equilibria where

player 2 gets zero payoff, always exists.

Proof. We use notation from Appendix B.2. If in equilibrium player 2

mixes between y1 = 0 and y2 and player 1 chooses x1 with prob-

ability 1, by solving sys(m,n), we obtain the probability of y0 is
2v−1−

√
v+
√

2v
1−v+2

√
v , which is negative for v < 1

2 . �

8. CONCLUSIONS

We showed that for dynamic, all-pay auctions where the substitu-

tion and the dead-line effects are present, the clear cut prediction

given by the unique (collusive-like) equilibrium of existing mod-

els goes away. One may have multiple equilibria exhibiting vari-

ous degrees of rent dissipation. Also, we may have equilibria with

the property that the underdog obtains positive payoffs and the fa-

vorite obtains 0 payoff. However, we showed that the indeterminacy

is not absolute as the primitives (degree of valuations asymmetries

and inter-temporal marginal rate of effort substitution) constraint

the equilibria set: Relatively moderate valuation asymmetries are

not compatible with relatively high levels of rent dissipation. Also,

relatively low levels for the effort elasticity are not compatible with

relatively low levels of rent dissipation.
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Using Proposition 1 is trivial to construct examples of contests

with three or more periods that exhibit a continuum of subgame per-

fect equilibria. Thus, in this paper, we did not attempt to investigate

comparative statics regarding the horizon’s length. In a compan-

ion work, however, we consider an infinite-horizon version of this

model where we investigate comparative statics regarding the ex-

pected duration of the contests.

One obvious direction for future research is to test the empirical

implications of our comparative statics results.

As the indeterminacy of equilibria raises the possibility of sunspot

equilibria, another interesting direction is to characterize the set of

correlated equilibria in contests and establish how it depends on the

primitives: valuation asymmetries, effort elasticity, etc...
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APPENDIX A. COLLUSIVE EQUILIBRIA

A.1. Proof of Proposition 1 . First, we derive the players’ best re-

sponse functions. Please refer to Definition 1 for the definition of

the dead, active and safe zones. For e1 in the active zone, 1’s payoff

is v1− c
(
c−1(v2) + e2 − ∆T−1 − e1

)
− c(e1); which is strictly concave

in the interior of the active zone. The first-order conditions yield a

unique global maximum in the active zone: β1(e2) =
c−1(v2) + e2 − ∆T−1

2
.

We refer to β1 as 1’s pseudo-best response. Also we define analogously,

player 2’s pseudo-best response. For the pseudo-best response to

coincide with the best-response, it needs to satisfy two additional

requirements:

2c−1(v1/2)− c−1(v2)− e2 + ∆T−1 ≥ 0 (IR1(e2))

2c−1(v1)− c−1(v2)− e2 + ∆T−1 ≥ 0 and (Range1(e2))

c−1(v2) + e2 − ∆T−1 ≥ 0

The condition IR1(e2) states β1(e2) is a better response than 0; while

Range1(e2) states β1(e2) lies in the active-zone. Simplifying the above

conditions, we write the best-response of player 1 as:

BR1(e2, ∆T−1) =



c−1(v2) + e2 − ∆T−1

2
if 2c−1(v1/2) ≥

≥ c−1(v2) + e2 − ∆T−1 ≥ 0,

and

0 otherwise.

A tortoise-hare equilibrium with player 1 active exists if and only if:

BR2(BR1(0)) = 0 and BR1(0) > 0. Using the expression for the best-

response, we can reformulate these two conditions as requiring that
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∆ ≥ max

4c−1(v2/2)− 2c−1(v1)− c−1(v2)︸                                        ︷︷                                        ︸
IC2

, c−1(v2)− 2c−1(v1)︸                     ︷︷                     ︸
IR1

.

Using a mirror argument, we establish a tortoise-hare equilibrium

with 2 active exists if and only if: ∆ ≤ min (IC1, IR2).

APPENDIX B. MIXED STRATEGY

B.1. Proof of proposition 2 . Assume a power cost function, c(e) =

eθ with θ ∈ Z+ and symmetric players, v1 = v2 and ∆ = 0; We

want to characterize the symmetric, mixed strategy equilibrium in

continuous strategies, G. Symmetry implies G is non-atomic which

considerably simplifies expected payoffs:

Ui(e|G) =
∫ e

0

(
v−

(
v

1
θ + x− e

)θ
)

g(x) dx− eθ

We further simplify payoffs by normalizing of the effort levels (change

of variables): Players choose to bid a fraction of the maximum indi-

vidually rational effort level, b = e / v
1
θ ∈ [0, 1]. Thus if B is equilib-

rium CDF of b, the equilibrium CDF of effort levels is recovered by

setting, G(x) = B
(

x

v
1
θ

)
. Using this change of variables, we write:

