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Abstract

This paper elucidates how predictions in finite depth of reasoning model, special

cases of which include level-k and cognitive-hierarchy models are robust to the com-

mon knowledge assumption of level-0 types’ actions. We examine whether an outside

observer can ignore a slight violation of the common knowledge assumption when she

knows which game players will play with high probability but, with small probability,

she does not know and they will play different games with respect to payoff struc-

ture and actions of level-0 types. A sufficient condition is provided for a p-dominant

cognitive equilibrium, which is a natural analogue of p-dominant action profile in the

finite depth of reasoning model, being robust to incomplete information á la Kajii

and Morris (1997). Under a certain condition on players’ beliefs, we show that even a

p-dominant cognitive equilibrium with
∑

i∈I pi ≥ 1 can be robust. As a by-product,

this result implies that the level-k model has the smallest set of robust equilibria, and

the cognitive-hierarchy model has the largest regarding p-dominance.
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1 Introduction

Standard game theory is often blamed for its low descriptive power. A leading example is

Rubinstein’s (1989) email game. In the email game, players can never reach cooperation,

no matter how many confirmations they send, because of a grain of uncertainty in the

information structure. This theoretical prediction is, however, not only intuitively unap-

pealing, but has also rarely been supported by empirical evidence. For instance, Camerer

(2003) reports that in an experimental setting less experienced players tend to choose a

cooperative action when at most 6 or 7 emails are exchanged.

One of the most widely accepted non-standard game theoretical models is finite depth

of reasoning model, special cases of which include level-k and cognitive-hierarchy models

(e.g., Nagel 1995; Stahl and Wilson 1995; Camerer et al. 2004).1 In the finite depth of

reasoning model, players follow a decision rule under which each player has a non-negative

integer, interpreted as his reasoning level, and believes that other players have strictly

lower reasoning levels than him. For instance, level-1 types believe that his opponents

are level-0 types for sure.2 The model’s prediction called cognitive equilibirum is obtained

through the following procedure: First, specify level-0 types’ actions and assume that they

are common knowledge. Then those actions work as an anchor for higher-level types, that

is, level-1 type best responds to the actions of level-0 types, level-2 type best responds to

the best responses of level-1 types and/or to the actions of level-0 types under his belief,

and so on.

As it is clear from the definition, prediction in the finite depth of reasoning model

crucially depends on what level-0 types will choose and how other higher-level types model

level-0 types. In general, level-0 types are assumed to be näıve or non-strategic, and hence

choose his action randomly or choose a salient action. For instance, Nagel (1995) uses

the random level-0 type in a 2/3 guessing game. In hide-and-seek game where each hider

(seeker) chooses one box to hide (seek) a treasure, Crawford and Iriberri (2007b) assume

that level-0 types respond to labels (A or B) or locations (middle or end) of the boxes.

Unfortunately, these reasonable specifications may not be so true as a recent experiment

by Burchardi and Penczynski (2012) shows: level-0 types respond to the salient number

(66) in the 2/3 guessing game, and their average number is significantly higher than 50.

Moreover, as the complexity of games increases, it becomes more and more difficult to

find a candidate for level-0 actions.3 In the auction environment, Crawford and Iriberri

(2007a) propose two possibilities for actions of level-0 types: either bid uniformly between

1For the comprehensive survey, see Crawford et al. (2012)
2A major distinction between the level-k and cognitive-hierarchy models is their way of specifying

players’ beliefs about other players’ reasoning levels. In the level-k model, level-ki type of player i surely

believes that his opponents have a reasoning level exactly one lower than him; that is, ki−1. On the other

hand, the cognitive-hierarchy model assumes that given his own level, players calculate the conditional

probability of opponents’ levels induced by some distribution (e.g., Poisson).
3Arad and Rubinstein (2012) emphasize the importance of simplicity of games for allowing players to

have a clear candidate for level-0 actions.
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the lowest and highest possible values or truthfully bid his own value. But then allowing

several possibilities for level-0 actions inherently casts doubt on the common knowledge

assumption, since the number of combinations between level-0 actions and (degenerate)

beliefs about how other types predict level-0 actions increases exponentially.4

The purpose of this paper is to investigate how predictions in the finite depth of

reasoning model would be affected if players do not commonly know level-0 actions. A

pioneering paper by Strzalecki (2010) solves the paradoxical result of the email game by

introducing finite depth of reasoning. He shows that if each player’s belief about the

other player’s reasoning level satisfies a certain condition, then there exists a cognitive

equilibrium in which both players choose cooperation after exchanging a certain number

of emails. In other words, cognitive equilibrium is somewhat robust to the equilibrium

selection through higher-order uncertainty á la Rubinstein (1989). Theoretically speaking,

this paper explores a possibility if cognitive equilibrium is generally robust to such higher-

order uncertainty without restricting our attention to the email game by using techniques

proposed in Kajii and Morris (1997). However, by introducing higher-order uncertainty

in level-0 actions, together with uncertainty in payoffs, this approach enables us to answer

the question: “how sensitive the predictions of finite depth of reasoning model are to the

common knowledge assumption of level-0 actions.” That is, we consider the situation in

which an outside analyst knows which game players will play including level-0 actions

with high probability; however, with small probability, players can play a totally different

game in terms of its payoff structure and level-0 actions. With small uncertainty in level-0

actions, we examine whether we can use a solution for the simplified game (i.e., ignore the

unobserved uncertainty) as a prediction for the real game.

To be more specific, we formulate the finite depth of reasoning model as an incomplete

information game with cognitive type due to Strzalecki (2010). In our model, each cogni-

tive type assigns a reasoning level to each player, and decision rules such as level-k and

cognitive-hierarchy are interpreted as beliefs about other players’ cognitive types with sat-

isfying that each player believes others have strictly lower cognitive types with probability

1.5 Given level-0 actions, cognitive equilibrium is obtained through inductively calculating

a best response for each cognitive type.6 A cognitive equilibrium is said to be robust to

incomplete information if the behavior of all cognitive types of each player which is close to

the cognitive equilibrium constitutes a (Bayesian) cognitive equilibrium of every nearby

incomplete information game.7 The word “nearby” means that the sets of players and

4In fact, Penczynski (2011) experimentally finds that players do not share the belief on actions of level-0

types in the hide-and-seek game.
5Strzalecki’s cognitive type space is more general than ours in the sense that his model allows two

cognitive types with the same reasoning level to have different beliefs about other players’ cognitive types.
6In this solution, players must have inconsistent beliefs, so that finite depth of reasoning model is often

referred as a nonequilibrium analysis (Crawford et al. 2009, 2012; Crawford and Iriberri 2007). Here we

follow the terminology in the theoretical literature.
7Bayesian cognitive equilibrium is a natural extension of cognitive equilibrium when we have extra

uncertainty Θ with respect to payoffs. Formal definition will be given in Section 2.
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actions are the same with original incomplete information game with cognitive type, and

each player knows with high probability that his payoffs and level-0 actions are the same.

Thus our robustness concept is different from the robustness of Kajii and Morris (1997)

(henceforth, KM robustness) especially in the solution concept and perturbed objects.

Among the sufficient conditions for KM robust equilibria, we focus on the sufficient con-

dition that clarifies a relationship between players’ higher order beliefs and p-dominance.8

Cognitive equilibrium is said to be p-dominant if each player i’s equilibrium strategy be-

comes a best response whenever he (perceptually) believes that the other players would

follow the equilibrium strategy with probability at least pi. Kajii and Morris (1997) show

that if
∑

i∈I pi < 1, then a p-dominant action profile is KM robust. In contrast, our

main result states that if there exists a level n such that any higher-level type of players

than n put sufficiently high probability on his opponents being lower-level types than n,

then a p-dominant cognitive equilibrium is robust even if
∑

i∈I pi ≥ 1. Intuitively, this

sufficient condition is satisfied if all the “thoughtful” people think that normal human

beings can think at most n depths and that less fraction of smart people can think deeper

than n. According to this result, two prominent finite depth of reasoning models show

a great difference in terms of the set of robust equilibria: When players have level-k be-

lief, a p-dominant cognitive equilibrium becomes robust if
∑

i∈I pi < 1. In contrast, under

cognitive-hierarchy belief, any p-dominant cognitive equilibrium with p ∈ [0, 1)I is robust.

The rest of the paper is organized as follows. Section 2 proposes our framework of

the finite depth of reasoning model. Section 3 introduces two preliminary concepts, p-

dominance and common p-belief. Section 4 derives a sufficient condition for a p-dominant

cognitive equilibrium being robust, and Section 5 discusses the other possible notions of

robustness and of type spaces.

2 Framework

2.1 Incomplete Information Game with Cognitive Type

In this section, we formulate finite depth of reasoning model as an incomplete information

game with cognitive type. A player in this game faces an uncertainty about other players’

cognitive types (or reasoning levels interchangeably), and forms a belief on his opponents’

cognitive types given his own type. Importantly, we assume that each player must believe

with certain that the other players have strictly lower reasoning levels than him own

and this is common knowledge among players. In the sequel, we follow the conventional

notations such as A = ×iAi and A−i = ×j ̸=iAj , and let ∆(A) denotes a collection of

Borel probability measures on A. The finite depth of reasoning model is formally defined

as follows: An incomplete information game with cognitive type denoted by G is given by

8Kajii and Morris (1997) also show that if complete information game has a unique correlated equi-

librium, then that equilibrium is KM robust. Ui (2001), for instance, shows that Nash equilibrium which

maximizes the potential of the game is KM robust.

