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Abstract

We study three-person bargaining games with discounting, where an alternative is

accepted if it is approved by a majority of players. We characterize the set of subgame

perfect equilibrium payoffs and show that for any proposal in the space of possible

agreements there exists a discount factor such that given the proposal is made and

accepted by one of the players in period zero. Also we construct a subgame perfect

equilibrium such that arbitrary long delay of acceptance occurs with probability one.
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1 Introduction

In bargaining games two or more players are trying to reach an agreement regarding

the distribution of a surplus. Rubinstein (1982) examines two-person alternating offers

games and proves uniqueness of subgame perfect equilibrium in the model. In the unique

subgame perfect equilibrium the first proposal is immediately accepted by the opponent.

The framework provided by Rubinstein is widely used in bargaining literature and has

been extended in many directions.

One extension of the Rubinstein (1982) model concerns the application to collective

choice problems, see Baron and Ferejohn (1989), Harrington (1990), Baron and Kalai

(1993), and Banks and Duggan (2000). These papers study multilateral bargaining games,

where an alternative is accepted if it is approved by a set of players that belongs to a

collection of decisive coalition. This approach makes it possible to study a variety of

important institutional set-ups,including the one of majority voting. In Baron and Ferejohn

(1989) n-player sequential bargaining game is considered. The proposer selection process

and the order of responders are modeled by time-invariant recognition probabilities and

acceptance of the simple majority is enough to implement the proposal. Baron and Ferejohn

show that in the described game stationary subgame perfect equilibrium is unique and on

the equilibrium path of play the proposal, that gives δ/n to a half of responding players

selected at random and the rest to a player recognized as a proposer is made and accepted

in period zero.

This result was used as theoretic prediction in the broad list of experimental literature,

see McKelvey (1991), Frechette et al. (2005), Diermeier and Morton (2005), Miller and

Vanberg (2010), and Breitmoser and Tan (2010). McKelvey (1991) studies a stochastic

bargaining game with three voters and three alternatives, Frechette et al. (2005) study

four experimental designs of Baron-Ferejohn model with three players, considering different

weights (amount of votes of a player) and different selection probabilities, Diermeier and

Morton (2005) consider a finitely-repeated version of the model consisting of five periods

with a zero payoff if no agreement is reached and different recognition probabilities for

players, Miller and Vanberg (2010) compare the costs of reaching agreement under majority

and unanimity rules, and Breitmoser and Tan (2010) introduce an experiment of Baron-

Ferejohn model with three players and discount factor equal to 0.95. Most of the papers

concluded, that experimental data is hardly explained by Baron-Ferejohn prediction. In

the data proposers usually offer too much to the responding players and the proposals have

been accepted with too high probability. It is explained by generosity concepts, inequality

averse concepts and many others. As an explanations to the experiment McKelvey (1991)
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mentions possibility that subjects are trying to find a non–stationary equilibrium. We show

that more complicated strategies may lead to broader set of subgame perfect equilibrium

payoffs that are in line with surprising results of the experiments.

In this paper we study Baron-Ferejohn model with three players. We use subgame

perfect equilibrium as a solution concept. A subgame perfect equilibrium is only sensible if

we know what players would do when they reach a particular decision. Thus, the subgame

perfect equilibrium must express all actions at all information sets, regardless of whether

that information set is actually reached in equilibrium. As it was noted by Rubinstein

(1991), strategy of a player includes not only his own plan of actions, but also his opponent’s

beliefs, that he does not follow the plan of actions. In contrast with stationary strategies,

the concept of subgame perfect equilibrium requires re-examination of the strategy every

period of the game. We characterize the set of subgame equilibrium payoffs, next we

construct subgame perfect equilibria, where for any given vector from the set of subgame

perfect equilibria payoffs there exists discount factor, such that the given vector is proposed

and accepted in period zero.

When discount factor goes to zero, the set of subgame equilibria payoffs shrinks to

the unit vector, that gives one to the player, recognized as a proposer in period 0. When

discount factor goes to one, the set of subgame equilibria payoffs expands to the set of

feasible payoffs. It holds that for any vector in the set of feasible payoffs there exist a

discount factor such that the constructed strategy profile is a subgame perfect equilibrium.

