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Abstract

Weakly rationalizable implementation represents a generalization of robust implemen-

tation to dynamic mechanisms. It is so conservative that virtual implementation in weakly

rationalizable strategies is characterized by the same conditions as robust virtual imple-

mentation by static mechanisms. We show that despite that, (exact) weakly rationaliz-

able implementation is more permissive than (exact) robust implementation in general

static mechanisms. We introduce a dynamic robust monotonicity condition that is weaker

than Bergemann and Morris’ (2011) robust monotonicity condition and prove that it is

necessary, and together with weak extra assumptions sufficient for weakly rationalizable

implementation in general dynamic mechanisms. We demonstrate that sometimes even

weakly rationalizable implementation in finite dynamic mechanisms is more permissive

than robust implementation in general static mechanisms.
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1 Introduction

Equilibrium outcomes of games and mechanisms are sensitive even to minor changes in the

agents’ beliefs and higher order beliefs about each others’ payoff types. Yet basically any typ-

ical Bayesian model makes strong, implicit common knowledge assumptions about its agents’

beliefs and higher order beliefs. This motivates the search for mechanisms that do not de-

pend on such “details.” Following the so-called Wilson doctrine (Wilson, 1987), the desire is

to weaken or eliminate strong common knowledge assumptions and derive mechanisms that

are more robust. Chung and Ely (2007) demonstrate that the desire for “detail-free” mech-

anisms can justify the use of dominant-strategy mechanisms. Bergemann and Morris (2005,

2009a,b, 2011) introduce and examine robust implementation in static mechanisms. In this

paper, we study a strong form of robust implementation in dynamic mechanisms, namely (full)

implementation in weakly rationalizable strategies.1

Many models in applied game theory use Bayesian Nash equilibrium to solve static games,

and implicitly admit only one possible belief (and higher order belief) per payoff type. To

arrive at robust static mechanisms, Bergemann and Morris explicitly break this one-to-one

relation and allow any belief to be associated with any payoff type. In Bergemann and Morris

(2011) they show that (full) robust static implementation essentially amounts to (full) rational-

izable implementation. Analogous arguments motivate weakly rationalizable implementation

as a robust form of implementation in weak perfect Bayesian equilibrium. We describe this

approach in more detail later in this introduction on page 4.

Prior to that we want to put weakly rationalizable implementation into context relative to

other, existing notions of robust implementation for dynamic mechanisms. For this purpose, it

is useful to adopt a different angle and gauge a mechanism directly by the epistemic assumption

on which it relies. The key feature a robust mechanism should possess is that it should not

rely on any assumptions about the beliefs about others’ payoff types. Static mechanisms that

rationalizably implement a social choice function satisfy this criterion because rationalizability

is characterized by rationality and common belief in rationality (RCBR) (Tan and Werlang,

1988). RCBR says that every agent is rational, believes everybody is rational, believes that

everybody believes that everybody is rational and so on, and so does clearly not impose any

implicit assumptions about the agents’ beliefs and higher order beliefs about others’ payoff

types. Importantly, neither do the generalizations of RCBR to dynamic mechanisms that

we describe below and that correspond to several distinct notions of robustness for dynamic

mechanisms.

In a dynamic mechanism, agents have multiple beliefs, one at each information set. These

beliefs are Bayesian updates of each other whenever possible; however, if an agent is surprised

1Full implementation requires that every weakly rationalizable outcome coincides with the outcome pre-
scribed by the social choice function. Weak rationalizability has been introduced by Battigalli (1999, 2003).
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by a zero-probability event, Bayesian updating does not apply and the agent needs to revise her

belief in another fashion. Precisely the assumption on how this belief revision proceeds is what

distinguishes different existing notions of robustness for dynamic mechanisms. Penta (2009)

assumes that after a surprise there is common belief that everybody will behave rationally

from now on (even if the current node can only be reached by irrational strategies). This

corresponds to rationality and common future belief in rationality (Penta, 2009; Perea, 2011).

And in Müller (2012) we assume that the agents employ a forward induction logic when revising

their beliefs. More specifically, we assume that there is rationality and common strong belief

in rationality (Battigalli and Siniscalchi, 2002). In the current paper, by studying weakly

rationalizable implementation, we examine which social choice functions are implementable

if no assumptions whatsoever are made on the belief revision process. This corresponds to

assuming rationality and common initial belief in rationality.2 Rationality and common initial,

common future and common strong belief in rationality all collapse to RCBR when applied

to static mechanisms. But due to the lack of any belief revision assumption, common initial

belief in rationality translates to the weakest of the corresponding solution concepts.3 And

hence, weakly rationalizable implementation is the strongest among the discussed concepts of

robust implementation in dynamic mechanisms.

In fact, one might suspect that the absence of any belief revision assumption makes dy-

namic mechanisms lose their bite. One might question whether under weak rationalizability,

dynamic mechanisms can implement more social choice functions than are already rationaliz-

ably implementable by static mechanisms. In Müller (2012) we show that dynamic mechanisms

can virtually, that is, approximately, implement considerably more social choice functions than

static mechanisms (in a robust fashion). But key to this positive result is that by exploiting the

forward induction logic embedded in common strong belief in rationality, one can construct a

mechanism in which agents “learn” their opponents’ payoff types. While weak rationalizability

implies that initially, there is common belief in the agents’ rationality, as soon as an agent

is surprised her beliefs become unrestricted, and she no longer needs to belief in the others’

rationality. This prevents “learning” such as that in Müller (2012), as an agent can stubbornly

believe in a particular payoff type of her opponent — even if past events contradict that

belief. And indeed, in Appendix B we verify that dynamic mechanisms virtually weakly ratio-

nalizably implement precisely the same social choice functions as static mechanisms. Maybe

surprisingly, our main results imply that when it comes to exact implementation, this is not

true. They imply that despite the lack of any belief revision assumption, dynamic mechanisms

can (exactly) weakly rationalizably implement strictly more social choice functions than static

2Compare, e.g., Ben-Porath (1997). See footnote 10 for more details on infinite mechanisms.
3Rationality and common strong belief in rationality is characterized by strong rationalizability, and ratio-

nality and common future belief in rationality by backwards rationalizability. Every backwards rationalizable
and every strongly rationalizable strategy is weakly rationalizable.
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mechanisms. Even in situations in which a mechanism designer is not comfortable making any

assumption about the agents’ belief revision process, dynamic mechanisms can help.

Weak Rationalizability and Weak Perfect Bayesian Equilibrium. As mentioned

above, one motivation for studying implementation in weakly rationalizable strategies is based

on the relation between weak perfect Bayesian equilibrium and weak rationalizability. While

a formal analysis is beyond the scope of this paper, we briefly describe this motivation here.

In a typical formulation of a Bayesian game, each player has a payoff type θi ∈ Θi that is

known to her but not to the other players. The state of the world θ = (θ1, . . . , θI) captures

all information that affects the agents’ preferences. Two ways have been used to describe an

agent’s beliefs in such a model. The direct but often not very practical way is to endow agent i

with some belief hierarchies, called her epistemic types (for simplicity, let us restrict attention

to static games for now). A belief hierarchy for i consists of a first-order belief comprising i’s

probability measure on Θ−i, a second-order belief comprising i’s probability measure on the

set of −i’s first-order beliefs, an so on, ad infinitum. The set of all belief hierarchies is called

the universal type space. The second and indirect way, developed by Harsanyi (1967-68), is

familiar from applied game theory. Here, we endow each payoff type θi with a probability

measure pi(θi) on Θ−i. The function θi 7→ pi(θi) is commonly known among the agents.

Often, it is even assumed that pi(θi) is derived from a common prior pc on the space of all

payoff type profiles (θ1, . . . , θI), so that pi(θi) = pc(·|θi). Of course, pi(θi) corresponds to what

was i’s first-order belief in the direct approach. But since with θ−i there is associated −i’s

first-order belief p−i(θ−i), the measure pi(θi) implicitly also defines a second-order belief for

i. Continuing in this fashion, we find that pi(θi) implicitly defines a whole belief hierarchy.

Consequently, exactly one epistemic type corresponds to the payoff type θi, namely the belief

hierarchy derived from pi(θi).
4 Implicitly, by following the indirect approach, we allow only

specific epistemic types and restrict attention to a “small” type space that is a strict subset of

the universal type space.

The concern of the robust implementation literature is that if the mechanism designer

makes a mistake in correctly modeling the agents’ epistemic types, then the recommended

Bayesian mechanism might “malfunction” and not implement the desired social choice function.

And this concern is real (see, e.g., Neeman, 2004). Even minuscule changes in the agents’ belief

hierarchies can lead to different Bayesian equilibrium outcomes (see, e.g., Rubinstein, 1989;

Weinstein and Yildiz, 2007). Robustness is introduced by expanding the set of epistemic

types that can be associated with a payoff type. In particular, “global” robust implementation

demands that a payoff type can be associated with any hierarchy of beliefs. Bergemann and

4Some formulations of a Bayesian game are more general and allow different epistemic types to be associated
with one payoff type (for a more thorough discussion, see Battigalli (1999)). Still, all “small” type space models
are non-robust.
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Morris (2011), for example, define robust implementation as implementation on every type

space (including the universal type space). That is, every outcome that is an equilibrium

outcome for some type space has to coincide with the outcome prescribed by the social choice

function. A result from epistemic game theory links robust implementation (as just defined)

back to rationalizable implementation. The result says that the set of rationalizable outcomes

and the union of Bayesian equilibrium outcomes over all type spaces coincide (Brandenburger

and Dekel, 1987; Battigalli and Siniscalchi, 2003). Hence, robust implementation is equivalent

to rationalizable implementation,5 and understanding the latter allows us to judge which social

choice functions are robustly implementable.

An analogous motivation can be provided for weakly rationalizable implementation by

dynamic mechanisms. In dynamic mechanisms, probability measures are replaced by belief

systems, describing an agent’s belief at each information set. Battigalli and Siniscalchi (1999)

formulate a universal type space of such “interactive” beliefs, capturing all hierarchies of belief

systems in a dynamic game. And Battigalli (1999) shows the equivalence of weak rational-

izability and weakly perfect Bayesian equilibria on all type spaces (in “simple,” yet possibly

infinite games). Consequently, weakly rationalizable implementation can be motivated as

robust implementation in weak perfect Bayesian equilibrium.

Results. Throughout, we work in an environment in which outcomes are lotteries over a

finite set of pure outcomes and each agent has finitely many payoff types. Given Bergemann

and Morris’ (2009b) characterization of robust virtual implementation, showing that (finite)

static and (finite) dynamic mechanisms virtually implement exactly the same social choice

functions in weakly rationalizable strategies is a comparatively easy task. The set of robustly

virtually implementable social choice functions equals — essentially by definition — the set

of social choice functions that are virtually weakly rationalizably implementable (virtually

wr-implementable) by static mechanisms and is characterized as the set of ex-post incen-

tive compatible (epIC)6 and robustly measurable social choice functions. Here, Bergemann

and Morris (2009b) call a social choice function robustly measurable if it treats strategically

indistinguishable payoff types the same. In Appendix B we prove that (under weak rational-

izability), dynamic mechanisms can strategically distinguish exactly the same payoff types as

static mechanisms (Proposition 4, Corollary 1). This implies that epIC and robust measura-

bility are necessary for virtual wr-implementation (Proposition 5) and we can conclude that

5For implementation in infinite mechanisms, the equivalence is not obvious. Implementation requires that
every rationalizable outcome (equilibrium outcome) coincides with the outcome specified by the social choice
function, and that the set of rationalizable outcomes (equilibrium outcomes) is nonempty. Bergemann and
Morris (2011) complete the proof of equivalence of robust and rationalizable implementation by showing that
some mechanism satisfies the nonemptiness condition for all type spaces.

6On the strength of this incentive compatibility condition see e.g. Jehiel, Meyer-Ter-Vehn, Moldovanu, and
Zame (2006), but also Bikhchandani (2006) and Dasgupta and Maskin (2000).
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dynamic mechanisms indeed cannot virtually wr-implement more social choice functions than

static mechanisms (Corollary 2).

Our main results imply that while dynamic mechanisms virtually wr-implement precisely

the same social choice functions as static mechanisms, they exactly weakly rationalizably

implement (wr-implement) strictly more social choice functions. Proposition 1 shows that

dynamic robust monotonicity (dr-monotonicity) is necessary for wr-implementation. Dr-

monotonicity is related to but weaker than Bergemann and Morris’ (2011) robust monotonic-

ity condition, central to their characterization of rationalizable implementation. The incentive

compatibility condition for wr-implementation is medium-strict ex-post incentive compatibil-

ity. This is a version of epIC that is weaker then semi-strict epIC — the incentive compatibil-

ity condition that is necessary for rationalizable implementation — but stronger than epIC.

Medium-strict epIC does no appear directly in our characterization of wr-implementation as

it is implied by dr-monotonicity (Proposition 2).

Proposition 3 shows that under a conditional no total indifference condition, any semi-

strict epIC and dr-monotone social choice function is wr-implementable. In order to obtain

this clean result, we employ a badly behaved infinite mechanism. However, Examples 3.1 and

3.2 present some social choice functions that are not robustly implementable by a static mech-

anism but wr-implementable by finite and thus well-behaved dynamic mechanisms. While

both the characterization of wr-implementation in well-behaved static and in well-behaved

dynamic mechanisms are open questions, we can conclude that well-behaved dynamic mech-

anisms outperform their static counterparts — in fact, they sometimes even outperform all

badly behaved static mechanisms, as well.

Organization of the Paper. Section 2 describes the environment and defines weakly ra-

tionalizable implementation. Section 3 derives necessary and Section 4 sufficient conditions

for wr-implementation. The results on virtual wr-implementation are relegated to Appendix

B. Some readers may want to directly skip ahead to Example 3.1 in Subsection 3.2 and re-

fer back to Section 2 and Subsection 3.1 as necessary. Example 3.1 describes a social choice

function which is not robustly implementable by any (finite or infinite) static mechanism, but

wr-implementable by a finite dynamic mechanism.

2 Environment and Preliminaries7

There is a finite set I = {1, . . . , I} of at least two agents. Each agent i ∈ I has a nonempty

and finite payoff type space Θi. We let Θ denote the set of payoff type profiles (θ1, . . . , θI).

More generally, if (Zi)i∈I is a family of sets Zi, we let Z denote the Cartesian product
∏

i∈I Zi.