Ui(b|B) =
∫ b

0

(
v−

(
v

1
θ + v

1
θ b−i − v

1
θ b
)θ
)

dB(b−i)− v bθ

= v
(∫ b

0

(
1− (1 + b−i − b)θ

)
dB(b−i)− bθ

)
Without loss of generality, consider the normalized (v = 1) pay-

off, U(x) =
x∫

0

(
1− (1 + b− x)θ

)
dB(b)− bθ. As the support of the

symmetric equilibrium has no gaps, supp (B) = [0, b], and more-

over since in equilibrium, players are indifferent between actions in

the support, all jth-derivatives of U(x) must vanish. Considering the
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first θ − 1) derivatives, we obtain the j = 1, . . . , θ − 1 equilibrium

restrictions:

DjU(x) = − θ! xθ−j

(θ − j)!
+

(−1)j+1 θ!
(θ − j)!

x∫
0

(1 + b− x)θ−j dB(b)+

+
j−1

∑
k=1

(−1)θ−1−k θ!
(θ − k)!

Dj−kB(x) = 0 for j = 1, . . . , θ − 1 (j-indiff.)

We write the last restriction, j = θ− 1, as a linear ODE with constant

coefficients:

− θ! x + (−1)θθ!
x∫

0

(1 + b− x) dB(b) +
θ−1

∑
k=1

(−1)θ−1−k θ!
k!

Dk−1 B = 0

− θ! x + (−1)θθ!

(1− x)B +

x∫
0

b dB(b)

+
θ−1

∑
k=1

(−1)θ−1−k θ!
k!

Dk−1 B = 0

x∫
0

b dB(b) = x · B(x)−
x∫

0

B(b)db (Integration by parts)

H(x) def
=
∫ x

0
B(b)db (Change of variables)

Dθ−1U(x) = −θ! x +
θ−1

∑
k=0

(−1)θ−1−k θ!
k!

DkH(x) = 0 (ODEH)

Notice that (−1)θ+1 (1 + x) is a particular solution of ODEH. Any

solution of ODEH can be expressed as a sum of this particular solu-

tion and linear combinations of solutions of the homogenous ODE,

θ−1

∑
k=0

(−1)θ−1−k θ!
k!

DkH(x) = 0, (hom.)

And in turn, any solution of hom. has the form ∑θ−1
k=1 Ck · exp (ck · x),

where ck is the kth root of the characteristic polynomial,

p(Z) = ∑θ−1
k=0 (−1)θ−1−k θ!

k!
Zk, and Ck are arbitrary constants. As a
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result, we finally obtain the general solution for ODEH:

H(x) = (−1)θ+1 (1 + x) +
θ−1

∑
k=1

Ck · exp (ck · x) such that (sol.)

Since we have θ − 1 arbitrary constants, the space of solutions has

dimension θ − 1. To pin-down the values of the constants, we use

the additional θ − 2 restrictions given by j-indiff.

The 1–indiff. constraint implies any its solution B of 1–indiff. is

increasing, which is a necessary condition for dB to be an increasing

PDF. To prove this fact, write 1–indiff. as:
x∫

0

(1 + b− x)θ−1 dB(b) = xθ−1.

As the right-hand side of this version of 1–indiff. is increasing, the

left-hand size must be as well. Thus there is a x̂ such that for for

all x < x̂ < 1, we have dB(x) > 0. So, if there was the case that

dB(x) ≤ 0 for some range x ∈ (x̂, x̃) with x̃ < 1, we get the following

contradiction: 0 < x̃θ−1 − x̂θ−1 =

x̃∫
x̂

(1 + b− x̃)θ−1 dB(b)

︸                          ︷︷                          ︸
≤0

+

+

x̂∫
0

[
(1 + b− x̃)θ−1 − (1 + b− x̂)θ−1

]
dB(b)

︸                                                      ︷︷                                                      ︸
<0

< 0.

Now it follows that as DH(x) is a non-atomic CDF function, we

also have an additional restriction, DH(0) = 0. Finally, we compute

the upper bound of the support solving H(x) = 1 for x.

B.2. Proof of Proposition 3 . As before we can normalize valuations

in the symmetric case, v1 = v2 = 1,Let σ be an asymmetric, mixed

strategy Nash equilibrium with finite support where player 2’s pay-

off is 0. For k = 1, . . . , m denote by xk be highest kth effort level that
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is chosen with positive probability by player 1. Analogously define

yk for k = 1, . . . , n. And let pk and qk be the respective associated

probabilities.