Nevertheless, the usual statement of the folk theorem, stating that for sufficiently high

discount factor any individually rational payoff is a subgame perfect equilibrium payoff,

does not hold in our model. Baron and Ferejohn (1989) proved a folk theorem for a

game with at least five players, and the provided proof does not work for the three player

bargaining game. Chatterjee et. al. (1993) look at strictly superadditive games and show

that for sufficiently high discount factor any individually rational outcome is possible,

which does not hold in our setting. Norman (2002) shows that any interior division can

be supported as a subgame perfect equilibrium outcome if players are sufficiently patient

and there are sufficiently many rounds of bargaining.

There are some evidence for delay in acceptance in the experimental studies of Baron-

Ferejohn model such as Miller and Vanberg (2010), Agranov and Tergiman (2012). In this

paper we provide necessary and sufficient conditions for one period of delay in acceptance.

We show that there is a discount factor, such that for any greater discount factor one period

of delay is possible and for any smaller discount factor the subgame perfect equilibrium

with delay in acceptance does not exist. Also we report on the possibility of arbitrary

long delay of acceptance in subgame perfect equilibrium strategy profile when the discount

factor is above a particular threshold.
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So, by Rubinstein (1982) the uniqueness of the subgame perfect equilibrium for two

players is proven, by Baron and Ferejohn (1989) a folk theorem for the game with five or

more players is proven, and it was not investigated yet what allocations of the benefits may

be supported as a subgame perfect equilibrium in a bargaining game with three players.

Remarkable papers that consider majoritarian bargaining with three players are Baron

and Herron (1999), who analyze a game where players have Euclidian preferences over a

two dimensional space of legislative outcomes, Kalandrakis (2004), who considers a game,

where in each period a new dollar is divided and fully characterize a Markov equilibrium

in this model, Tsai (2009), who investigates bargaining game with incomplete information

about time preferences, and Herings and Houba (2010), who look at mixed consistent

subgame perfect equilibria in the bargaining game with three alternatives.

The rest of the paper is organized as follows. In Section 2 we describe the bargaining

game, state the main result, and derive the bounds for subgame perfect equilibria outcomes.

In Section 3 we construct subgame perfect equilibrium and complete the prove of the main

result. In Section 4 we provide necessary and sufficient conditions for one period of delay

in acceptance. In Section 5 we investigate arbitrary long delay of acceptance in subgame

perfect equilibria strategies. Section 6 concludes.

2 The bounds for subgame perfect equilibrium payoffs

We consider a three player dynamic game of perfect information Γ. The set of players

denoted by N = {1, 2, 3} has to agree on the choice of a payoff vector in the set of feasible

payoffs V = {x ∈ R
3
+, x1 + x2 + x3 ≤ 1}. In each time period t = 0, 1, 2, . . . nature selects

the proposer and the order of responders. The proposer selection process and the order of

responders are modeled by time-invariant recognition probabilities. The probability that

player i ∈ N is recognized to make a proposal is equal to 1/3 across all periods. Also

the probability that player i ∈ N is recognized to respond first is equal to 1/3 across all

periods. More precisely, in each time period t = 0, 1, 2, . . . nature selects the proposer

and the order of responders by means of a permutation πt : {1, 2, 3} → N , and every

permutation is chosen with equal probability. The player, who is recognized by nature as a

proposer, makes a proposal xt ∈ V . Then the other two players sequentially respond to the

proposal by accepting or rejecting it. If one of the responding players accepts the proposal,

the game ends and the proposal is implemented. If both players reject the proposal, the

next period begins. The utility of player i ∈ N who receives outcome xi in period t is δtxi,

where δ ∈ [0, 1) is the common discount factor.

A history h is the sequence of all actions that have occurred before a particular decision

node in the game. For simplicity we suppress the elements of the sequence pertaining to
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the moves by the responding players: it is understood that in any non–terminal history

both responders have rejected all proposals to date. With this convention any non-terminal

history is of one of the following two types:

1. h ∈ H t
1 if and only if h is of the form h = (π0, x0, . . . , πt−1, xt−1, πt),

2. h ∈ H t
2 if and only if h is of the form h = (π0, x0, . . . , πt−1, xt−1, πt, xt),

where πk is a permutation of the set N and xk ∈ V for every k. After history h ∈ H t
1 a

proposer moves, and after history h ∈ H t
2 responders move. Histories in H t

1 will be called

proposer histories while those in H t
2 responder histories.