7The basic notation is similar to the one in Müller (2012).
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It is also understood that z denotes (z1, . . . , zI) whenever zi ∈ Zi for all i ∈ I , and that z(θ)

denotes (z1(θ1), . . . , zI(θI)) whenever zi ∈ ZΘi
i for all i ∈ I . If Zi = Ai × Bi for all i ∈ I ,

we at times ignore the correct order of tuples and write ((a1, . . . , aI), (b1, . . . , bI)) ∈ Z for

(ai, bi)i∈I ∈ Z.

There is a nonempty and finite set X of pure outcomes; the set of outcomes is the set

Y = {y ∈ R#X : y ≥ 0,
∑#X

n=1 yn = 1} of lotteries over X. We let ui(x, θ) denote the von

Neumann-Morgenstern utility that i derives from the pure outcome x if the payoff type profile

is θ ∈ Θ, and, in a slight abuse of notation, ui(y, θ) the expected utility that i derives from

lottery y if the payoff type profile is θ. In another abuse of notation we write θj ∈ supp(ψi) if

ψi ∈ ∆(Θ−i), j 6= i and θj ∈ Θj is in the support of margΘjψi. For θi ∈ Θi, δ(θi) ∈ ∆(Θi)

denotes the degenerate belief in θi.

2.1 Mechanisms

A (dynamic) mechanism Γ = 〈H, (Hi)i∈I , P, C〉 is an extensive game form of finite length,

with perfect recall and no trivial decision nodes. The set of dynamic mechanisms includes

the set of static mechanisms or normal game forms as a proper subset. We relegate most

definitions to Appendix A, but summarize some important notation here. A mechanism’s first

component, H, is a set of histories h = (a1, . . . , an), which are finite sequences of actions. We

let ∅ denote the initial history. At any non-terminal history h = (a1, . . . , an), the agent P (h)

specified by the player function P chooses an action from the set {a : (h, a) ∈ H}. Here, (h, a)

denotes the history (a1, . . . , an, a). The set Hi partitions the set of all histories at which i

moves into information sets H. Whenever i moves she knows the information set, but not the

history she is at. Once a terminal history h is reached the lottery C(h) ∈ Y obtains as the

outcome of the mechanism.

A strategy si for player i specifies an action for each information set H ∈ Hi. The set of

i’s strategies is Si. The terminal history induced by strategy profile s ∈ S is denoted by ζ(s).

We use the symbol � to indicate precedence among histories, and also to indicate precedence

among i’s information sets. We let Si(H) be the set of i’s strategies admitting j’s information

set H, j ∈ I , and S−i(H) be the set of −i’s strategies admitting H. For any J ⊆ I , we let

Hi((sj)j∈J ) =

{

H ∈ Hi :
(

∃h ∈ H, (sj)j∈I\J ∈
∏

j∈J\I

Sj

)(

h � ζ(s)
)

}

denote the set of i’s information sets admitted by (sj)j∈J . For A ⊆ S, Hi(A) denotes the

union of sets Hi(s), where s ∈ A. Moreover, Σi = Si × Θi, Σ−i = S−i × Θ−i and Σ−i(H) =

S−i(H)×Θ−i.
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2.2 Beliefs and Sequential Rationality

Player i’s beliefs about her opponents’ strategies and payoff types are captured by a family

of probability measures on (Σ−i,B−i)
8, with each measure representing i’s belief at one of

her information sets. Player i also holds a belief at the initial history, even if it does not

comprise one of her information sets. Formally, i’s beliefs are indexed by the members of

H̄i = Hi ∪ {{∅}} and form a conditional probability system.

Definition 1 (Rényi, 1955) A conditional probability system (CPS) on Σ−i is a function

µi : B−i × H̄i → [0, 1] such that

a) for all H ∈ H̄i, µi(·|H) is a probability measure on (Σ−i,B−i).

b) for all H ∈ H̄i, µi(Σ−i(H)|H) = 1.

c) for all H,H′ ∈ H̄i and A ∈ B−i such that A ⊆ Σ−i(H), if H′ � H then

µi(A|H)µi(Σ−i(H)|H′) = µi(A|H
′).

Condition b) requires that at information set H, agent i places zero (marginal) probability

on any strategy of −i which would have prevented that H occurs. Condition c) says that i

uses Bayesian updating “whenever applicable:” Suppose that H′ � H, and that at H′, agent i

believes that A will happen with probability µi(A|H′). The play proceeds and i finds herself

at H. If H was no surprise to her — that is, if µi(Σ−i(H)|H′) > 0 — she now believes in A

with probability

µi(A|H) =
µi(A|H

′)

µi(Σ−i(H)|H′)
.

If, on the other hand, H did surprise her — if µi(Σ−i(H)|H′) = 0 —, Bayesian updating

“does not apply” and condition c) allows any µi(A|H) ∈ [0, 1], that is, any new estimate of the

likelihood of A. We let ∆(Σ−i) denote the set of probability measures on Σ−i and ∆H̄i(Σ−i)

denote the set of conditional probability systems on Σ−i. Given a CPS µi ∈ ∆H̄i(Σ−i),

Uµii (si, θi,H) =

∫

Σ−i(H)
ui(C(ζ(s)), θ)µi(d(s−i, θ−i)|H)

denotes agent i’s expected utility if she plays strategy si ∈ Si(H), is of payoff type θi and

holds beliefs µi(·|H).

8The set of actions (see Definition 11 in Appendix A) is metrizable. For each history h, we endow the set
of actions A(h) available at h with the relative topology. We endow every finite set (such as Θi) with the
discrete topology and all product sets (such as Si and Σi) with the product topology. The set B−i is the Borel
σ-algebra on Σ−i.
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Definition 2 Strategy si ∈ Si is sequentially rational for payoff type θi ∈ Θi of player i with

respect to the beliefs µi ∈ ∆H̄i(Σ−i) if for all H ∈ Hi(si) and all s′i ∈ Si(H)

Uµii (si, θi,H) ≥ Uµii (s′i, θi,H) (1)

and both sides of this inequality “make sense.” 9

We let ri : Θi×∆H̄i(Σ−i) ։ Si denote the correspondence that maps (θi, µi) to the set of

strategies that are sequentially rational for payoff type θi with beliefs µi, and ρi : ∆
H̄i(Σ−i) ։

Σi denote the correspondence that maps µi to the set of strategy-payoff type pairs that includes

(si, θi) if and only if si is sequentially rational for payoff type θi with beliefs µi.

2.3 Weak Rationalizability and WR-Implementation

Battigalli (1999, 2003) defines weak rationalizability for infinite games. We reproduce his

definition here.10

Definition 3 For i ∈ I let W 0
i = Σi and Π0

i = ∆H̄i(Σ−i) and recursively define the set W k+1
i

of weakly (k + 1)-rationalizable pairs (si, θi) for player i by

W k+1
i = ρi(Π

k
i ),

and the set Πk+1
i of weakly (k + 1)-rationalizable beliefs for player i by11

Πk+1
i =

{

µi ∈ ∆H̄i(Σ−i) : µi(W
k+1
−i |{∅}) = 1

}

,

k ∈ N. Finally, let W∞
i =

⋂∞
k=0W

k
i be the set of weakly rationalizable strategy-payoff type

pairs for player i, and Π∞
i =

⋂∞
k=0Π

k
i be the set of weakly rationalizable beliefs for player i.

9Since the Lebesgue integral is formally well-defined even for non-measurable functions and X and Θ are
finite both sides of (1) are well-defined and finite. But for some non-measurable functions they might not have
their usual interpretation. We thus require that they “make sense.” Formally, we say that both sides of (1)
“make sense” if ui(C(ζ(si, ·)), θi, ·) : Σ−i → R and ui(C(ζ(s′i, ·)), θi, ·) : Σ−i → R are measurable with respect
to B−i completed with respect to µi(·|H). In the remainder of the paper we tacitly use the fact that if µi(·|H),
H ∈ H̄i, assigns all probability mass to finitely many mass points then Uµi

i (si, θi,H) “makes sense” for all
si ∈ Si and θi ∈ Θi.

10Battigalli (1999, 2003) defines weak rationalizability using (an ordinal number of) ω many rounds of
elimination of never-best sequential responses. Lipman (1994) shows that in order to capture common initial
belief in rationality in general infinite games one sometimes needs a larger (ordinal) number of rounds of
elimination and thus transfinite induction. Adding more rounds of elimination does not affect our results, as
our proof of the necessary conditions explicitly constructs a fixed point of the elimination procedure and the
iterated elimination procedure of the mechanism employed in the proof of the sufficient conditions converges
in finitely many rounds.

11We adopt the usual convention that µi(W
k+1
−i |{∅}) = 1 is not satisfied if W k+1

−i is not measurable.
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A strategy is weakly rationalizable if it survives the iterative elimination of never-best

sequential responses, where it is required that at the initial information set, each agent be-

lieves in the highest degree of her opponents’ rationality. Once an agent is surprised by an

information set that she did not expect to occur, she need not believe in her opponents’ ra-

tionality. For convenience, we let Qki (θi) = {si ∈ Si : (si, θi) ∈ W k
i } denote the set of weakly

(k-)rationalizable strategies for θi ∈ Θi, where k ∈ N ∪ {∞} and i ∈ I . By definition, in a

static mechanism, a strategy is weakly rationalizable if and only if is rationalizable.

A social choice function f : Θ → Y assigns a desired outcome to each payoff type profile.

The key to implementing f is to find a mechanism such that for every payoff type profile θ,

every strategy profile that is weakly rationalizable for θ leads to f(θ). That is, we pursue

full implementation in weakly rationalizable strategies. Moreover, we restrict attention to

mechanisms whose set of weakly rationalizable strategy profiles is nonempty. In fact, we only

consider partially ex-post well-behaved mechanisms.

Definition 4 Mechanism Γ is partially ex-post well-behaved (pepWB) if there exist nonempty

sets Qi(θi) ⊆ Q∞
i (θi) (where i ∈ I and θi ∈ Θi) such that for all i ∈ I, θ ∈ Θ and s−i ∈

Q−i(θ−i), there exist si ∈ Qi(θi) and µi ∈ ∆H̄i(Σ−i) such that

• si ∈ ri(θi, µi),

• µi((s−i, θ−i)|{∅}) = 1 and

• for all H ∈ Hi there exists an sH−i ∈ S−i(H) such that µi({s
H
−i} ×Θ−i|H) = 1.

Definition 5 Mechanism Γ weakly rationalizably implements (wr-implements) social choice

function f if a) C(ζ(s)) = f(θ) for all (s, θ) ∈W∞ and b) Γ is pepWB.

Condition a) is the standard requirement for full implementation described above. Condi-

tion b) implies that every payoff type of every agent has some weakly rationalizable strategy,

another standard requirement. In addition, condition b) requires the existence of a sequential

best response to some weakly rationalizable CPSs that have a degenerate marginal on the op-

ponents’ strategy space. The existence of such sequential best responses simplifies condition

(3) of the upcoming definition of d-refutability (Definition 6). To get some idea why this is the

case, let us think how we can express j’s expected utility U
µj
j (sj, θj ,H) in terms of primitives

of the environment. If µj({s
H
−j}×Θ−j|H) = 1 for some sH−j ∈ S−j(H) then the “object” that j

expects to receive when following the strategy sj is the lottery y = C(ζ(sj, s
H
−j)) ∈ Y . We can

express j’s expected utility U
µj
j (sj , θj,H) simply as Eψjuj(y, θ), where ψj ≡ margΘ−j

µj(·|H).

For a general µj the “object” that j expects from following sj is a compound lottery y′ ∈ Y .

Because j might expect correlations between θ−j and s−j, it does not suffice that we know y′

and margΘ−j
µj(·|H). In this case, to express j’s expected utility from sj we need to know
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exactly how much probability j places on each (s−j, θ−j). Thus in the general case, we would

need to work with functions y′ : Θ−j → Y instead of simply lotteries y ∈ Y .

The assumption of pepWB matters. For the reason just mentioned in the previous para-

graph, if we would weaken pepWB and just require that Q∞
i (θi) 6= ∅ for all i and θi, we would

obtain somewhat weaker necessary conditions. Our sufficient conditions would still hold. The

more interesting open question seems to be what happens if we strengthen pepWB and restrict

attention to well-behaved mechanisms (mechanisms in which every payoff type has some se-

quential best reply against any CPS). Even if we restrict attention to static mechanisms, this

question is unresolved. Considering pepWB mechanisms is a compromise that yields a strong

characterization result (Propositions 1 and 3) and allows us to compare our necessary and

sufficient conditions to the existing literature (whose results are also based on badly behaved

mechanisms).

3 Necessary Conditions for WR-Implementation

In this section, we show that dr-monotonicity is necessary for wr-implementation. Subsection

3.1 introduces the building blocks of dr-monotonicity via “bare-bone” definitions, and compares

dr-monotonicity to robust monotonicity. Subsection 3.2 illustrates these definitions in an

example. Subsection 3.3 proves the necessity of dr-monotonicity, and Subsection 3.4 shows

that the incentive compatibility condition of wr-implementation is already implicit in the

dr-monotonicity condition.

3.1 Definitions

First, we recall the notion of a deception. A deception is a profile β = (β1, . . . , βI), where

βi : Θi → 2Θi satisfies θi ∈ βi(θi) for all i ∈ I and all θi ∈ Θi. It is useful to think of βi(θi) as a

set of i’s strategies in the direct mechanism associated with the social choice function f under

consideration. A deception β is acceptable if θ′ ∈ β(θ) implies f(θ′) = f(θ) for all θ, θ′ ∈ Θ,

and unacceptable otherwise. For each ϑ−i ∈ Θ−i, β
−1
−i (ϑ−i) = {θ−i ∈ Θ−i : ϑ−i ∈ β−i(θ−i)} is

the set of payoff type profiles that can announce ϑ−i under β.