4



G = (I, {Ai,Ki, µi, gi}i∈I), where I = {1, 2, ..., I} is the finite set of players, and for each

player i ∈ I, Ai is the finite set of actions, gi : A → R is the (bounded) payoff function,

Ki = Z+ is the set of cognitive types, and µi : Ki → ∆(K−i) is his (interim) belief about

other players’ cognitive types that satisfies µi(ki)({k−i ∈ K−i : kj < ki for each j ∈ I with

j ̸= i}) = 1 for any ki ∈ N.

Remark 2.1. We do not put any restriction on level-0 types’ beliefs. Since their actions

are determined outside of the model, their beliefs have no practical effect on our analysis.

Remark 2.2. By definition of our cognitive type space, we consider the situation where

beliefs about other players’ reasoning levels are common knowledge among players. Since

the level-k and cognitive-hierarchy models also assume this, we lose little generality for our

purpose. However, this assumption can be relaxed by considering Strzalecki’s cognitive

type space: see Section 5.

Remark 2.3. The restriction on µi requires that player i with level ki (>0) certainly

believes that other players have strictly lower levels than ki. This strictness of inequality

allows us to avoid fixed-point arguments like “I best respond to players who best respond

to me”, and to recursively derive a best response of each cognitive type given actions of

level-0 types.

2.2 Solution Concept

We use a solution concept called cognitive equilibrium in which, given level-0 types’ actions,

each cognitive type chooses his best response under his belief about other players’ cognitive

types.9 Let us denote player i’s (pure) strategy in G by si : Ki → Ai, and let Si denote

the set of player i’s strategy for each i ∈ I.10

Definition 2.1. A strategy profile s∗ constitutes a cognitive equilibrium of G if, for any

i ∈ I, ki ∈ N, and ai ∈ Ai,∑
k−i∈K−i

gi(s
∗(ki, k−i))µi(ki)(k−i) ≥

∑
k−i∈K−i

gi(ai, s
∗
−i(k−i))µi(ki)(k−i).

Since we can freely specify level-0 actions, we have at least as many cognitive equilibria

as the cardinality of A. In the experimental literature, this multiplicity problem is often

solved by assigning a specific action to level-0 type and assuming players commonly know

it. Then, generically in payoffs, we obtain a unique cognitive equilibrium.

Two typical finite depth of reasoning models, level-k and cognitive-hierarchy, are trans-

lated into our framework as follows.

9By construction, players must have mutually inconsistent beliefs in this equilibrium. Thus the word

“equilibrium” here has a different meaning from that of Bayesian equilibrium.
10Just for notational simplicity, we do not allow randomization in strategies. But mixed strategies can

be incorporated into our model in a standard way.
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Example 2.1. (Level-k Model)

In the level-k model, each player believes that other players’ levels are exactly one lower

than his own level. That is, a player with level ki believes that others have a level ki − 1

with probability 1. Formal representation is as follows: for each i ∈ I and ki ∈ N,

µlki (ki)(k−i) =

1 if kj = ki − 1, ∀j ̸= i

0 if otherwise

Thus the level-k model is an incomplete information game with cognitive type denoted by

Glk in which players have this level-k belief, and its prediction is a cognitive equilibrium

of Glk. We especially call the cognitive equilibrium of Glk level-k equilibrium.

Example 2.2. (Cognitive-Hierarchy Model)

The cognitive-hierarchy model (CH model) assumes that given his own level, each player

calculates conditional probabilities about other players’ levels, which are induced by some

distribution λ ∈ ∆(Z+). For instance, Camerer et al. (2004) assume λ follows Poisson

distribution. Given this λ, each player’s belief is constructed as follows: for each i ∈ I
and ki ∈ N,

µchi (ki)(k−i) =


Πj ̸=iλ(kj)

(
∑ki−1

l=0 λ(l))I−1
if kj < ki, ∀j ̸= i

0 if otherwise

As in Example 2.1, the CH model is denoted by Gch, and its cognitive equilibrium is called

cognitive-hierarchy equilibrium (CH equilibrium).

2.3 Embedding Incomplete Information Game with Cognitive Type

An embedding incomplete information game with cognitive type, U , is given by U =

(I,Θ, P, {Ai,Ki, µi, ui,Πi}i∈I), where Θ is a countable set of payoff states, P is a Borel

probability measure on Θ, and for each player i ∈ I, Πi is the set of information partitions

of Θ, and ui : A × Θ → R is the payoff function. Let us assume ui is measurable with

respect to Πi for any i ∈ I. We write P (θ) for the probability of the singleton event {θ}
and πi(θ) for the element of Πi containing θ. Furthermore, we assume that P (πi(θ)) > 0

for any θ ∈ Θ and i ∈ I to make the conditional probability well defined. If U satisfies all

the above properties, we say that U embeds G. We write E(G) for the set of incomplete

information games with cognitive type that embed G.
A solution in U is defined as a Bayesian extension of the cognitive equilibrium in G.

For each i ∈ I, let us denote player i’s (pure) strategy in U by ti : Ki × Θ → Ai, and

assume that ti is Πi-measurable.

Definition 2.2. A strategy profile t∗ constitutes a Bayesian cognitive equilibrium of U if,
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for any i ∈ I, ki ∈ N, θ ∈ Θ, and ai ∈ Ai,∑
(k−i, θ

′ ) ∈ K−i×πi(θ)

ui(t
∗(k, θ

′
), θ

′
)P (θ

′ | πi(θ))µi(ki)(k−i)

≥
∑

(k−i, θ
′ ) ∈ K−i×πi(θ)

ui(ai, t
∗
−i(k−i, θ

′
), θ

′
)P (θ

′ | πi(θ))µi(ki)(k−i).

2.4 Robustness

We say that a cognitive equilibrium s∗ is robust to incomplete information, if that equi-

librium is played with high probability in some Bayesian cognitive equilibrium of any

U ∈ E(G) whenever U is sufficiently “close” to G provided that level-0 types’ actions are

commonly known in G. To formally express this notion, let us firstly introduce a “distance”

of two different strategies in U .

Definition 2.3. For each k ∈ K, an action distribution induced by a strategy profile t of

U is given by αk(a) =
∑

θ∈Θ 1t(k,θ)(a)P (θ) for any a ∈ A, where 1t(k,θ)(a) is an indicator

function which takes 1 if a is chosen given k and θ under t.

In particular, we say an action distribution profile (αk)k∈K is an equilibrium action

distribution profile of U , if there exists a Bayesian cognitive equilibrium t∗ such that

αk(a) =
∑

θ∈Θ 1t∗(k,θ)(a)P (θ) for any a ∈ A and k ∈ K. The following measure defines

the “distance” between two action distribution profiles, α and β:

∥ α− β ∥= sup
k∈K

max
a∈A

| αk(a)− βk(a) |

Secondly, let us consider the situation where actions of level-0 types are common knowl-

edge. Let s∗(0) denote this action profile, and let us redefine an incomplete information

game with cognitive type G∗ = (I, A,K, µ, g, s∗(0)). Then G∗ is said to be close to an em-

bedding game U , if the actions of level-0 types and payoff functions under U are equal to

those under G∗ with high probability and players know that.11 For each embedding game

U ∈ E(G∗), write ΩU for a collection of such payoff states: ΩU ≡ {θ ∈ Θ : ti(0, θ
′) = s∗i (0)

and ui(a, θ
′) = gi(a) for all a ∈ A, θ′ ∈ πi(θ) and i ∈ I}. An embedding game, U , is

an ε-elaboration of G∗ if U ∈ E(G∗) and P (ΩU ) = 1 − ε. Let E(G∗, ε) be the set of all

ε-elaborations of G∗. At last, we are ready to define the robustness of cognitive equilibria.

Definition 2.4. An action distribution α induced by a cognitive equilibrium s∗ of G∗ is

robust to incomplete information if, for every δ > 0, there exists a ε̄ > 0 such that every

U ∈ E(G∗, ε) has a Bayesian cognitive equilibrium t∗ that induces the equilibrium action

distribution β with ∥ α− β ∥≤ δ for all ε ≤ ε̄.

11Our result is unchanged if we allow either one of level-0 actions or payoffs are different from the

embedded game.
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Two comments are to be added on the definition of robustness. First, by definition of ε-

elaboration, we assume that payoff uncertainty does not affect players’ beliefs on cognitive

types; that is, G∗ and U share the same µ, and k and θ are independent. Second, we

implicitly suppose the outside observer does not know anything about players’ cognitive

types by using a sup-metric with respect to players’ reasoning levels. But it is often

assumed that players have an upper-bound, say k̄, about their cognitive levels. Section 5

formally expresses these alternative notions of robustness, and shows resulting differences.

