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Abstract

Warm-glow refers to other-serving behavior that is valuable for the actor per se,

apart from its social implications. We provide axiomatic foundations for warm-

glow by viewing it as a form of preference for larger choice sets driven by one’s

desire to have freedom to act selfishly. Specifically, an individual who experiences

warm-glow values the availability of selfish options even if she plans to act un-

selfishly. Briefly put, warm-glow necessitates free will. Our theory accommodates

the empirical findings on motivation crowding out and provides clear-cut predic-

tions for empirically distinguishing between warm-glow and other motivations for

prosocial behavior, a task of obvious importance for policy. The choice behav-

ior implied by our theory subsumes Riker and Ordeshook (1968) on voting and

Andreoni (1990) on the provision of public goods.
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1 Introduction

In the last decades, there has been a surge of interest in models of prosocial behav-

ior that depart from the traditional approach which explains such behavior with

the classical notion of altruism. It has been argued, for instance, that charitable

donations may be motivated by a desire for status, acclaim or self-satisfaction

(e.g., Arrow, 1972; Becker, 1974; Andreoni, 1989, 1990; Glazer and Konrad, 1996;

Bénabou and Tirole, 2006). In the voting literature, Riker and Ordeshook (1968)

provide a remarkable example, maintaining that the act of voting in a democracy

can be perceived as a civic duty and that performing this duty may lead to a

feeling of satisfaction for voters. More recently, Coate and Conlin (2004) and Fed-

dersen and Sandroni (2006) envision citizens who deem voting as an ethical duty

whenever this is justified from a rule-utilitarian perspective.

Often, the applied models do not formally elaborate on the connections be-

tween such alternative forms of individual satisfaction and the prosocial actions in

question, perhaps because the underlying factors are highly complicated.1 Rather,

a typical model proposes a decision maker who derives an intrinsic utility from a

prosocial action, apart from the instrumental value of that action as a means of

influencing others’ welfare. Since the seminal papers of Andreoni (1989, 1990), the

notion of warm-glow payoff refers to such intrinsic utility associated with proso-

cial actions. In these papers, Andreoni shows that the empirical findings on public

good provision can be satisfactorily explained in a model of warm-glow, as opposed

to classical models of altruism which lead to questionable predictions.2 Riker and

Ordeshook (1968), on the other hand, is, perhaps, a more striking example of a

warm-glow model, for in their setup the intrinsic utility associated with the act

of voting (as a civic duty) corresponds to a warm-glow payoff that is completely

independent of instrumental concerns. This structure of their model enables Riker

and Ordeshook to explain voter turnout in large elections where voting is typi-

cally a time-consuming, costly activity that is highly unlikely to influence others’

welfare.

Despite their merits, applied warm-glow models are often criticized as being ad

hoc,3 presumably because the models are silent about what drives the warm-glow

1Among few notable exceptions, Bénabou and Tirole (2006) study the interplay among al-
truistic motivation, material incentives, and concerns for social reputation in a game-theoretic
model. They show that the introduction of monetary incentives may crowd out prosocial behav-
ior by weakening the reputational motivation for such behavior.

2We elaborate more on Andreoni’s findings in Section 4.
3As Andreoni (2006) writes on p. 1222, “Putting warm-glow into the model is, while in-
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payoff associated with a prosocial action, while we do not yet have a foundational

work that supports the idea that taking a prosocial action can be intrinsically

valuable.4

In this paper, we provide utility representation theorems for some classes of

preference relations over sets of social allocations. While these representations

allow us to formalize the notion of warm-glow payoff, the conceptual interpretation

of the assumptions that we impose on preference relations does not necessitate one

to presume that prosocial actions may be valuable per se. In this sense, we show

that the relevance of the notion of warm-glow for human behavior is a necessary

consequence of more primitive properties of preference relations. In particular,

one of our key assumptions is based on the idea that people may be concerned

with their freedom to be selfish, a phenomenon that is supported by considerable

evidence, as we discuss below. Thus, a particular implication of our findings is

that in an important class of applied warm-glow models, the associated behavior

can be seen essentially as a form of preference for freedom to be selfish.

Our starting point is that a prosocial action can be valuable per se only if it

is an act of free will. While this would seem self-evident on many occasions,5 a

plethora of evidence shows that restricting one’s freedom to behave selfishly may

actually motivate that person to take more selfish actions. One set of evidence in

this direction comes from economic experiments. For example, Falk and Kosfeld

(2006) examine a principal-agent problem in which the agent chooses a productive

activity a that incurs costs for herself while increasing the principal’s payoff. The

key feature of the experiment is that the principal determines the set of options

available to the agent. Falk and Kosfeld find that if the principal imposes a lower

bound for a, then, compared to the case in which the principal does not impose

such a restriction, a majority of the agents select a lower level of a . As Falk and

Kosfeld note (pp. 1611-1612), a potential reason for this finding is that “agents

do not like to be restricted, and perceive control as a negative signal of distrust.”

Similarly, Fehr and Rockenbach (2003) and Houser, Xiao, McCabe, and Smith

tuitively appealing, an admittedly ad hoc fix.” However, as Andreoni (2006) also noted, the
experimental findings on public good provision provide strong support for the notion of warm-
glow (see, e.g., Andreoni, 1993, 1995; Palfrey and Prisbrey, 1997; Bolton and Katok, 1998;
Andreoni and Miller, 2002; Eckel, Grossman, and Johnston, 2005). Momentarily, we will dis-
cuss another set of findings which suggest that intrinsic motivations do exist and they may be
crowded out by extrinsic incentives.

4We will discuss the related decision-theoretic work momentarily.
5Indeed, in the aforementioned literature on prosocial behavior, the word “giving” refers to

a voluntary act.
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(2008) find that trustees may return less when investors use sanctions to enforce

demanding outcomes.

Another set of evidence comes from psychological experiments testing Brehm’s

(1966) theory of reactance, which maintains that a threat to someone’s freedom

to choose an option may lead that person to a psychological state which involves

an enhanced level of attraction to that option. In one experiment of this sort,

Horowitz (1968) has subjects listen to the tape-recorded voice of a graduate stu-

dent who is in need of help because he had made some miscalculations regarding a

(separate) sensory-deprivation experiment. Horowitz finds that subjects’ tendency

to help the graduate student increases significantly if they are told that they are

under no obligation to help the graduate student.6

In line with these findings, our first representation theorem describes an agent

who is concerned with her freedom to be selfish. For a generic social allocation x

in R`
+, let the first component x1 stand for the private consumption of the agent.

Our first theorem delivers a weakly increasing function U : R`
+ × R+ → R such

that the (indirect) utility of a set A of allocations equals

V (A) = max
x∈A

U(x,max
y∈A

y1). (1)

This representation suggests that when faced with the set A, the agent would select

the allocation that maximizes U(x,max
y∈A

y1) over A. Accordingly, U(x,max
y∈A

y1) is

interpreted as the utility of selecting x from A. Since U is weakly increasing in its

last argument, a key implication of the representation is that the utility of selecting

a given allocation x increases with the maximum possible private consumption,

max
y∈A

y1. In turn, this makes (1) a representation of preference for freedom to be

selfish as max
y∈A

y1 can naturally be viewed as a measure of the agent’s freedom to

be selfish.

According to this representation, a fine (or any other restriction) on selfish

behavior that decreases the maximum possible private consumption actually de-

creases the utility of selecting any available allocation. Moreover, the resulting

decrease in the utility of selecting a prosocial allocation may well be larger than

the decrease in the utility of selecting a more selfish allocation. This, in turn,

implies that the agent can select a prosocial allocation from a given set but switch

6Berkowitz (1973) provides an early review of experiments on people’s helping behavior that
support the reactance theory. It is also worth mentioning the works of Clee and Wicklund (1980),
and Kirchler (1999), which discuss the implications of reactance theory on consumers’ behavior
and tax payers’ attitude, respectively.
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to a more selfish allocation upon the introduction of a fine. Hence, the choice

behavior implied by (1) is compatible with the aforementioned evidence on the

adverse effects of restricting one’s freedom to behave selfishly.

While representation (1) is a natural starting point, it is by no means the only

representation one can imagine that is compatible with the notion of preference

for freedom to be selfish. Our second representation theorem delivers a weakly

increasing function U : R`
+ × R+ → R such that the utility of a set A is given by

V (A) = max
x∈A

U(x,max
y∈A

y1 − x1). (2)

This representation suggests that the agent’s utility of selecting a given allocation

x is an increasing function of max
y∈A

y1 − x1. In turn, the term max
y∈A

y1 − x1 is the

private cost that the agent incurs if she decides to select allocation x from menu A.

Put differently, max
y∈A

y1−x1 tells us how much more private consumption the agent

could enjoy if she were not to select x. When viewed in this way, representation

(2) establishes an alternative relation between the agent’s welfare and her freedom

to be selfish.

Just as before, representation (2) is compatible with the evidence on the ad-

verse effects of restricting one’s freedom to behave selfishly. The difference between

representations (1) and (2) lies in their implications about the effects of subsidiz-

ing prosocial actions. To see this point, note that U(x,maxy∈A y1) increases with

x1 (keeping maxy∈A y1 constant), while U(x,maxy∈A y1 − x1) may or may not in-

crease with x1 because the term maxy∈A y1 − x1 decreases with x1. According to

representation (1), therefore, a private reward for prosocial behavior can never

backfire as the utility of such behavior would increase with the reward. By con-

trast, representation (2) is also compatible with opposite instances. In line with

these observations, we find that the only difference between the characterization

of the two representations lies in the welfare effects of private rewards on prosocial

actions.

In terms of the implied choice among allocations, the generality added by

representation (2) is motivated by mounting evidence pointing to the fact that

rewarding prosocial actions sometimes lead to negative outcomes. A remarkable

finding of this sort is due to Gneezy and Rustichini (2000), who show that offering

monetary rewards to children for volunteer work may decrease their performance.

Another example is the work of Mellström and Johannesson (2010), which shows

that the supply of female blood donors decreases almost by half when they are

4



offered monetary compensation. Such findings are usually considered as evidence

for the view that extrinsic motivations may crowd out intrinsic motivations, which

has attracted much attention in economics and psychology.7 This, in turn, takes

us back to the notion of warm-glow.

To see why representation (2) embodies a notion of warm-glow, consider a

prosocial allocation x and a more selfish allocation y with y1 > x1. If both x and

y are available, then the act of selecting x can be considered a prosocial action

taken by free will, which would lead to utility U(x, y1−x1). If, on the other hand,

x is the only available option, the act of selecting x would merely be a necessity

leading to utility U(x, 0). Therefore, the amount U(x, y1 − x1) − U(x, 0) can be

considered as an intrinsic payoff associated with the prosocial act of selecting x

over y, while U(x, 0) gives us the instrumental payoff resulting from consumption of

x.8 With this notion of warm-glow in our packet, in Section 4.1, we will show that

the implied choice behavior subsumes Andreoni’s (1989, 1990) warm-glow model.

In Section 4.2, we will extend the scope of representation (2) by reinterpreting the

notion of an allocation as a vector that lists the (expected) material payoffs of the

individuals in the society. In Section 4.3, we apply this extended representation

to the problem of voter turnout in large elections, and show that the associated

behavior subsumes the civic-duty model of Riker and Ordeshook (1968). In this

way, we lay foundations for two prominent models from different subfields of social

choice theory.

In fact, our theory not only lays foundations for the notion of warm-glow,

but also arms us with clear-cut predictions that can be utilized to empirically

distinguish between alternative motivations for prosocial actions. For example,

Andreoni’s (1989, 1990) static model cannot distinguish pure altruism from warm-

glow motivation with quasilinear utility functions. However, in a two-period

consumption-saving problem, we can easily distinguish between these two motiva-

tions even with quasilinear temporal utility functions, for in this setup the agents’

preferences over budget sets become important. We demonstrate this point in

Section 4.1.1 with an example of a two-period bequest-giving problem. In this

example, the saving and bequest-giving behavior of an agent is sensitive to re-

7The idea that monetary rewards or punishments may crowd out intrinsic motivations dates
back to Titmuss (1970), who also considers the specific example of blood donation. Starting
with Deci (1975), a group of cognitive psychologists advocate the same view. Frey and Jegen
(2001) provide an extensive survey of the evidence collected by economists and psychologists in
support of the motivation crowding out theory.

8Of course, a similar notion of warm-glow can be derived from representation (1), albeit in a
less satisfactory way.
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distributive policies if she is motivated by warm-glow, but not if she is altruistic,

while the two types behave in exactly the same way if they face the same budget

set in period 2. At a more fundamental level, the two motivations entail quite

distinct attitudes towards larger choice sets: an agent motivated by warm-glow

enjoys the freedom of choice offered by larger sets, while a purely altruistic agent

is neutral towards the size of the choice set that she faces.9

At this point, we should address an important limitation of representation (2).

Just as in Riker and Ordeshook (1968), the notion of warm-glow payoff induced by

representation (2) is completely independent of the social implications of the action

in question. On one hand, this makes representation (2) a powerful tool in suitable

settings, such as voter-turnout models or public goods games in which there is a

one-to-one correspondence between agents’ self-sacrifice and their contribution to

the public goods. On the other hand, this limitation leads to two difficulties.

First, if we apply the representation to an arbitrary set of allocations, the implied

choice behavior may become awkward on occasion. For example, the agent can

enjoy “burning money” or making a marginal contribution to someone at the cost

of hurting everybody except that person. We avoid such awkward implications

by imposing suitable restrictions on the domain of the agent’s preference relation.

In Section 3.2.1, we argue that this is a natural modeling choice in view of the

experiments on motivation crowding out. The second difficulty is that even in

this restricted domain, there seems to be no reason to believe that the intrinsic

utility of a prosocial action should truly be independent of its social implications.