Like Bergemann and Morris (2011), we call

Yi(θ−i) =
{

y ∈ Y : ui(y, (θ
′′
i , θ−i)) ≤ ui(f(θ

′′
i , θ−i), (θ

′′
i , θ−i)) for all θ′′i ∈ Θi

}

the reward set for agent i (with respect to θ−i). Moreover, we let

Θ
θ′i�θi
−i = {θ′−i ∈ Θ−i : f(θi, θ

′
−i) 6= f(θ′)}

be the unacceptable “range” of θi’s announcement θ′i.
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Definition 6 A deception β is d-refutable if there exist i ∈ I, θi ∈ Θi and θ′i ∈ βi(θi) such

that Θ
θ′i�θi
−i 6= ∅ and such that for all θ′−i ∈ Θ

θ′i�θi
−i and all ψi ∈ ∆(Θ−i) with ψi(β

−1
−i (θ

′
−i)) = 1,

∃x ∈ Yi(θ
′
−i) : Eψiui(x, θ) > Eψiui(f(θ

′), θ) (2)

or
∃j 6= i, θj ∈ supp(ψi), ψ

BR
j ∈ ∆(Θ−j), y ∈ Y ∀ψj ∈ ∆(Θ−j) ∃x ∈ Y :

Eψjuj(x, θ) > Eψjuj(y, θ) and EψBRj
uj(x, θ

′
j , θ−j) ≤ EψBRj

uj(y, θ
′
j , θ−j)

(3)

Definition 7 Social choice function f is dynamically robustly monotone (dr-monotone) if

every unacceptable deception is d-refutable.

In Proposition 1 we establish that dr-monotonicity is necessary for wr-implementation.

Bergemann and Morris (2011, Theorem 1, Corollary 1) show that a related condition, robust

monotonicity, is necessary for wr-implementation in static mechanisms.12 A social choice

function is robustly monotone if every unacceptable deception is refutable, where refutability

is defined as follows.

Definition 8 A deception β is refutable if there exist i ∈ I, θi ∈ Θi and θ′i ∈ βi(θi) such that

Θ
θ′i�θi
−i 6= ∅ and such that for all θ′−i ∈ Θ−i and all ψi ∈ ∆(Θ−i) with ψi(β

−1
−i (θ

′
−i)) = 1

∃x ∈ Yi(θ
′
−i) : Eψiui(x, θ) > Eψiui(f(θ

′), θ) (4)

Note that in order to simplify the comparison with d-refutability, Definition 8 adds the

requirement that Θ
θ′i�θi
−i 6= ∅ to Bergemann and Morris’ (2011) original definition of refutability.

This is a purely cosmetic change, and Definition 8 equivalent to Bergemann and Morris’ (2011)

definition of refutability. Clearly, any refutable β is d-refutable, but the reverse is not true.

Therefore, dr-monotonicity is weaker than robust monotonicity.

Examples 3.1 and 3.2 will show that there are social choice functions f and deceptions β

such that f is wr-implementable (by a dynamic mechanism) and β is unacceptable and not

refutable, confirming that if we admit dynamic mechanisms then robust monotonicity is no

longer a necessary condition for wr-implementation.

3.2 Example

If f is wr-implementable by a static mechanism then every unacceptable deception is refutable.

If we admit dynamic mechanisms, this is no longer the case. Then unacceptable deceptions

need only be d-refutable. Example 3.1 tries to provide some intuition for why this is the case.

12More precisely, they derive that strict robust monotonicity (and hence robust monotonicity) is necessary
for their notion of rationalizable implementation, and hence for robust implementation in static mechanisms.
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D-refutability is weaker than refutability in two regards. First, Definitions 6 and 8 reveal

that the condition [(2) or (3)] replaces the condition (4) (which is identical to (2)). Second,

refutability requires (4) for all θ′−i ∈ Θ−i and ψi, while d-refutability requires [(2) or (3)] only

for all θ′−i ∈ Θ
θ′i�θi
−i and ψi. Example 3.1 focuses on the first of these differences. Specifically,

the example’s social choice function is injective. In this case, Θ
θ′i�θi
−i = Θ−i for all i, θi, θ

′
i and

the sole difference between d-refutability and refutability is that [(2) or (3)] replaces (4). We

will return to the case that Θ
θ′i�θi
−i 6= Θ−i for some i, θi, θ

′
i in Subsection 3.4 and Example 3.2.

While in Subsection 3.3 we will consider both finite and infinite mechanisms, the imple-

menting mechanism in Example 3.1 is finite. Since any finite mechanism Γ is pepWB, we can

focus on whether C(ζ(s)) = f(θ) for all (s, θ) ∈ W∞ for the purpose of determining whether

Γ wr-implements f .

Example 3.1 There are two agents i ∈ {1, 2} with two payoff types each, Θi = {θi, θ
′
i}. The

set of pure outcomes is X = {w,w′, x, y, z}. Figure 1 depicts the social choice function f

and the associated direct mechanism Γd. Note that in this example, we will use “ θ̂i” and “ϑ̂i”

interchangeably to denote the same payoff type. Generally, we try to use θ̂i when we think of

θ̂i as a payoff type, and ϑ̂i if we think of θ̂i as a strategy.

f θ2 θ′2

θ1 w x

θ′1 y z

Γd ϑ2 ϑ′2

ϑ1 w x

ϑ′1 y z

Figure 1: f (left) and associated direct mechanism Γd (right)

If both players’ preferences over f(Θ) = {w, x, y, z} are such that

ui(f(θ̂i, θ̂
′
−i), θ̂) > ui(f(θ̂

′), θ̂) for all i ∈ {1, 2}, θ̂, θ̂′ ∈ Θ s.t. θ̂i 6= θ̂′i

then Γd wr-implements f (in fact, in dominant strategies). One change, highlighted in red in

the tables below, makes implementing f more challenging. We assume that

ui(z, θ) = ui(f(θ
′), θ) > ui(f(θi, θ

′
−i), θ) for all i ∈ {1, 2}. (5)

We let the “additional” outcome w′ always be “slightly” worse than w for player 1, and always

be exactly as good as w for player 2. Adding some further assumptions (that will only matter
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later) in the right-most column of the following tables, in summary, we assume that

u1(·, θ1, θ2) represents w ≻ w′ ≻ y, z ≻ x, z ≻ w,

u1(·, θ1, θ
′
2) represents w ≻ w′ ≻ y, x ≻ z,

u1(·, θ
′
1, ·) represents y ≻ w ≻ w′, z ≻ x, 13

and
u2(·, θ1, θ2) represents w ∼ w′ ≻ x, z ≻ y, w ≻ z

u2(·, θ
′
1, θ2) represents w ∼ w′ ≻ x, y ≻ z, x ≻ y

u2(·, ·, θ
′
2) represents x ≻ w ∼ w′, z ≻ y.

It is clear that (5) prevents Γd from wr-implementing f . If payoff type θ1 believes in (ϑ′2, θ2),

that is, if θ1 believes she faces a payoff type θ2 that announces ϑ′2, then θ1 will announce ϑ′1.

Similarly, the belief in (ϑ′1, θ1) rationalizes ϑ′2 for θ′2. Hence ϑ′i never gets eliminated for θi and

f(θ′) = z is a weakly rationalizable outcome for the payoff type profile θ.

It is useful to rephrase this insight in terms of deceptions. If β̂ is some deception, let

Gi(β̂i) = {(ϑ̂′i, θ̂i) ∈ Θ2
i : ϑ̂

′
i ∈ β̂i(θ̂i)} ⊆ Σdi

be the (“inverted”) graph of β̂i, i ∈ I , and let

Πi(β̂) =
{

µi ∈ ∆H̄i(Σ−i) : µi
(

∏

j 6=i

Gi(β̂j)|{∅}
)

= 1
}

summarize the CPSs of i that express initial belief in
∏

j 6=iGi(β̂j). We say that β̂ is a fixed

point of the elimination procedure that defines weak rationalizability if Gi(β̂i) = ρi(Πi(β̂))

for all i ∈ I . If β̂ is a fixed point, then for all i ∈ {1, 2}, all (ϑ̂i, θ̂i) ∈ Gi(β̂i) survive the

iterated elimination of never-best sequential responses, and Gi(β̂i) ⊆ W d,∞
i . Consequently, if

Γd wr-implements f and β̂ is a fixed point then ϑ̂′ ∈ β̂(θ̂) implies Cd(ζ(ϑ̂′)) = f(θ̂). Because

Cd(ζ(ϑ̂′)) is simply f(ϑ̂′) we can conclude that β̂ must be acceptable. One fixed point of Γd’s

elimination procedure is the deception β such that βi(θi) = {θi, θ
′
i} and βi(θ

′
i) = {θ′i} for all

i ∈ {1, 2}. In fact, β is Γd’s largest fixed point as Gi(βi) = W d,∞
i for all i ∈ {1, 2}. We

illustrate β in figure 2, where an arrow from θ̂i to θ̂′i indicates that θ̂′i ∈ βi(θ̂i). Unfortunately,

β is unacceptable — for example, as highlighted in red in figure 2, θ′ ∈ β(θ) but f(θ′) = z 6=

w = f(θ) — and thus implies that Γd does not wr-implement f .

Next, let us consider the possibility of wr-implementing f by an indirect static mechanism

Γs. If Γs wr-implements f , then for each θ̂ ∈ Θ there exists a strategy profile ŝ ∈ Qs,∞(θ̂).

13That is, u1(·, θ) : X → R represents some preference relation � such that w ≻ w′ ≻ y, z ≻ x and
z ≻ w, where ≻ is the strict preference relation derived from �. The last line of the table says that both
u1(·, θ

′
1, θ2) : X → R and u1(·, θ

′
1, θ

′
2) : X → R represent some preference relation satisfying y ≻ w ≻ w′ and

z ≻ x.
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Γd θ2 θ′2

θ1 w x

θ′1 y z

Γs ϑ2 ϑ′2 m2 m′
2

ϑ1 w x . . . . . .

ϑ′1 y z . . . . . .

m1 . . . . . . . . . . . .

Figure 2: Direct mechanism Γd (left) and augmented direct mechanism Γs (right)

Without loss of generality, we can rename ŝ and henceforth denote it by ϑ̂ ∈ Θ. After this

relabeling, we can write i’s strategy set as Ssi = Θi ∪Mi, where Mi is a (potentially empty)

set of messages mi /∈ Θi. As illustrated in figure 2, we have Cs(ζ(ϑ̂)) = f(θ̂) for every ϑ̂ ∈ Θ,

which justifies calling Γs an “augmented direct mechanism.”

As above, if Γs wr-implements f , then any unacceptable deception β̂ — in particular β —

must not form a fixed point of Γs’s iterated elimination procedure. This implies that for some

i ∈ {1, 2} and θ̂i ∈ Θi, some ϑ̂′i ∈ βi(θ̂i) must be eliminated if θ̂i’s beliefs are restricted to

Πi(β). That is, we must have ϑ̂′i /∈ ri(θ̂i, µi) for i, θ̂i, ϑ̂′i and any µi ∈ Πi(β), and in particular

for any µi such that

µi((ϑ̂
′
j , θ̂j)|{∅}) = ψi(θ̂j) for all θ̂j ∈ Θj

for some ϑ̂′j ∈ Θj and some ψi ∈ ∆(Θj) with ψi(β
−1
j (ϑ̂′j)) = 1. Hence for any ϑ̂′j ∈ Θj and

any ψi ∈ ∆(Θj) with ψi(β
−1
j (ϑ̂′j)) = 1 there must be some strategy mi such that

Eψiui(C
s(ζ(mi, ϑ̂

′
j)), θ̂) > Eψiui(C

s(ζ(ϑ̂′)), θ̂).

Recalling that Cs(ζ(ϑ̂′)) = f(ϑ̂′), we can conclude that for any ϑ̂′j and ψi there must exist an

a ∈ Y — namely a = Cs(ζ(mi, ϑ̂
′
j)) — such that

Eψiui(a, θ̂) > Eψiui(f(ϑ̂
′), θ̂). (6)

Let us think about which ϑ̂′i ∈ βi(θ̂i) can possibly be eliminated. Start by considering ϑ′i ∈

βi(θi) for i ∈ {1, 2}. For i = 1 we have

ui(a, θ) ≤ ui(z, θ) = ui(f(ϑ
′), θ) for all a ∈ Y.

Hence for ϑ′2 and ψ1 = δ(θ2) there is no a ∈ Y that satisfies (6), and ϑ′1 ∈ β1(θ1) cannot be

eliminated. For i = 2, on the other hand, there appears to be more hope. Let us focus on

ϑ′1 and ψ2 = δ(θ1). Then (6) simplifies to u2(a, θ) > u2(f(ϑ
′), θ) = u2(z, θ) and is satisfied
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by a = w′.14 Hence we can dissuade a payoff type θ2 with belief (ϑ′1, θ1) from playing ϑ′2 by

augmenting Γd as shown on the left in figure 3 (θ2’s belief is illustrated by the dashed arrow).

Such a θ2 will now play m2 instead of ϑ′2.

Γs θ2 ϑ′2 m2

θ1 w x . . .

ϑ′1 y z w′

Γs θ2/s2 ϑ′2 m2

ϑ1 w x . . .

θ′1 y z w′

Figure 3: Augmented direct mechanism Γs

However, this augmentation introduces another problem. If Γs wr-implements f , then θ2

has some best response s2 against the belief that she faces a truth-telling payoff type θ′1. But

given this belief, θ2 strictly prefers w′ over Cs(ζ(ϑ′1, s2)) = f(ϑ′1, ϑ2) = y, and hence m2 over

s2 (righthand side of figure 3). Contradiction. Hence, an additional requirement on the a

satisfying (6) is that

u2(a, θ
′
1, θ2) ≤ u2(f(ϑ

′
1, θ2), θ

′
1, θ2) = u2(y, θ

′
1, θ2).

In fact, repeating the last argument for θ′2, we see that we need a ∈ Y2(θ
′
1). Since Y2(θ

′
1) only

contains y, z and all mixtures of y and z, no a ∈ Y satisfies both (6) and a ∈ Y2(θ
′
1). Hence

we cannot eliminate ϑ′2 ∈ β2(θ2) either.

Summing up, we argued that if Γs wr-implements f and β̂ is unacceptable, then there

is i ∈ I , θ̂i ∈ Θi and ϑ̂′i ∈ β̂i(θ̂i) such that for all ϑ̂′j ∈ Θj and all ψi ∈ ∆(Θj) with

ψi(β̂
−1
j (ϑ̂′j)) = 1

∃a ∈ Yi(ϑ̂
′
j) : Eψiui(a, θ̂) > Eψiui(f(ϑ̂

′), θ̂). (7)

But this just says that any unacceptable β̂ must be refutable (recall that Θ
ϑ̂′i�θ̂i
j = Θj as f is

injective) — and f robustly monotone. For β, we showed that ϑ′i ∈ βi(θi) cannot be refuted

for any i ∈ {1, 2}. Since telling the truth can neither be refuted for any payoff type15, β is

not refutable and hence a fixed point of Γs’s elimination procedure. Consequently, no static

Γs wr-implements f .