3 Preliminaries: p-Dominance and Common p-Belief

Following Monderer and Samet (1989) and Morris et al. (1995), this section introduces

two concepts, the p-dominance and the common p-belief. To connect these two concepts

with our robustness, the well-known lemma in Kajii and Morris (1997) so called “critical

path result” is also introduced.

3.1 p-Dominance

We need the concept of the p-dominance to measure the “strength” of each action profile

and cognitive equilibrium. Fix an incomplete information game with cognitive type G.
Let us denote p = (p1, p2, ..., pi) ∈ [0, 1]I . Let ϕi ∈ ∆(A−i) for each i ∈ I and denote the

probability assigned to a−i ∈ A−i under ϕi by ϕi(a−i).

Definition 3.1. An action profile a∗ ∈ A is said to be p-dominant if, for any i ∈ I,
ai ∈ Ai, and ϕi ∈ ∆(A−i) with ϕi(a

∗
−i) ≥ pi, we have∑

a−i∈A−i

ϕi(a−i)gi(a
∗
i , a−i) ≥

∑
a−i∈A−i

ϕi(a−i)gi(ai, a−i).
12

Thus a∗i becomes a best response for player i if he believes that other players will play a∗−i
with probability at least pi. We also say that a∗ is strict p-dominant if, for any i ∈ I,
ai ∈ Ai \ {a∗i }, and ϕi ∈ ∆(A−i) with ϕi(a

∗
−i) > pi, we have

∑
a−i∈A−i

ϕi(a−i)gi(a
∗
i , a−i) >∑

a−i∈A−i
ϕi(a−i)gi(ai, a−i).

Next, we propose a natural analogue of p-dominant action profile in games with cog-

nitive type. For any si ∈ Si and ki ∈ Ki, let si|ki : {0, 1, ..., ki − 1} → Ai denote a

restricted strategy of player i such that si|ki(k) = si(k) for any 0 ≤ k < ki. Si|ki is the

set of such restricted strategies. Let λi(ki) ∈ ∆(S−i|ki) for each ki ∈ N and i ∈ I.13 Thus

λi(ki) can be interpreted as a limited conjecture of level-ki type of player i about what the

other players will choose only when their reasoning levels are strictly lower than ki. Let

λi(ki)(s−i|ki) denote the probability assigned to a restricted strategy profile s−i|ki under

λi(ki).

12In standard complete information games, p-dominant action profile constitutes Nash equilibrium.
13We write S−i|ki = Πj ̸=iSj |ki , and s−i|ki = Πj ̸=isj |ki .
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Definition 3.2. A strategy profile s∗ is said to be p-dominant if, for any i ∈ I, ki ∈ N,
ai ∈ Ai, and λi(ki) with λi(ki)(s

∗
−i|ki) ≥ pi, we have∑

s−i|ki∈S−i|ki

λi(ki)(s−i|ki)
∑

0≤kj<ki,∀j ̸=i
gi(s

∗
i (ki), s−i|ki(k−i))µi(ki)(k−i)

≥
∑

s−i|ki∈S−i|ki

λi(ki)(s−i|ki)
∑

0≤kj<ki,∀j ̸=i
gi(ai, s−i|ki(k−i))µi(ki)(k−i).

This definition says that it is optimal for level-ki type of player i to follow s∗i (ki) if he

(perceptually) believes other players would follow s∗−i with probability at least pi under

his belief µi(ki). Strict p-dominance is defined in a similar manner as in strict p-dominant

action profile. This notion of p-dominance satisfies the following desirable properties:

(1) s∗ is a cognitive equilibrium if and only if it is 1-dominant;

(2) If s∗ is p-dominant, then it is q-dominant for any p ≤ q;

(3) For any strict cognitive equilibrium s∗, there exists some p ∈ [0, 1)I such that s∗ is

p-dominant;14

(4) For any cognitive equilibrium s∗, if s∗(0) is a p-dominant action profile, then s∗ is

p-dominant with s∗i (ki) = s∗i (0) for any ki ∈ Ki and i ∈ I.

Example 3.1. Consider the following two-player coordination game. There are two ac-

tions L and R, and payoffs are given in Table 1.

L R

L 2, 2 0, 0

R 0, 0 1, 1

Table 1: Payoff matrix of coordination game.

This game has two pure strategy Nash equilibria: (L,L) is 1/3-dominant and (R,R) is

2/3-dominant.15 Now, if level-0 types play L (resp. R), then all higher-level types of any

players will play L (resp. R) in any cognitive equilibrium. By the property (4), playing L

(resp. R) by all higher-level types of any players is a 1/3-dominant (resp. 2/3-dominant)

cognitive equilibrium. Next, suppose level-0 type of player 1 chooses L and level-0 type of

player 2 chooses R, and both players have level-k belief. Then induced cognitive equilib-

rium will be:

s∗1(k1) =

R if k1 is odd

L if k1 is even
s∗2(k2) =

L if k2 is odd

R if k2 is even

This level-k equilibrium is 2/3-dominant. Finally, suppose level-0 types choose L or R

equally likely. Then since (L,L) is risk dominant, all levels of any players choose L in a

unique cognitive equilibrium. This cognitive equilibrium is 2/3-dominant.

14Strict cognitive equilibrium is defined by replacing the inequality in Definition 1 into strict one.
15Whenever pi = p for any i ∈ I, we just write p-dominance instead of p-dominance.
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However, the set of actions given in the p-dominant action profile does not necessarily

coincide with that of p-dominant cognitive equilibrium.

Example 3.2. “The 11-20 Money Requesting Game” (Arad and Rubinstein 2012)

There are two players and each player requests an amount of money between 11 and 20

shekels. Each player will receive the amount of money he requests, and if he calls exactly

one shekel less than the other player, he will obtain additional 20 sheckels.16 Thus, player

i’s payoff function is given by:

ui(ni, nj) =

ni + 20 if ni = nj − 1

ni if otherwise

This simple game has no (pure strategy) Nash equilibrium, so that there exists no p-

dominant action pair for any p ∈ [0, 1]2. But the following strategy profile constitutes a

19/20-dominant level-k equilibrium. As in Arad and Rubinstein (2012), suppose “request-

ing 20” is the action for level-0 types and both players have level-k belief. Then a strategy

profile si(ki) = 20− t where t ≡ ki (mod 10) with 0 ≤ t ≤ 9 for each ki ∈ Ki and i = 1, 2

is a 19/20-dominant level-k equilibrium.17

3.2 Common p-Belief

This subsection is intended to introduce the idea of common p-belief, and showing that if

the ex ante probability of an event E is high then the ex ante probability of the event in

which E is common p-belief is also high by the critical path result. Fix an information

structure of embedding game U , (I,Θ, P, {Πi}i∈I). Let Fi denote a σ-algebra generated

by Πi for each i ∈ I. To characterize player’s conditional belief at given payoff state, let

us define the p-belief operator as in Monderer and Samet (1989). For any E ∈ Fi, p-belief
operator for player i is given by Bp

i (E) ≡ {θ ∈ Θ : P (E | πi(θ)) ≥ p}. Thus Bp
i (E) is

a collection of states in which player i believes the event E with probability at least p.

For any p ∈ [0, 1]I , define Bp
∗ (E) =

∩
i∈I B

pi
i (E). Then Bp

∗ (E) is a set of states in which

event E is believed by each player i with probability at least pi. We say that an event

is common p-belief if it is believed by each player with probability at least pi that it is

believed by each player with probability at least pi that ... , and so on, ad infinitum.

Definition 3.3. An event E is common p-belief at θ if θ ∈ Cp(E) ≡
∩
n≥1[B

p
∗ ]
n(E).

We say an event E is simple if E =
∩
i∈I Ei for each Ei ∈ Fi. Kajii and Morris (1997)

shows the following:

16There exists a cyclic version of the 11-20 game in which each player gets 20 shekels as a bonus if he

requests 20 and the other player requests 11. This game has a 29/40-dominant level-k equilibrium.
17In this equilibrium, level-10 types get 20 by requesting 20 since level-9 types would request 11. Consider

the worst case scenario where he believes level-9 type requests 11 with probability pi and requests 20 with

probability 1−pi. Then if he chooses 19, he would receive 39−20pi instead of 20 in the equilibirum. Thus

we need 20 ≥ 39− 20pi for each i = 1, 2 to make the equilibrium p-dominant.
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Lemma 3.1. (Proposition 4.2 of Kajii and Morris (1997))

If
∑

i∈I pi < 1, any simple event E satisfies:

P [Cp(E)] ≥ 1− (1− P (E))

(
1−mini∈I(pi)

1−
∑

i∈I pi

)
.

The following result gives a loose upper-bound for the ex ante probability of event [Bp
∗ ]
K(E).

Lemma 3.2. (Lemma B of Kajii and Morris (1997))

For any p ∈ [0, 1)I and any measurable event E, we have

P [[Bp
∗ ]
K(E)] ≥ 1−

(
1 +

∑
i∈I

pi
1− pi

)K
(1− P (E)).18

4 Robust Predictions under Finite Depth of Reasoning

4.1 Motivating Example - Coordinated Attack Game

The following simple example from Strzalecki (2010) gives an intuition that how player’s

finite depth of reasoning affects the robustness of equilibria. There are two players, and

each player chooses either one of the two actions, “Attack” (A) or “Not Attack” (NA).