Standard arguments imply that ties can only happen with 0 prob-

ability. Moreover, since 1’s payoff is strictly concave in (yk, yk + 1),

we must have that player 1 will pick exactly one effort level in the

range (yk, yk+1). After applying the same argument to player 2, we

obtain that 0 = y1 < x1 < y2 < . . . < xk < yk < . . . < 1. This

already proves part (b) of Proposition 3 and establishes that either

n = m or n = m + 1; and allow us to write payoffs as: U1(xk, σ2) =

∑k
j=1 qj ·

(
v1 −

(
v

1
θ
2 + yk − ∆− xk

)θ
)
− (xk)

θ and

U2(σ1, yk) = ∑k−1
j=1 qj ·

(
v2 −

(
v

1
θ
1 + xk + ∆− yk

)θ
)
− (yk)

θ. In the

next step, we consider the necessary equilibrium conditions for σ:

U1(xk, σ2)− u1 = 0, U2(σ1, yl) = 0,
∂U1

∂xk
(xk, σ2) = 0,

∂U2

∂yl
(σ1, yl) = 0

1−
m

∑
k=1

pk = 0 if n = m + 1 and 1−
m

∑
k=1

qk = 0 otherwise.

(sys(m,n))

The system is square: it has 2n + 2m− 1 unknowns and the same

number of equations. Notice that the probability of the highest ac-

tion, which is pm when m = n and qn when m = n + 1, does not

appear directly in the payoffs. Thus, for the case m = n, the vector of

unknowns is (x1, . . . , xm, p1, . . . , pm−1, u1, y2, . . . , ym, q1, . . . , qm). As

for the n = m + 1 case, we add pm but not qm+1 to the vector of

unknowns.

We are interested in solutions of sys(m,n) that also satisfy the ad-

ditional constraints:
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x1 > 0, y2 − x1 > 0, . . . , xm − ym > 0, p1 > 0, . . . , pm−1 > 0,

q1 > 0, . . . , qm > 0, and1−∑m−1
k=1 pk > 0 if n = m

1−∑m
k=1 qk > 0 and pm > 0 if n = m + 1.

(mon.)

Therefore, fixed points/topological methods are not useful to es-

tablish existence. First, our constraint set is an open set. Second, let

x1 = BR1(0) be the collusive strategy of player 1, and letting xk = x1,

yk = 0, p1 = q1 = 1 we can always solve sys(m,n) for any m and n

but clearly mon. does not hold.

An algebraic geometry4 approach is needed: we use Xia and Yang

(2002)’s algorithm, which is implemented in Maple, to count the num-

ber of real solutions of sys(m,n) that satisfies mon..

The code and an output example is available on-line at http://

www.unc.edu/sergiop/countsolutions.mws. It requires Maple ver-

sion 16 or 17. In a Linux cluster using 4G of memory (47G max.

swap) and 4 processors, for the largest case (m = n = 5), it takes

5417.04 seconds of CPU time to successfully run the code. For larger

cases (m, n > 5) memory requirements ‘blowup’.

For (m, n) = (1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 4), (4, 4), (4, 5) and

(5, 5) there is only one solution of sys(m,n) that satisfies mon..

Next, we use numerical methods to compute the values of the so-

lution. The code and an output example for this part is available

on-line at http://www.unc.edu/sergiop/checkdeviation.mws.

4See Cox et al. (2005, pp. 69-76) for methods of root isolation and Kubler and

Schmedders (2010) for related examples of application in economics.

http://www.unc.edu/sergiop/countsolutions.mws
http://www.unc.edu/sergiop/countsolutions.mws
http://www.unc.edu/sergiop/checkdeviation.mws
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We use the competitive equilibrium as the ‘initial condition’ for

the numeric algorithm; and with these values we show that: player

2 does not have an incentive to deviate by choosing an effort above

xm for the case m = n; and player 1 does not have an incentive to

deviate by choosing an effort above ym+1 for the case n = m + 1.

APPENDIX C. COMPARATIVE STATICS

C.1. Proof of Proposition 5 . We consider the case c−1(v2)− c−1(v1)−
∆T−1 ≥ 0 and omit the proof for the complementary case as it is anal-

ogous. We first need the following lemma:

Lemma 2. Assume costs are strictly convex and that in equilibrium, player

i mixes continuously in the interval [ei, ei] and Pr [ei ∈ {0} ∪ [ei, ei]] = 1

for i = 1, 2. Then e2 − e1 = e2 − e1 = c−1(v1) + ∆T−1 − c−1(v2).

Proof. First let’s prove e2 − e1 = c−1(v1) + ∆T−1 − c−1(v2). If this

were not true, say if e2− e1 > c−1(v1)+∆T−1− c−1(v2) then it would

imply the existence of a neighborhood of e2 where player 2 always

faces herself outside her dead-zone (see definition 1). Since outside

the dead-zone, the marginal payoff of player 2 is continuous; and

since for each e1, it is strictly concave, it follows that player 2’s ex-

pected payoff is strictly concave as well. Which implies player 2 is

not willing to mix. Also, an analogous argument shows that the case

e2 − e1 < c−1(v1) + ∆T−1 − c−1(v2) is ruled out.