As a solution to this problem, we also provide a multi-dimensional extension of

representation (2), which takes into account the social implications of an action

in the calculus of warm-glow. While this is certainly a useful generalization, we

postpone it to Appendix A, as it makes the connections between the notions of

warm-glow and freedom of choice less transparent.

As a final methodological remark, it should be noted that many applications

of our theory focus on how the agent’s welfare and allocation choice may change

in response to the behavior of another actor (such as the government or a princi-

pal) who chooses the menu available to the agent.10 If such a secondary actor is

present, the preference relation over menus that we model in this paper reflects

9In fact, we can think of a third motivation characterized by preference for smaller sets —
namely, the urge to avoid negative emotions associated with selfish behavior such as shame or
guilt. Prosocial behavior driven by such negative emotions has been addressed recently in Noor
and Ren (2011), and Dillenberger and Sadowski (2012), which we discuss below.

10For example, all aforementioned experiments on motivation crowding out are of this sort.
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psychological preferences of the agent. For our purposes, it is necessary to distin-

guish “preference” from “choice,” as the latter is more intimately linked with the

notions of freedom of choice and warm-glow. Indeed, if the agent has to select

a menu among others, her behavior would typically depend on the size of the

collection of menus that she faces because of the freedom motive. Similarly, the

agent could experience a second form of warm-glow, driven solely by the choice

of a particular menu (as opposed to the planned choice of allocation). One could

address such concerns only in a model of reference-dependent menu choice (just

as the allocation choice implied by our theory is reference dependent11). By con-

trast, in the present paper, we assume that non-instrumental motives influence

the agent’s preference relation over menus only through the planned choice of

allocations. This often makes it difficult to interpret our theory as a model of

menu choice, but there are some notable exceptions. For instance, in some cases

of interest, such as the bequest-giving example mentioned above, the first-stage

behavior of the agent may not be publicly observable, unlike the giving behavior

in the second stage. In such choice situations, our theory can be applied without

major hesitation, assuming that prosocial behavior leads to warm-glow experience

only when it is publicly observable.12 In Section 6, we will elaborate more on these

issues. In particular, we will discuss how the agent’s psychological preferences can

be recovered by suitably designed survey questions, which put the agent into the

position of a passive recipient (of menus).

Next, we discuss the related decision-theoretic literature. Section 2 introduces

the formal setup, while Section 3 presents the axiomatic foundations and the

main representation results. Section 4 discusses the applications of our basic

warm-glow representation. Section 5 is devoted to a choice-theoretic study of

the implied second-stage behavior for a fixed menu, while Section 6 discusses the

distinction between the first and second stages in our theory. Section 7 relates

our representations to that of Kreps (1979), and Section 8 concludes. All proofs

and some other supplementary material, including the multi-dimensional version

11Some special forms of utility functions in our representations, such as additively separable
or quasilinear forms, induce choice behavior that is consistent with the Weak Axiom of Revealed
Preferences in the second stage, but such forms are too restrictive, especially for the purposes of
applied work that is concerned with distinguishing warm-glow motive from pure altruism on the
basis of second-stage behavior. In particular, regarding representation (2), Andreoni’s (1989,
1990) additional assumptions do not rule out reference dependence. (See also footnote 17 and
related discussion in Section 3.)

12Admittedly, however, this assumption corresponds to a narrow interpretation of the notion
of warm-glow. In particular, we cannot think of a necessary connection between the notion of
freedom of choice and observability of the prosocial action in question.
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of our warm-glow representation, are relegated to appendices.

1.1 Related Literature

Starting with Sen (1985, 1988), many economists have recognized that there may

be a deeper connection between a person’s well-being and freedom of choice than

that entailed by the traditional, instrumentalist view. In a nutshell, this literature

maintains that a large set of alternatives, which offers a certain degree of freedom

of choice, may be more valuable to the decision maker than the alternative that

she selects from that set (Sen, 1985, 1988; Puppe, 1996; Sugden, 1998, among

others).13 The focus of this strand of literature is the measurement of freedom of

choice associated with menus.

Dillenberger and Sadowski (2012) study a negative form of prosocial behavior

driven by shame associated with selfish acts. Their main representation result

describes an agent who exhibits a preference for smaller menus. The present paper

has further differences in terms of the implied choice among social allocations for a

fixed menu. Most remarkably, according to Dillenberger and Sadowski, increasing

the private cost of an action can only decrease the likelihood of observing that

action, which is at odds with the literature on motivation crowding out. Similarly,

their approach cannot explain the act of voting in large elections if this is a costly

activity with almost negligible social consequences, as posited by some scholars

(e.g., Feddersen and Sandroni, 2006).

Noor and Ren (2011) show, in an experiment, that giving rates in a dictator

game increase significantly if payments are offered with delay. To explain this

observation, they propose a model of a decision maker who is intrinsically con-

cerned with others’ welfare but who faces the temptation to behave selfishly. As

in Dillenberger and Sadowski (2012), this is a model of preference for smaller sets

that does not accommodate the findings on motivation crowding out.

Cherepanov, Feddersen, and Sandroni (2012), and Saito (2013) are concurrent

papers that are also concerned with the foundations of the notion of warm-glow.

Cherepanov et al. (2012) propose an abstract model of choice among alternatives,

holding fixed the menu that the decision maker faces. Their main point is that,

unlike pure altruism, the relevant forms of non-altruistic behavior may lead to

violations of the Weak Axiom of Revealed Preferences (henceforth WARP). In

13This contention contrasts with the “preference for flexibility” approach that focuses on the
instrumental value of larger menus driven by choice uncertainty (Kreps, 1979; Dekel, Lipman,
and Rustichini, 2001). In Section 7, we relate the present paper to Kreps (1979).
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concert with this observation, in our model, the utility function that governs the

choice of allocations is menu-dependent. Yet, the choice behavior that corresponds

to our model is not within the scope of Cherepanov et al. (2012), because that

paper models the “warm-glow payoff” as a fixed number that does not depend

on the menu that the agent faces or the allocation that leads to the warm-glow

experience. By contrast, in our model, the warm-glow payoff increases with the

private cost associated with the allocation in question, which is the key feature

that makes our model compatible with the literature on motivation crowding out.

Saito (2013) focuses on preference relations over menus of allocations of lot-

teries.14 His representation result delivers an additively separable utility function,

which contributes to uniqueness properties of the representation. However, in the

second stage, this additively separable structure implies a mode of behavior that

cannot be distinguished from that induced by classical altruism for a given menu.

In particular, Saito’s model is not compatible with any of the applied warm-glow

models mentioned above.

2 Setup

We consider an individual, called the agent, in a society. There is one private

good and, at most, one public good.15 Set X := R`
+ where ` ≥ 2 is an integer. We

refer to an element x := (x1, ..., x`) of X as an allocation. The first component

x1 stands for the agent’s private consumption. In turn, any other component xi

represents either the private consumption of another individual i or the amount of

the public good (if it exists). Thus, ` equals the number of consumption variables

related to the decision problem in question, and it can exceed the cardinality of

the society by, at most, one.

The agent’s preferences are described by a binary relation % over a collection

of subsets of X denoted by A. Each set in A represents a menu — that is, a set

of allocations from which the agent will make a choice in a subsequent stage. Our

representation theorems have certain implications about the agent’s second-stage

choice behavior. Accordingly, when discussing our axioms on %, we will build

upon a suitable interpretation of how the agent might be planning to behave in

the second stage.

14Saito (2013) relates the intrinsic joy associated with a prosocial action to the notion of
“pride.” His model also accommodates “shame” and “temptation to act selfishly.”

15In Section 4.2, we discuss how our theory can be extended to include multiple private and
public goods.
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The collection of all nonempty compact subsets of X is denoted by K. We

equip K with the Hausdorff metric dH (induced by the Euclidean norm).16 In

representation (1), we will let A = K, but in the other representations we will

take A as a proper subset of K by imposing some restrictions on the collection of

menus. (See Section 3.2.)

Given a pair of allocations x, y, throughout the paper, x ≥ y means xi ≥ yi

for i = 1, ..., `, while x > y means x ≥ y and xi > yi for some i. (For Euclidean

spaces of other dimensions, the binary relations ≥ and > are defined analogously.)

Moreover, x−1 stands for the vector (x2, ..., x`).

3 Basic Representation Theorems

In this section, we will provide axiomatic characterizations of representations (1)

and (2). We start with a standard rationality requirement.

A1: Weak Order (WO). % is a complete and transitive binary relation on A.

The next axiom states that increasing the size of a menu cannot harm the

agent.

A2: Setwise Monotonicity (SM). For any A,B ∈ A, if A ⊇ B, then A % B.

A key assumption in the standard model of menu choice is the following:

A ∪B ∼ A or A ∪B ∼ B. (3)

The logic behind this assumption consists of two parts: (i) if the agent can perfectly

anticipate which alternative she would select from a menu, she should evaluate

this menu solely with that particular alternative; and (ii) if the agent will select

a given alternative from A ∪ B, she must also select it from any subset (A or B)

that contains the alternative. Hence, on one hand, property (3) describes a purely

instrumentalist agent who views a menu solely as a means to her final choice.

On the other hand, (3) also entails that the agent’s second-stage choice behavior

must be consistent with WARP. While the literature on freedom of choice raises

normative objections to this instrumentalist view, the aforementioned evidence

suggests that the degree of freedom offered by choice sets may influence the agent’s

16dH(A,B) := max {maxx∈A miny∈B ‖x− y‖ , maxy∈B minx∈A ‖x− y‖} for any pair of
nonempty, compact sets A,B ⊆ R`. (Here, ‖·‖ stands for the Euclidean norm.)
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behavior in a way that is not consistent with WARP.17 Therefore, we allow a menu

to be strictly better than any of its subsets in the following particular way.

A3: Weak Instrumentalism (WI). Let A,B,C ∈ A and suppose that C =

A∪B. If there exists a y ∈ A∩B such that y1 ≥ x1 for every x ∈ C, then C ∼ A

or C ∼ B.

Normatively, the idea behind this axiom is that if both A and B contain

an allocation that secures the maximum possible private consumption offered by

A ∪B, then joining A and B should not lead to a stronger experience of freedom

to be selfish. In such cases, (WI) demands the agent’s preferences to be consistent

with property (3).

To see why (WI) is compatible with the experiments on freedom to be selfish,

consider a set of three allocations C := {x, y, z} (that belongs to A) and suppose

that y1 > z1 > x1. Then, (WI) implies either C ∼ {x, y} or C ∼ {y, z}. If only the

former equivalence holds, we may as well have {y, z} ≺ C � {x, z} (in violation of

(3)). Indeed, this is the pattern that we would expect if the agent were to select

z from {x, z} while selecting x from C. In turn, the related experimental findings

describe precisely such a switch towards private consumption when subjects face

choice sets that restrict their freedom to behave selfishly.

It should also be noted that in the scenario above, (WI) rules out the case

C � {x, y}, although menu C provides a higher degree of freedom compared to

{x, y}. In other words, the presence of z should not influence the agent’s welfare

despite the fact that z1 > x1. Rather, what matters is the maximum possible

private consumption in a given menu and the allocation that the agent plans to

select from that menu.18 In line with this point, in Appendix B, we will show

that for every menu A in A there exist a pair of allocations x, y ∈ A such that

A ∼ {x, y}. Here, either x or y maximizes the private consumption of the agent

over A, while the other allocation is interpreted as the agent’s planned choice from

A. (See Claim 2 and expression (10) in Appendix B.)

Although (WI) gives a special role to the maximum possible private consump-

tion as a determinant of the agent’s welfare, the axiom is silent about the nature

of this relationship. How does the agent’s welfare depend on the maximum possi-

17This is particularly evident in the experiment of Falk and Kosfeld (2006).
18In this regard, our approach is akin to that of several other papers, including Gul and

Pesendorfer (2001) and Dillenberger and Sadowski (2012), although these papers are concerned
with modeling preference for smaller menus. It is also worth noting that (WI) is a novel axiom,
but in the papers that we just mentioned, an analogous property can be deduced from other
axioms. Needless to say, our axioms are independent of each other.
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ble private consumption, given the allocation that she plans to select? Our next

axiom answers this question.

A4: Freedom to Be Selfish (FS). Let x, y, y′ ∈ X be such that y1 ≥ x1, and

suppose that {x, y} and {x, y′} both belong to A. Then, {x} ≺ {x, y} � {y} and

y′1 ≥ y1 imply {x, y′} % {x, y} .

In line with our earlier discussion, if y1 ≥ x1, our interpretation of the pattern

{x} ≺ {x, y} � {y} is that the agent plans to select x from {x, y}, and that this

act is more valuable than the mere consumption of x because of the freedom to

select y in the former case. Moreover, the logic of (WI) implies that in such cases,

the utility of selecting x from {x, y} should depend solely on y1, the maximum

possible private consumption. In turn, if this relationship is positive — i.e., if the

freedom to choose a higher level of private consumption leads to higher welfare —

then the agent should be better off whenever {x, y} is replaced with a menu of

the form {x, y′} with y′1 ≥ y1. Indeed, the agent can always select x from {x, y′}
while enjoying a stronger perception of freedom to be selfish than that entailed by

{x, y}. This is the content of the axiom.