Payoffs are shown in the left-hand payoff matrix of Table 2.

Attack Not Attack

Attack 1, 1 -2, 0

Not Attack 0, -2 0, 0

Attack Not Attack

Attack -2, -2 -2, 0

Not Attack 0, -2 0, 0

* Only when the enemy is strong.

Table 2: Payoff matrices.

Observe that, for each player, playing A becomes a best response whenever he believes

that the other player would choose A with probability at least 2/3. On the other hand,

NA is a best response whenever the other player would choose NA with probability at

least 1/3. Thus (NA, NA) is a risk dominant action pair, and (A, A) is risk dominated.

Case 1: Standard Complete Information Game

First, we consider a standard complete information game and explain how the test of

KM robustness works. In this game, it follows from Proposition 5.3 of Kajii and Morris

(1997) that (NA, NA) is KM robust but (A, A) is not. To see why the latter is not KM

robust, let us think about the following e-mail game type elaboration19: The information

structure is given by the triple (Θ, (Πi)i=1,2, P ), where Θ = {1, 2, 3, ...} is the set of states,

Π1 = {{1}, {2, 3}, {4, 5}, ...} and Π2 = {{1, 2}, {3, 4}, {5, 6}, ...} are partition structures

for each player, and P is a common prior given by P (n) = ε(1 − ε)n−1 for any n ∈ N.
Posteriors are shown in Table 3.

18This bound is loose in the sense that the right-hand side goes zero as K → ∞.
19For the interpretation, see Section A.3 of Appendix A.

11



Π1 1 1
2−ε

1−ε
2−ε

1
2−ε

1−ε
2−ε ...

Θ 1 2 3 4 5 ...

Π2
1

2−ε
1−ε
2−ε

1
2−ε

1−ε
2−ε ...

Table 3: Partitions and posteriors.

Suppose players (except an outside analyst) know their enemy is strong and have a different

payoff structure at state θ = 1: see the right-hand payoff matrix of Table 2. Let ε̂ =

ε(2 − ε), then this incomplete information game is a ε̂-elaboration (in the framework of

Kajii and Morris (1997)) of the original coordinated attack game. We argue that, in this

ε̂-elaboration, (A, A) is a unique Bayesian Nash equilibrium, so that (NA, NA) is not KM

robust. Now since player 1 knows at θ = 1 that the enemy is strong and hence NA is

chosen, player 2 believes that player 1 would choose NA with probability at least 1/(2−ε)
in the event {1, 2}. Then since NA is risk dominant, player 2’s (interim) unique best

response in {1, 2} is NA. Given this, in the event {2, 3}, player 1 believes that player 2

would choose NA with probability at least 1/(2 − ε), so that player 1’s (interim) unique

best response in {2, 3} is NA. Continuing similar arguments, we can conclude that (NA,

NA) is played everywhere in any Bayesian Nash equilibrium (Rubinstein 1989).

Case 2: Level-k Model

Next, let us introduce cognitive types in this game, and suppose players have level-k

belief. Consider a level-k equilibrium in which level-0 types choose A. We show that

this 2/3-dominant level-k equilibrium is not robust. Consider the same email-game type

elaboration, and let player 1’s level-0 type choose NA at θ = 1. Then NA becomes a

unique (interim) best response for any cognitive type of player 2 in {1, 2} since he believes

any cognitive type of player 1 would play NA with probability at least 1/(2− ε). But in

turn NA would be chosen in {2, 3} by any level (except level-0) of player 1: see Table 4.

Continuing similar arguments, the ex ante probability of (NA, NA) being played converges

to 1 as players’ reasoning levels get higher in any Bayesian level-k equilibrium.20 Hence,

the original level-k equilibrium is not robust.

k1 = 2 NA NA A A A ...

k1 = 1 NA NA A A A ...

k1 = 0 NA A A A A ...

1 2 3 4 5 6 7 8 9 ...

k2 = 0 NA A A A ...

k2 = 1 NA A A A ...

k2 = 2 NA NA A A ...

Table 4: Level 0, 1, and 2 types’ actions.

20For the formal treatment, see Proposition A.3 in Appendix A.
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Case 3: Cognitive-hierarchy Model

Finally, suppose players have cognitive-hierarchy belief instead of level-k belief, and es-

pecially we assume that players’ reasoning levels are uniformly distributed.21 The first

difference arises for the action of player 2’s level-2 type in {3, 4}. Since he believes player

1 is level-0 or level-1 types equally likely and believes A would be chosen with probability

1 − 1/2(2 − ε), his unique best response in {3, 4} is A if ε is sufficiently small: see Table

5.

k1 = 2 NA NA A A A ...

k1 = 1 NA NA A A A ...

k1 = 0 NA A A A A ...

1 2 3 4 5 6 7 8 9 ...

k2 = 0 NA A A A ...

k2 = 1 NA A A A ...

k2 = 2 NA A A A ...

Table 5: Level 0, 1, and 2 types’ actions.

Actually, we can show that ex ante probability of event in which (NA, NA) is played by

some cognitive type can be arbitrarily small. In other words, (A, A) is robust to the e-mail

game type elaboration, which is not attained when players have level-k belief.

For this particular information structure, Strzalecki (2010) shows that the ex ante

probability of (NA, NA) being played by some cognitive type can be arbitrary small

if both players’ beliefs satisfy Nondivergent beliefs property : for any strictly increasing

sequence (km) ∈ N∞, infm µi(k
m)(km−1 ≤ kj) < (1− p)(2− ε).22 Thus Strzalecki’s result

tells us when a cognitive equilibrium is robust to the email-game type elaboration. Our

objective is to derive a sufficient condition for a cognitive equilibrium being robust to any

ε-elaboration including the email-game type elaboration. Main result of this paper implies

that, for two-player cases, p-dominant level-k equilibrium is robust to any ε-elaboration if

p < 1/2. In contrast, p-dominant CH equilibrium is robust for any p ∈ [0, 1). The following

analysis starts with formalizing our intuition here by using tools such as p-dominance and

common p-belief.

4.2 Robustness and p-Dominance

Fix any G and action profile of level-0 types s∗(0). For any ε-elaboration of G∗, we construct

an event in which s∗i (ki) becomes a best response for level-ki type of player i. Take any

U ∈ E(G∗, ε) and let E(i,0) = E0 = ΩU for any i ∈ I. We inductively define the event

E(i,ki) as follows:

E(i,ki) =
{
θ ∈ Θ :

∑
0≤kj<ki,∀j ̸=i

µi(ki)(k−i)P (Ek−i
| πi(θ)) ≥ pi

}
∩ E0

21Uniform distribution is assumed just for simplicity. The following argument holds for any distribution.
22Appendix A yields a generalization of this result in the spirit of Morris et al. (1995).
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for any ki ∈ N and i ∈ I, where Ek−i
=
∩
j ̸=iE(j,kj). The following Lemma 4.1 ensures

that E(i,ki) is the event we are looking for.

Lemma 4.1. Suppose s∗ is a p-dominant cognitive equilibrium of G∗. Then for any

U ∈ E(G∗, ε), there exists a Bayesian cognitive equilibrium t∗ in which level-ki type of

player i plays s∗i (ki) in E(i,ki) for any ki ∈ Ki and i ∈ I.

Proof. Our proof proceeds parallel with Lemma 5.2 of Kajii and Morris (1997). Fix

U ∈ E(G∗, ε). Since E(i,0) = ΩU for any i ∈ I, we have ti(0, θ) = s∗i (0) for any θ ∈ E(i,0)

and i ∈ I. Consider the modified embedding game U ′ where each player’s strategy must

satisfy ti(ki, θ) = s∗(ki) for any θ ∈ E(i,ki), ki ∈ N, and i ∈ I. There exists a Bayesian

cognitive equilibrium t∗ of the modified game. By definition, t∗i is a best response to t∗−i
at any θ /∈ E(i,ki). Let θ ∈ E(i,ki) and consider level-ki type of player i. Then since we

have
∑

0≤kj<ki,∀j ̸=i µi(ki)(k−i)P (Ek−i
| πi(θ)) ≥ pi by definition, he believes other players

would follow t∗−i with probability at least pi and we have ui(a, θ) = gi(a) for any a ∈ A.

Therefore, s∗i (ki) is a best response for level-ki type of player i. Thus t∗ is a Bayesian

cognitive equilibrium of U which satisfies the desired property. Since our choice of U is

arbitrary, we are done.

Our construction of (E(i,ki))
ki
i is tight in the sense that there exists a class of incomplete

information games with cognitive type such that, for some embedding game U ∈ E(G∗, ε),

any Bayesian cognitive equilibrium t∗ of U satisfies t∗i (ki, θ) = s∗i (ki) if and only if θ ∈ E(i,ki)

for any ki ∈ Ki and i ∈ I. In fact, Case 2 of Section 4.1 falls into this class.