Finally, let us consider a dynamic mechanism Γ. Suppose that Γ wr-implements f and that

β̂ is unacceptable. As above, we can relabel some ŝ ∈ Q∞(θ̂) as ϑ̂ for each θ̂ ∈ Θ, interpret

β̂ as a correspondence mapping payoff type profiles to strategy profiles and conclude that β̂

14Condition (6) is also satisfied by a = w and potentially by a = x, and by any mixture of w and w′ and
(potentially) x. We will see in a moment that this does not matter.

15Let i ∈ {1, 2}, θ̂i ∈ Θi, ϑ̂i = θ̂i ∈ βi(θ̂i), ϑ̂j ∈ Θj and ψi = δ(ϑ̂j). Then if a satisfies (6), a /∈ Yi(ϑ̂j).
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cannot be a fixed point of Γ’s elimination procedure. This time, we will want to extend this

conclusion to deceptions that are “equivalent” to β̂. Since Γ is dynamic, it is conceivable that

a strategy ϑ̂′i gets eliminated for θ̂i simply because it is suboptimal at some information set H

that is not admitted by any weakly rationalizable strategy profile. If β̂i(θ̂i) contains such a ϑ̂′i
then β̂ is not a fixed point. But it might be that redefining ϑ̂′i at H (but nowhere else) makes

ϑ̂′i a sequential best response for θ̂i. Clearly, the “equivalent” version of β̂ with the redefined

instead of the original ϑ̂′i must not be a fixed point either.

This is why we consider the following “translations” β̂t of β̂. Let ϑ̃, θ̃ ∈ Θ be such that

ϑ̃ ∈ β̂(θ̃) and f(ϑ̃) 6= f(θ̃). Let sϑ̃ ≡ (sϑ̃ii )i∈I ∈ Q∞(ϑ̃). For each i ∈ I let β̂ti : Θi ։ Si be

nonempty-valued and such that for any θ̂i ∈ Θi,

ϑ̃i ∈ β̂i(θ̂i) implies β̂ti (θ̂i) ∩
{

si ∈ Si : si(H) = sϑ̃ii (H) for all H ∈ Hi(s
ϑ̃)
}

6= ∅.

No such “translation” β̂t of β̂ can be a fixed point of Γ’s elimination procedure.16

Now return to β and recall that ϑ′ ∈ β(θ) and f(ϑ′) 6= f(θ). Consider the dynamic

mechanism Γ depicted in figure 4. Inspecting the assignment of outcomes to terminal histories,

we see that if Γ wr-implements f then any weakly rationalizable strategy of θ′i, i ∈ {1, 2},

prescribes the action ϑ′ai at i’s initial information set. Let us check if some βt such that for

ϑ′a1ϑa1

1

ϑ′a2

x

ϑa2

w

ϑ′a2

z

ϑa2

2

ϑ′b1

y

ϑb1

w′

1

Figure 4: Mechanism Γ that wr-implements f

each i ∈ I and θ̂i ∈ Θi

βt(θ̂i) ∩
{

si ∈ Si : si(H) = ϑ′ai for all H ∈ Hi ∩
{

{∅}, {ϑa1 , ϑ
′a
1 }

}

}

6= ∅

is a fixed point of Γ’s elimination procedure. If yes, then Γ does not wr-implement f , as some

strategy profile in βt(θ) survives the elimination procedure and leads to z = f(ϑ′).

Consider i = 2. Suppose that θ2 initially believes that she faces a payoff type θ1 that

“pretends” to be θ′1 on path to f(ϑ′) = z. Note that player 1 chooses between w′ and y after

16For each θ̂i ∈ β̂−1
i (ϑ̃i) let sϑ̃i�θ̂i

i ∈ β̂ti (θ̂i) be such that sϑ̃i�θ̂i
i (H) = sϑ̃i

i (H) for all H ∈ Hi(s
ϑ̃). If β̂t is a

fixed point, then f(ϑ̃) = C(ζ(sϑ̃)) = C(ζ(sϑ̃�θ̃)) = f(θ̃). Contradiction.
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the history (ϑ′a1 , ϑ
a
2). Since θ1 always prefers w′ over y and θ′1 always y over w′, if βt is a fixed

point then all strategies in βt1(θ1) prescribe ϑb1 and all strategies in βt1(θ
′
1) prescribe ϑ′b1 . Hence,

if θ2 believes to face a payoff type θ1 that pretends to be θ′1 on path to z (a θ1 playing ϑ′a1 ),

she must belief that “off path,” θ1 will play ϑb1. This gives θ2 the incentive to deviate from the

lie ϑ′a2 and play ϑa2 instead: θ2 expects that playing ϑa2 leads to w′, which a θ2 believing in θ1

strictly prefers to z. Since θ2 also strictly prefers ϑa2 over ϑ′a2 if she believes in a truth-telling

player 1, ϑ′a2 gets eliminated from βt(θ2). No βt is a fixed point.

There are other dynamic mechanisms for which no βt is a fixed point either (for example,

the infinite mechanism of Proposition 3). What makes Γ similar to all those mechanisms is

that at the information set {(ϑ′a1 , ϑ
a
2)}, payoff type θ′1 chooses ϑ′b1 for some belief ψBR1 ∈ ∆(Θ2)

— in fact, in this example, for all such beliefs. The resulting outcome, y, is strictly worse for

θ1 than some other outcome that player 1 can bring about at {(ϑ′a1 , ϑ
a
2)}, namely w′. This

is true independent of θ1’s belief ψ1 ∈ ∆(Θ2) at {(ϑ′a1 , ϑ
a
2)}. More formally, observe that for

i = 2, θ2 and θ′2 ∈ β2(θ2), for θ′1 and ψ2 = δ(θ1),

∃ψBR1 ∈ ∆(Θ2), a(= y) ∈ Y ∀ψ1 ∈ ∆(Θ2) ∃b(= w′) ∈ Y :

Eψ1u1(b, θ) > Eψ1u1(a, θ) and EψBR1
u1(b, θ

′
1, θ2) ≤ EψBR1

u1(a, θ
′
1, θ2).

This is of course an instance of (3), and the reason why β is d-refutable but not refutable.

To conclude the example, note that Γ does indeed wr-implement f . The elimination of

never-best sequential responses proceeds as follows.

• Q1
1(θ1) = {ϑa1·, ϑ

′a
1 ϑ

b
1}, Q

1
1(θ

′
1) = {ϑ′a1 ϑ

′b
1 },

Q1
2(θ2) = {ϑa2, ϑ

′a
2 }, Q

1
2(θ

′
2) = {ϑ′a2 },

• Q2
1(θ1) = {ϑa1·, ϑ

′a
1 ϑ

b
1}, Q

2
1(θ

′
1) = {ϑ′a1 ϑ

′b
1 },

Q2
2(θ2) = {ϑa2}, Q

2
2(θ

′
2) = {ϑ′a2 },

• Q3
1(θ1) = {ϑa1·}, Q

3
1(θ

′
1) = {ϑ′a1 ϑ

′b
1 },

Q3
2(θ2) = {ϑa2}, Q

3
2(θ

′
2) = {ϑ′a2 }.

3.3 Necessary Conditions

We now prove that dr-monotonicity is necessary for wr-implementation. Supposing that there

is an unacceptable but not d-refutable deception, the proof constructs a fixed point of the

iterated elimination procedure defining weak rationalizability. The proof exploits that any

implementing mechanism is pepWB.

Proposition 1 If f is wr-implementable then f is dr-monotone.
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Proof. Suppose that mechanism Γ wr-implements f and that β is an unacceptable decep-

tion. Suppose by contradiction that β is not d-refutable. For any i ∈ I , θi ∈ Θi and θ′i ∈ βi(θi)

such that Θ
θ′i�θi
−i 6= ∅ let θ

θ′i�θi
−i ∈ Θ

θ′i�θi
−i and ψ

θ′i�θi
i ∈ ∆(Θ−i) with ψ

θ′i�θi
i (β−1

−i (θ
θ′i�θi
−i )) = 1 be

such that

∀x ∈ Yi(θ
θ′i�θi
−i ) : E

ψ
θ′
i
�θi

i

ui(x, θ) ≤ E
ψ
θ′
i
�θi

i

ui(f(θ
′
i, θ

θ′i�θi
−i ), θ) (8)

and

∀j 6= i, θj ∈ supp(ψ
θ′i�θi
i ), ψj ∈ ∆(Θ−j), y ∈ Y ∃ψ

θ′i�θi
θj♦y

∈ ∆(Θ−j) ∀x ∈ Y :

E
ψ
θ′
i
�θi

θj♦y

uj(x, θ) ≤ E
ψ
θ′
i
�θi

θj♦y

uj(y, θ) or Eψjuj(x, θ
′
j , θ−j) > Eψjuj(y, θ

′
j, θ−j). (9)

For each θ ∈ Θ, fix a s(θ) ∈ Q∞(θ) ⊆ Q∞(θ). Without loss of generality, for all i ∈ I

and θi ∈ Θi, let si(θi) be a sequential best response to some µi(θi) ∈ Π∞
i such that for each

H ∈ H̄i, µi(θi)({ŝ
θi,H
−i } × Θ−i|H) = 1 for some ŝθi,H−i ∈ S−i(H). This is possible because Γ is

pepWB. For convenience, let

N = {(i, θi, θ
′
i) ∈ I ×Θ2

i : θ
′
i ∈ βi(θi) and Θ

θ′i�θi
−i 6= ∅}.

Colloquially, we might say that (i, θi, θ
′
i) ∈ N if θ′i is a lie of θi “that matters” and is permitted

under β.

Step 1. Suppose that (i, θ̄i, θ̄
′
i) ∈ N . We claim that there exists a strategy s

θ̄′i�θ̄i
i ∈ Q1

i (θ̄i)

such that s
θ̄′i�θ̄i
i (H) = si(θ̄

′
i)(H) for all H ∈ Hi containing a history in

H θ̄′i�θ̄i =
{

h ∈ H : h � ζ(si(θ̄
′
i), s−i(θ

θ̄′i�θ̄i
−i )) or h � ζ(sj, s−j(θ

θ′j�θj

−j )) for some

(j, θj , θ
′
j) ∈ N, sj ∈ Sj s.t. j 6= i, θ

θ′j�θj

i = θ̄′i and θ̄i ∈ supp(ψ
θ′j�θj

j )
}

.

Loosely speaking, we claim that θ̄i has a sequentially rational strategy s
θ̄′i�θ̄i
i that coincides

with si(θ̄
′
i) on path to ζ(si(θ̄

′
i), s−i(θ

θ̄′i�θ̄i
−i )), and “wherever any lie θ′j ∈ βj(θj) of j that matters

relies on θ̄i’s lie θ̄′i.” Let µi be a CPS that satisfies the following conditions.

1. For all θ−i ∈ Θ−i, µi((s−i(θ
θ̄′i�θ̄i
−i ), θ−i)|{∅}) = ψ

θ̄′i�θ̄i
i (θ−i).

2. Suppose that H ∈ Hi is a surprise given the beliefs µi (that is, suppose that if Hp denotes

H’s immediate predecessor in Hi then µi(Σ−i(H)|Hp) = 0), and that H ∩H θ̄′i�θ̄i 6= ∅.

Then for some (j, θj , θ
′
j) ∈ N and some sj ∈ Sj such that j 6= i, θ

θ′j�θj

i = θ̄′i and θ̄i ∈

supp(ψ
θ′j�θj

j ), H contains a predecessor of ζ(sj, s−j(θ
θ′j�θj

−j )). Let y = C(ζ(si(θ̄
′
i), ŝ

θ̄′i,H
−i )).

That is, y is the outcome that θ̄′i expects at H under µi(θ̄
′
i) if she follows the strategy
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si(θ̄
′
i). Moreover, let ψ̄i = margΘ−i

µi(θ̄
′
i)(·|H). We require from µi that for some ψ

θ′j�θj

θ̄i♦y

satisfying (9) for i, θ̄i, ψ̄i and y,

µi((ŝ
θ̄′i,H
−i , θ−i)|H) = ψ

θ′j�θj

θ̄i♦y
(θ−i) for all θ−i ∈ Θ−i.

3. Suppose that H ∈ Hi is a surprise given the beliefs µi, and that H ∩ H θ̄′i�θ̄i = ∅.

Then we require that µi(·|H) equals µ′i(·|H) for some CPS µ′i whose marginal on S−i is

degenerate for all H′ ∈ H̄i and against which θ̄i has a sequential best response (such a

CPS exists because Γ is pepWB). In fact, if possible, choose µ′i such that some sequential

best response of θ̄i against µ′i admits H.

Then some s
θ̄′i�θ̄i
i ∈ ri(θ̄i, µi) satisfies s

θ̄′i�θ̄i
i (H) = si(θ̄

′
i)(H) for all H ∈ Hi such that H ∩

H θ̄′i�θ̄i 6= ∅. To see this, note the following.

4. Suppose that x /∈ Yi(θ
θ̄′i�θ̄i
−i ) and C(ζ(si, s−i(θ

θ̄′i�θ̄i
−i ))) = x for some si ∈ Si. Then

ui(x, θ
′′
i , θ

θ̄′i�θ̄i
−i ) > ui(f(θ

′′
i , θ

θ̄′i�θ̄i
−i ), θ′′i , θ

θ̄′i�θ̄i
−i )

for some θ′′i ∈ Θi. Let µ′i ∈ Π∞
i be such that 1) µ′i(·|{∅}) equals the degenerate be-

lief in (s−i(θ
θ̄′i�θ̄i
−i ), θ

θ̄′i�θ̄i
−i ), and 2) there exists a sequential best response sBRi for θ′′i

against µ′i. Such a µ′i exists because Γ is pepWB. On the one hand, we must have

C(ζ(sBRi , s−i(θ
θ̄′i�θ̄i
−i ))) 6= f(θ′′i , θ

θ̄′i�θ̄i
−i ), as x provides i with more expected utility with

respect to µ′i(·|{∅}) than f(θ′′i , θ
θ̄′i�θ̄i
−i ) and i believes that x is “in her reach.” On the other

hand, C(ζ(sBRi , s−i(θ
θ̄′i�θ̄i
−i ))) = f(θ′′i , θ

θ̄′i�θ̄i
−i ) as sBRi ∈ Q∞

i (θ′′i ) and Γ wr-implements f .