Observe that if {x} ≺ {x, y} � {y} and y1 ≥ x1, the additional utility of

selecting x from {x, y}, as opposed to the mere consumption of x, can be seen as

the warm-glow payoff associated with the former act. Remarkably, (FS) implies

that this notion of warm-glow is independent of how the agent’s choice of an

allocation compares with other available allocations in terms of other individuals’

welfare. For instance, if xi − yi is substantially larger than xi − y′i for i = 2, ..., `,

in terms of what the others receive, selecting x over y can be viewed as a much

more generous act than selecting x over y′. If the intrinsic value of a prosocial

action for the agent depends on the social consequences of that action, then the

agent would typically prefer {x, y} to {x, y′}.
From a conceptual point of view, this is certainly a serious limitation. In Ap-

pendix A, we will relax (FS), thereby providing an extension of our theory that

incorporates such social concerns into the calculus of warm-glow. It should be

noted, however, that the applied warm-glow literature is concerned mainly with

phenomena that cannot be explained by one’s concerns for others, presumably be-

cause the classical notion of altruism is already based on such concerns. Therefore,

it will come as no surprise that the second-stage choice behavior compatible with

(FS) is rich enough to subsume several, prominent models. (See Section 4.) Aside

from being simpler, a further advantage of our current approach is that it takes as

primitive the notion of preference for freedom to be selfish and derives the notion
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of warm-glow payoff as a necessary consequence. The more general model that we

propose in Appendix A makes the connections between the notions of warm-glow

and freedom of choice less transparent.

Our next axiom rules out negatively interdependent preferences over singletons.

A5: Singleton Monotonicity (SiM). {x} % {y} for any x, y ∈ X with x ≥ y.

It is worth noting that (SiM) also allows for a purely selfish attitude over singletons,

as would be represented by the function {x} → x1.

We proceed with a standard continuity property.

A6: Continuity (C). For each A ∈ A, the sets {B ∈ A : B % A} and {B ∈ A :

A % B} are closed in A.

The axioms that we have introduced so far are necessary conditions for both

representations (1) and (2). The difference embodied in these representations

lies in how the utility of {x, y} changes with x when {x} ≺ {x, y} � {y} and

y1 ≥ x1. Next, we clarify this difference, and state full characterizations of the

two representations.

3.1 A Representation of Preference for Freedom to Be

Selfish

Representation (1) requires the following axiom, which we state for the case of a

preference relation over K.

A7: Coordinatewise Monotonicity (CM). Let x, x′, y ∈ X be such that

y1 ≥ x1. Then, {x} ≺ {x, y} � {y} and x′ ≥ x imply {x′, y} % {x, y}.

Following our interpretation of (FS), this axiom formalizes the idea that if

x′ ≥ x, and if the agent plans to selects x from a menu, then replacing x with x′

would make the agent better off. Surely, such a change does not have negative

implications for the agent’s freedom to behave selfishly and would only improve

the set of available allocations from a material point of view. Therefore, (CM)

appears to be a natural property from an intuitive point of view.

Unfortunately, however, this property is not compatible with the evidence

provided by the literature on motivation crowding out. For example, consider a

pair of allocations x, y ∈ X, where x represents a prosocial allocation. Suppose

that {x} ≺ {x, y} � {y}, which, as usual, means that the agent plans to select x

over y. As we discussed earlier, the related experiments suggest that offering an
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ill-advised private reward r for x could backfire; that is, the agent could select y

from {(x1 + r, x−1), y}. But in this case, it would only be natural to expect the

pattern {(x1 + r, x−1), y} ∼ {y}, which contradicts (CM) given that {y} ≺ {x, y}.
Putting aside this problem for a while, we now state our first representation

theorem, which is based on (CM).

Theorem 1. A binary relation % on A := K satisfies the axioms (A1)-(A7) if and

only if there exists a weakly increasing and continuous function Uf : X ×R+ → R
such that, for each A,B ∈ K,

A % B iff max
x∈A

Uf(x,max
y∈A

y1) ≥ max
x∈B

Uf(x,max
y∈B

y1).

In what follows, we refer to such a function Uf as an f-index for %.

The next item in our agenda is to provide a characterization of representation

(2) by modifying (CM) in line with the experiments on motivation crowding out.

3.2 Basic Warm-Glow Representation

Let us denote by KP the collection of all sets A ∈ K that satisfy the following two

properties:

(i) A consists of Pareto efficient allocations; that is, x, y ∈ A and x ≥ y imply

that x = y.

(ii) There exists a y∗ ∈ A such that xi ≥ y∗i for every x ∈ A and i = 2, ..., `.

In our next representation, we will assume that A = KP . Note that when ` equals

2, property (ii) trivially follows from (i). In this case, for any A ∈ K that consists of

efficient allocations, there is a unique allocation y∗ in A such that y∗1 = max{x1 :

x ∈ A}, which simultaneously satisfies y∗2 = min{x2 : x ∈ A}. Property (ii)

filters higher dimensional sets that have an analogous feature: For each A ∈ KP ,

there exists a unique allocation y∗(A) in A such that y∗1(A) = max{x1 : x ∈ A}.
Moreover, y∗(A) is also the unique allocation in A that satisfies (ii). (We omit

the proof of this simple observation.) In what follows, the most selfish option

in a menu A ∈ KP refers to y∗(A). The crucial implication of (ii) is that in

the second stage, if the agent decides to select an allocation x with x1 < y∗1(A),

the private consumption that she gives up is converted into a public good or the

private consumption of some other agents, without reducing the goods available

to any other agent. Thus, y∗(A) can also be seen as the least generous option

available to the agent, in terms of her influence on others’ consumption.
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These restrictions on A lead to some technical problems because they reduce

the power of property (C). We will solve these problems with the help of an

additional continuity axiom that we will introduce shortly. In turn, the restrictions

that we impose on A serve to avoid the aforementioned conceptual difficulties that

come about when representation (2) is applied on an arbitrary set of allocations.

Our next representation requires the following modification of (CM).

A7*: Coordinatewise Monotonicity* (CM*). Let x, x′, y ∈ X be such that

y1 ≥ x1 and {x, y} ∈ KP . Then, {x} ≺ {x, y} � {y} and x′ ≥ x imply that

{x′, (a, y−1)} % {x, y} for every a ≥ y1 + (x′1 − x1).

To gain insight, suppose, again, that the agent is offered a reward r if she

decides to select a prosocial allocation x over another allocation y, which would

effectively transform the choice set of the agent from {x, y} to {(x1 + r, x−1), y}.
Unlike (CM), property (CM*) allows for those cases in which such a reward can

make the agent worse off, in line with the related experiments, as discussed earlier.

More specifically, the axiom tells us that rather than “rewards,” the agent would

certainly enjoy “presents” that are not contingent on her behavior. Put formally,

we can be sure that {(x1 + r, x−1), (y1 + r, y−1)} % {x, y}.
Our final axiom is a continuity property that we need because of the restrictions

imposed on the domain of %.

A8: Extension Continuity (EC). Let x′, y′ ∈ X be such that {x′, y′} ∈ K\KP .

Then, for any A,B ∈ KP with A � B, there exists a neighborhood N of {x′, y′}
such that one of the following holds:

(i) A � {x, y} for every {x, y} ∈ N ∩ KP .

(ii) {x, y} � B for every {x, y} ∈ N ∩ KP .

To understand the axiom and its motivation, it should be noted that the rep-

resentation that we seek requires the existence of a continuous weak order %′ on

K which coincides with % on KP . The existence of such a binary relation %′ can

be assured only if % is well-behaved on KP . It turns out that property (EC) is

all we need to this end. The axiom tells us that if A � B, then all doubletons

in KP that are sufficiently close to a set {x′, y′} ∈ K\KP must either be strictly

worse than A (which corresponds to the case B %′ {x′, y′}) or strictly better than

B (which corresponds to the case {x′, y′} �′ B.)

We are now ready to state our second representation theorem.

Theorem 2. A binary relation % on A := KP satisfies the axioms (A1)-(A6),

(A7*) and (A8) if and only if there exists a weakly increasing and continuous

15



function Uw : X × R+ → R such that, for each A,B ∈ KP ,

A % B iff max
x∈A

Uw(x,max
y∈A

y1 − x1) ≥ max
x∈B

Uw(x,max
y∈B

y1 − x1).

Although Theorem 2 simply provides an alternative framework for modeling

the notion of preference for freedom to be selfish, in Section 4, we will show that

the implied second-stage choice behavior subsumes some prominent warm-glow

models. In what follows, warm-glow representation refers to the representation

notion characterized in Theorem 2. Moreover, w-index will refer to a function

Uw as in the theorem.

To recapitulate, the term Uw (x,maxy∈A y1 − x1) gives us the utility associated

with the act of selecting x from a menu A. Accordingly, the least satisfying menu

that admits the choice of x is the singleton {x}. This menu leads to utility

Uw (x, 0) , which represents the payoff resulting merely from the consumption of x.

In turn, the warm-glow payoff associated with the act of selecting x from A is

defined as Uw (x,maxy∈A y1 − x1)− Uw (x, 0). A key feature of the representation

is that the warm-glow payoff is a weakly increasing function of the difference

between the maximum possible private consumption that the agent can attain

and her actual choice of private consumption. We denote by λ the last argument

of Uw, which corresponds to this difference.

It is important to note that if Uw(x, λ) is constant in λ for each x, then the

agent never experiences warm-glow payoff. In this case, the representation reduces

to the classical utility maximization: A % B iff maxx∈A U (x, 0) ≥ maxx∈B U (x, 0)

for every A,B ∈ A. Of course, % admits such a w-index if and only if (3) holds

for any pair of menus. In turn, the corresponding agent can be considered purely

altruistic (unless Uw is merely a function of x1). Another case of special interest

is when Uw depends only on x1 and λ. This corresponds to a purely egoistic agent

who is motivated solely by warm-glow and her private consumption.

We proceed with a technical note that proves useful in what follows.

Lemma 1. Let % be a binary relation on A := KP that satisfies the axioms

(A1)-(A6), (A7*) and (A8). Then, for any continuous function V : KP → R that

represents %, there exists a w-index Uw such that V (A) = max
x∈A

Uw(x,max
y∈A

y1−x1)

for every A ∈ KP .19

We close this section with a discussion of the restrictions that we imposed on

19The proof of this lemma is implicit in the proof of Theorem 2. (See Appendix B.)
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the domain of %.

3.2.1 On the Assumption A = KP

Unlike Theorem 1, the second-stage choice behavior implied by our warm-glow

representation leads to some awkward conclusions when applied to an arbitrary

set of allocations. The issue is that if a set A contains an allocation x′ and another

allocation of the form (x′1−r, x′−1) for some r > 0, the solution of the optimization

problem max
x∈A

Uw(x,max
y∈A

y1 − x1) may well be (x′1 − r, x′−1), despite the fact that

this allocation is Pareto dominated by x′. In an earlier version of this paper,

we proposed an alternative warm-glow representation that restricts the calculus of

warm-glow to efficient allocations. However, this is, at best, only a partial solution

to the underlying difficulty. For example, it would be an equally awkward situation

if the agent were to select an allocation of the form (x′1−r, x′2+ε, x′3−r′, ..., x′`−r′)
over x′, which can hardly be seen as a prosocial action, especially if r′ is not so

much smaller than ε. At a fundamental level, these difficulties stem from the fact

that property (CM*) is designed to model a decision maker who enjoys making

a self-sacrifice on occasion (regardless of the social consequences of the action in

question). For our purposes, it is necessary to allow for such preferences because

in the experiments on motivation crowding out, the private reward (coming from

the experimenter’s pocket) typically has negligible social consequences, and yet it

proves detrimental for the agent by reducing the private cost of prosocial behavior.

That is, the strength of warm-glow that people experience does, indeed, seem to

depend on their private sacrifice (presumably, in addition to the social implications

of the action in question).20

In view of these observations, it seems to be in order to restrict our attention

to those cases in which the agent’s private sacrifice leads to an unambiguous

improvement in others’ welfare, no matter how small this improvement might be.

This is precisely the role of assumptions (i) and (ii), which define the class of

relevant menus, A = KP .

It should also be noted that this framework remains rich enough to cover

many interesting applications. For example, in applied models of charity, the

agent often has an initial endowment of the private good, and the choice set A

20The representation that we will propose in Appendix A incorporates social concerns into the
calculus of warm-glow, but this is simply a more general version of Theorem 2 that still relates
the strength of warm-glow experience to the agent’s private sacrifice. Hence, in line with our
remarks above, this more general approach is also of little help with regard to the problem at
hand.
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in question consists of all allocations that the agent can obtain by distributing

her endowment among the ` consumption variables, given other factors such as

government transfers, prices, and the technology that transforms the private good

into the public good. Such choice sets are within the scope of our analysis, for

by privately consuming all her endowment, the agent typically can maximize her

private consumption while minimizing her contributions to all other variables. In

addition, in the voting literature, the case of paternalistic citizens provides another

suitable setting that has attracted considerable attention. (More on this in Section

4.)

4 On Applied Warm-Glow Models

4.1 Andreoni’s Model

Andreoni (1989, 1990) studies a game on public good provision between a set of

individuals {1, ..., I}. He assumes that there is one public good and one private

good and that one unit of the private good can be converted into one unit of

the public good with a linear technology. Each individual i is endowed with an

amount wi of the private good (or, equivalently, wi units of dollars) that she can

allocate between her private consumption, xi, and her gift to the public good,

gi. Moreover, the government levies lump sum taxes τi. So, G :=
∑I

i=1 gi is

the total private contributions to the public good, and T :=
∑I

i=1 τi is the total

tax receipts that are fully used for the provision of the public good. A generic

agent — say, agent 1 — takes as given the private consumption and gifts of others,

(x2, g2), ..., (xI , gI), and chooses a consumption-gift pair (x1, g1) so as to solve an

optimization problem of the following form:

maxU(x1, G+ T, g1) subject to x1 + g1 + τ1 = w1

and 0 ≤ x1 ≤ w1 − τ1.
(4)

Here, U is a weakly increasing function on R3
+, which captures altruistic concerns21

and warm-glow experience by its second and third arguments, respectively.