Strictly speaking, one has to distinguish two types of responder histories: histories after

which the first responder moves and histories after which the second responder moves. We

shall not make such distinction; the symbol h ∈ H t
2 might denote any of these histories.

When we talk about Player πt(3) casting a vote after history h, it is to be understood that

the Player πt(2) has already rejected the proposal.

Theorem 2.1 (Baron, Ferejohn, 1989) For all δ ∈ [0, 1) a configuration of pure strategies

is a stationary subgame-perfect equilibrium in an infinite session, majority rule, n-member

(with n odd) if and only if it has the following form: (1) a member recognized proposes to

receive 1− δ(n− 1)/2n and offers δ/n to (n− 1)/2 other members selected at random; (2)

each member accepts any proposal in which at least δ/n is received, and rejects otherwise.

The proposal in period 0 is made and accepted.

Let the the bounds for subgame perfect equilibrium (SPE) payoffs be denoted by

ui = sup{ui | ui is a SPE payoff for player i},

ui = inf{ui | ui is a SPE payoff for player i}.

Define

b =
3− 3δ

9− 6δ − δ2
(2.1)

b =
3− δ

9− 6δ − δ2
. (2.2)

These are plotted plotted in the Figure 1 as functions of δ. The main result of the paper

is the following theorem.

Theorem 2.2 (Main result) It holds that u1 = u2 = u3 = b and u1 = u2 = u3 = b.
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Figure 1: b and b as functions of δ.

The proof of the Theorem 2.2 consists of two parts. The first part, carried out in the

remainder of this section, consist in showing that in any subgame perfect equilbrium the

payoff to any player is bounded below by b and above b, that is b ≤ ui and ui ≤ b. In

the next section we show that these bounds are tight: we explicitly construct a subgame

perfect equilibrium where Player 2 receives payoff b and Player 3 the payoff b.

Due to the symmetry of the game it is clear that u1 = u2 = u3 and u1 = u2 = u3.

We henceforth write simply u instead of ui and u instead of ui. In the remainder of this

section we prove that b ≤ u and u ≤ b. The proof proceeds in a succession of claims.

Claim 2.3 Consider a proposer history h ending with a permutation π. In any subgame

perfect equilibrium σ:

[1] A proposal x ∈ V by player π(1) such that xπ(2) > δu or xπ(3) > δu is accepted by

player π(2) or by player π(3).

[2] A proposal x ∈ V by player π(1) such that xπ(2) < δu and xπ(3) < δu is rejected by

both players π(2) and π(3).

Proof: [1] Let x ∈ V be such that xi > δu for some i ∈ {π(2), π(3)}. Suppose that

according to the strategy σ the proposal x is accepted by neither player π(2) nor π(3).

Consider the responder history (h, x). The payoff to player i on the strategy σ at (h, x)

is at most δu. On the other hand, accepting the proposal x yields player i the payoff xi.

Thus player i has a one–shot profitable deviation at (h, x), leading to a contradiction.
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[2] Let x ∈ V be such that xi < δu for both i ∈ {π(2), π(3)}. Consider player π(3)’s

action at the responder history (h, x). Since accepting x yields the payoff xi and rejecting

x gives at least δu, player π(3) must reject. Consider now player π(2)’s action at (h, x).

Rejection of x by player π(2) is followed by the rejection of x by player π(3) and so yields

player π(2) the payoff of at least δu. We conclude that player π(2) must reject x. �

Claim 2.4 It holds that u+ u ≤ 1.

Proof: Let u = (u1, u2, u3) be a subgame perfect equilibrium payoff vector. Then u1+u2 ≤

u1 + u2 + u3 ≤ 1. Therefore u1 ≤ 1− u2. Hence

u = sup{u1} ≤ sup{1− u2} = 1− inf{u2} = 1− u,

where the supremum and the infimum are taken over all subgame perfect equilibrium payoff

vectors u. �

Claim 2.5 Consider period 0 proposer history h = (π). Let v = (v1, v2, v3) be the payoffs

on a subgame perfect equilibrium σ conditional on history h being reached. It holds that

[1] 1− δu ≤ vπ(1),

[2] vπ(1) ≤ 1− δu,

[3] vπ(2) ≤ δu and vπ(3) ≤ δu.