4.3 A Sufficient Condition for Robustness when
∑

i∈I pi < 1

This subsection shows that level-k belief yields the most severe test for robustness in

the sense that, if a p-dominant cognitive equilibrium s∗ is robust when players have

level-k belief, then s∗ is robust for any other belief specifications. Observe that under

µlk, (E(i,ki))
ki
i can be written as: E(i,ki) = {θ ∈ Θ : P (E(ki−1) | πi(θ)) ≥ pi} ∩ E0 =

Bpi
i (E(ki−1)) ∩ E0 for all ki ∈ N and i ∈ I. Let us especially denote this E(i,ki) by Ê(i,ki),

and Ek−i
by Êk−i

. The following Lemma 4.2 states that Ê(i,ki) is a lower bound of E(i,ki)

in the sense of set inclusion.

Lemma 4.2. For any i ∈ I and ki ∈ Ki, Ê(i,ki) ⊆ E(i,ki).

Proof. See Appendix B.

By Lemma 4.1 and Lemma 4.2, we know that for any U ∈ E(G∗, ε), there always exists

a Bayesian cognitive equilibrium of U in which the original cognitive equilibirum of G∗ is

played by level-ki type of player i at any θ ∈ Ê(i,ki). Hence, if
∑

i∈I pi < 1, the robustness

of p-dominant cognitive equilibrium follows from Lemma 3.1.

Proposition 4.1. Suppose s∗ is a p-dominant cognitive equilibrium of G∗ with
∑

i∈I pi <

1. Then s∗ is robust to incomplete information.
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Proof. Let s∗ denote a p-dominant cognitive equilibrium of G∗ with
∑

i∈I pi < 1. Let

α denote the equilibrium action distribution profile induced by s∗, which is given by

αk(s
∗(k)) = 1 for any k ∈ K. Fix any δ > 0, and let ε < δ(1−

∑
i∈I pi)/(1−mini∈I(pi)).

Take any U ∈ E(G∗, ε). Let us denote k̄ = maxi ki for any k ∈ K. By Lemma 4.2

Ê(i,ki) ⊆ E(i,ki) for any i ∈ I and ki ∈ Ki, and by construction [Bp
∗ ]
k̄(E) ⊆

∩
i∈I Ê(i,ki) for

all k ∈ K. But then by Lemma 3.1, for any i ∈ I and k ∈ K, P (E(i,ki)) ≥ P (Ê(i,ki)) ≥
P ([Bp

∗ ]
k̄(E0)) ≥ P ([Cp](E0) ≥ 1 − ε(1 − mini∈I(pi)/(1 −

∑
i∈I pi) > 1 − δ. By Lemma

4.1, there exists a Bayesian cognitive equilibrium t∗ of U such that P
(
{θ ∈ Θ : (t∗(k, θ) =

s∗(k)}
)
≥ P (

∩
i∈I Ê(i,ki)) > 1− δ for any k ∈ K. Thus the equilibrium action distribution

profile β induced by t∗ satisfies βk(s
∗(k)) > 1− δ for any k ∈ K. Therefore, ∥ α− β ∥≤ δ

as desired.

4.4 A Sufficient Condition for Robustness

We now know the robustness of a p-dominant cognitive equilibrium whenever
∑

i∈I pi <

1. But Proposition 4.1 does not tell us anything about the robustness of p-dominant

cognitive equilibrium with
∑

i∈I pi ≥ 1, since Lemma 3.1 cannot be applied directly in

this case. To see how the condition
∑

i∈I pi < 1 is important, consider the email-game

type elaboration given in Section 4.1, i.e., Θ = {1, 2, 3, ...}, Π1 = {{1}, {2, 3}, {3, 4}, ...}
and Π2 = {{1, 2}, {3, 4}, {5, 6}, ...}, and P (n) = ε(1 − ε)n−1 for any n ∈ N. Suppose

both players have level-k belief and let Ec = {1}. Then since we have P ({n} | {n, n +

1}) = 1/(2 − ε) > 1/2 for any n ≥ 1, once a strict (1 − p)-dominant action pair with

p ≥ 1/2 is played in Ec, that action pair will be played contagiously in the limit for any

cognitive equilibrium. Hence, if there exist two action pairs which are strict p-dominant

and strict (1 − p)-dominant respectively with p ≥ 1/2, the induced strict p-dominant

cognitive equilibrium cannot be robust in the level-k model.

This observation is natural since, under level-k belief, actions of crazy types are conta-

giously played step by step as reasoning levels get higher. Hence, by applying the p-belief

operator repeatedly, the ex ante probability of event E(i,ki) can be arbitrarily small if∑
i∈I pi ≥ 1 through the contagion effect. However, the following Theorem 4.1 shows

that, under a certain condition on belief profile µ, p-dominant cognitive equilibrium with∑
i∈I pi ≥ 1 can be robust to incomplete information. This occurs since, if each player

believes that his opponents have sufficiently lower reasoning levels than him own, E(i,ki)

gets smaller compared to the case of level-k belief as Lemma 4.2 suggests. So, in this case,

we can find a tighter lower-bound for (E(i,ki))
ki
i .

Theorem 4.1. Suppose s∗ is a p-dominant cognitive equilibrium of G∗ with p ∈ [0, 1)I .

If there exists a n ∈ N such that

inf
ki≥n

∑
0≤kj<n,∀j ̸=i

µi(ki)(k−i) >
I · pi − 1

I − 1

for any i ∈ I, then s∗ is robust to incomplete information.
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Proof. See Appendix B.

Theorem 4.1 implies that the size of the set of robust equilibria varies with how we specify

the players’ beliefs about other players reasoning levels. Since it is easy to verify that

cognitive-hierarchy belief satisfies the assumption in Theorem 4.1 for any pi ∈ [0, 1),

Corollary 4.1 immediately follows.

Corollary 4.1. Generically in payoffs, any cognitive-hierarchy equilibrium is robust to

incomplete information.

We now know that two prominent models, level-k and cognitive-hierarchy, give two con-

trasting examples with respect to the size of robust predictions. Finally, let us consider a

mixture of level-k and cognitive-hierarchy beliefs.

Example 4.1. (A mixture of level-k and cognitive hierarchy beliefs)

Suppose there are two players and p1 = p2 = p. Let α ∈ [0, 1] and λ ∈ ∆(Z+). For any

ki ∈ N, define

µi(ki)(kj) =

α+ (1− α)λ(kj) if kj = ki − 1

(1− α)λ(kj) if kj < ki − 1.

By the previous argument, it follows that this belief satisfies the assumption in Theorem

4.1 if α < 2(1 − p). Figure 1 shows the set of p-dominant cognitive equilibria, which are

robust to incomplete information whenever they exist, as α and p varies.

Figure 1. Set of robust equilibria.

5 Discussions

5.1 More General Type Spaces

Instead of defining incomplete information game with cognitive type, we can start the

setup from incomplete information game with more general type spaces. An incomplete

information game U is given by: U = (I, {Ai, Ti, κi, νi, ui}i∈I), where Ti = Ci×Θ is player

i’s type space, κi : Ci → Z+ is a mapping from player i’s cognitive type to his reasoning

level, and νi(ti) ∈ ∆(T−i) is his belief about other players’ types. This formulation is

more general in the sense that: we allow (1) correlation between cognitive type and payoff

type; (2) player with same reasoning level to have different beliefs about other players’
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types. In the language of Kajii and Morris (1997), we have considered the restricted class

of elaborations such that (1) and (2) are prohibited. It is easily shown that even if we

allow (2), our result will not be changed:

Proposition 5.1. Suppose s∗ is a p-dominant cognitive equilibrium of incomplete infor-

mation game with Strzalecki’s cognitive type. If there exists a n ∈ N such that

inf
{ci:κi(ci)≥n}

∑
{c−i: 0≤κj(cj)≤n−1,∀j ̸=i}

µi(ci)(c−i) >
I · pi − 1

I − 1

for any i ∈ I, then s∗ is robust.

Heifetz and Kets (2012) consider more general type space which includes both standard

universal type space and Strzalecki’s universal cognitive type space as belief closed sub-

spaces. By using their type space, we can fully investigate strategic effect of finite depth of

reasoning. Here we introduce so called sophisticated type and see the flavor of such effect.

Assume that there is a likelihood η of sophisticated type for each player i who can iterate

best responses infinitely many times, and know the proportion η of each player being such

type. Let ∞ denote sophisticated type. The extended cognitive type space for player i is

given by K̂i = Ki ∪ {∞}. Level-∞ type of player i forms his belief µ̂i on K̂−i such that

µ̂i({k̂j ̸= ∞ for all j ̸= i}) = (1 − η)I . Consider an incomplete information game with

extended cognitive type space Ĝ. Then our robustness concept can be naturally extended

to include sophisticated types by replacing K into K̂ and endowing the sophisticated types

with µ̂i. Proposition 5.2 shows the strategic effect of finite depth of reasoning; i.e., even if

player i is sophisticated type, he behaves as if he is cognitively unsophisticated since his

action is affected by believing the other players may not be sophisticated.