Contradiction. Consequently, if x ∈ Y is such that C(ζ(si, s−i(θ
θ̄′i�θ̄i
−i ))) = x for some

si ∈ Si, then x ∈ Yi(θ
θ̄′i�θ̄i
−i ) and, by (8),

E
ψ
θ̄′
i
�θ̄i

i

ui(x, θ̄i, θ−i) ≤ E
ψ
θ̄′
i
�θ̄i

i

ui(f(θ
′
i, θ

θ̄′i�θ̄i
−i ), θ̄i, θ−i).

Hence, at any H ∈ Hi(si(θ̄
′
i), s−i(θ

θ̄′i�θ̄i
−i )), the strategy si(θ̄

′
i) maximizes θ̄i’s expected

utility with respect to µi(·|H) within Si(H).

5. For a surprise H ∈ Hi(si(θ̄
′
i)) such that H ∩H θ̄′i�θ̄i 6= ∅ take the corresponding j 6= i,

θj, θ
′
j ∈ βj(θj), sj and y and ψ̄i from condition 2. above. Then by (9), for any x ∈ Y

E
ψ
θ′
j

�θj

θ̄i♦y

ui(x, θ̄i, θ−i) ≤ E
ψ
θ′
j
�θj

θ̄i♦y

ui(y, θ̄i, θ−i) = Uµii (si(θ̄
′
i), θ̄i,H) (10)

or Eψ̄iui(x, θ̄
′
i, θ−i) > Eψ̄iui(y, θ̄

′
i, θ−i) = U

µi(θ̄′i)
i (si(θ̄

′
i), θ̄

′
i,H). (11)
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Take x ∈ Y and suppose that x = C(ζ(si, ŝ
θ̄′i,H
−i )) for some si ∈ Si(H). That is,

suppose that θ̄′i believes at H that she can bring about x (by following si). Then

Eψ̄iui(x, θ̄
′
i, θ−i) = U

µi(θ̄′i)
i (si, θ̄

′
i,H) and (11) contradicts si(θ̄

′
i) being utility maximizing

for θ̄′i at H. Consequently, (10) must hold for any x such that x = C(ζ(si, ŝ
θ̄′i,H
−i )) for

some si ∈ Si(H), and si(θ̄
′
i) maximizes θ̄i’s expected utility with respect to µi(·|H) at

H.

We can construct the desired s
θ̄′i�θ̄i
i ∈ ri(θ̄i, µi) as follows.

• Let s
θ̄′i�θ̄i
i (H′) = si(θ̄

′
i)(H

′) for all H′ ∈ Hi(s−i(θ
θ̄′i�θ̄i
−i )).

[Note that independently of how we will complete the definition of s
θ̄′i�θ̄i
i below, we can

already say that then by 4., s
θ̄′i�θ̄i
i maximizes θ̄i’s expected utility with respect to µi(·|H

′)

for all H′ ∈ Hi(s
θ̄′i�θ̄i
i , s−i(θ

θ̄′i�θ̄i
−i )).]

• If H ∈ Hi, H ∩ H θ̄′i�θ̄i 6= ∅, H /∈ Hi(s−i(θ
θ̄′i�θ̄i
−i )) and Hp ∈ Hi(s−i(θ

θ̄′i�θ̄i
−i )) where

Hp denotes H’s immediate predecessor in Hi, then let s
θ̄′i�θ̄i
i (H′) = si(θ̄

′
i)(H

′) for all

H′ ∈ Hi(ŝ
θ̄′i,H
−i ) such that H � H′.

[Take such an H′ and suppose that H′ ∈ Hi(s
θ̄′i�θ̄i
i , ŝ

θ̄′i,H
−i ). That is, suppose that H′ is

not prevented by s
θ̄′i�θ̄i
i itself. Then s

θ̄′i�θ̄i
i maximizes Uµii (·, θ̄i,H

′) by 5., independently

of how we will complete the definition of s
θ̄′i�θ̄i
i below.]

• Repeat the last step for all H ∈ Hi such that H ∩ H θ̄′i�θ̄i 6= ∅ for which we have not

defined s
θ̄′i�θ̄i
i (H) yet, but for which we have already defined s

θ̄′i�θ̄i
i (Hp). Iterate this

procedure until no such such information sets H remain.

• All remaining information sets H′ must be such that H′ ∩H θ̄′i�θ̄i = ∅. For these H′, let

s
θ̄′i�θ̄i
i (H′) equal (one of) the sequential best response(s) mentioned in 3.

Step 2. Suppose that i ∈ I , θ̄i, θ̄
′
i ∈ βi(θ̄i) and Θ

θ̄′i�θ̄i
−i = ∅. We claim that there exists a

strategy s
θ̄′i�θ̄i
i ∈ Q∞

i (θ̄i) such that s
θ̄′i�θ̄i
i (H) = si(θ̄

′
i)(H) for all H ∈ Hi containing a history

in

H
θ̄′i�θ̄i
o =

{

h ∈ H : h � ζ(sj, s−j(θ
θ′j�θj

−j )) for some (j, θj , θ
′
j) ∈ N, sj ∈ Sj

s.t. j 6= i, θ
θ′j�θj

i = θ̄′i and θ̄i ∈ supp(ψ
θ′j�θj

j )
}

. (12)

Let µi be a CPS that satisfies the following conditions.

• First, µi(·|{∅}) = µi(θ̄i)(·|{∅}).

• Conditions 2. and 3. from above, with H θ̄′i�θ̄i replaced by H
θ̄′i�θ̄i
o in both cases.
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Then µi ∈ Π∞
i . Some sequential best response s

θ̄′i�θ̄i
i of θ̄i against µi satisfies s

θ̄′i�θ̄i
i (H) =

si(θ̄
′
i)(H) for all H ∈ Hi such that H∩H

θ̄′i�θ̄i
o 6= ∅. To see this, first consider the information

set H ∈ Hi(ŝ
θ̄i,{∅}
−i ) that has no predecessor in Hi — that is, consider i’s first information set

in Hi(ŝ
θ̄i,{∅}
−i ) (if no such H exists because Hi(ŝ

θ̄i,{∅}
−i ) = ∅ then skip this part of the proof).

At H, i holds the belief µi(·|{∅}). Since Θ
θ̄′i�θ̄i
−i = ∅, we have f(θ̄i, θ−i) = f(θ̄′i, θ−i) for all

θ−i ∈ Θ−i and

U
µi(θ̄i)
i (si(θ̄i), θ̄i, {∅}) = EmargΘ−i

µi(θ̄i)(·|{∅})
ui(f(θ̄i, θ−i), θ̄i, θ−i)

= EmargΘ−i
µi(θ̄i)(·|{∅})

ui(f(θ̄
′
i, θ−i), θ̄i, θ−i) = U

µi(θ̄i)
i (si(θ̄

′
i), θ̄i, {∅}).

By definition of si(θ̄i) and µi(θ̄i),

U
µi(θ̄i)
i (si(θ̄

′
i), θ̄i, {∅}) = U

µi(θ̄i)
i (si(θ̄i), θ̄i, {∅}) ≥ U

µi(θ̄i)
i (si, θ̄i, {∅}) for all si ∈ Si.

Hence si(θ̄
′
i) is optimal at all H ∈ Hi(si(θ̄

′
i), ŝ

θ̄i,{∅}
−i ). Second, by 5. from Step 1, si(θ̄

′
i) is

also optimal for any other H ∈ Hi(si(θ̄
′
i)) such that H ∩H

θ̄′i�θ̄i
o 6= ∅. Therefore, the desired

s
θ̄′i�θ̄i
i ∈ Q∞

i (θ̄i) can be constructed similarly as in Step 1.

Step 3. Let k ∈ N. We claim that s
θ′i�θi
i ∈ Qki (θi) for each (i, θi, θ

′
i) ∈ N implies that

s
θ′i�θi
i ∈ Qk+1

i (θi) for each (i, θi, θ
′
i) ∈ N . For (i, θ̄i, θ̄

′
i) ∈ N let µi be a CPS such that

µi((s
θ
θ̄′
i
�θ̄i

−i �θ−i

−i , θ−i)|{∅}) = ψ
θ̄′i�θ̄i
i (θ−i) for all θ−i ∈ supp(ψ

θ̄′i�θ̄i
i )

and such that µi satisfies conditions 2. and 3. from Step 1. Then µi ∈ Πki by Steps 1 and 2.

Since for any si ∈ Si and any θ−i ∈ supp(ψ
θ̄′i�θ̄i
i )

C(ζ(si, s
θ
θ̄′
i
�θ̄i

−i �θ−i

−i )) = C(ζ(si, s−i(θ
θ̄′i�θ̄i
−i ))),

the argument from 4. shows that s
θ̄′i�θ̄i
i maximizes Uµii (·, θ̄i,H) within Si(H) for any H ∈

Hi(si(θ̄
′
i), s

θ
θ̄′
i
�θ̄i

−i �θ−i

−i )). Moreover, the argument from 5. applies without change. Hence

s
θ̄′i�θ̄i
i ∈ ri(θ̄i, µi) and so s

θ̄′i�θ̄i
i ∈ Qk+1

i (θ̄i).

Step 4. Therefore, s
θ′i�θi
i ∈ Q∞

i (θi) for all (i, θi, θ
′
i) ∈ N . Since β is unacceptable, N 6= ∅

and there is some (i, θi, θ
′
i) ∈ N . By definition, f(θi, θ

θ′i�θi
−i ) 6= f(θ′i, θ

θ′i�θi
−i ). Because Γ wr-

implements f ,

C(ζ(s
θ′i�θi
i , s−i(θ

θ′i�θi
−i ))) = f(θi, θ

θ′i�θi
−i ) 6= f(θ′i, θ

θ′i�θi
−i ) = C(ζ(si(θ

′
i), s−i(θ

θ′i�θi
−i ))).
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But since s
θ′i�θi
i (H) = si(θ

′
i)(H) for all H ∈ Hi containing a history in Hθ′i�θi , and in

particular for all H ∈ Hi containing a predecessor of ζ(si(θ
′
i), s−i(θ

θ′i�θi
−i )), we must have

ζ(s
θ′i�θi
i , s−i(θ

θ′i�θi
−i )) = ζ(si(θ

′
i), s−i(θ

θ′i�θi
−i )). Contradiction. �

3.4 Ex-post Incentive Compatibility

Bergemann and Morris (2005) show that ex-post incentive compatibility (epIC) is necessary for

partial robust implementation. Full robust implementation requires a stronger version of epIC

called semi-strict epIC, which is implied by robust monotonicity (Bergemann and Morris,

2011, Lemma 1, Theorem 1). In this subsection, we show that (full) weakly rationalizable

implementation implies a condition that is stronger than epIC but weaker than semi-strict

epIC and that we call medium-strict epIC.

Definition 9 Social choice function f is

• semi-strict epIC if for all i ∈ I, θi, θ
′
i ∈ Θi and θ−i ∈ Θ−i, if f(θi, θ̄−i) 6= f(θ′i, θ̄−i) for

some θ̄−i ∈ Θ−i then

ui(f(θ), θ) > ui(f(θ
′
i, θ−i), θ).

• medium-strict epIC if for all i ∈ I, θi, θ
′
i ∈ Θi and θ−i ∈ Θ−i, if f(θi, θ−i) 6= f(θ′i, θ−i)

then

ui(f(θ), θ) > ui(f(θ
′
i, θ−i), θ).

• epIC if for all i ∈ I, θi, θ
′
i ∈ Θi and all θ−i ∈ Θ−i

ui(f(θ), θ) ≥ ui(f(θ
′
i, θ−i), θ).

Proposition 1 revealed that dr-monotonicity is necessary for wr-implementation. The fol-

lowing proposition shows that medium-strict epIC, in turn, is necessary for dr-monotonicity.

Together, these propositions establish that medium-strict epIC is the incentive-compatibility

condition that is necessary for wr-implementation.

Proposition 2 If f is dr-monotone then f is medium-strict epIC.

Proof. Take i ∈ I , θi, θ
′
i ∈ Θi and θ−i ∈ Θ−i and suppose that f(θi, θ−i) 6= f(θ′i, θ−i).

Then the deception β such that βi(θi) = {θi, θ
′
i} and βj(θ̂j) = {θ̂j} for all (j, θ̂j) 6= (i, θi) is

unacceptable and hence, by hypothesis, d-refutable. The pair (θ′i, θi) is the only pair (θ̂′j, θ̂j)

such that j ∈ I , θ̂′j ∈ βj(θ̂j) and Θ
θ̂′j�θ̂j

−j = {θ′−j : f(θ̂j, θ
′
−j) 6= f(θ̂′j, θ

′
−j)} 6= ∅. Moreover,
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θ−i ∈ Θ
θ′i�θi
−i . Hence, by the definition of d-refutability, for ψi ∈ ∆(Θ−i) with ψi{θ−i} = 1 at

least one of the following conditions holds:

∃x ∈ Yi(θ−i) : Eψiui(x, θ) > Eψiui(f(θ
′
i, θ−i), θ) (13)

∃j 6= i, θj ∈ supp(ψi), ψ
BR
j ∈ ∆(Θ−j), y ∈ Y ∀ψj ∈ ∆(Θ−j) ∃x ∈ Y :

Eψjuj(x, θ) > Eψjuj(y, θ) and EψBRj
uj(x, θ) ≤ EψBRj

uj(y, θ) (14)

Condition (14) cannot hold, as it implies that for ψj = ψBRj there exists x ∈ Y such that both

EψBRj
uj(x, θ) > EψBRj

uj(y, θ) and EψBRj
uj(x, θ) ≤ EψBRj

uj(y, θ). Consequently, (13) holds,

and there exists x ∈ Yi(θ−i) such that ui(x, θ) > ui(f(θ
′
i, θ−i), θ). Since x ∈ Yi(θ−i) implies

ui(f(θ), θ) ≥ ui(x, θ),

ui(f(θ), θ) > ui(f(θ
′
i, θ−i), θ).

follows. �

The following example presents a wr-implementable and therefore dr-monotone social

choice function that is not semi-strict epIC. Consequently, dr-monotone social choice func-

tions need to be medium-strict but not semi-strict epIC. The example also highlights the

second of the differences between refutability and d-refutability mentioned at the beginning

of Subsection 3.2.