Proof: [1] By Claim 2.3 the proposal x where xπ(1) = 1 − ǫ − δu, xπ(2) = ǫ + δu and

xπ(3) = 0 is accepted for each ǫ > 0. Since σ is a subgame perfect equilibrium we have

1− ǫ− δu ≤ vπ(1) for each ǫ > 0. Therefore 1− δu ≤ vπ(1).

[2] Let x be player π(1)’s proposal at h under the strategy σ. Suppose first that x is

rejected under σ. Then clearly vπ(1) ≤ δu. It follows from the preceding claim that δu ≤

1− δu and therefore that vπ(1) ≤ 1− δu. Suppose now x is accepted. Then by Claim 2.3 it

is the case that xπ(2) ≥ δu or xπ(3) ≥ δu. Therefore vπ(1) = xπ(1) ≤ 1−xπ(2)−xπ(3) ≤ 1−δu.

[3] We have vπ(2) ≤ 1 − vπ(1) − vπ(3) ≤ 1 − vπ(1) ≤ δu where the last inequality follows

from [1]. The argument for vπ(3) is similar. �

Claim 2.6 It holds that

1− δu

3
≤ u ≤ u ≤

1− δu

3 − 2δ
.
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Proof: Let σ be a subgame perfect equilibrium with payoff vector u = (u1, u2, u3). For

each permutation π ∈ Π let vπ = (vπ1 , v
π
2 , v

π
3 ) denote the payoff on σ conditional on nature

choosing permutation π. Since each permutation is equally likely we have

u = 1
6

∑

π∈Π

vπ.

There are exactly two permutation where player 1 is the proposer, namely (1, 2, 3) and

(1, 3, 2). For each of these two permutations π it holds that 1 − δu ≤ vπ1 ≤ 1 − δu, by

parts [1–2] of the preceding claim. In each of the remaining permutations π player 1 is a

responding player and so 0 ≤ vπ1 ≤ δu by part [3] of the preceding claim. We conclude that

2
6
(1− δu) + 4

6
0 ≤ u1 ≤

2
6
(1− δu) + 4

6
δu.

Since the inequalities holds for each subgame perfect equilibrium payoff u, we have

1
3
(1− δu) ≤ u ≤ u ≤ 1

3
(1− δu) + 2

3
δu.

Rearranging the last inequality yields the result. �

We are now in a position to prove the first half of Theorem 2.2, namely: the payoff

to any player in any subgame perfect equilibrium of the game is bounded below by b and

above by b.

Theorem 2.7 It holds that b ≤ u and u ≤ b.

Proof: Define the functions f, g : [0, 1] → [0, 1] by

f(x) =
1− δx

3
and g(x) =

1− δx

3− 2δ

Also let h = g ◦ f . Then h is given by

h(x) =
3− δ + δ2x

9− 6δ
.

It is easy to see that h is a contraction and that b is a fixed point of h.

The preceding claim implies that

f(u) ≤ u and u ≤ g(u).

Using the fact that g is a decreasing function we obtain u ≤ g(u) ≤ g(f(u)). Hence

u ≤ h(u). Since h is an increasing function, we can iterate the last inequality to obtain

u ≤ hn(u). By the Banach theorem hn(u) converges to b. Hence we obtain u ≤ b. Therefore

f(b) ≤ f(u) ≤ u. An easy computation shows that b = f(b). This completes the proof. �
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3 The subgame perfect equilibrium strategies

In the previous section we have shown that the payoff to any player in any subgame

perfect equilibrium is bounded below by b and above by b. In this section we show that

these bounds are tight. We explicitly construct a subgame perfect equilibrium strategy

yielding player 2 the payoff b and player 3 the payoff b.

We define

V1 = {(v11, v
1
2, v

1
3)| v11 ≥ 1− δb and [v12 ≥ δb or v13 ≥ δb]}

V2 = {(v21, v
2
2, v

2
3)| v22 ≥ 1− δb and [v23 ≥ δb or v21 ≥ δb]}

V3 = {(v31, v
3
2, v

3
3)| v33 ≥ 1− δb and [v31 ≥ δb or v32 ≥ δb]}.

Theorem 3.1 Take a1 ∈ V1, a2 ∈ V2, and a3 ∈ V3. Then there exists subgame perfect

equilibrium σ such that for each permutation π0 the proposal aπ0(1) is made and accepted

in period 0.