Proposition 5.2. Suppose ŝ : K̂ → A is a p-dominant cognitive equilibrium of Ĝ with

p ∈ [0, 1)I . If we have (1− η)I > maxi∈I pi, and if there exists a n ∈ N such that

inf
ki≥n

∑
0≤kj≤n−1,∀j ̸=i

µi(ki)(k−i) >
I · pi − 1

I − 1

for any i ∈ I, then ŝ is robust to incomplete information.

Proof. By our assumption, we can use Theorem 4.1 and we have, for any δ > 0 and

some ε > 0, there exists an event E such that any finite level of any player follows ŝ in

E ⊆ ΩU with P (E) > 1 − δ for any (extended) embedding game Û ∈ E(Ĝ, ε). Since

(1− η)I > maxi∈I pi, we can take 0 < q < 1 such that q · (1− ηi)
I > maxi∈I pi. Define

Bq
∗(E) = ∩i∈IBq

i (E). Then since type ∞ of player i believes other players have finite

reasoning levels with probability at least (1− η)I , and such types of other players follow ŝ

in E, ŝi(∞) becomes his best response at θ ∈ ΩU if P (E | πi(θ)) ≥ q for any i ∈ I. Thus
ŝ is played at any θ ∈ Bq

∗(E). But then by definition of E and by using Lemma 3.2, for

any δ′ > 0, there exists some ε′ > 0 such that P (Bq
∗(E)) > 1 − δ′ for any Û ∈ E(Ĝ, ε).

Therefore, ŝ is robust.
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5.2 Degree of Knowledge about Players

By definition of robustness, we have implicitly put (at least) two assumptions on the

outside observer’s knowledge: First, she does not know anything about players’ cognitive

types, and hence the sup-metric is used with respect to reasoning levels. Instead, in

experimental literature, it is often assumed that experimentalists know players have the

upper bound for their reasoning levels, say k̄. If we assume this, we can show that for any

p ∈ [0, 1], any p-dominant cognitive equilibrium is “robust” to incomplete information. So

our robustness test is valid only when the outside observer is not sure about how players

are strategically sophisticated and/or the possibility of sophisticated types.

Second, following experimental literature, we have assumed that the outside observer

knows players’ beliefs about other players’ cognitive types. Thanks to this formulation,

we are able to characterize level-k and cognitive-hierarchy models in terms of the size of

robust predictions. However, it may happen that the outside observer has no information

about how players model other players. In this situation, since level-k belief yields the

most stringent test for robustness, it follows that a p-dominant cognitive equilibrium is

“robust” if
∑

i∈I pi < 1.

Appendix A: Contagion under Finite Depth of Reasoning

A.1 Definitions: Contagion and Marginal Belief Potential

In this Appendix, we use the same notations as before whenever no qualification is

added. Given any two-player incomplete information game with cognitive type G =

({1, 2}, (Ai, ui,Ki, µi)i=1,2), let us define ε-elaboration E of G such that ΩE ≡ {θ ∈ Θ :

ui(a, θ
′) = gi(a) for all a ∈ A, θ′ ∈ πi(θ) and i = 1, 2}, |πi| < ∞ for any πi ∈ Πi and

i = 1, 2, and E ≡ |Θ\ΩE | <∞. A set of ε-elaborations is denoted by E(G, ε). Note that if

we use i and j at the same time, the j means “not i”. Remember that player i’s strategy

in E is given by ti : Ki × Θ → Ai, and ti is Πi-measurable. We say an action pair a∗ is

contagious in E if, once a∗i is played in E by any level of both players, then a∗ must be

played everywhere as k1, k2 → ∞. The formal definition is given by:

Definition A.1. An action pair a∗ is said to be contagious in E if any Bayesian cognitive

equilibrium of E , t∗, satisfies P ({θ ∈ Θ : t∗(k, θ) = a∗}) → 1 as k1, k2 → ∞ whenever we

have ti(ki, E) = {a∗i } for any ki ∈ Ki and i = 1, 2.23

Remark A.1. For any action pair a, consider a set of cognitive equilibria S∗(a) of G such

that for any s∗ ∈ S∗(a), there exists some m ∈ K such that s∗(k) = a for any k ≫ m. By

definition, if an action pair a∗ is contagious in some E ∈ E(G, ε), then s∗ is robust only if

s∗ ∈ S∗(a∗). In turn, if s∗ ∈ S∗(a∗) is robust, then other action pairs than a∗ cannot be

contagious in any E ∈ E(G, ε).

23No difference arises for our results if we only require ti(ki, E) = {a∗
i } for some ki ∈ Ki and i = 1, 2.
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In incomplete information games only with payoff type, the belief potential of event E

yields a sufficient condition on information system for such contagion to operate (Morris

et al. 1995). Let us define Hp
i (E) ≡ Bp

i (B
p
j (E)) ∪ E as a contagion operator, and let

us inductively define [Hp
i ]
k(E) = Hp

i ([H
p
i ]
k−1(E)) for k ≥ 1 with [Hp

i ]
0(E) = E, and

[Hp
i ]

∞(E) =
∪∞
k=1[H

p
i ]
k(E). The belief potential of event E is the largest probability p

with which, at any states, such argument that player i believes that player j believes ...

the event E holds for any i = 1, 2.

Definition A.2. The belief potential of event E is given by σ(E) = mini=1,2 σi(E), where

σi(E) = sup{p ∈ [0, 1] | [Hp
i ]

∞(E) = Θ}.

Example A.1. Consider the information structure given in Table 4.1. Let E = {1}.
Since P ({n} | {n, n + 1}) = 1/(2 − ε) for all n ∈ N, Bp

2(E) = {1, 2} if p ≤ 1/(2 − ε) and

Bp
2(E) = ∅ if p > 1/(2 − ε). But in turn, Hp

1 (E) = Bp
1B

p
2(E) = {1, 2, 3} if p ≤ 1/(2 − ε)

and Hp
1 (E) = ∅ if p > 1/(2 − ε). Continuing this argument yields [Hp

1 ]
∞(E) = Θ if

p ≤ 1/(2 − ε) and [Hp
1 ]

∞(E) = ∅ if p > 1/(2 − ε). We can repeat similar logic for player

2, and hence the belief potential of E, σ(E), is 1/(2− ε).

The belief potential of event is useful to know the global strength of the information

system for contagion argument to operate. But since contagion proceeds step by step

under finite depth of reasoning, it is important for us to know how player i’s conditional

belief will vary in the course of contagion. The marginal belief potential of event is defined

as follows.

Definition A.3. Given the belief potential of event E, σ(E), the marginal belief potential

of event E for player i is defined by ξp(i,n)(E) ≡ sup{q ∈ [0, 1] | Bq
i (B

p
j [C

p
i ]
n−1(E))∩[Cpi ]n ̸=

∅} for any p ∈ (0, σ(E)], n ∈ N, and i = 1, 2. Let ξpi (E) denote supn{ξ
p
(i,n)(E)}.

Note that ξp(i,n)(E) is well defined since p ∈ {q ∈ [0, 1] : Bq
i (B

p
j [C

p
i ]
n−1(E))∩ [Cpi ]

n ̸= ∅} for

any p ∈ (0, σ(E)], n ∈ N, and i = 1, 2. It also clearly follows that ξp(i,n)(E) ≥ σi(E) holds

for any p ∈ (0, σ(E)] and i = 1, 2. The following example gives an idea why the marginal

belief potential is crucial.

Example A.2. Consider the following information structure which is different from the

previous example only in P (3) = ε(1− ε)2/2 and P (4) = ε(1− ε)3 + ε(1− ε)2/2. Table 6

shows the conditional probability P ({n}|{n, n + 1}) for each n ∈ N. Since P (3)/(P (3) +

player 1 1 2
3−ε

3−2ε
2ε2−6ε+5

1
2−ε ...

1 2 3 4 5 6 7 ...

player 2 1
2−ε

1
2(2−ε)

1
2−ε ...

Table 6: Partitions and posteriors.

P (4)) = 1/2(2 − ε), the belief potential of event E is now given by 1/2(2 − ε). But
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the conditional probability P ({n} | {n, n + 1}) is same for any n ≥ 5 and i = 1, 2.

In this sense, the marginal process of contagion seems to be unchanged between two

information structures for any n ≥ 5. In fact, the information structure of Example A.1

yields ξp(i,n)(E) = 1/(2−ε) for any p ∈ (0, 1/(2−ε)], n ∈ N, and i = 1, 2. But now we have

ξp(1,1)(E) = 2/(3− ε), ξp(1,2)(E) = (3− 2ε)/(2ε2 − 6ε+5), ξp(2,1)(E) = 1/(2− ε), ξp(2,2)(E) =

1/2(2− ε), and ξp(1,n)(E) = ξp(2,n)(E) = 1/(2− ε) for any n ≥ 3 and p ∈ [0, 1/2(2− ε)].

A.2 Contagion under Finite Depth of Reasoning

Suppose a∗ is strict p-dominant in E with p < σ(E). Under this condition, the main

theorem of Morris et al. (1995) shows that once a∗i is played in some (Πi-measurable)

event E, a∗ is played at any state in any Bayesian Nash equilibrium. If players have

level-k belief, the number of iteration of contagion operator increases as reasoning levels

get higher. Hence, if a∗ satisfies the sufficient condition of Morris et al. (1995) and both

players have level-k belief, a∗ is contagious in our sense too.