Example 3.2 There are two agents i ∈ {1, 2} with two payoff types each, Θi = {θi, θ
′
i}, and

three pure outcomes, X = {x, y, z}. Player 1 prefers “not z” when she is of payoff type θ1 and

z when she is of payoff type θ′1:

u1(x, θ1, ·) = u1(y, θ1, ·) > u1(z, θ1, ·)

u1(z, θ
′
1, ·) > u1(x, θ

′
1, ·) = u1(y, θ

′
1, ·)

Type θ2 of player 2 prefers x over y, and type θ′2 prefers y over x. Player 2’s preference for z

is not critical for the example, we assume 2 always prefers z the least:

u2(x, ·, θ2) > u2(y, ·, θ2) = u2(z, ·, θ2)

u2(y, ·, θ
′
2) > u2(x, ·, θ

′
2) = u2(z, ·, θ

′
2)

The social choice function f given in figure 5 is medium-strict epIC. Moreover, f is wr-

implementable via the mechanism Γ and thus dr-monotone: truth-telling dominates lying

for player 1, and conditionally (on making a decision) dominates lying for player 2. But
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θ2 θ′2

θ1 x y

θ′1 z z

ϑ′1

z

ϑ1

1

ϑ′2

y

ϑ2

x

2

Figure 5: f (left) and mechanism Γ that wr-implements f (right)

f is not semi-strict epIC, as f(θ̄1, θ2) 6= f(θ̄1, θ
′
2) for some θ̄1 ∈ Θ1, namely θ̄1 = θ1, but

u2(f(θ
′
1, θ2), θ

′
1, θ2) ≯ u2(f(θ

′
1, θ

′
2), θ

′
1, θ2). Consequently, f is neither robustly monotone nor

robustly implementable by a static mechanism. Note that the unacceptable deception β such

that β1(θ̂1) = {θ̂1} for all θ̂1 ∈ Θ1, β2(θ2) = Θ2 and β2(θ2) = {θ′2} is

• not refutable but...

Proof: The triple (2, θ′2, θ2) is the only triple (j, θ̂′j , θ̂j) such that j ∈ I , θ̂j ∈ Θj, θ̂
′
j ∈

βj(θ̂j) and Θ
θ̂′j�θ̂j

−j 6= ∅. But for 2, θ2, θ
′
2 ∈ β2(θ2) and θ′1 and ψ2 = δ(θ′1), there does

not exist a w ∈ Y2(θ
′
1) = {z} such that Eψ2u2(w, θ) = u2(w, θ

′
1, θ2) > u2(z, θ

′
1, θ2) =

Eψ2u2(f(θ
′), θ).

• ... d-refutable.

Proof: For 2, θ2 and θ′2 ∈ β2(θ2), Θ
θ′2�θ2
1 = {θ1} 6= ∅ and for all ψ2 such that ψ2{θ1} = 1,

x is in Y2(θ1) and satisfies Eψ2u2(x, θ) = u2(x, θ) > u2(y, θ) = Eψ2u2(f(θ1, θ
′
2), θ).

The unacceptable deception β thus illustrates the second of the reasons (listed at the beginning

of Subsection 3.2) that d-refutability is weaker than refutability: For 2, θ2 and θ′2 ∈ β2(θ2)

we have Θ
θ′2�θ2
1 6= ∅. Moreover, for all θ̂1 ∈ Θ

θ′2�θ2
1 — but not for all θ̂1 ∈ Θ1 — and all

ψ2 ∈ ∆(Θ1) with ψ2(β
−1
1 (θ̂1)) = 1, condition (2) of Definition 6 holds.

4 Sufficient Conditions for WR-Implementation

For the purpose of deriving sufficient conditions for wr-implementation, it is convenient to

focus on semi-strict epIC social choice functions. In addition, we assume the following NTI

condition, taken from Bergemann and Morris (2011). The conditional NTI condition is a mild

restriction on the players’ preferences.

Definition 10 (Conditional NTI.) The conditional no total indifference (NTI) property is

met if for all i ∈ I, θi ∈ Θi, θ
′
−i ∈ Θ−i and ψi ∈ ∆(Θ−i), there exist y, y′ ∈ Yi(θ

′
−i) such that

Eψiui(y, θ) > Eψiui(y
′, θ).
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Using infinite mechanisms, we are able to establish dr-monotonicity as sufficient for wr-

implementation. Our mechanism exploits that faced with an infinite number of choices, an

agent may not have a sequential best response if she holds certain beliefs about her opponents.

This is a property that our mechanism shares with Bergemann and Morris’ (2011) mechanism

and other static integer and modulo game forms. This property has been criticized by Jackson

(1992) among others but allows us to derive a clean result, while a characterization of wr-

implementation by well-behaved mechanisms remains an open and challenging question.

Proposition 3 Suppose the conditional NTI property is satisfied. If f is semi-strict epIC and

dr-monotone, then f is wr-implementable.

Proof. First, some preliminaries. For i ∈ I and θ−i ∈ Θ−i, the reward set Yi(θ−i) is

the intersection of Y = {y ∈ R#X : y ≥ 0,
∑

yn = 1} with the half-spaces {y ∈ Y :

ui(y, θ
′′
i , θ−i) ≤ ui(f(θ

′′
i , θ−i), θ

′′
i , θ−i)}, θ

′′
i ∈ Θi. As such, Yi(θ−i) is convex and has finitely

many extreme points y1,θ−i, y2,θ−i , . . . , ym,θ−i . Let ȳθ−i be the convex combination that puts

weight 1
m

on each extreme point. Then by the conditional NTI property this “interior” lottery

ȳθ−i ∈ Yi(θ−i) is such that

6. for every θi ∈ Θi and ψi ∈ ∆(Θ−i) there is a y ∈ Yi(θ−i) such that Eψiui(y, θ) >

Eψiui(ȳθ−i , θ) (compare Bergemann and Morris, 2011, p. 270) and ...

Proof: Let θi ∈ Θi and ψi ∈ ∆(Θ−i), then by the conditional NTI property there

are y =
∑

αkyk,θ−i ∈ Yi(θ−i) and y′ =
∑

α′
kyk,θ−i ∈ Yi(θ−i) such that Eψiui(y, θ) >

Eψiui(y
′, θ). For η > 0 small enough, ȳθ−i + η(y− y′) =

∑
(

1
m

+ η(αk − α′
k)
)

yk,θ−i is in

Yi(θ−i). Moreover, Eψiui(ȳθ−i + η(y − y′), θ) > Eψiui(ȳθ−i , θ).

7. ... for every θi ∈ Θi, ui(ȳθ−i , θ) < ui(f(θ), θ).

Proof: Let θi ∈ Θi, then by the conditional NTI property there are y =
∑

αkyk,θ−i ∈

Yi(θ−i) and y′ =
∑

α′
kyk,θ−i ∈ Yi(θ−i) such that ui(y, θ) > ui(y

′, θ). By definition of

Yi(θ−i), ui(yk,θ−i , θ) ≤ ui(f(θ), θ) for all k = 1, . . . ,m. Suppose that ui(yk,θ−i, θ) =

ui(f(θ), θ) for all k, then

ui(y, θ) =
∑

αkui(yk,θ−i , θ) = ui(f(θ), θ) =
∑

α′
kui(yk,θ−i , θ) = ui(y

′, θ).

Contradiction, hence ui(yk̄,θ−i , θ) < ui(f(θ), θ) for some k̄. This implies the claim.

For each unacceptable (and hence by hypothesis d-refutable) deception β let i = i(β) ∈ I ,

θi = θi(β) ∈ Θi and θ′i = θ′i(β) ∈ βi(θi) be such that Θ
θ′i�θi
−i 6= ∅ and such that for all
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θ′−i ∈ Θ
θ′i�θi
−i and all ψi ∈ ∆(Θ−i) with ψi(β

−1
−i (θ

′
−i)) = 1,

∃x ∈ Yi(θ
′
−i) : Eψiui(x, θ) > Eψiui(f(θ

′), θ) (15)

or
∃j 6= i, θj ∈ supp(ψi), ψ

BR
j ∈ ∆(Θ−j), y ∈ Y ∀ψj ∈ ∆(Θ−j) ∃x ∈ Y :

Eψjuj(x, θ) > Eψjuj(y, θ) and EψBRj
uj(x, θ

′
j , θ−j) ≤ EψBRj

uj(y, θ
′
j, θ−j).

(16)

To streamline notation, let

B(15) =
{

(β, θ′−i, ψi) : β is an unacceptable deception, i = i(β), θ′−i ∈ Θ
θ′i(β)�θi(β)
−i ,

ψi ∈ ∆(Θ−i), ψi(β
−1
−i (θ

′
−i)) = 1 and (15)

}

and

B(16) =
{

(β, θ′−i, ψi) : β is an unacceptable deception, i = i(β), θ′−i ∈ Θ
θ′i(β)�θi(β)
−i ,

ψi ∈ ∆(Θ−i), ψi(β
−1
−i (θ

′
−i)) = 1 and ¬(15)

}

.

If (β, θ′−i, ψi) ∈ B(15) let xβ,θ
′
−i,ψi ∈ Yi(θ

′
−i) be such that (15) holds. Similarly, if (β, θ′−i, ψi) ∈

B(16), let jβ,θ
′
−i,ψi , θ

β,θ′−i,ψi

j , ψ
BR,β,θ′−i,ψi

j and yβ,θ
′
−i,ψi be such that for every ψj (where j =

jβ,θ
′
−i,ψi) there is an x ∈ Y , let’s denote it by xβ,θ

′
−i,ψi(ψj), such that (16) holds.

We construct a mechanism Γ = 〈H, (Hi)i∈I , P, C〉 that is an augmented direct mechanism

with two stages. For each (β, θ′−i, ψi) ∈ B(16) let m
β,θ′−i,ψi

i be some action (or “message”) that

is distinct from all other actions. In the first stage of Γ we let the agents make strategically

simultaneous announcements, with each agent being able to announce a payoff type or one of

the messages m
β,θ′−i,ψi

i . The set of i’s first-stage actions is

A1

i = Θi ∪
⋃

(β,θ′−i,ψi)∈B
(16)

{m
β,θ′−i,ψi

i },

and the set of first-stage historiesH1 =
{

h : h � a for some a ∈
∏

i∈I A
1

i

}

. If h = (a1, . . . , ai−1)

then P (h) = i, and H1

i = {(a1, . . . , ai−1) ∈ H1} ∈ Hi. We complete the description of Γ’s set

of histories by defining a (potentially empty) set of histories Ha for each profile of first-stage

actions a = (a1, . . . , aI) ∈ H1 and letting

H = H1 ∪
⋃

a∈H1

Ha.

Let dBRi and dψi,kii (where i ∈ I , ψi ∈ ∆(Θ−i) and ki ∈ {2, 3, . . .}) be some actions that are

distinct from all other actions and distinguish the following cases.

27



Case 1. Suppose that the first-stage action profile is θ′ ∈ Θ. If

I(θ′) =
{

i ∈ I :
(

∃β, ψi
)(

(β, θ′−i, ψi) ∈ B(15) and θ′i = θ′i(β)
)}

is empty, then there is no second stage. We let Hθ′ = ∅ and assign the outcome C(θ′) = f(θ′)

to the terminal history θ′. If on the other hand I(θ′) 6= ∅ then

Hθ′ =
{

h :
(

∃(di)i∈I(θ′)

)(

h � (θ′, (di)) and ∀i ∈ I(θ′),

di ∈
{

dBRi
}

∪
{

(zi, ki) ∈ Yi(θ
′
−i)× {1, 2, 3, . . .}

}

)}

.

All agents i ∈ I(θ′) make their second-stage decisions strategically simultaneously, with each

i ∈ I(θ′) observing the first-stage history θ′ before choosing her second-stage action di. Finally,

let

C(θ′, (di)i∈I(θ′)) =
1

#I(θ′)

∑

i∈I(θ′)

Ci(θ
′, di),

where

Ci(θ
′, di) =

{

f(θ′) if di = dBRi
1
ki
ȳθ′

−i
+

(

1− 1
ki

)

zi if di = (zi, ki)
.

Case 2. If exactly one agent i ∈ I announces a first-stage message ai /∈ Θi, let β,

θ′−i, ψi be such that ai = m
β,θ′−i,ψi

i . Then (16) holds for i, θi(β) and θ′i(β) and θ′−i, ψi. If

a−i 6= θ′−i then a will be a terminal history. Let Ha = ∅ and C(a) = ȳa−i . If a−i = θ′−i
then after learning the first-stage messages a, the agents i and j = jβ,θ

′
−i,ψi make strategically

simultaneous second-stage choices, and

Ha =
{

h : h � (a, dj , di) for some dj ∈
{

dBRj
}

∪
⋃

ψj∈∆(Θ−j),kj∈{2,3,...}

{

d
ψj ,kj
j

}

and some di = (zi, ki) ∈ Yi(a−i)× {2, 3, . . .}
}

.

Let

Ci(a, zi, ki) =

(

1

2
+

1

ki

)

ȳa−i +

(

1

2
−

1

ki

)

zi,

Cj(a, d
BR
j ) = yβ,θ

′
−i,ψi and

Cj(a, d
ψj ,kj
j ) =

1

kj
yβ,θ

′
−i,ψi +

(

1−
1

kj

)

xβ,θ
′
−i,ψi(ψj). (17)
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By 7. we can, for each θi ∈ Θi, let ε(θi) ∈ (0, 1) be such that

1

2
(1− ε(θi))ui(ȳa−i , θi, a−i) + ε(θi)ui(y

β,a−i,ψi , θi, a−i) ≤

(

1

2
+

1

2
ε(θi)

)

ui(f(θi, a−i), θi, a−i).

(18)

Let ε = minθi∈Θi ε(θi) and C(a, dj , di) = (1− ε)Ci(a, di) + εCj(a, dj).

Case 3. If ai /∈ Θi for two or more i ∈ I , then let a be terminal, Ha = ∅ and C(a) ∈ Y .

The set of histories H, the set of i’s information sets17

Hi = {H1

i } ∪
⋃

θ′∈Θ s.t. i∈I(θ′)

{(θ′, (dj)j<i,j∈I(θ′)) ∈ H} ∪
⋃

(β,θ′−i,ψi)∈B
(16)

{(m
β,θ′−i,ψi

i , θ′−i, dj) ∈ H}

∪
⋃

l 6=i, (β,θ′
−l
,ψl)∈B(16) s.t. i=j

β,θ′
−l
,ψl

{(m
β,θ′

−l
,ψl

l , θ′−l)}

for i ∈ I , the outcome function C and the implied player function P fully describe the mech-

anism Γ. We now prove that Γ wr-implements f .