21As Andreoni (1989, 1990) points out, the private consumption of a given individual would
act as if it were a public good from others’ perspective when others are altruistic in the classic
sense. Therefore, in the literature on philanthropy, it is customary to view one’s concern for the
public good as a form of altruism. By the same token, the models often take into account either
one’s concern for others’ private consumption, as in Roberts (1984), or one’s concern for the
public good, as in Andreoni (1989, 1990), but not both. For conceptual clarity, in the present
paper, we have chosen to refer to a public good separately.
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In our terminology, then, agent 1 faces the menu

A := {(x1, x2, ..., xI , G+ T ) : 0 ≤ x1 ≤ w1 − τ1, x1 + g1 + τ1 = w1,

G+ T = τ1 + g1 +
∑I

i=2 τi + gi}.

Clearly, with X := RI+1
+ , this menu belongs to KP and the most selfish al-

location, y∗(A), equals (w1 − τ1, x2, ..., xI , τ1 +
∑I

i=2 τi + gi). Thus, upon solv-

ing for g1 in the budget constraint, we see that g1 = y∗1(A) − x1. That is,

g1 is simply the last argument of a w-index in our terminology. The function

Uw(x, λ) := U(x1, xI+1, λ), defined on X × R+, qualifies as a w-index, and the

agent’s allocation choice maximizes Uw (x, y∗1(A)− x1) over the menu A. 22 To

summarize, second-stage behavior implied by our warm-glow representation sub-

sumes Andreoni’s model.

The main contribution of Andreoni’s model is that, under suitable assump-

tions, it makes the equilibrium amount of the public good sensitive to fiscal poli-

cies and income distribution. This differs from the corresponding models of pure

altruism, which predict that government grants and subsidies should crowd out

voluntary contributions dollar-for-dollar and that the total supply of the public

good should be independent of the income distribution.23 Andreoni’s approach is

supported by substantial empirical evidence on incomplete crowding out (Abrams

and Schmitz, 1978, 1984; Clotfelter, 1985; Steinberg, 1989) and non-neutrality of

income distribution (Hochman and Rodgers, 1973).

While Andreoni’s findings are based on some reasonable assumptions on the

form of the utility indices, these assumptions may be restrictive from a founda-

tional point of view. For instance, Andreoni assumes that the private consump-

tion and the gift of an agent are both strictly increasing functions of her wealth,

which rules out quasilinear utility indices. Indeed, it can easily be seen that in

problem (4), the allocation choice implied by the purely altruistic utility index

U = u(x1) +G+T would simply coincide with that induced by the purely egoistic

22Although we have set ` := I + 1 for the domain of the preference relation, in this particular
setup, we could also let ` = 2 since the agents cannot influence the private consumption of
others.

23For theoretical findings on crowding out under pure altruism, see Warr (1982), Roberts
(1984), Bernheim (1986), and Andreoni (1988), among others. Neutrality of income distribu-
tion under pure altruism has been demonstrated by Warr (1983) and Bergstrom et al. (1986).
However, these findings are subject to some exceptions: if only a subset of the agents make do-
nations, government spending and income distribution may influence the equilibrium amount of
the public good (Bergstrom et al., 1986). Moreover, under alternative tax schemes (as opposed
to the lump-sum taxes that we discussed above), government subsidies may also be effective
(Andreoni and Bergstrom, 1996).
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utility index U = u(x1) + g1. On a related note, Bergstrom, Blume, and Varian

(1986, Section 2) emphasize that with quasi-homothetic utility indices, income

transfers would be neutral even in a model of impure altruism like Andreoni’s.

(For a related finding, see, also, Proposition 2 of Andreoni (1990)). Finally, we

should recall that taking into account the boundary solutions further complicates

the task of distinguishing pure from impure altruism (see footnote 23).

In view of these remarks, our menu-based approach not only provides founda-

tions for Andreoni’s model, but also arms us with clear-cut distinctions between

purely altruistic agents and those motivated by warm-glow. Indeed, to test the

hypothesis of pure altruism, in an economic experiment, one can simply check

whether the subjects violate property (3) systematically. Moreover, our axioms

on preferences over menus can be tested with suitably-designed survey questions

(see Section 6). Next, we show that when applied to consumption-saving prob-

lems, our theory can replicate the qualitative predictions of Andreoni (1990) even

if these predictions would no longer be valid in an analogous static model.

4.1.1 Bequest Giving with Quasilinear Utility Indices

Consider two generations within a family: parents and an heir. In period 1,

the parents allocate their wealth, w0, between their private consumption, x0, and

saving, w1 = w0−x0. At the beginning of period 2, they receive an income support

ρ(w1), which is financed by a tax on the heir. We assume that ρ : R+ → [0, w0] is a

differentiable function. The parents allocate their adjusted income between their

period 2 consumption, x1, and a bequest, g1 = w1 + ρ(w1)− x1. The heir’s initial

wealth also equals w0. She moves last and consumes all of her adjusted income,

x∗2 = w0 + g1 − ρ(w1) = w0 + w1 − x1. We now examine the parents’ behavior in

a subgame perfect equilibrium.

First of all, the menu that the parents face in period 2 takes the form

A(x0, w0) := {(x1, x∗2) : 0 ≤ x1 ≤ w1 + ρ(w1), x
∗
2 = w0 + w1 − x1}.

This menu belongs to KP with X := R2
+, and the most selfish allocation is given

by (w1 + ρ(w1), w0 − ρ(w1)). Thus, we also see that g1 = y∗1(A(x0, w0))− x1.
The parents’ problem in period 1 is to make a choice among the pairs of the

form (x0, A(x0, w0)). Let W be a utility function over {(x0, A) : x0 ∈ R+, A ∈ A}
that represents the parents’ preferences. In view of Lemma 1, if these preferences

restricted to {(x0, A) : A ∈ A} satisfy the properties (A1)-(A6), (A7*), and (A8)
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for each x0, we can find a w-index Ux0 : R3
+ → R such that

W (x0, A(x0, w0)) = max{Ux0(x1, x2, g1) : (x1, x2) ∈ A(x0, w0)}. (5)

Let us now consider a purely egoistic utility index U e
x0

= u(x0) + u(x1) + g1,

and a purely altruistic one Ua
x0

= u(x0) + u(x1) + x2, where u : R+ → R+ is a

function that satisfies the Inada conditions. Just as in the corresponding model of

Andreoni, after substituting for g1 and x∗2, we immediately see that for any fixed

(x0, w0), the maximizers of Ua
x0

and U e
x0

over the set A(x0, w0) coincide. That is,

in this setup, we cannot distinguish between the two types of parents based on

period 2 behavior.

However, the saving behavior of the two types are typically different, because

the income support influences the marginal value of saving for egoistic parents

by altering their perception of freedom in period 2. Indeed, among the interior

solutions of period 2 (which correspond to large values of adjusted income w1 +

ρ(w1)), the value on the right side of (5) takes the form u(x0) + u(x1) + w1 +

ρ(w1)−x1 for egoistic parents, while it takes the form u(x0)+u(x1)+w0 +w1−x1
for altruistic parents (here, x1 is the number that satisfies u′(x1) = 1). Thus, the

marginal value of saving equals 1 for altruistic parents and 1 + ρ′(w1) for egoistic

parents. In particular, if ρ is a decreasing function of w1 (which corresponds to

a progressive income support), the marginal value of saving for egoistic parents

is smaller, and, hence, they save less than altruistic parents. If w1 + ρ(w1) is

increasing in w1, this also implies that egoistic parents leave a smaller bequest.

Moreover, while ρ is neutral in the case of altruistic parents, the saving of egoistic

parents and the consumption of the heir increase with an upward shift in ρ′(·).
One conclusion that follows from this exercise is that dynamic models can

sharpen the predictions of earlier static models on warm-glow. In particular, we

can explain non-neutrality of redistributive policies even with quasilinear util-

ity functions. Furthermore, the welfare implications of a given policy can differ

fundamentally, depending on whether the agents are altruistic or motivated by

warm-glow.

4.2 Alternative Sets of Social Outcomes

Before discussing another application, we need to clarify how our theory can be

extended to alternative sets of social outcomes. To this end, suppose that the set

of allocations X is of the form X = X1× · · · ×X`, where Xi is a separable metric
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space for each i. Then, under suitable assumptions on the behavior of % over the

collection of singletons {{x} : x ∈ X}, we can find an aggregator ϕ : R` → R
and functions πi : Xi → R for i = 1, ..., `, such that {x} % {y} if and only if

ϕ(π1(x1), ..., π`(x`)) ≥ ϕ(π1(y`), ..., π`(y`)).
24 If we abstract from public goods so

that xi corresponds to the private consumption of individual i (which may also be

a random variable), just as in Harsanyi’s (1953, 1955) theory of utilitarianism, it

may be appropriate to interpret πi as a measure of well-being of individual i from

the perspective of the decision maker in question, who acts as a social planner. In

fact, that πi depends solely on xi would suggest that one view this function as the

material payoff of individual i.

Once we agree on this interpretation, we can restate properties (i) and (ii)

that define the collection of relevant menus in Section 3.2, as well as the axioms

(A1)-(A6), (A7*), and (A8) in terms of the payoff vectors (π1(x1), ..., π`(x`)) and

utility possibility sets of the form {(π1(x1), ..., π`(x`)) : x ∈ A} ⊆ R`. In partic-

ular, we could let y∗π(A) be an allocation that maximizes the function π1 over a

qualifying menu A, and give the role of y∗1(A)−x1 in the warm-glow representation

of Theorem 2 to the difference π1(y
∗π
1 (A))− π1(x1). By pursuing this approach, it

is a straightforward exercise to obtain an extension of Theorem 2 that delivers a

utility representation of the form

Vπ(A) := max
x∈A

U (π1(x1), ..., π`(x`), π1 (y∗π1 (A))− π1(x1))

for a function U : R` × R+→ R (we omit the details of this derivation).

Remark 1. When individuals’ utility from private and public goods can be

separated from each other, the above argument can also be applied in a framework

with a finite number of public goods.

4.3 Voting as a Civic Duty

Explaining voter turnout in large elections has been a major challenge for political

economists. The difficulty stems from the fact that when many people vote, the

probability of a single voter being decisive (pivotal) is close to zero, whereas voting

incurs significant costs. In an earlier attempt to resolve this paradox, Riker and

24A large body of literature is devoted to the study of axiomatic foundations of such repre-
sentations that also demand the aggregator to be additive (see Wakker (1989, Chapter 3) and
references therein). In turn, a nonadditive form of the representation can be derived by imposing
a weak separability property along the lines of Mak (1984).
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Ordeshook (1968) suggest that the act of voting may be valuable per se, as the

citizens may perceive it as a civic duty.

Suppose that there are two candidates, L and R, and that the agent in question

prefers candidate L. Specifically, let us assume that the victory of L will bring a

material payoff u > 0 to our agent, whereas the victory of R is worth 0. Given

other voters’ behavior, let pj > 0 be the probability of being pivotal for the agent

if she votes for candidate j, and let P be the probability of winning for candidate L

if she abstains. Finally, let c denote the cost of voting and d the payoff associated

with the act of voting, as posited by Riker and Ordeshook.

The implied expected payoff scheme reads as follows:

(P + pL) u− c+ d if the agent votes for L,

Pu if the agent abstains,

(P − pR) u− c+ d if the agent votes for R.

Thus, the agent would never vote for R, while the decision between abstaining

and voting for L is determined by the following simple rule:

vote for L if and only if pLu + d ≥ c.

In particular, no matter how small pL might be, our agent would vote if d ≥ c.

While it is widely accepted that voters may be motivated by a sense of duty,

some scholars have recently proposed extensions that can explain several other

aspects of voters’ behavior, as well as the high turnout rates themselves (see,

e.g., Coate and Conlin, 2004; Feddersen and Sandroni, 2006). These alternative

models are sensitive to the specification of voters’ statistical distribution since they

relate the turnout rate of a group of individuals to their likelihood of influencing

the election outcome.25 Riker-Ordeshook’s approach, however, is compatible with

high turnout rates irrespective of how an individual or a group of individuals

might influence the election outcome. We will now show how our warm-glow

representation in Theorem 2 can reproduce the calculus of voting suggested by

Riker and Ordeshook.

Following Section 4.2, let Xi be the space of lotteries over the real line, and

πi be the expectation operator over Xi. Each action a available to the agent in

question, individual 1, induces a vector of lotteries x(a) ∈ X1×· · ·×X`, given the

behavior of other `−1 voters. So, the agent evaluates action a with the associated

25Evren (2012) provides a discussion of the role of voters’ distribution in these recent models.
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expected payoff vector (π1(x1(a)), ..., π`(x`(a))).

In a paternalistic fashion, the agent believes that the victory of L will con-

tribute to the (material) payoff of everyone in the society, implying that πi(xi(vote

for L)) > πi(xi(vote for R)) for every i.26 Moreover, as before, the victory of can-

didate L is worth u > 0 for the agent herself, so that

π1(x1(vote for L)) = (P + pL) u− c and π1(x1(abstain)) = Pu.

It follows that when pL is small, as would be the case in a large election, and

if c > 0, the agent’s expected payoff would be higher if she abstains. On the other

hand, the agent believes that if she were to vote for L, she would be contributing

to the expected payoff of everyone else, as we just noted. Thus, the menu of

lottery vectors {x(vote for L), x(abstain)} belongs to KP in our extended theory,

and x(abstain) is the most selfish option. In turn, the corresponding warm-glow

component is given by π1(x1(abstain))− π1(x1(vote for L)) = c− pLu > 0.

As a final step, let us suppose that the w-index of the agent is of the form

Uw = π1 + f(λ), so that we have a purely egoistic agent at hand. Then, according

to our extended theory, the agent should solve the following problem:

max{π1(x1(vote for L)) + f(c− pLu), π1(x1(abstain)) + f(0)}.