Proposition A.3. Suppose players have level-k belief. If a∗ is strict p-dominant and

p < σ(E), then a∗ is contagious in E.

Proof. Let E(i,0) = E and define inductively E(i,ki) = {θ ∈ Θ :
∑ki−1

t=0 µi(ki)(t)P (E(j,t) | πi(θ)) > p} ∪E.

Then for level-ki type of player i, a∗
i becomes a unique interim best response in E(i,ki). Suppose players

have level-k belief and let us denote Ê(i,ki) = E(i,ki) = {θ ∈ Θ : µi(ki)(ki−1)P (E(j,ki−1) | πi(θ)) > p}∪E.

Observe that for any i = 1, 2, we have the following: (1) Ê(i,ki) is increasing in ki; (2) E(i,ki) ⊆ Ê(i,ki)

for any ki ∈ Z+; (3) Ê(i,2k) = [Cp
i ]

k(E) and Ê(i,2k+1) = Bp
i [C

p
j ]

k(E) ∪ E for any k ∈ Z+. Since we have

p < σ(E), [Cp
i ]

ki(E) ↑ Θ as ki → ∞ for any i = 1, 2. Thus we have P (Ê(i,ki)) ↑ 1 as ki → ∞.

In contrast, we can show that there exists a class of ε-elaborations such that even if

the above conditions are satisfied, there exists a Bayesian cognitive equilibrium in which

other actions than a∗i is played by any level of both players with positive probability, that

is, a∗ cannot be contagious.

Proposition A.4. Suppose a∗ is strict p-dominant, ā is strict (1 − p)-dominant with

p ∈ (0, σ(E)] in E. If, for any i = 1, 2, there exists a n ∈ N such that

n−1∑
t=0

µi(ki)(t) > 1− p

ξpi (E)

for any ki ≥ n, then a∗ cannot be contagious in E.

Proof. To show this we use the following Lemma A.4. of Oyama and Tercieux (2012)24:

Lemma A.1. Fix an incomplete information game and p ∈ (0, 1]. Then any event E ∈ F1 ⊕ F2 satisfies

P ((Cp
i )

K(E)) ≤ P (E)
∑2K

k=0

(
1−p
p

)k

for all i = 1, 2.

24Lemma A.4. of Oyama and Tercieux (2012) allows non-common priors. Under a common prior, this

lemma immediately follows from the critical path result.
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Consider a Bayesian cognitive equilibrium t∗ with t∗(0, θ) = ā for all θ ∈ ΩE . If we can show that there

exists some K such that E(i,ki) ⊆ E(i,K) for any ki ∈ Ki, then the result follows from this lemma since āi

is played in t∗ by level-ki type of player i in Θ \ E(i,ki).

Claim 1: For any i = 1, 2, there exists a Ki ∈ N such that, for all N ≥ Ki, we have P (Ê(j,2n−2) | πi(θ)) = 0

for any θ ∈ Ê(i,N) \ Ê(i,N−1).

∵) Suppose not. Then ∃i ∈ {1, 2}, ∀Ki ∈ N, ∃N ≥ Ki such that P (Ê(j,n−1) | πi(θN )) > 0 for some

θN ∈ Ê(i,N) \ Ê(i,N−1). Define inductively N1 = min{N ≥ 1 : P (Ê(j,n−1) | πi(θN )) > 0 for some θN ∈
Ê(i,N) \ Ê(i,N−1)}, N2 = min{N ≥ N1 + 1 : P (Ê(j,n−1) | πi(θN )) > 0 for some θN ∈ Ê(i,N) \ Ê(i,N−1)},...
This infinite sequence (Nm) is well defined by our assumption, and Nm ̸= Nl if m ̸= l by construction.

This implies that θNm ̸= θNl and πi(θNm) ∩ πi(θNl) = ∅ for any θNm ∈ Ê(i,Nm) \ Ê(i,Nm−1) and θNl ∈
Ê(i,Nl) \ Ê(i,Nl−1) with m ̸= l. But then, since P (Ê(j,n−1) | πi(θNm)) > 0 for all m ∈ N, we must have

| Ê(j,n−1) |= ∞. On the other hand, since | E |< ∞ and | πi |< ∞ for all πi ∈ Πi and i = 1, 2, we have

| Ê(j,n−1) |< ∞, contradicting. □

Define K = max{K1,K2}. Then we have, for any i = 1, 2 and N ≥ K, P (Ê(j,n−1) | πi(θ)) = 0 for any

θ ∈ Ê(i,N) \ Ê(i,N−1).

Claim 2: P (Ê(j,2K−1) | πi(θ)) ≤ ξpi (E) for any θ ∈ Ê(i,2K) \ Ê(i,2K−1).

∵) Suppose not. Note that P (Ê(j,2K−1) | πi(θ)) = P (Bp
j [C

p
i ]

K−1(E) | πi(θ)) by definition. Hence, if we

have P (Ê(j,2K−1) | πi(θ)) > ξpi (E) for some θ ∈ Ê(i,2K) \ Ê(i,2K−1), then P (Bp
j [C

p
i ]

K−1(E) | πi(θ)) >

ξpi (E). Thus, there exists a δ > 0 such that P (Bp
j [C

p
i ]

K−1(E) | πi(θ)) > ξpi (E) + δ. Hence, we have

θ ∈ B
ξ
p
i (E)+δ

i (Bp
j [C

p
i ]

K−1(E)) and θ ∈ Ê(i,2K) = [Cp
j ]

K(E). That is, ξp(i,K)(E) ≥ ξpi (E) + δ, contradicting

the definition of ξpi (E). □

Take any θ ∈ Ê(i,2K) \ Ê(i,2K−1). Remember that since Ê(i,ki) is increasing in ki and constitutes an upper

bound of E(i,k), we must have P (E(j,k) | πi(θ)) = 0 for any k ≤ 2n− 2 by Claim 1. Then, by Claim 1 and

2,

2K−1∑
t=0

µi(2K)(t)P (E(j,t) | πi(θ)) =

2K−1∑
t=2n−1

µi(2K)(t)P (E(j,t) | πi(θ))

≤
2K−1∑

t=2n−1

µi(2K)(t)P (Ê(j,2K−1) | πi(θ))

<
p

ξpi (E)
· ξpi (E) = p.

Hence, θ /∈ E(i,2K), so that we can conclude E(i,2K) ⊆ Ê(i,2K−1) for i = 1, 2.

Claim 3: E(i,N) ⊆ Ê(i,2K−1) for any N ≥ 2K and i = 1, 2.

∵) We show this by induction. We have just shown this for the case of N = 2K. Assume that E(i,N) ⊆
Ê(i,2K−1) for any 2K ≤ N ≤ M and i = 1, 2. Suppose, in negation, that there exists a θ̄ ∈ E(i,M+1) \
Ê(i,2K−1). Observe that, by our induction hypothesis, θ̄ ∈ E(i,M+1) ⊆ Bq

i (Ê(j,2K−1))∪E = Ê(i,2K). Hence,

θ̄ ∈ Ê(i,2K) \ Ê(i,2K−1). But then by the previous argument, we have P (Bq
j [C

q
i ]

K−1(E) | πi(θ̄)) ≤ ξpi (E)

and P (E(j,k) | πi(θ̄)) = 0 for any k ≤ n− 1. Hence,

M∑
t=0

µi(M + 1)(t)P (E(j,t) | πi(θ̄)) =

M∑
t=2n−1

µi(M + 1)(t)P (E(j,t) | πi(θ̄))

≤
M∑

t=2n−1

µi(M + 1)(t)P (Ê(j,2K−1) | πi(θ̄))

<
p

ξpi (E)
· ξpi (E) = p.

Thus, we have θ̄ /∈ E(i,M+1), a contradiction. □
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By Claim 3, we have E(i,ki) ⊆ Ê(i,2K−1) ⊆ Ê(i,2K) for any ki ∈ Ki and i = 1, 2. Since P (∪i=1,2Ê(i,2K)) ≤

2ε
∑4K

k=0

(
1−p
p

)k

by Lemma A.1, letting ε < 1/2
∑4K

k=0

(
1−p
p

)k

yields the result.

Remark A.2. Consider the game specified in Section 4.1. It is easy to check that ξpi (E) =

2− ε for i = 1, 2, and if players have the mixture of level-k and cognitive-hierarchy beliefs

with α = p(2 − ε), (R,R) becomes contagious. Since there exists a n ∈ N such that∑n−1
t=0 µi(ki)(t) = 2− ε for any ki ≥ n, our sufficient condition is tight in this sense.

A.3 Application: Rubinstein’s (1989) Email Game

Consider a version of email game as in Section 4.1. Facing an enemy, each player must

choose an action either Attack or Not Attack, and there are two possibilities: the enemy

is strong or weak. Only player 1 knows the strength of his enemy and send an email

to let player 2 know whether the enemy is strong or not. If each player gets an email,

he/she will send a confirmation. But each email gets lost with small probability, say ε > 0,

and he/she can not distinguish whether his/her email did not reach the other player or

the other player’s email has not delivered. For the payoff matrix see Table 2, and for

the information structure see Table 4.1. Let us consider a cognitive equilibrium in which

level-0 types choose Attack at any states other than (0, 0).25 By using Proposition A.4,

we show that, under a certain condition on player’s belief, there exists a number N such

that after receiving N messages, any levels of both players start choosing Attack. Before

stating this result, we need to provide the following lemma.