Step 1. If (si, θi) ∈W 1
i then si(H

1

i ) ∈ Θi.

Proof: Suppose that si(H
1

i ) = m
β,θ′−i,ψi
i /∈ Θi for some β, θ′−i and ψi, and that si is

sequentially rational for θi ∈ Θi. Then there exists a CPS µi such that for all H ∈ Hi(si),

si maximizes Uµii (·, θi,H). In particular, si must be optimal in case −i announces θ′−i in the

first stage. That is, for H = {(m
β,θ′−i,ψi

i , θ′−i, dj) ∈ H}, Uµii (si, θi,H) ≥ Uµii (s′i, θi,H) for all

s′i ∈ Si(H). Let (zi, ki) ∈ Yi(θ
′
−i)× {2, 3, . . .} be such that si(H) = (zi, ki). Recall that for all

dj,

C(m
β,θ′−i,ψi

i , θ′−i, dj , zi, ki) = εCj(m
β,θ′−i,ψi

i , θ′−i, dj)+(1−ε)

((

1

2
+

1

ki

)

ȳθ′−i +

(

1

2
−

1

ki

)

zi

)

.

Since by 6. we have

EmargΘ−i
µi(·|H)ui(y, θ) > EmargΘ−i

µi(·|H)ui(ȳθ′−i , θ) for some y ∈ Yi(θ
′
−i),

we must have EmargΘ−i
µi(·|H)ui(zi, θ) > EmargΘ−i

µi(·|H)ui(ȳθ′−i , θ) and ki ≥ 3. But then choos-

ing (zi, ki + 1) at H makes θi better off at H than si. Contradiction.

Step 2. If (si, θ̄i) ∈ W 1
i and H2

i = {(θ′, (dj)j<i,j∈I(θ′)) ∈ H} ∈ Hi(si)\{H
1

i } for some

θ′ ∈ Θ, then si(H
2

i ) = dBRi .

17In this proof, we use concise notation for information sets. E.g., given θ′ ∈ Θ, {(θ′, (dj)j<i,j∈I(θ′)) ∈ H}
denotes {(θ, (dj)j<i,j∈I(θ′)) ∈ H : θ = θ′}.
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Proof: By Step 1, if si is rational for θ̄i then si(H
1

i ) = θ′i for some θ′i ∈ Θi. If for θ′−i ∈ Θ−i,

H2

i = {(θ′, (dj)j<i,j∈I(θ′)) ∈ H} is a second-stage information set in Hi(si) then i ∈ I(θ′).

Suppose that si(H
2

i ) 6= dBRi then si(H
2

i ) = (zi, ki) for some (zi, ki) ∈ Yi(θ
′
−i) × {1, 2, 3, . . .}.

An argument similar to that of Step 1 shows that si cannot be sequentially rational as θ̄i

prefers to play (zi, ki + 1) instead of (zi, ki) at H2

i .

Step 3. If (β, θ′−i, ψi) ∈ B(16), l = jβ,θ
′
−i,ψi , θ̄l = θ

β,θ′−i,ψi

j and sl ∈ Q
1
l (θ̄l), then sl(H

1

l ) 6= θ′l.

Proof: Suppose that sl(H
1

l ) = θ′l, then sl admits l’s second stage information set H =

{(m
β,θ′−i,ψi

i , θ′−i)}. Suppose further that (sl, θ̄l) ∈ ρl(µl) for some CPS µl and let ψl ∈ ∆(Θ−l),

kl ≥ 1 be such that Cl(m
β,θ′−i,ψi

i , θ′−i, sl(H)) = 1
kl
yβ,θ

′
−i,ψi + (1 − 1

kl
)xβ,θ

′
−i,ψi(ψl). By (16), we

must have

EmargΘ−l
µl(·|H)ul(x

β,θ′−i,ψi(ψl), θ̄l, θ−l) > EmargΘ−l
µl(·|H)ul(y

β,θ′−i,ψi , θ̄l, θ−l).

Therefore, playing dψl,kl+1
l instead of sl(H) gives θ̄l a higher expected utility at H. Contra-

diction, hence (sl, θ̄l) /∈ ρl(µl) and sl /∈ Q1
l (θ̄l).

Step 4. If si ∈ Si satisfies si(H
1

i ) = θ̄i and si(H
2

i ) = dBRi for all H2

i ∈ Hi(si)\{H
1

i }, then

si ∈ Q∞
i (θ̄i).

Proof: Let

Si(θi) =
{

si ∈ Si : si(H
1

i ) = θi and si(H
2

i ) = dBRi for all H2

i ∈ Hi(si)\{H
1

i }
}

for all i ∈ I , θi ∈ Θi. Let s̄i ∈ Si(θ̄i) and let µi be a CPS such that 1) for all H ∈ H̄i({s̄i} ×
⋃

θ−i∈Θ−i
S−i(θ−i)) there are θ̄−i ∈ Θ−i and sH−i ∈ S−i(θ̄−i) such that µi((s

H
−i, θ̄−i)|H) = 1

and 2) for all H = {(θ̄i,m
β,(θ̄i,θ

′
−i,l

),ψl
l , θ′−i,l) ∈ H} ∈ Hi there is some sH−i ∈ S−i(H) such that

µi((s
H
−i, θ−i)|H) = ψ

BR,β,(θ̄i,θ′−i,l),ψl
i (θ−i) for all θ−i ∈ Θ−i. We claim that s̄i ∈ ri(θ̄i, µi).

To see this, consider H ∈ Hi({s̄i} ×
⋃

θ−i∈Θ−i
S−i(θ−i)). We have

Uµii (s̄i, θ̄i,H) = ui(f(θ̄), θ̄) ≥ Uµii (si, θ̄i,H)

for all si ∈ Si(H), as

• for any si ∈ Si(H) such that si(H
1

i ) ∈ Θi

ζ(si, s
H
−i) ∈

{

α

(

1

ki
ȳθ̄−i +

(

1−
1

ki

)

zi

)

+(1− α)f(θ′i, θ̄−i) :

θ′i ∈ Θi, zi ∈ Yi(θ̄−i), ki ≥ 1, α ∈ [0, 1]

}
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and θ̄i prefers f(θ̄) over f(θ′i, θ̄−i) (the social choice function f is epIC) and over any

element of Yi(θ̄−i) (by construction of the reward set).

• for any si ∈ Si(H) such that si(H
1

i ) /∈ Θi

ζ(si, s
H
−i) ∈

{

ȳθ̄−i
}

∪

{

(1− ε)

((

1

2
+

1

ki

)

ȳθ̄−i +

(

1

2
−

1

ki

)

zi

)

+ εyβ,θ̄−i,ψi :

zi ∈ Yi(θ̄−i), ki ≥ 2, (β, ψi) s.t. (β, θ̄−i, ψi) ∈ B(16)

}

for some ε such that (18) holds and θ̄i prefers f(θ̄) over any element of Yi(θ̄−i) (by

construction of the reward set).

Next, consider H = {a} ∈ Hi where a = (θ̄i,m
β,(θ̄i,θ′−i,l),ψl
l , θ′−i,l). Condition (16) holds for

l = i(β), θl(β) and θ′l(β) and (θ̄i, θ
′
−i,l), ψl. Moreover, i = jβ,(θ̄i,θ

′
−i,l

),ψl . We have

Uµii (s̄i, θ̄i,H) ≥ Uµii (si, θ̄i,H)

for all si ∈ Si(H), as

ζ(s̄i, s
H
−i) = (1− ε)Cl(a, s

H
l (H)) + εyβ,(θ̄i,θ

′
−i,l

),ψl

and

ζ(si, s
H
−i) = (1− ε)Cl(a, s

H
l (H)) + ε

(

1

ki
yβ,(θ̄i,θ

′
−i,l

),ψl +

(

1−
1

ki

)

xβ,(θ̄i,θ
′
−i,l

),ψl(ψi)

)

for some ε ∈ (0, 1), ki ≥ 2 and ψi ∈ ∆(Θ−i), and by the definition of µi and by (16),

EmargΘ−i
µi(·|H)ui(y

β,(θ̄i,θ
′
−i,l

),ψl , θ̄i, θ−i) ≥ EmargΘ−i
µi(·|H)ui(x

β,(θ̄i,θ
′
−i,l

),ψl(ψi), θ̄i, θ−i)

for all ψi ∈ ∆(Θ−i).

Because s̄i ∈ ri(θ̄i, µi) we have s̄i ∈ Q1
i (θ̄i). By a symmetric argument,

⋃

θ−i∈Θ−i
(S−i(θ−i)×

{θ−i}) ⊆W 1
−i. Hence µi ∈ Π1

i and s̄i ∈ Q2
i (θ̄i). And so on. By induction, s̄i ∈ Q∞

i (θ̄i).

Step 5. If s̄i ∈ Q∞
i (θ̄i) and s̄i(H

1
i ) = θ′i, then Θ

θ′i�θ̄i
−i = ∅.

Proof: To see this, consider the deception β such that for all i ∈ I and all θi ∈ Θi,

βi(θi) = {θ′i ∈ Θi : ∃si ∈ Q∞
i (θi), si(H

1

i ) = θ′i}

(Step 4 ensures that β is indeed a deception). Suppose that β is unacceptable, and hence by

hypothesis d-refutable. Then for i = i(β), θi = θi(β) and θ′i = θ′i(β) and for each θ′−i ∈ Θ
θ′i�θi
−i

and ψi ∈ ∆(Θ−i) with ψi(β
−1
−i (θ

′
−i)) = 1, (15) or (16) holds. In fact, we know that (15) must
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be true: Suppose (15) is false for θ′−i, ψi. Then (β, θ′−i, ψi) ∈ B(16). Let l = jβ,θ
′
−i,ψi and

θl = θ
β,θ′−i,ψi

j ∈ supp(ψi). If sl ∈ Q∞
l (θl) then sl ∈ Q1

l (θl) and sl(H
1

l ) 6= θ′l by Step 3. Hence

θ′l /∈ βl(θl) by the definition of β, and θl /∈ supp(ψi). Contradiction. Moreover, since Θ
θ′i�θi
−i 6= ∅

and f is semi-strict epIC, f(θ′i, θ−i) 6= f(θ) for all θ−i ∈ Θ−i and hence Θ
θ′i�θi
−i = Θ−i.

Hence for i, θi, θ
′
i and for all θ′−i ∈ Θ−i and ψi ∈ ∆(Θ−i) with ψi(β

−1
−i (θ

′
−i)) = 1, (15)

is true. Let si ∈ Q∞
i (θi) be such that si(H

1

i ) = θ′i. Since si ∈ Q∞
i (θi) there must be some

µi ∈ Π∞
i against which si is a sequential best response for θi. By Step 1, (s−i, θ−i) ∈ W∞

−i

implies (sj(H
1

j))j 6=i ∈ Θ−i = Θ
θ′i�θi
−i . Therefore, there exists θ′−i ∈ Θ−i such that µi(S̄−i(θ

′
−i)×

Θ−i|H
1

i ) > 0, where

S̄−i(θ
′
−i) =

{

s−i ∈ S−i : s̄j(H
1

j) = θ′j for all j 6= i
}

.

Let

ψi(θ−i) =
µi(S̄−i(θ

′
−i)× {θ−i}|H

1

i )

µi(S̄−i(θ′−i)×Θ−i|H1

i )
for all θ−i ∈ Θ−i.

Then ψi(β
−1
−i (θ

′
−i)) = 1 and (β, θ′−i, ψi) ∈ B(15) and i ∈ I(θ′). Therefore i has an information

set H2
i = {(θ′, (dj)j<i,j∈I(θ′)) ∈ H}. Note that ψi = margΘ−i

µi(·|H
2

i ). By (15) for θ′−i and ψi

Eψiui(x
β,θ′−i,ψi , θi, θ−i) > Eψiui(f(θ

′), θi, θ−i)

and there is ki large enough so that playing (xβ,θ
′
−i,ψi , ki) at H2

i provides θi with a strictly

higher expected utility than playing si(H
2

i ) (which by Step 2 equals dBRi ). Contradiction to

si being sequentially rational for θi with respect to µi. Hence β must be acceptable and Step

5’s claim be true.

Step 6. By Steps 1,2 and 5, if the profile s ∈ S is weakly rationalizable for θ ∈ Θ then

C(ζ(s)) = f(θ). The proof of Step 4 implies that Γ is pepWB. Hence Γ wr-implements f . �

This completes the proof of Proposition 3. Note that Steps 1 and 2 of the proof imply

that the iterated elimination of never-best sequential best responses converges in finitely many

rounds, so that there is a k ∈ N such that W k′ =W∞ for all k′ ≥ k.

A Mechanisms

This appendix formally defines a mechanism. We first recall the definition of an extensive

game form (see e.g. Kuhn (1953); our notation is close to that of Osborne and Rubinstein

(1994)).

Definition 11 An extensive game form is a tuple Γ = 〈H, (Hi)i∈I , P, C〉 such that
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• H is a nonempty set of finite sequences with codomain A (where A is a nonempty metriz-

able topological space of actions) such that with h every initial subsequence of h is in H.18

We let A(h) = {a ∈ A : (h, a) ∈ H} for h ∈ H, let T = {h ∈ H : A(h) = ∅} be the set

of terminal histories and call ∅ ∈ H the initial history. We write h′ � h if h′ ∈ H is an

initial subsequence of h ∈ H.

• P : H\T → I.

• for each i ∈ I, Hi is a partition of {h ∈ H\T : P (h) = i} such that19

– for all H ∈ Hi and all h, h′ ∈ H, A(h) = A(h′).

– for all H ∈ Hi and all h, h′ ∈ H, if h ∈ H ∈ Hi, h
′ � h and h′ 6= h then h′ /∈ H.

• C : T → Y .

Note that we allow for infinitely many actions at any history but not for infinitely many

time periods (histories are finite sequences), and that � partially orders H. We define a binary

relation � on Hi by H′ � H if there are h′ ∈ H′ and h ∈ H such that h′ � h, and extend this

relation to H̄i = Hi ∪ {{∅}} (if necessary) by letting {∅} � H for all H ∈ H̄i. A strategy for

player i in an extensive game form Γ is a function si : Hi → A such that for all H ∈ Hi, there

is an h ∈ H such that si(H) ∈ A(h). The set of player i’s strategies admitting information set

H ∈ Hj , j ∈ I , is defined as Si(H) = {si ∈ Si : ∃s−i ∈ S−i∃h ∈ H, h � ζ(s)}.