That is, the agent should vote iff pLu+ f(c− pLu)− f(0) ≥ c. Also note that if f

is continuous, f(c − pLu) will be approximately equal to f(c) for small values of

pL. Thus, the parameter d in the Riker-Ordeshook model simply corresponds to

the warm-glow payoff f(c− pLu)− f(0) ≈ f(c)− f(0).

Beyond the technical details, our theory endogenizes the parameter d of Riker

and Ordeshook by viewing the act of voting as a selfless action taken by free will.

Indeed, if citizens were forced to vote — say, by a prohibitively high fine on absten-

tion — it would seem reasonable to assume that they would not attribute an in-

trinsic value to the act of voting. This is precisely what our model predicts: Given

a fine φ on abstention, the difference π1(x1(abstain))− π1(x1(vote for L)) reduces

to c− pLu−φ, leading to a smaller warm-glow payoff f(c− pLu− φ)− f(0). That

is, a fine on abstention crowds out voters’ intrinsic motivation. In a dual fashion,

a policy that aims to reduce voting costs would crowd out intrinsic motivations

through the same mechanism. As Bénabou and Tirole (2006) also point out, this

26The assumption of paternalism is quite common in the voting literature (see, e.g., Feddersen
and Sandroni, 2006; Faravelli and Walsh, 2011; Evren, 2012; Myatt, 2012).
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phenomenon seems to underlie Funk’s (2010) findings, which show that the in-

troduction of mail voting in Switzerland failed to raise the turnout rates in some

communities.

5 Uniqueness of Second-Stage Choice Behavior

As we saw in the previous section, applied warm-glow models often focus on the

social consequences of individuals’ behavior. Thus, it is of major importance to

determine the extent of uniqueness of the second-stage choice behavior implied by

our representations. This section addresses precisely this issue. For brevity, we

will focus on our warm-glow representation, Theorem 2, but the analysis can be

readily extended to include the second-stage behavior implied by Theorem 1.

As in Section 3, let % be a binary relation on A that satisfies properties (A1)-

(A6), (A7*), and (A8), and let U be a w-index for %. The representation suggests

that when faced with a menu A ∈ A, in the second stage the agent’s potential

choices would coincide with the following set:

CU(A) :=

{
x̂ ∈ A : U (x̂, y∗1(A)− x̂1) = max

x∈A
U (x, y∗1(A)− x1)

}
.

Observe that, when {x} ≺ {x, y} ∼ {y} and y1 > x1, we cannot pin down

how U (x, y1 − x1) compares with U (x, 0) and U (y, 0). In particular, depending

on the choice of the w-index, we may have either U (x, y1 − x1) = U (y, 0) or

U (x, y1 − x1) < U (y, 0). In both cases, it would follow that the agent may select

y from {x, y}, but whether she could also select x depends on the choice of the

w-index. However, when {x, y} � {y} and y1 > x1, we must certainly have

U (x, y1 − x1) > U (y, 0), so that x can be identified as the unique choice from

{x, y}.
These observations readily extend to arbitrary menus. That is, for any A ∈ A,

if the most selfish option does not belong to CU(A), then we have CU(A) = CŨ(A)

for any other w-index Ũ . In particular, CU(A) contains the most selfish option if

and only if this is the case for any other w-index. What remains undetermined is

if (and which) other allocations can be selected along with the most selfish option

when the latter belongs to the choice correspondence:

Proposition 1. Let U and Ũ be a pair of w-indices for %. Then, for any A ∈ A,

(i) y∗(A) /∈ CU(A) implies CU(A) = CŨ(A);
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(ii) y∗(A) ∈ CU(A) if, and only if, y∗(A) ∈ CŨ(A).

The level of identification determined by Proposition 1 seems to be quite sat-

isfactory. In particular, the intersection of all compatible choice correspondences

is always nonempty. Put formally, for any A ∈ A, the set

⋂
{CU(A) : U is a w-index for %}

either contains y∗(A) or equals CU(A) for an arbitrary w-index U . It also follows

that for any pair of w-indices U and Ũ , whenever both CU(A) and CŨ(A) consist

of single allocations, we must have CU(A) = CŨ(A).

Yet it may be of interest to note that we can obtain perfect identification for

utility indices that satisfy the following additional property.

Regularity. Let {x, y} ∈ KP be such that U(x, y1 − x1) = U(y, 0) and y1 > x1.

Then, any neighborhood of {x, y} contains a pair of allocations {x′, y′} ∈ KP such

that U(x′, y′1 − x′1) > U(y′, 0) and y′1 > x′1.

In what follows, we say that a w-index is regular if it satisfies the above

property.

The notion of regularity is a variant of the local non-satiation property familiar

from the classical consumer theory. As we will see momentarily, the regularity

notion proves quite general, even outside the classical model. Before presenting

some examples in this direction, we state our identification result for regular w-

indices:

Proposition 2. Let U and Ũ be a pair of regular w-indices for %. Then, CU(A) =

CŨ(A) for any A ∈ A.

It is a simple exercise to verify that in each of the following cases, the w-index

in question is regular.

Example 1 (Classical Altruism). Let U be a w-index that is constant in λ,

and suppose that U(x̂, 0) > U(x, 0) whenever x̂i > xi for i = 1, ..., `.

Example 2 (Pure Egoism). Let U be a w-index and u : R2
+ → R be a strictly

quasiconcave function such that U(x, λ) = u(x1, λ) for every (x, λ) ∈ X × R+.27

27Note that for a given strictly concave function f on R+, both functions u1 = f(x1) + λ
and u2 = x1 + f(λ) are strictly quasiconcave on R2

+. Hence, example (2) also includes such
quasilinear functions. Moreover, quasilinearity of the latter form might be especially important
in an extended version of our model based on expected material payoffs, as we discussed in
Section 4.3 above.
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Example 3 (Impure Altruism). Let U be a w-index such that U(x̂, λ) >

U(x, λ) whenever x̂1 ≥ x1 and x̂i > xi for i = 2, ..., `.

In view of these examples, (1) in the classical model, monotonicity of a utility

index implies its regularity; (2) under pure egoism, strict quasiconcavity implies

regularity; and (3) even an impure form of altruism suffices for regularity. Thus,

it appears that one would rarely encounter a non-regular utility index in appli-

cations. We should note, however, that it is a nontrivial problem to obtain a

characterization of preference relations that admit a regular utility index, for the

definition of regularity refers to the condition U(x, y1 − x1) = U(y, 0). In turn,

this equality implies {x, y} ∼ {y}, but the converse does not hold. We do not

pursue this problem further in the present paper.

The next remark describes the regularity notion for f-indices of Theorem 1.

Propositions 1 and 2 can be extended accordingly for such utility indices, in a

straightforward way.

Remark 2 (Regularity of an f-index). Let {x, y} ∈ A be such that Uf(x, y1) =

Uf(y, y1) and y1 > x1. Then, any neighborhood of {x, y} contains a pair of alloca-

tions {x′, y′} ∈ A such that Uf(x
′, y′1) > Uf(y

′, y′1) and y′1 > x′1.

6 First-Stage vs Second-Stage

As we observed in the Introduction, it is often necessary to interpret our theory

as a model of psychological preferences over menus, as opposed to a model of

menu choice. Indeed, the agent’s perception of her freedom in a first-stage choice

situation would typically influence her choice behavior, but our model does not

accommodate this fact. Similarly, we do not account for the fact that choosing a

menu {x} over a menu {y} may lead to a warm-glow experience (just like the act

of choosing x from {x, y}). However, the agent’s psychological preference relation

over menus should be free from such behavioral phenomena, as we assume here.28

We believe that this is a reasonable restriction since, to the best of our knowledge,

in the earlier literature all applications of the notion of warm-glow focus on the

agent’s second-stage behavior. In turn, our theory of first-stage preferences lays

the foundations for related forms of second-stage behavior and may allow one

28If we were to extend our representations to include non-instrumental motives solely associ-
ated with first-stage behavior, our current representations would correspond to utility of selecting
a menu A when only A is available. Indeed, in such a situation, the act of selecting the menu A
would merely be a necessity, which would not lead to a non-instrumental payoff by itself.
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to study welfare implications of second-party actions that can affect the set of

alternatives available to the agent.

Moreover, we could elicit the agent’s preference relation over menus with suit-

able survey questions. For example we could ask the following survey question:

“Suppose that the government is planning to give you a set of allocations from

which you can make a selection in a subsequent stage. Which set would you like

to receive, A or B? Your answer to this question will be kept confidential and,

hence, cannot influence the government’s behavior.”29

Finally, as noted in the Introduction, if only the second-stage behavior is pub-

licly observable, our theory can also be interpreted as a model of menu choice.

Another way of facilitating this interpretation could be to focus on additive forms

of our representations. For example, Sarver (2008) faces a similar issue in his

model of regret, but the additive form of his representation allows him to argue

that even if he were to extend his model to include regret considerations in the

first stage, the implied choice behavior would be consistent with his model of pref-

erences over menus. We do not pursue this approach here, as the implied behavior

under such additive forms would be consistent with WARP in both stages, while

we need to allow for violations of WARP in the second stage.

7 Relations to Kreps’ Model of Preference for

Flexibility

Following Kreps’ (1979) pioneering work, the literature on preference for flexibility

also focuses on decision makers who prefer a menu to all of its subsets (see, e.g.,

Dekel et al., 2001; Epstein et al., 2007; Ahn and Sarver, 2013). This literature

attributes violations of property (3) to uncertainty of future preference relations

over the set of alternatives. The decision maker in question is concerned solely

with her final choices, just as in the case of pure altruism. Yet she still exhibits

a preference for larger sets since, on occasion, she cannot precisely predict which

alternative she would select from a given menu in period 2. In particular, instances

of the form B ≺ B ∪ {x} � {x} correspond precisely to those cases in which the

agent is unsure whether she would select x or an element of B when faced with

B ∪ {x}.
29In a different setup, Gilboa, Maccheroni, Marinacci, and Schmeidler (2010) propose a similar

method based on the agent’s statements to recover her psychological preference relation, which
is assumed to be incomplete.

28



By stark contrast, unless x is the most selfish option in B ∪ {x}, whenever

B ≺ B ∪ {x}, our model predicts that the agent would certainly select x from

B∪{x}. In turn, if x is the most selfish option, B∪{x} � {x} implies that the agent

would not select x from B∪{x}. These observations point to a clear-cut distinction

between the two models, to the extent that in period 2, one can verify the random

choice behavior that the preference-for-flexibility model predicts. More generally,

holding fixed the most selfish option, the second-stage behavior implied by our

theory is within the scope of the standard choice model, whereas the preference-

for-flexibility approach predicts a stochastic behavior, as in McFadden and Richter

(1990) or McFadden (2005).

If one focuses solely on preferences over menus, the difference between the two

approaches becomes less stark. In particular, we can think of the following utility

representation, which lies at the intersection of our Theorem 1 and Kreps’ (1979)

representation theorem:

VK(A) := αmax
x∈A

ua(x) + (1− α)ue(y∗1(A)),

where α ∈ (0, 1), ua : Rk
+ → R is weakly increasing (and continuous), and ue :

R+ → R is strictly increasing. This representation describes an agent who believes

that in period 2, she may wish either to act unselfishly as guided by the function

ua (which will happen with probability α) or to select the most selfish option

in a purely egoistic manner. The corresponding preference relation satisfies the

properties (A1)-(A7). Yet, this representation rules out the patterns that we

accommodate by (A7*) (if ua is increasing as we assumed).

It should also be noted that Kreps’ representation requires the submodularity

axiom, which posits that A∪C ∼ A∪B∪C whenever A ∼ A∪B. By contrast, in

both our representations, we may well have A∪C ≺ A∪B∪C and A ∼ A∪B, as

the most selfish options (i.e., reference points) in A ∪ B and A ∪ B ∪ C may be

different. For example, according to our warm-glow representation, we may have

{x, y} ∼ {y} for some x, y with y1 > x1, but the agent may strictly prefer a

menu of the form {x, y, z} to {y, z} whenever z1 > y1, as the stronger warm-glow

experience associated with the sacrifice z1 − x1 may convince the agent to select

x uniquely from {x, y, z}.
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8 Concluding Remarks

This paper provides a foundation for the notion of warm-glow giving by relating

it to the concept of preference for freedom to be selfish. The key insight is that

warm-glow necessitates free will: the agent values the availability of selfish options

even if she plans to behave prosocially. We provide representation results that are

consistent with the evidence on motivation crowding out and, in particular, on

the adverse effects of restricting one’s freedom to behave selfishly. Compared

to Theorem 1, the warm-glow representation in Theorem 2 is more successful in

accommodating the evidence on adverse effects of rewarding prosocial behavior.

In fact, the second-stage behavior implied by this basic warm-glow representa-

tion subsumes that modeled by Riker and Ordeshook (1968) and Andreoni (1989,

1990).

According to this basic warm-glow representation, the agent experiences warm-

glow only when her actions (might) help others. However, the strength of the

warm-glow experience (i.e., the warm-glow payoff) is solely a function of the

agent’s private cost, irrespective of how strongly the other agents are influenced.

In Appendix A, we provide an extension of this representation in which the warm-

glow payoff is an increasing function of the agent’s contribution to every other

individual’s payoff, as well as of her private cost.

If one views “giving” as an act of free will, as opposed to a compulsory transfer

of resources, our model can simply be seen as a theory of “preference for giving.”

On the other hand, social pressure or negative feelings such as shame and guilt

may also motivate other-serving actions, even if the decision maker in question

dislikes such modes of behavior. As we noted in the Introduction, earlier models

of such negative forms of prosocial behavior imply preferences for smaller sets and

entail distinct behavior in the second stage.