Lemma A.2. Take any constant M (> 0). For any i = 1, 2, there exists a n ∈ N such

that
∑k−1

t=n−1 µi(k)(t) < M for any k ≥ n if and only if inf(m) µi(k
m)({kj ≥ km−1}) < M

for any strictly increasing sequence (km) ∈ N∞

Proof. (If part) To derive a contradiction, suppose, ∀n ∈ N, ∃k ≥ 2n,
∑k−1

t=2n−1 µi(k)(t) ≥ M. Inductively

define a sequence (km) ∈ N∞ as follows: k1 = min{k ≥ 2 |
∑k−1

t=1 µi(k)(t) ≥ M}, k2 = min{k ≥
2k1 |

∑k−1
t=2k1−1

µi(k)(t) ≥ M}, k3 = min{k ≥ 2k2 |
∑k−1

t=2k2−1
µi(k)(t) ≥ M}, ... This (km) is well

defined by our hypothesis and strictly increasing by its construction. But then µi(k
m)({kj ≥ km−1}) ≥∑km−1

t=2k(m−1)−1
µi(k)(t) ≥ M for any m ∈ N, contradicting.

(Only if part) Suppose ∃n ∈ N such that
∑k−1

t=2n−1 µi(k)(t) < M for any k ≥ 2n. Take any strictly increasing

sequence (km) ∈ N∞. By definition, ∃m′ such that km′−1 ≥ 2n− 1. Hence,
∑km′

−1
t=2n−1 µi(k

m′
)(t) < M , so

that
∑km′

−1

t=km′−1 µi(k
m′

)(t) < M . That is, µi(k
m′

)({kj ≥ km′−1}) < M .

Corollary A.1. (Theorem 4 in Strzalecki 2010)

If inf(m) µi(k
m)(km−1 ≤ kj) < (2−ε)/3 for any strictly increasing sequence (km) ∈ N∞ and

i = 1, 2, there exists a number of messages, say N , such that after receiving N messages

all levels of both players choose Attack.

25Same result follows if we assume level-0 players choose Attack after receiving a certain number of

messages.
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Proof. Define the event E = {(0, 0)}. Then we have (1) σ(E) = 1/(2 − ε); (2) Not Attack is 1/3-

dominant; (3) ξ
1/3
1 (E) = ξ

1/3
2 (E) = 1/(2 − ε). Then by Lemma A.2 and Proposition A.4, there exists a

T ∈ N such that E(i,ki) ⊆ Ê(i,T ) for any ki ∈ Ki and i = 1, 2. That is, there exists a number of messages,

say Ni, such that after receiving Ni messages player i chooses Attack for any ki ∈ Ki. Therefore, letting

N = max{N1, N2} yields that after receiving N messages any levels of both players choose Attack.

Appendix B: Omitted Proofs

Proof of Lemma 4.2

Proof. We show this by induction. First, E(i,1) = Ê(i,1) = Bpi
i (E0) for any i ∈ I by

definition. Next, suppose that for any i ∈ I, we have Ê(i,ki) ⊆ E(i,ki) for all 0 ≤ ki ≤ k ∈ N.
Then since Êk−i

⊆ Ek−i
for any 0 ≤ kj ≤ k and j ̸= i, we have

E(i,k+1) =
{
θ ∈ Θ :

∑
0≤kj≤k,∀j ̸=i

µi(k + 1)(k−i)P (Ek−i
| πi(θ)) ≥ pi

}
∩ E0

⊇
{
θ ∈ Θ :

∑
0≤kj≤k,∀j ̸=i

µi(k + 1)(k−i)P (Êk−i
| πi(θ))} ≥ pi

}
∩ E0

⊇ {θ ∈ Θ : P (Êk | πi(θ)) ≥ pi} ∩ E0

= Ê(i,k+1).

The third inequality follows since Ê(i,ki) is decreasing in ki. By our induction hypothesis

the result follows.

Proof of Theorem 4.1

Proof. By Proposition 4.1, it suffices to show the case where
∑

i∈I pi ≥ 1. Suppose there

exists a n ∈ N such that infki≥n
∑ki−1

t=0 µi(ki)(t) > (Ipi − 1)/(I − 1) for any i ∈ I. Let us
define S ≡ {i ∈ I : pi < 1/I} and S ≡ {i ∈ I : pi ≥ 1/I}. For any i ∈ S, there exists

a ωi > 0 such that pi < 1/(I + ωi). On the other hand, for any i ∈ S, there exists a

ωi > 0 such that
∑ki−1

t=0 µi(ki)(t) > {(I + ωi)pi − 1}/(I − 1). Let ω ≡ mini∈I ωi. Define

ψ = I/(I + ω), and σ = 1/(I + ω). It is easy to check that we have 0 < ψ < 1, and

0 < σ < ψ. Take any δ > 0, and let

ε =
δ(

1 + Iψ
1−ψ

)(
1 +

∑
i∈I

pi
1−pi

)n−1( 1−σ
1−Iσ

) .
Fix any embedding game U ∈ E(G, ε). Let Ê(n) denote

∩
i∈I Ê(i,n). By using ψ and σ, let

us inductively construct a sequence of events (F(i,ki))
ki
i as follows:

F(i,0) = Bψ
∗ (Ê

(n−1)) ∩ Ê(n−1) = Bψ
∗ (Ê

(n)) = F0 for any i ∈ I ;

F(i,k) = Bσ
i (Fk−1) ∩ F0,where Fk = ∩i∈IF(i,k) for any k ∈ N and i ∈ I.
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Observe that by Lemma 3.2, we have

P (F0) ≥ 1−

(
1 +

Iψ

1− ψ

)
(1− P (Ê(n−1))), and P (Ê(n−1)) ≥ 1− ε

(
1 +

∑
i∈I

pi
1− pi

)n−1

.

Thus

P (F0) ≥ 1− ε

(
1 +

Iψ

1− ψ

)(
1 +

∑
i∈I

pi
1− pi

)n−1

.

This (F(i,ki))
ki
i gives a lower bound for the ex-ante probability of (E(i,ki))

ki
i under our

restriction on (µi)i∈I .

Claim: F(i,k) ⊆ E(i,n+k) for any k ∈ Z+ and i ∈ I.
∵) Fix any i ∈ I. If i ∈ S, since pi < σ and F(i,0) ⊆ E(i,n), the claim immediately follows.

Consider the case of i ∈ S. We show the claim by induction. By definition of F(i,0), we

have F(i,0) ⊆ E(i,n) for any i ∈ I. Suppose F(i,k) ⊆ E(i,n+k) for any 0 ≤ k ≤ m and i ∈ I.
Our goal is to show F(i,m+1) ⊆ E(i,n+m+1) for any i ∈ I. Suppose, in negation, that there

exists a θ ∈ F(i,m+1) \ E(i,n+m+1) for some i ∈ I. Then we have∑
0≤kj≤n+m,∀j ̸=i

µi(n+m+ 1)(t)P (Ek−i
| πi(θ))

=
∑

0≤kj≤n−1,∀j ̸=i
µi(n+m+ 1)(t)P (Ek−i

| πi(θ)) +
∑

n≤kj≤n+m,∀j ̸=i
µi(n+m+ 1)(t)P (Ek−i

| πi(θ))

≥
∑

0≤kj≤n−1,∀j ̸=i
µi(n+m+ 1)(t)P (Ê(n−1) | πi(θ)) +

∑
n≤kj≤n+m,∀j ̸=i

µi(n+m+ 1)(t)P (Fm | πi(θ))

> [{(I + ω)pi − 1}/(I − 1)] · ψ + [{I − (I + ω)pi}/(I − 1)] · σ

= pi.

The third inequality follows since θ ∈ Bψ
i (Ê

(n−1)), θ ∈ F(i,m+1) ⊆ Bσ
i (Fm), and Ft is

decreasing in t. Hence, θ ∈ E(i,n+m+1), a contradiction.

Since Fk is decreasing in k and
∑

i∈I σ < 1, the above claim and Lemma 3.1 imply

P (En+k) ≥ P (Fk) ≥ P (Cσ(F0)) ≥ 1− (1− P (F0))

(
1−σ
1−Iσ

)
for any k ∈ Z+. But then, for

any k ∈ Z+,

P (Ek) ≥ P (Fk) ≥ 1− ε

(
1 +

Iψ

1− ψ

)(
1 +

∑
i∈I

pi
1− pi

)n−1(
1− σ

1− Iσ

)
> 1− δ.

By Lemma 4.1, there exists a Bayesian cognitive equilibrium t∗ of U that satisfies P
(
{θ ∈

Θ | t∗(k, θ) = s∗(k)
)
> P (Ek) > 1− δ for any k ∈ K. Therefore, we are done.
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