To ensure that our definition of a Bayesian agent (made in Subsection 2.2) is sensible, we

restrict attention to extensive game forms with perfect recall and no trivial decision nodes. In

order to define perfect recall, we let H(si) =
{

h ∈ H : ∃s−i ∈ S−i, h � ζ(s)
}

denote the set of

histories admitted by si ∈ Si.

Definition 12 A mechanism is an extensive game form Γ = 〈H, (Hi)i∈I , P, C〉 such that

• (perfect recall) for all i ∈ I, si ∈ Si and H ∈ Hi, if H ∩H(si) 6= ∅ then H ⊆ H(si).

• (no trivial decisions) for all (h, a) ∈ H there exists an action a′ 6= a such that (h, a′) ∈ H.

A mechanism is finite if H is finite. A mechanism is static if each agent has exactly one

information set, if at any two non-terminal histories of equal length the same player is active,

and if all terminal histories have the same length.

18Let A be a nonempty set. A finite sequence h of length n ∈ N with codomain A is a function h :
{1, . . . , n} → A (where {1, . . . , n} denotes ∅ if n = 0). A finite sequence g : {1, . . . , k} → A is an initial
subsequence of the finite sequence h : {1, . . . , n} → A if k ≤ n and gl = hl for all l ∈ {1, . . . , k}. Note that
∅ (the unique finite sequence mapping {1, . . . , 0} to A) is an initial subsequence of every finite sequence with
codomain A. For h : {1, . . . , n} → A and a ∈ A, (h, a) denotes the finite sequence that maps {1, . . . , n+ 1}
into A, has h as an initial subsequence and maps n+ 1 to a.

19A partition of {h ∈ H\T : P (h) = i} is a set of nonempty, pairwise disjoint sets Hn ⊆ {h ∈ H\T : P (h) = i}
such that

⋃
Hn = {h ∈ H\T : P (h) = i}.
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B Virtual Implementation in Weakly Rationalizable Strategies

In this appendix, we show that for the purpose of virtually wr-implementing social choice

functions restricting attention to static mechanisms is without loss of generality. This stands

in contrast to results for exact wr-implementation (Sections 3 and 4) and also for virtual

implementation in strongly rationalizable strategies (Müller, 2012). For these implementation

concepts, dynamic mechanisms can implement strictly more social choice functions than static

mechanisms.

In order to characterize virtual wr-implementation we do not need to resort to infinite

mechanisms. Hence in this appendix, we restrict attention to finite (and thus automatically

well-behaved) mechanisms. Trivially, dynamic mechanisms can virtually wr-implement any so-

cial choice function that static mechanisms can virtually wr-implement. To show the converse,

recall Bergemann and Morris’ (2009b) characterization of robust virtual implementation (rv-

implementation), an implementation concept that equals virtual wr-implementation in static

mechanisms. A key role in their characterization plays strategic indistinguishability. Roughly,

two payoff type profiles are strategically indistinguishable if no mechanism provides them

with incentives that guarantee that their strategies induce different outcomes. Bergemann

and Morris’ (2009b) results imply that

• a social choice function is rv-implementable if and only if it is epIC and robustly mea-

surable, that is, if and only if it is epIC and assigns the same outcome to statically

strategically indistinguishable payoff type profiles, and that

• two payoff type profiles are statically strategically indistinguishable if and only if they

are “inseparable.”

Any social choice function that is virtually wr-implementable by dynamic mechanisms must

be epIC and must assign the same outcome to wr-strategically indistinguishable payoff type

profiles (compare Proposition 5). Here, wr-strategically indistinguishable means strategically

indistinguishable by dynamic mechanisms under weak rationalizability. Proposition 4 will

imply that two payoff type profiles are wr-strategically indistinguishable exactly if they are

inseparable, and therefore exactly if they are statically strategically indistinguishable. Conse-

quently, any virtually wr-implementable social choice function must be robustly measurable.

In summary, we obtain that a social choice function is virtually wr-implementable in dynamic

mechanisms if and only if it is epIC and robustly measurable, that is, if and only if it is

rv-implementable (Corollary 2).

B.1 Inseparability and WR-Strategic Indistinguishability

Bergemann and Morris (2009b) introduced strategic indistinguishability by static mechanisms.
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In Müller (2012) we extend their notion to dynamic mechanisms for the solution concept of

strong rationalizability. The idea behind strategic indistinguishability under weak rationaliz-

ability (wr-strategic indistinguishability) is the same as in these papers: two payoff type profiles

are strategically indistinguishable if there exists no mechanism in which the observed behavior

(= path of play) of the profiles is guaranteed to be different.

Definition 13 We write θ ∼Γ θ′ and say that the payoff type profiles θ ∈ Θ and θ′ ∈ Θ are

Γ-wr-strategically indistinguishable if Γ is a mechanism and ζ(s) = ζ(s′) for some s ∈ Q∞(θ),

s′ ∈ Q∞(θ′). We write θ ∼ θ′ and say that θ and θ′ are wr-strategically indistinguishable if

θ ∼Γ θ′ for every mechanism Γ.

Wr-strategic indistinguishability generalizes Bergemann and Morris’ original notion of

strategic indistinguishability by static mechanisms. In fact, θ and θ′ are statically strate-

gically indistinguishable if and only if θ and θ′ are Γ-wr-strategically indistinguishable for all

static mechanisms Γ.

In order to characterize wr-strategic indistinguishability, we review the idea of insepara-

bility (see Bergemann and Morris, 2009b, 2011). Let R denote the set of preference relations

on Y , that is, the set of complete and transitive binary relations on Y . For θi ∈ Θi and

ψi ∈ ∆(Θ−i) let Rθi,ψi ∈ R denote the preference relation such that for all y, y′ ∈ Y

yRθi,ψiy
′ iff Eψiui(y, θ) ≥ Eψiui(y

′, θ).

For Ψ−i ⊆ Θ−i let

Ri(θi,Ψ−i) = {R ∈ R : R = Rθi,ψi for some ψi ∈ ∆(Θ−i) with ψi(Ψ−i) = 1}

be the set of θi’s preference relations arising from beliefs supported by Ψ−i. We say that

Ψ−i ⊆ Θ−i separates Ψi ⊆ Θi if

⋂

θi∈Ψi

Ri(θi,Ψ−i) = ∅,

that is, if not all of the payoff types in Ψi can have a preference relation in common whenever

agent i believes that −i’s payoff types are in Ψ−i. Using this definition, for all i ∈ I we let

Ξ0
i = 2Θi be the set of all subsets of Θi and recursively define the set of (k + 1)-inseparable

subsets of Θi by

Ξk+1
i = {Ψi ∈ Ξki : ∃Ψ−i ∈ Ξk−i,Ψ−i does not separate Ψi},

k ∈ N. Then Ξ∞
i =

⋂

k∈N Ξki is the set of all inseparable subsets of Θi . Finally, we say that
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the payoff type profiles θ, θ′ ∈ Θ are inseparable if
∏

i∈I{θi, θ
′
i} ∈ Ξ∞.

Proposition 4 shows that inseparable payoff type profiles are wr-strategically indistinguish-

able. Its proof generalizes Bergemann and Morris’ (2009b) proof for the static case.

Proposition 4 If θ ∈ Θ and θ′ ∈ Θ are inseparable then θ ∼ θ′.

Proof. We are going to prove a slightly stronger claim: if θ, θ′ ∈ Θ are inseparable payoff

type profiles, then Q∞,Γ(θ) ∩Q∞,Γ(θ′) 6= ∅ for any mechanism Γ.

Take any mechanism Γ. We claim that for each k ∈ N there exists, for each i ∈ I and

Ψi ∈ Ξ∞
i , a strategy ski (Ψi) ∈ Si such that (ski (Ψi), θi) ∈ W k

i for all θi ∈ Ψi. Obviously this

claim holds for k = 0. Suppose now it holds for k′ ∈ N. Fix an arbitrary i ∈ I and Ψi ∈ Ξ∞
i .

Since for some k̂ ∈ N, Ξ∞
i = Ξki for all k ≥ k̂, there exists Ψ−i ∈ Ξ∞

−i that does not separate

Ψi. Hence, letting R ∈
⋂

θi∈Ψi
Ri(θi,Ψ−i), for each θi ∈ Ψi there exists ψθii ∈ ∆(Θ−i),

ψθii (Ψ−i) = 1, such that R
θi,ψ

θi
i

= R. Let mi : H̄i → S−i be such that

• mi({∅}) = sk
′

−i(Ψ−i),

• mi(H) ∈ S−i(H) for all H ∈ H̄i,

• if H′ � H and mi(H
′) ∈ S−i(H), then mi(H) = mi(H

′).

For each θi ∈ Ψi we let µθii be the CPS that at information set H ∈ H̄i prescribes the belief

which puts marginal probability one on mi(H) and has ψθii as marginal distribution on the

opponents’ payoff types.20 Pick a θ̂i ∈ Ψi and a si ∈ ri(θ̂i, µ
θ̂i
i ). Then

∑

θ−i∈Θ−i

ψθ̂ii (θ−i)ui(C(ζ(si,mi(H))), (θ̂i, θ−i)) ≥
∑

θ−i∈Θ−i

ψθ̂ii (θ−i)ui(C(ζ(s′i,mi(H)), (θ̂i, θ−i))

for all H ∈ Hi(si) and all s′i ∈ Si(H). By construction, payoff type θi with CPS µθii has

preferences R over Y , for all θi ∈ Ψi and all H ∈ Hi. Hence if we let sk
′+1
i (Ψi) equal si

then sk
′+1
i (Ψi) ∈ ri(θi, µ

θi
i ) for all θi ∈ Ψi. Because µθii ∈ Πk

′

i for all θi ∈ Ψi, this implies

(sk
′+1
i (Ψi), θi) ∈W k′+1

i for all θi ∈ Ψi. This completes the proof by induction, and since there

exists k̂ ∈ N such that W k =W∞ for all k ≥ k̂, we actually proved that there exists, for each

i ∈ I and Ψi ∈ Ξ∞
i , a strategy s∞i (Ψi) ∈ Si such that (s∞i (Ψi), θi) ∈W∞

i for all θi ∈ Ψi. �

If two payoff type profiles are inseparable then they are wr-strategically indistinguishable,

and hence statically strategically indistinguishable. Bergemann and Morris (2009b, Theorem

1) show that if the agents’ preferences satisfy the following no complete indifference condition

20Formally, let µθii : 2Σ−i ×H̄i → [0, 1] satisfy µθii ((mi(H), θ−i)|H) = ψθii (θ−i) for all θ−i ∈ Θ−i and H ∈ H̄i.
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then any two statically strategically indistinguishable payoff type profiles are inseparable.21

This proves the upcoming corollary.

Definition 14 (No Complete Indifference.) The no complete indifference condition is sat-

isfied if for each i ∈ I, θi ∈ Θi and ψi ∈ ∆(Θ−i) there exist x, x′ ∈ X such that

Eψiui(x, θ) > Eψiui(x
′, θ).

Corollary 1 If the no complete indifference condition is satisfied then θ ∼ θ′ if and only

if θ and θ′ are inseparable (and therefore, if and only if θ and θ′ are statically strategically

indistinguishable).

B.2 Necessary and Sufficient Conditions for Virtual WR-Implementation

A social choice function is virtually wr-implementable if it can be approximately wr-implemented

in the following sense, where ‖ · ‖ denotes the Euclidean norm on R#X .

Definition 15 Social choice function f is ε-wr-implementable if there is a finite mechanism

Γ such that ‖C(ζ(s)) − f(θ)‖ ≤ ε for all (s, θ) ∈ W∞. Social choice function f is virtually

implementable in weakly rationalizable strategies (virtually wr-implementable) if it is ε-wr-

implementable for every ε > 0.

Ex-post incentive compatibility (see Definition 9) is necessary for robust and robust virtual

implementation in static mechanisms (see Bergemann and Morris, 2005, 2009b, 2011). The

same is true for exact wr-implementation (Proposition 2) and, as Proposition 5 clarifies, for

virtual wr-implementation in dynamic mechanisms. Proposition 5 furthermore establishes

robust measurability as a second necessary condition for virtual wr-implementation. Recall

that Bergemann and Morris (2009b) call a social choice function f robustly measurable if

f(θ) = f(θ′) whenever θ ∈ Θ and θ′ ∈ Θ are inseparable.

Proposition 5 Suppose the no complete indifference condition is satisfied. If social choice

function f is virtually wr-implementable, then f is epIC and robustly measurable.

Proof. Suppose f is virtually wr-implementable. We first show that f is robustly measur-

able. Take ε > 0, then there is a mechanism Γ that ε-wr-implements f . Suppose θ and θ′ are

inseparable, then by Corollary 1, θ ∼ θ′. Hence there are s ∈ Q∞(θ) and s′ ∈ Q∞(θ′) such

that ζ(s) = ζ(s′). By ε-wr-implementation, ‖C(ζ(s))− f(θ)‖ ≤ ε and ‖C(ζ(s′))− f(θ′)‖ ≤ ε

and thus ‖f(θ)− f(θ′)‖ ≤ 2ε. Since this is true for all ε > 0, f(θ) = f(θ′).

21Bergemann and Morris (2009b) also assume that all agents’ payoff type spaces Θi have the same cardinality,
but this assumption is for convenience only.
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Müller (2012, Proposition 1) implies that f is epIC.22 �

Bergemann and Morris (2009b) show that if the following economic property (which implies

the no total indifference condition) is satisfied then a social choice function is rv-implementable

if and only if it is epIC and robustly measurable. Let ȳ denote the uniform lottery placing

probability 1
#X on each x ∈ X.

Definition 16 (Economic Property) The economic property is satisfied if there exists a

profile of lotteries (zi)i∈I ∈ Y I such that for each i ∈ I and θ ∈ Θ both ui(zi, θ) > ui(ȳ, θ) and

uj(ȳ, θ) ≥ uj(zi, θ), j 6= i.

If f is rv-implementable, then it trivially is virtually wr-implementable. Therefore we

obtain the following characterization of virtual wr-implementation.

Corollary 2 Suppose the economic property is satisfied. Then social choice function f is

virtually wr-implementable if and only if f is epIC and robustly measurable (and therefore, if

and only it is rv-implementable).
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