Appendix A. Multi-Dimensional Warm-Glow Representation

For our multi-dimensional warm-glow representation, we need to replace (FS) and

(CM*) with the following axiom.

A9: Other-Regarding Warm-Glow (OWG). Let x, x′, y, y′ ∈ X be such

that y1 ≥ x1, and suppose that {x, y} and {x′, y′} both belong to KP . Then,

{x} ≺ {x, y} � {y}, x′ ≥ x, y′1 − x′1 ≥ y1 − x1 and x′−1 − y′−1 ≥ x−1 − y−1 imply

{x′, y′} % {x, y} .
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By letting x = x′, we see that the following property is a particular consequence

of (OWG): For {x, y}, {x, y′} ∈ KP ,

{x} ≺ {x, y} � {y} , y′1 ≥ y1 and y−1 ≥ y′−1 imply {x, y′} % {x, y} . (∗)

This property is a multi-dimensional version of (FS) that relates the warm-glow

payoff associated with an action to the social consequences of that action. Intu-

itively, (∗) implies that selecting x over y′ would “surely” make the agent better

off than selecting x over y only if the former act involves a bigger gift to others

as well as a bigger private sacrifice. If we take for granted that the agent may

enjoy the act of giving, (∗) appears to be a useful generalization of (FS). On the

other hand, when our model is viewed as a theory of preference for freedom of

choice, the merit of the added generality becomes questionable. For example, if

y1 = y′1 and y−1 > y′−1, from {x, y} to {x, y′} the implied change can simply be

seen as an increase in the freedom to hurt others. It seems to us that preference

for this form of freedom would not be so compelling in a model without negatively

interdependent preferences.

It is also important to note that (OWG) implies (CM*), as can be seen by

letting y′−1 = y−1 in the former axiom. Next, we show why (OWG) holds in our

basic model.

Claim 1. If % satisfies (FS), (CM*), (SiM), (SM) and (WO) (over A := KP),

then it also satisfies (OWG).30

Proof. Let {x, y} and {x′, y′} belong to KP and suppose that {x} ≺ {x, y} � {y}
while y1 ≥ x1. Notice that {x, (y1,0)} and {x′, (y′1,0)} also belong to KP , where

0 := (0, ..., 0) ∈ R`−1. Moreover, by (FS), we must have {x, (y1,0)} % {x, y}. In

turn, this implies that {x} ≺ {x, (y1,0)} � {(y1,0)} because % is transitive and

{y} % {(y1,0)} by (SiM). Hence, applying (CM*) yields {x′, (y′1,0)} % {x, (y1,0)}
for x′ ≥ x and y′1 − x′1 ≥ y1 − x1. Finally, note that {x′, y′} % {x′, (y′1,0)}.
Indeed, if {x′, (y′1,0)} ∼ {x′} or {x′, (y′1,0)} ∼ {(y′1,0)} that {x′, y′} % {x′, (y′1,0)}
follows from (SM), (SiM) and transitivity in an obvious way. In turn, if {x′} ≺
{x′, (y′1,0)} � {(y′1,0)} we can apply (FS) to reach the same conclusion. �

Definition 3. A binary relation % on KP admits a multi-dimensional warm-

glow representation if there exists a weakly increasing and continuous function

30We have not been able to determine if the conclusion of this claim remains true upon
replacing (FS) with property (∗). However, the answer seems to be negative because in the
statement of (OWG), we do not necessarily have y−1 ≥ y′−1.
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Umw : X × R`
+ → R such that, for any A ∈ KP , the function

Vmw(A) := max
x∈A

Umw(x,max
y∈A

y1 − x1, x2 −min
y∈A

y2, x3 −min
y∈A

y3, ..., x` −min
y∈A

y`)

represents %. We refer to such a function Umw as an mw-index for % .

Theorem 3. A binary relation % on A := KP satisfies the axioms (A1)-(A3),

(A5), (A6), (A8) and (A9) if and only if it admits a multi-dimensional warm-glow

representation.

Appendix B. Proofs

B1. Proof of Theorem 1

As it is straightforward, we omit the “if” part of the proof of Theorem 1.

To prove the “only if” part, let % be a binary relation on A := K that satisfies

(A1)-(A7).

For each A ∈ K, pick a point y∗(A) ∈ K such that y∗1(A) = max{x1 : x ∈ A}.
Define A := {{x, y∗(A)} : x ∈ A}, and note that A (equipped with the Hausdorff

metric) is homeomorphic to A, and compact in particular. Thus, % admits a

maximal set in A by (C). That is, there exists an allocation x(A) in A such that

{x(A), y∗(A)} % {x, y∗(A)} for every x ∈ A. The following claim proves a related

observation that we mentioned earlier.

Claim 2. For any A ∈ K, we have A ∼ {x(A), y∗(A)}.

Proof. Fix a set A ∈ K, and let {x1, ..., xn, ...} be a countable, dense subset of

A. For every n ∈ N, put An := {x1, ..., xn} ∪ {x(A), y∗(A)}. Then, (SM) implies

A1 % {x(A), y∗(A)}. Moreover, by (WI), we have A1 ∼ {x1, y∗(A)} or A1 ∼
{x(A), y∗(A)}. As {x1, y∗(A)} - {x(A), y∗(A)}, either equivalence implies A1 -

{x(A), y∗(A)}, that is, A1 ∼ {x(A), y∗(A)}. Similarly, either A2 ∼ {x2, y∗(A)} or

A2 ∼ A1, and in both cases, we have A2 ∼ {x(A), y∗(A)}. Inductively, it follows

that An ∼ {x(A), y∗(A)} for every n. Moreover, since the sequence A1, A2, ... is

uniformly bounded in Euclidean norm and increases with respect to set inclusion,

it is well known that An → cl(
⋃∞
n=1A

n) in Hausdorff metric (see, e.g., Dekel et

al., 2001, Lemma 5). In turn, cl(
⋃∞
n=1A

n) equals A by construction. Hence, (C)

implies A ∼ {x(A), y∗(A)}, as we sought. �

For future use, note that in the above proof we have not utilized (FS) or (CM).

Next, we prove another general claim that does not require these two axioms.
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Claim 3. Let x, x′, y, y′ ∈ X be such that x′ ≥ x and y′ ≥ y. Then, {x′, y′} %
{x, y} unless {x} ≺ {x, y} � {y}.

Proof. Suppose that {x} ≺ {x, y} � {y} does not hold. By (SM), this means

that either {x, y} ∼ {x} or {x, y} ∼ {y}. Moreover, (SiM) and (SM) imply

{x} - {x′} - {x′, y′} and {y} - {y′} - {x′, y′}. As % is transitive, we conclude

that {x, y} - {x′, y′}. �

In the following claim, we utilize (FS) and (CM) to strengthen the conclusion

of Claim 3.

Claim 4. Let x, x′, y, y′ ∈ X be such that x′ ≥ x and y′ ≥ y. Then, {x′, y′} %
{x, y}.

Proof. In view of Claim 3, without loss of generality we can assume {x} ≺
{x, y} � {y}. By relabeling if necessary, let us also assume that y1 ≥ x1. Then,

(FS) implies {x, y′} % {x, y} since y′1 ≥ y1. It remains to show that {x′, y′} %
{x, y′}. To this end, by applying Claim 3 again, we can assume {x} ≺ {x, y′} �
{y′}. But then, as y′1 ≥ x1 and x′ ≥ x, the desired conclusion follows from (CM):

{x′, y′} % {x, y′}. �

As is well-known, when endowed with the Hausdorff metric, the space of all

nonempty, compact subsets of R` is separable. Then, as a subspace, K is also

separable. Hence, Debreu’s classical theorem implies that there exists a continuous

function V : K → R such that A % B iff V (A) ≥ V (B), for every A,B ∈ K. The

following claim characterizes the main feature of f-indices compatible with V .

(Throughout the remainder of the proof, 0 denotes the origin of R`−1.)

Claim 5. Let U : X ×R+ → R be a weakly increasing function. Then, properties

(ii)-(iv) below hold simultaneously iff property (i) holds.

(i) max
x∈A

U (x, y∗1(A)) = V (A) for all A ∈ K.

(ii) U (x, x1) = V ({x}) for all x ∈ X.

(iii) U (x, λ) ≤ V ({x, (λ,0)}) for all (x, λ) ∈ X × R+ with λ ≥ x1.

(iv) U (x, λ) = V ({x, (λ,0)}) for all (x, λ) ∈ X × R+ with λ ≥ x1 and {x} ≺
{x, (λ,0)} � {(λ,0)}.

Proof. First, suppose that (i) holds. Then, by letting A := {x}, we immediately

see that (ii) must also hold. Now, take any (x, λ) ∈ X × R+ with λ ≥ x1,

so that λ = y∗1(A′) where A′ := {x, (λ,0)}. Then, by (i) and (ii), V (A′) =

max{U(x, λ), U((λ,0), λ)}, implying that V (A′) ≥ U(x, λ). This verifies (iii).
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Moreover, A′ � {(λ,0)} simply means V (A′) = max{U(x, λ), U((λ,0), λ)} >
U((λ,0), λ). In turn, the latter statement is equivalent to V (A′) = U(x, λ) >

U((λ,0), λ). In particular, {x} ≺ A′ � {(λ,0)} implies V (A′) = U(x, λ), which

verifies (iv).

Conversely, suppose now that (ii)-(iv) hold, and take any A ∈ K. Let us write

x instead of x(A), and y∗ instead of y∗(A). Then, from Claim 2 and the definition

of x, it follows that

V (A) = V ({x, y∗}) ≥ V ({x, y∗}) for x ∈ A. (6)

Moreover, Claim 4 implies

V ({x, y∗}) ≥ V ({x, (y∗1,0)}) for x ∈ A. (7)

In turn, by property (iii), we also have

V ({x, (y∗1,0)}) ≥ U(x, y∗1) for x ∈ A. (8)

By combining (6)-(8), we see that V (A) ≥ sup
x∈A

U (x, y∗1).

To prove the converse inequality, obviously, it suffices to show that

V ({x, y∗}) ≤ max
x∈{x,y∗}

U (x, y∗1) . (9)

Note that max {V ({x}), V ({y∗})} = max {U (x, x1) , U(y∗, y∗1)} ≤ max
x∈{x,y∗}

U (x, y∗1)

by property (ii) and weak monotonicity of U . Therefore, (9) trivially holds if

max {V ({x}), V ({y∗})} = V ({x, y∗}). Thus, assume max {V ({x}), V ({y∗})} <
V ({x, y∗}). Then, (FS) implies V ({x, y∗}) ≤ V ({x, (y∗1,0)}). Since V ({(y∗1,0)}) ≤
V ({y∗}), it also follows that max {V ({x}), V ({(y∗1,0)})} < V ({x, (y∗1,0)}). By

(iv), we must then have U (x, y∗1) = V ({x, (y∗1,0)}), implying that V ({x, y∗}) ≤
U (x, y∗1). This proves (9).

It follows that V (A) = sup
x∈A

U (x, y∗1) = max
x∈{x,y∗}

U (x, y∗1). Finally, the latter

equality implies that the function x → U (x, y∗1) attains its maximum over A

(either at x or y∗). This proves the property (i). �

We complete the proof of Theorem 1 with the following claim.

Claim 6. Define a function U : X × R+ → R as U(x, λ) := V ({x, (λ,0)}) for

all (x, λ) ∈ X × R+. The function U is an f-index for % .
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Proof. In view of Claim 5, it suffices to show that U is a weakly increasing,

continuous function that satisfies the properties (ii)-(iv) in Claim 5. That U is

weakly increasing is an obvious consequence of Claim 4 and the definition of V .

Moreover, since V and the function (x, λ)→ {x, (λ,0)} are both continuous, so is

U . To verify property (ii) in Claim 5, fix an x ∈ X. Note that {x, (x1,0)} % {x}
by (SM), and {x} = {x, x} % {x, (x1,0)} by Claim (4). Thus, {x, (x1,0)} ∼ {x},
implying that U(x, x1) := V ({x, (x1,0)}) = V ({x}) , as we seek. Finally, note

that U trivially satisfies the properties (iii) and (iv) in Claim 5. �

Since Theorem 3 is more general than Theorem 2, we shall deduce the latter

result from the former. We proceed to:

B2. Proof Theorem 3

We omit the “if” part of the proof which is a routine exercise. Let % be a

binary relation on KP that satisfies (WO), (SM), (WI), (SiM), (C), (EC) and

(OWG).

As in the text, for each A ∈ KP let y∗(A) denote the unique element of A such

that y∗1(A) = max{x1 : x ∈ A} and y∗i (A) = min{xi : x ∈ A} for i = 2, ..., `.

Notice that if a set A belongs to KP , any compact subset of A that contains

y∗(A) also belongs to KP . Hence, we can repeat the arguments in the proof of

Claim 2 to show that for each A ∈ KP , there exists a point x(A) ∈ A such that

A ∼ {x(A), y∗(A)} % {x, y∗(A)} for every x ∈ A. (10)

Let us now introduce a bit of notation. Throughout the remainder of the

appendix, λ stands for a vector of the form (λ1, ..., λ`) ∈ R`
+. In turn, 0 denotes

the origin of R` or R`−1, depending on the context. We define D := {(x, λ) ∈
X×R`

+ : x−1 ≥ λ−1}, and x�λ := (x1+λ1, x−1−λ−1) for every (x, λ) ∈ D. Notice

that for any (x, λ) ∈ D, the point x � λ belongs to X, while the set {x, x � λ}
belongs to KP iff (i) λ = 0, or (ii) λ1 > 0 and λ−1 > 0. For any two vectors

a = (a1, ..., ak), b = (b1, ..., bk), we set a ∨ b := (max{a1, b1}, ...,max{ak, bk}) and

a ∧ b := (min{a1, b1}, ...,min{ak, bk}). It should be noted that since x−1 ≥ λ−1

and x′−1 ≥ λ′−1 imply x−1 ∨x′−1 ≥ λ−1 ∨λ′−1 and x−1 ∧x′−1 ≥ λ−1 ∧λ′−1, the set D

is a lattice: (x ∨ x′, λ ∨ λ′) and (x ∧ x′, λ ∧ λ′) belong to D for (x, λ), (x′, λ′) ∈ D.