Assuming Theorem 3.1 we complete the proof of Theorem 2.2. Take a1 = (1−δb, δb, 0),

a2 = (δb, 1− δb, 0), and a3 = (0, δb, 1 − δb). Clearly ai ∈ Vi. Now let σ be the strategy as

in Theorem 3.1. Then the expected payoff for Player 2 on σ is b, and the expected payoff

for Player 3 is b, where we have used the equations

b = 1
3
(1− δb) and b = 1

3
(1− δb) + 2

3
δb. (3.1)

The rest of this section is dedicated to the proof of Theorem 3.1. The theorem is proven

separately for the case δ ≤ 3/5 and the case δ > 3/5, but in both cases the strategy σ is

constructed along the same lines.

We first introduce some additional notation. Consider a history h = (π0, x0, . . . , πt, xt).

We denote the proposer in period t by pt, in other words πt(1) = pt. We denote by jt the

responding player in period t, who has been proposed a higher share of the cake than the

other responding player, i.e.

jt =

{
πt(2), if [xt

πt(2) ≥ xt
πt(3)],

πt(3), if [xt
πt(3) > xt

πt(2)].

The other responding player in period t is denoted by kt. We write xt
i rather than xt

it . A

proposer history h = (π0, x0, . . . , πt, xt, πt+1) uniquely defines the sequence

h∗ = (p0, x0, j0, k0, . . . , pt, xt, jt, kt, pt+1).

Sequences of this form will be used to define the proposer strategy, denoted by ρ0, ρ1, . . ..

These will be defined recursively as follows: Set ρ0(p0) = aπ0(1) and for each t ≥ 0 let

ρt+1(p0, . . . , pt, xt, jt, kt, pt+1) = f(pt, xt, jt, kt, pt+1, ρt(p0, . . . , pt)),
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where the function f will be specified below. With the minor abuse of notation we write

ρt(h) rather than ρt(h∗). Note that for δ > 3/5 the following holds: b < b/2, which plays

important role in the construction.

3.1 The proof of Theorem 3.1 for δ ≤ 3/5

Suppose δ ≤ 3/5. The function f is defined below in Table 1 and Table 2. The first three

columns specify the players pt, jt, kt, and the remaining three columns specify the values

f(pt, xt, jt, kt, pt+1, yt) depending on the value of pt+1. Table one applies if xt = yt and

Table 2 applies if xt 6= yt. Thus in particular, if after the proposer history h in period

t the proposer deviates from the strategy σ and makes a proposal xt 6= ρt(h), then the

proposals in period t + 1 are determined by Table 2. If in period t the proposer complies

with the strategy σ and makes a proposal xt = ρt(h), then the proposals in period t + 1

are determined by Table 1.

Table 1: f(pt, xt, jt, kt, pt+1, xt).

pt jt kt pt+1 = 1 pt+1 = 2 pt+1 = 3

1 2 3 (1− δb, 0, δb) (δb, 1− δb, 0) (δb, 0, 1− δb)

1 3 2 (1− δb, δb, 0) (δb, 1− δb, 0) (δb, 0, 1− δb)

2 1 3 (1− δb, δb, 0) (0, 1− δb, δb) (0, δb, 1− δb)

2 3 1 (1− δb, δb, 0) (δb, 1− δb, 0) (0, δb, 1− δb)

3 1 2 (1− δb, 0, δb) (0, 1− δb, δb) (0, δb, 1− δb)

3 2 1 (1− δb, 0, δb) (0, 1− δb, δb) (δb, 0, 1− δb)

Table 2: f(pt, xt, jt, kt, pt+1, yt) where xt 6= yt.

pt jt kt pt+1 = 1 pt+1 = 2 pt+1 = 3

1 2 3 (1− δb, δb, 0) (δb, 1− δb, 0) (0, δb, 1− δb)

1 3 2 (1− δb, 0, δb) (0, 1− δb, δb) (δb, 0, 1− δb)

2 1 3 (1− δb, δb, 0) (δb, 1− δb, 0) (δb, 0, 1− δb)

2 3 1 (1− δb, 0, δb) (0, 1− δb, δb) (0, δb, 1− δb)

3 1 2 (1− δb, 0, δb) (δb, 1− δb, 0) (δb, 0, 1− δb)

3 2 1 (1− δb, δb, 0) (0, 1− δb, δb) (0, δb, 1− δb)

We define the strategy σ as follows:
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1. For each t ≥ 0, for each history h = (π0, x0, . . . , πt−1, xt−1, πt), Player pt proposes

ρt(h)

2. After history h = (π0, x0, . . . , πt−1, xt−1, πt, xt) Player jt accepts xt if

• xt = ρt(h) or

• xt
j ≥ δb,

and rejects otherwise.