Now assume e2 − e1 > c−1(v1) + ∆T−1 − c−1(v2). Unless player

2 chooses 0, for efforts in a neighborhood of e1 player 1 will always

face herself in the dead-zone and so, her payoff is:

G2(0) ·
[
v1 − c

(
c−1(v2)∆T−1 − e1

)]
− c(e1), which is strictly concave.
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A similar argument takes care of the case where e2 − e1 < c−1(v1) +

∆T−1 − c−1(v2). �

Notice the lemma 2 does not depend upon the specification of the

cost function; we conjecture Proposition 5 holds in general but its

proof is considerably simplified if one is able to compute the can-

didate equilibrium explicitly. For this reason, we assume quadratic

costs.

Player 2’s is then:

(
√

v1 + ∆T−1 − e2) G1(
√

v2 −
√

v1 − ∆T−1 + e2) +

√
v2−
√

v1−∆T−1+e2∫
e1

e dG1(e)− e2 = 0,

(C.1)

let x =
√

v2 −
√

v1 − ∆T−1 + e2 then

(
√

v2 − x) G1(x) +
x∫

e1

e dG1(e) +
√

v2 −
√

v1 − ∆T−1 − x = 0

Integrating by parts the integral term and simplifying the resulting expression:

√
v2G1(x)− e1 G1(e1)−

∫ x

e1

G1(e1)de1 +
√

v2 −
√

v1 − ∆T−1 − x = 0

Let H1 be G1’s primitive, that is H1(x) def
=
∫ x

e1
G1(e) de then H1 must

solve the following differential equation:

√
v2 H′1(x)− e1 H′1(e1)−H1(x)+ H1(e1)+

√
v2−

√
v1−∆T−1− x = 0

(ODE)

The general solution of ODE is:

H1(x) = −e1 H′1(e1)−
√

v1 − ∆T−1 − x + C exp(
x√
v2
),

we differentiated it to obtain the CDF of player 1’s effort :

G1(x) ≡ H′1(x) = −1 +
C√
v2

exp(
x√
v2
).
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At first glance it seems we may have a continuum of solutions (index

by C) but, as a matter of fact, given e1 we can pin-down the value of

C by solving the system:

H1(e1) = −e1 H′1(e1)−
√

v1 − ∆T−1 − e1 + C exp(
e1√
v2
) = 0 and

H′1(e1) = −1 +
C√
v2

exp(
e1√
v2
).

Since C =

√
v2 (
√

v1 + ∆T−1)√
v2 − e1

exp
(
− e1√

v2

)
,

G1(x) =
√

v1 + ∆T−1√
v2 − e1

exp
(

x− e1√
v2

)
− 1.

A mirror argument establishes that:

G2(x) =
√

v2 − ∆T−1√
v1 − e2

exp
(

x− e2√
v1

)
− 1.

The condition Gi(ei) = 1 implies ei = ei +
√

v−i · ln
(

2
√

v−i−ei√
vi+(−1)i+1∆T−1

)
,

using the other equations given by Lemma 2, we have:

√
v2 · ln

(
2
√

v2 − e1√
v1 + ∆T−1

)
=
√

v1 · ln
(

2
√

v1 − e2√
v2 − ∆T−1

)
√

v2 · ln
(

2
√

v2 − e1√
v1 + ∆T−1

)
=
√

v1 · ln
(

2
√

v2 − e1 − ∆T−1√
v2 − ∆T−1

)
(

2
√

v2 − e1√
v1 + ∆T−1

)√v2

=

(
2
√

v2 − e1 − ∆T−1√
v2 − ∆T−1

)√v1

(a)

Moreover, since ei > ei, we also must have:

2
√

v2 − e1√
v1 + ∆T−1

> 1. (b)

Clearly the symmetric case, v1 = v2 and ∆T−1 = 0 solves (a) and (b).

Also it is easy to verify that for v1 = v2 and ∆T−1 , 0, equation (a)

has a unique solution that violates (b). Thus, for even for arbitrarily

small head-starts and symmetric valuations, there is no competitive

equilibria. Also, for the additonal cases: 1) ∆T−1 = 0 and v1 , v2
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or 2) ∆T−1 =
√

v2 −
√

v1 , 0, one can show that any e1 solution of

(a) either violates (b) or falls outside the range [0,
√

v2). Numerical

analysis confirms that these results are robust; only for non-generic

parameters values, a competitive equilibria exists. �

E-mail address: sergiop@unc.edu
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