It is clear that, as in the proof of Theorem 2, there exists a continuous function

V : KP → R such that A % B iff V (A) ≥ V (B), for every A,B ∈ KP . The

following claim is an analogue of Claim 5 for the present setup.
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Claim 7. Let U : D → R be a weakly increasing function. Then, properties

(ii)-(iv) below hold simultaneously iff property (i) holds.

(i) max
x∈A

U
(
x, y∗1(A)− x1, x−1 − y∗−1(A)

)
= V (A) for all A ∈ KP .

(ii) U (x,0) = V ({x}) for all x ∈ X.

(iii) U (x, λ) ≤ V ({x, x � λ}) for all (x, λ) ∈ D such that {x, x � λ} ∈ KP .

(iv) U (x, λ) = V ({x, x � λ}) for all (x, λ) ∈ D such that {x, x � λ} ∈ KP and

{x} ≺ {x, x � λ} � {x � λ}.

Proof. As in the proof of Claim 5, (ii) and (iii)-(iv) easily follow from (i) upon

letting A := {x} and A′ := {x, x � λ}, respectively.

To prove the converse implication, suppose that (ii)-(iv) hold. Take any A ∈
KP , and set x := x(A), y∗ := y∗(A). The expression (10) simply means that

V (A) = V ({x, y∗}) = max
x∈A

V ({x, y∗}). (11)

Moreover, for each x ∈ A if we set λx := (y∗1−x1, x−1−y∗−1), we see that (x, λx) ∈ D
and {x, x�λx} = {x, y∗} ∈ KP . Thus, property (iii) implies V ({x, y∗}) ≥ U(x, λx)

for every x ∈ A. From (11), it then follows that V (A) ≥ sup
x∈A

U(x, λx), as we seek.

As in Claim 5, we will complete the proof by showing that

V ({x, y∗}) ≤ max
x∈{x,y∗}

U(x, λx). (12)

Since max {V ({x}), V ({y∗})} = max {U (x,0) , U(y∗,0)} ≤ max
x∈{x,y∗}

U(x, λx), with-

out loss of generality we can assume max {V ({x}), V ({y∗})} < V ({x, y∗}). But

then, as x�λx = y∗, property (iv) implies U (x, λx) = V ({x, x � λx}) = V ({x, y∗}),
which proves (12). �

In what follows, we will define a function U on the set D and then extend it

to X × R`
+. Of course, the construction of U on D will build upon Claim 7, but

first we need to extend the function V to include the doubletons in the closure of

KP . Set

KP2 := cl{{x, y} : x, y ∈ X, {x, y} ∈ KP}.

We proceed with some technical observations.

Claim 8. KP is a connected set.

Proof. Let us show that KP is path-connected. Fix a pair of sets A,B ∈ KP and a

point x ∈ X. Note that for any C ∈ KP and α ∈ [0, 1], the set αC+(1−α){x} :=
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{αz + (1− α)x : z ∈ C} belongs to KP . For each t ∈ [0, 1], put

f(t) :=

{
(1− 2t)A+ 2t{x} if 0 ≤ t ≤ 1/2,

(2− 2t){x}+ (2t− 1)B if 1/2 < t ≤ 1.

As we just noted, the function f maps [0, 1] into KP . It is also clear that f is a

continuous mapping, for limt→0.5+ f(t) = limt→0.5− f(t) = {x}. Finally, note that

f(0) = A and f(1) = B. This completes the proof. �

Claim 9. Let {x, y} ∈ KP2 , and take a sequence {xn, yn} in KP that converges

to {x, y}. Then:

(i) V ({xn, yn}) converges to a finite number.

(ii) limV ({xn, yn}) = limV ({x′n, y′n}) for any other sequence {x′n, y′n} in KP
that converges to {x, y}.

Proof. By relabeling if necessary, assume yn1 > xn1 and xn−1 > yn−1 for every n.

Note that by definition of the Hausdorff metric, lim xn and lim yn exist, and we

have {x, y} = {limxn, lim yn}.
We shall now show that the sequence V ({xn, yn}) is bounded. Since they

are convergent, the sequences xn and yn are bounded. Let x′ ∈ R`
++ be such

that x′ ≥ xn ∨ yn for every n. Clearly, the set {2x′, (3x′1, x′−1)} belongs to KP .

Moreover,

{2x′, (3x′1, x′−1)} % {xn, yn} for every n. (13)

Indeed, for any n, if {xn, yn} ∼ {xn} or {xn, yn} ∼ {yn}, (13) follows from (SiM),

(SM) and (WO) as in Claim 3. On the other hand, if {xn} ≺ {xn, yn} � {yn}, then

(OWG) implies (13), for 2x′ ≥ xn, 3x′1−2x′1 ≥ yn1−xn1 and 2x′−1−x′−1 ≥ xn−1−yn−1.
In turn, (13) simply means that V ({2x′, (3x′1, x′−1)}) ≥ V ({xn, yn}) for every n.

Since V ({xn, yn}) is bounded, the proof of (i) will be complete if we can show

that for any two convergent subsequences V ({xnk , ynk}) and V ({xnl , ynl}), we have

lim
k
V ({xnk , ynk}) = lim

l
V ({xnl , ynl}). (14)

Assume by contradiction that limk V ({xnk , ynk}) > liml V ({xnl , ynl}) for a pair

of convergent subsequences V ({xnk , ynk}), V ({xnl , ynl}). Pick two numbers ε1, ε2

such that limk V ({xnk , ynk}) > ε1 > ε2 > liml V ({xnl , ynl}). Then,

V ({xnk , ynk}) > ε1 > ε2 > V ({xnl , ynl}) for all sufficiently large k and l. (15)
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Since V is a continuous function on the connected set KP , the set V (KP) is an

interval. Thus, (15) implies that there exists a pair of sets A,B ∈ KP such

that V (A) = ε1 and V (B) = ε2. Moreover, we obviously have limk{xnk , ynk} =

{x, y} = liml{xnl , ynl}. Then, in view of (15), it follows that any neighborhood N
of {x, y} contains a pair of sets {xnk , ynk}, {xnl , ynl} such that {xnk , ynk} � A �
B � {xnl , ynl}. Since this contradicts (EC), we conclude that part (i) of the claim

holds.

To prove part (ii), take any other sequence {x′n, y′n} in KP that converges

to {x, y}. By part (i) of the claim, limV ({x′n, y′n}) exists. Suppose now that

this limit is distinct from limV ({xn, yn}), say limV ({xn, yn}) > limV ({x′n, y′n}).
Then, just as in the proof of (14), we can find two sets A,B ∈ KP such that

{xn, yn} � A � B � {x′n, y′n} for all sufficiently large n. In turn, this contradicts

(EC) as we have lim{xn, yn} = {x, y} = lim{x′n, y′n}. This completes the proof.

�

For each {x, y} ∈ KP2 , set

V ({x, y}) := limV ({xn, yn})

for every sequence {xn, yn} in KP that converges to {x, y}. In view of Claim

9, V (·) is a well-defined function on KP2 . Moreover, for any {x, y} ∈ KP , we

have V ({x, y}) = V ({x, y}) since a constant sequence that equals {x, y} trivially

converges to {x, y}. In particular, V ({x}) = V ({x}) for every x ∈ X.

It should also be noted that

{x, x � λ} ∈ KP2 for any (x, λ) ∈ D. (16)

To see this point, pick any (x, λ) ∈ D, and a strictly positive, ` − 1 dimensional

vector e. For each n ∈ N, set xn := (x1, x−1+ 1
n
e) and yn := (x1+λ1+ 1

n
, x−1−λ−1).

Then, clearly, {xn, yn} is a sequence in KP that converges to {x, x�λ}, as we seek.

In view of (16), for any (x, λ) ∈ D the set {x, x � λ} belongs to the domain of

the function V . Notice, however, that V ({x, x�λ}) may not be a weakly increasing

function of λ because we may have V ({x, x � λ}) = V ({x � λ}) on occasion, while

V ({x�λ}) is weakly decreasing with λ−1. In the next claim, we will establish some

useful facts about the function V . In particular, we will uncover some monotonicity

properties of V ({x, x � λ}) for suitably selected (x, λ) ∈ D.

Claim 10. (i) V is continuous on KP2 .
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(ii) V ({x, y}) ≥ V ({x}) for any {x, y} ∈ KP2 .

(iii) Take any (x, λ), (x′, λ′) ∈ D with (x′, λ′) ≥ (x, λ). Assume further that

{x, x � λ} belongs to the closure of the set {{z, y} ∈ KP : {z} ≺ {z, y} � {y}}.
Then, V ({x′, x′ � λ′}) ≥ V ({x, x � λ}).

(iv) Take any (x, λ), (x′, λ′) ∈ D with (x′, λ′) ≥ (x, λ). Assume further that

x′ � λ′ ≥ x � λ. Then, V ({x′, x′ � λ′}) ≥ V ({x, x � λ}).

Proof. We start with the proof of (i). Let {xn, yn} be a sequence in KP2 that

converges to {x, y}. By definition of V , for each n, there exists a set {x′n, y′n} ∈ KP
such that

dH({x′n, y′n}, {xn, yn}) < 1/n and
∣∣V ({x′n, y′n})− V ({xn, yn})

∣∣ < 1/n. (17)

Since lim{xn, yn} = {x, y}, the former expression in (17) implies lim{x′n, y′n} =

{x, y}. Thus, V ({x, y}) := limV ({x′n, y′n}). Hence, from the latter expression

in (17), it follows that limV ({xn, yn}) exists, and we have limV ({xn, yn}) =

V ({x, y}). This proves (i).

Now, take any {x, y} ∈ KP2 , and let {xn, yn} be a sequence in KP that con-

verges to {x, y} so that {x, y} = {limxn, lim yn}. Without loss of generality, as-

sume x = lim xn. Then, V ({x, y}) := limV ({xn, yn}) ≥ limV ({xn}) := V ({x}),
where the weak inequality follows from (SM). This proves (ii).

In the remainder of the proof, let (x, λ) and (x′, λ′) be points in D such that

(x′, λ′) ≥ (x, λ).

To prove (iii), suppose that

{x, x � λ} = lim{xn, yn} (18)

for a sequence {xn, yn} in KP such that {xn} ≺ {xn, yn} � {yn} for every n.

By relabeling if necessary, assume yn1 > xn1 and xn−1 > yn−1 for every n. Since

x1 = min{z1 : z ∈ {x, x � λ}} and xn1 = min{z1 : z ∈ {xn, yn}} for each n,

from (18) it obviously follows that x1 = lim min{z1 : z ∈ {xn, yn}} = limxn1 .

Similarly, (x � λ)1 = lim max{z1 : z ∈ {xn, yn}} = lim yn1 , while for i = 2, ..., `,

we have xi = lim max{zi : z ∈ {xn, yn}} = limxni and (x � λ)i = lim min{zi : z ∈
{xn, yn}} = lim yni . Hence,

x = limxn and x � λ = lim yn. (19)

Define a sequence λn in R`
+ as λn1 := yn1 −xn1 and λn−1 := xn−1− yn−1. Then, (19)
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implies that limλn1 = (x�λ)1−x1 = λ1 and limλn−1 = x−1−(x�λ)−1 = λ−1, so that

limλn = λ. Moreover, we have xn � λn = yn, and hence, {xn} ≺ {xn, xn � λn} �
{xn � λn} for every n.

Now, for each n, set x′n := x′ ∨ xn and λ′n := λ′ ∨ λn. Then, λ′n1 ≥ λn1 > 0

and λ′n−1 ≥ λn−1 > 0. Furthermore, (x′n, λ′n) ∈ D for each n because the set D is

a lattice as we noted earlier. Thus, we see that {x′n, x′n � λ′n} belongs to KP for

each n. In turn, by construction, x′n ≥ xn, (x′n � λ′n)1 − x′n1 ≥ (xn � λn)1 − xn1
and x′n−1 − (x′n � λ′n)−1 ≥ xn−1 − (xn � λn)−1. From (OWG), it therefore follows

that V ({x′n, x′n � λ′n}) ≥ V ({xn, xn � λn}) for every n. Finally, note that since

∨ is a continuous operator, we have limx′n = x′ ∨ x = x′ and limλ′n = λ′ ∨ λ =

λ′, implying that lim{x′n, x′n � λ′n} = {x′, x′ � λ′}. Hence, we conclude that

V ({x′, x′ � λ′}) := limV ({x′n, x′n � λ′n}) ≥ limV ({xn, xn � λn}) := V ({x, x � λ}).
This completes the proof of (iii).

To prove (iv), suppose now that x′ � λ′ ≥ x � λ. Note that if V ({x, x �
λ}) = max{V ({x}), V ({x � λ})}, (SiM) and part (ii) of the claim obviously imply

V ({x, x � λ}) ≤ V ({x′, x′ � λ′}). Therefore, without loss of generality, assume

V ({x, x � λ}) > max{V ({x}), V ({x � λ})}. (20)

Pick a sequence {zn, yn} in KP that converges to {x, x � λ}. Then, clearly, the

sequence max{V ({zn}), V ({yn})} converges to max{V ({x}), V ({x � λ})}, while

limV ({zn, yn}) := V ({x, x � λ}). Therefore, (20) implies that V ({zn, yn}) >

max{V ({zn}), V ({yn})} for all sufficiently large n. But then, {x, x � λ} belongs

to cl{{z, y} ∈ KP : {z} ≺ {z, y} � {y}}. Hence, from part (iii) of the claim, it

follows that V ({x′, x′ � λ′}) ≥ V ({x, x � λ}), as we seek. �

We are now ready to define a function U on D. For every (x, λ) ∈ D, set

(x, λ)↑ := {(x′, λ′) ∈ D : (x′, λ′) ≥ (x, λ)}, and

U(x, λ) := inf{V ({x′, x′ � λ′}) : (x′, λ′) ∈ (x, λ)↑}.

Next, we shall show that:

Claim 11. U is a weakly increasing, continuous function on D that satisfies the

properties (ii)-(iv) in Claim 7.

Proof. Note that for any (x, λ) ∈ D, we also have (x, λ) ∈ (x, λ)↑, and hence,

U(x, λ) ≤ V ({x, x�λ}). In turn, V ({x, x�λ}) = V ({x, x�λ}) for {x, x�λ} ∈ KP ,

implying that U(x, λ) ≤ V ({x, x�λ}). This verifies property (iii) in Claim 7. If, in
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addition, {x} ≺ {x, x � λ} � {x � λ}, then Claim 10(iii) implies V ({x′, x′ � λ′}) ≥
V ({x, x � λ}) for every (x′, λ′) ∈ (x, λ)↑, so that U(x, λ) ≥ V ({x, x � λ}). Hence,

U(x, λ) = V ({x, x�λ}) for any such (x, λ), as demanded by property (iv) in Claim

7. To verify property (ii), first note that {x, x�0} = {x, x} = {x} for any x ∈ X.As

we have just seen, this implies U(x,0) ≤ V ({x}). In turn, for any (x′, λ′) ∈ (x, λ)↑,

by Claim 10(ii) and (SiM) we also have V ({x′, x′ � λ′}) ≥ V ({x′}) ≥ V ({x}).
Hence, U(x,0) = V ({x}) for x ∈ X.

To see why U is a weakly increasing function on D, simply note that for any

(x, λ), (x̃, λ̃) ∈ D with (x̃, λ̃) ≥ (x, λ), we have (x̃, λ̃)↑ ⊆ (x, λ)↑, which immediately

implies U(x̃, λ̃) ≥ U(x, λ).

It remains to show that U is continuous on D. Let (xn, λn) be a convergent

sequence in D and put (x, λ) := lim(xn, λn). Pick any (x′, λ′) ∈ (x, λ)↑. For every

n, put x′n := x′ ∨ xn and λ′n := λ′ ∨ λn. Since D is a lattice, (x′n, λ′n) belongs to

D for each n. Moreover, lim(x′n, λ′n) = (x′ ∨ x, λ′ ∨ λ) = (x′, λ′), implying that

lim{x′n, x′n � λ′n} = {x′, x′ � λ′}. Since V is continuous, we then have

limV ({x′n, x′n � λ′n}) = V ({x′, x′ � λ′}). (21)

Also note that (x′n, λ′n) ∈ (xn, λn)↑ for each n, and hence, U(xn, λn) ≤ V ({x′n, x′n�
λ′n}). By combining this observation with (21), we see that lim supU(xn, λn) ≤
V ({x′, x′ � λ′}). Since (x′, λ′) is an arbitrary point in (x, λ)↑, it follows that

lim supU(xn, λn) ≤ U(x, λ).

We will complete the proof by showing that lim inf U(xn, λn) ≥ U(x, λ). Sup-

pose by contradiction that lim inf U(xn, λn) < U(x, λ). By passing to a subse-

quence if necessary, assume limU(xn, λn) exists so that

limU(xn, λn) < U(x, λ). (22)

Note that by definition of U , for each n, there exists a point (x̃n, λ̃n) ∈ (xn, λn)↑

such that 0 ≤ V ({x̃n, x̃n � λ̃n} − U(xn, λn) < 1/n. It immediately follows that

limV ({x̃n, x̃n � λ̃n} = limU(xn, λn). (23)

Pick an ` dimensional constant vector m :=(m, ...,m) such that m ≥ x ∨ λ.

For every n, put x̂n := x̃n ∧m and λ̂n := λ̃n ∧m. Since D is a lattice, (x̂n, λ̂n)
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belongs to D for each n. The next step is to show that

x̃n � λ̃n ≥ x̂n � λ̂n for every n. (24)

Put ã := x̃n � λ̃n and â := x̂n � λ̂n for a fixed n. Then, ã1 := x̃n1 + λ̃n1 ≥
x̃n1 ∧ m + λ̃n1 ∧ m := â1. Now, fix any i ∈ {2, ..., `} so that ãi := x̃ni − λ̃ni while

âi := x̃ni ∧ m − λ̃ni ∧ m. Since x̃ni ≥ λ̃ni , there are three cases to consider: (1)

x̃ni ≥ λ̃ni ≥ m; (2) x̃ni ≥ m ≥ λ̃ni ; and (3) m ≥ x̃ni ≥ λ̃ni . In case (1), we have

âi = 0 ≤ ãi. In turn, case (2) implies âi = m− λ̃ni ≤ ãi. Finally, in case (3), âi =

ãi. Thus, â ≤ ã, as we sought.

Since we also have (x̃n, λ̃n) ≥ (x̂n, λ̂n), Claim 10(iv) and (24) imply

V ({x̃n, x̃n � λ̃n} ≥ V ({x̂n, x̂n � λ̂n}) for every n. (25)

Now, note that (x̂n, λ̂n) is a bounded sequence, and hence, it has a convergent

subsequence (x̂nk , λ̂nk). Moreover, as D is a closed set, (x̂, λ̂) := limk(x̂
nk , λ̂nk)

belongs to D. We shall now show that

(x̂, λ̂) ≥ (x, λ). (26)

Suppose by contradiction that x̂i < xi for some i ∈ {1, ..., `}. Then, we must also

have x̂i < m, for m ≥ xi by definition of m. Moreover, x̂i < m implies x̂nk
i < m

for all sufficiently large k. But for any such k, we have x̂nk
i = x̃nk

i , implying that

x̂i := limk x̂
nk
i = limk x̃

nk
i . In turn, limk x̃

nk
i ≥ xi since, by construction, x̃n ≥ xn

for each n while limxn := x. This contradiction shows that x̂ ≥ x. By the same

arguments, we also have λ̂ ≥ λ, which proves (26).

(26) simply means that (x̂, λ̂) ∈ (x, λ)↑. Thus, U(x, λ) ≤ V ({x̂, x̂ � λ̂}) by

definition of U . Finally, note that V ({x̂, x̂ � λ̂}) = limk V ({x̂nk , x̂nk � λ̂nk}) ≤
limn V ({x̃n, x̃n � λ̃n}), where the equality follows from continuity of V while the

weak inequality follows from (25). Thereby, we see that U(x, λ) ≤ limn V ({x̃n, x̃n�
λ̃n}), a contradiction to (22) and (23). This completes the proof. �

The final step is to extend the function U from D to X × R`
+. For every

(x, λ) ∈X × R`
+ set g(x, λ) := (x, (λ1, λ−1 ∧ x−1)), and note that g is a weakly

increasing, continuous function from X × R`
+ into D. From the corresponding

properties of U , it obviously follows that U := U ◦ g is a weakly increasing,

and continuous function on X × R`
+. Moreover, for any (x, λ) ∈ D, we have

g(x, λ) = (x, λ), and hence, U(x, λ) = U(x, λ). In view of Claims 7 and 11, we
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conclude that U is an mw-index for %. This completes the proof of Theorem 3.

B3. Proof of Theorem 2

The “if” part of the theorem is a routine exercise. For the “only if” part,

let % be a binary relation on KP that satisfies the axioms in Theorem 2. Then,

as we have shown in Claim 1, % also satisfies the axioms in Theorem 3. Let

U : X × R`
+ → R be an mw-index for %, and set

V (A) := maxU(x, y∗1(A)− x1, x−1 − y∗−1(A)) for A ∈ KP .

The following claim uncovers a key implication of (FS).

Claim 12. U(x, 0, x−1) = U(x, 0,0) for each x ∈ X.

Proof. Fix an x ∈ X. Since U is weakly increasing, we trivially have U(x, 0, x−1) ≥
U(x, 0,0). To prove the converse inequality, suppose by contradiction that

U(x, 0, x−1) > U(x, 0,0). (27)

Then, x−1 > 0, and hence, the sets An := {x, (x1 + 1
n
,0)} and Bn := {x, (x1 +

1
n
, n−1

n
x−1)} belong to KP for each n ∈ N. Note that U(x, 1

n
, x−1) ≥ U(x, 0, x−1)

for each n, while limU((x1 + 1
n
,0), 0,0) = U((x1,0), 0,0) ≤ U(x, 0,0). Thus, (27)

implies that U(x, 1
n
, x−1) > U((x1 + 1

n
,0), 0,0) for all sufficiently large n. For any

such n, we have V (An) = U(x, 1
n
, x−1) > V ({(x1 + 1

n
,0)}) by definition of V . In

particular,

limV (An) = limU (x, 1/n, x−1) = U (x, 0, x−1) . (28)

In turn, from (27) and (28), it follows that

limV (An) > U(x, 0,0), (29)

implying that {x} ≺ An � {(x1 + 1
n
,0)} for all sufficiently large n. But for any

such n, (FS) implies V (Bn) ≥ V (An). Finally note that limBn = {x}, and hence,

limV (Bn) = V ({x}) = U(x, 0,0). Thus, we see that U(x, 0,0) ≥ limV (An),

which contradicts (29). �

Now, define a function U : X × R+ → R, as for each (x, λ1) ∈ X × R+,

U(x, λ1) := U(x, λ1, x−1).
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It is clear that U is weakly increasing and continuous on X × R+ because of the

corresponding properties of U on X × R`
+.

Fix any A ∈ KP , and put y∗ := y∗(A). In order to conclude that U is a w-index

for %, it remains to show that

max
x∈A

U(x, y∗1 − x1) = max
x∈A

U(x, y∗1 − x1, x−1 − y∗−1). (30)

Notice that max
x∈A

U(x, y∗1 − x1) := max
x∈A

U(x, y∗1 − x1, x−1) is greater than or equal

to the right hand side of (30) simply because U is weakly increasing.

To establish the converse inequality, first note that U(y∗, 0) := U(y∗, 0, y∗−1) =

U(y∗, 0,0) by Claim 12. Thus, we only need to show that sup
x∈A\{y∗}

U(x, y∗1 − x1) is

less than or equal to the right hand side (30).

Pick any x̃ ∈ A\{y∗}. Then, x̃−1 > 0, and hence, {x̃, (y∗1,0)} belongs to KP .

Note that the right hand side of (30) is greater than or equal to U(x̃, 0,0) and

U(y∗, 0,0). In turn, U(y∗, 0,0) ≥ U((y∗1,0), 0,0). Thus, without loss of generality

we can assume U(x̃, y∗1− x̃1, x̃−1) > max{U(x̃, 0,0), U((y∗1,0), 0,0)}, which simply

means {x̃} ≺ {x̃, (y∗1,0)} � {(y∗1,0)}. But then

max
x∈A

U(x, y∗1 − x1, x−1 − y∗−1) ≥ V ({x̃, y∗}) ≥ V ({x̃, (y∗1,0)}) ≥ U(x̃, y∗1 − x̃1, x̃−1),

where the second inequality follows from (FS) while the others follow the definition

of V . Since x̃ is an arbitrary point in A\{y∗}, we conclude that sup
x∈A\{y∗}

U(x, y∗1 −

x1) ≤ max
x∈A

U(x, y∗1 − x1, x−1 − y∗−1), as we sought. This completes the proof of

Theorem 2.

B4. Additional Proofs

Proof of Proposition 1. Let us write y∗ instead of y∗(A), and suppose y∗ /∈
CU(A). Pick any x ∈ CU(A). Then, U(x, y∗1 − x1) > U(y∗, 0), so that {x, y∗} �
{y∗}. Since Ũ is another w-index for%, we must then have Ũ(x, y∗1−x1) > Ũ(y∗, 0).

This immediately implies y∗ /∈ CŨ(A). Now, pick any x′ ∈ CŨ(A), and suppose by

contradiction that x /∈ CŨ(A). Then, Ũ(x′, y∗1−x′1) > max{Ũ(y∗, 0), Ũ(x, y∗1−x1)},
so that {x′, x, y∗} � {x, y∗}. In turn, the latter condition implies U(x′, y∗1 − x′1) >
U(x, y∗1 − x1), which contradicts the fact that x ∈ CU(A).

Thus, we have shown that y∗ /∈ CU(A) implies (a) CU(A) ⊆ CŨ(A); and (b)

y∗ /∈ CŨ(A). The proof follows from the symmetric implications of condition (b).

�
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Proof of Proposition 2. In view of Proposition 1, it suffices to show that

CU(A) = CŨ(A) for any A ∈ KP such that y∗(A) ∈ CU(A) ∩ CŨ(A). Let

A be such a set, and take any x̂ ∈ CU(A) that is distinct from y∗(A) so that

U(x̂, y∗1(A)− x̂1) = U(y∗(A), 0). From regularity of U , it follows that there exists

a sequence {xn, yn} in KP that converges to {x̂, y∗(A)} such that U(xn, yn1 −xn1 ) >

U(yn, 0) and yn1 > xn1 for every n. Clearly, we must also have limn x
n = x̂.

Moreover, Proposition 1(i) implies CŨ({xn, yn}) = {xn} for every n. So, by

continuity of Ũ , it follows that x̂ ∈ CŨ(A). Therefore, CU(A) ⊆ CŨ(A), and

symmetrically, we also have CU(A) ⊇ CŨ(A). �
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