3. After history h = (π0, x0, . . . , πt−1, xt−1, πt, xt) Player kt accepts xt if

• xt = ρt(h) and xt
k ≥ δ2b/3 + δb or

• xt 6= ρt(h) and xt
k ≥ δb,

and rejects otherwise.

The following graph helps to understand the values of equilibrium proposals depending

on δ, which is measured on X axis.

1

10.6 0.8

1− δb

δb

1− δb

δb/2

δb

b b b
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The intuition of the strategy profile is the following. Table 1 determines ρt(h) after

the history h = (π0, x0, . . . , xt−1, πt) such that xt−1 = ρt−1(π0, x0, . . . , πt−1). In other

words it prescribes the proposal to be made after equilibrium proposal was made and

rejected in previous period. According to the Table 1 Player pt−1 obtains highest possible

expected payoff of b, as an encouragement for making a proposal prescribed by the strategy

profile in the previous period; Player jt−1 obtains lowest possible expected payoff of b, as

a punishment for rejecting the proposal prescribed by the strategy profile; Player kt−1

receives the rest, which is b+ δb/3.

Table 2 determines ρt(h) after the history h = (π0, x0, . . . , xt−1, πt) such that xt−1 6=

ρt−1(π0, x0, . . . , πt−1). In other words it prescribes the proposal to be made after the

deviation of the proposer in previous period. According to the Table 2 Player pt−1 obtains

expected payoff of b + δb/3, as a punishment for deviating in the previous period. Player

jt−1 obtains highest possible expected payoff of b, as an encouragement for rejecting the

proposal that was not prescribed by the strategy profile; Player kt−1 receives the rest,

which is b.

The proof of the fact that the strategy profile σ = (σ1, σ2, σ3) described above is a

subgame perfect equilibrium is divided into five steps: Claim 3.2 states that σ has “no

delay property”, Claim 3.3 shows that after any responder history h the responder, who

receives the lower share has no profitable one-shot deviations from σ at h. Claim 3.4 show

that after any responder history h the responder, who receives the higher share has no

profitable one-shot deviations from σ at h. Claim 3.5 show that proposals xt 6= ρt(h)

which gives to the proposer more than 1− δb are rejected by both responders. And finally,

Claim 3.6 show that after any proposer history h the proposer has no profitable one-shot

deviations from σ at h. We show this by verifying that the one-shot deviation principle is

satisfied.

Claim 3.2 The strategy profile σ has the following no delay property: if after history

h = (π0, x0, . . . , πt−1, xt−1) players play according to the strategy σ, ρt(h) is proposed and

accepted by one of the responders and the game ends.

Proof: The Claim is immediate from the above definition: indeed, Player jt according to

the strategy profile accepts offers xt, such that xt = ρt. �

Claim 3.3 The responder who is offered the smaller share after history h =

(π0, x0, . . . , πt, xt), i.e. player kt, has no profitable one-shot deviations from σ at h.
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Proof: According to the strategy profile, Player kt accepts xt if [xt 6= ρt(h) and xt
k ≥ δb]

or [xt = ρt(h) and xt
k ≥ δ2b/3 + δb], and rejects otherwise. We consider four cases:

1. xt = ρt(h) and xt
k < δ2b/3 + δb,

2. xt = ρt(h) and xt
k ≥ δ2b/3 + δb,

3. xt 6= ρt(h) and xt
k < δb,

4. xt 6= ρt(h) and xt
k ≥ δb.

1) Case xt = ρt(h) and xt
k < δ2b/3 + δb.

According to the strategy profile, Player kt rejects the proposal, which leads to an

expected payoff of δt+1(δb/3 + (1 − δb)/3) = δt+1(δb/3 + b) = δt(δ2b/3 + δb), in the case

when Player jt rejects also. If Player kt deviates and accepts, it gives him a payoff less

than δt(δ2b/3 + δb). So acceptance is not a profitable deviation.

2) Case xt = ρt(h) and xt
k ≥ δ2b/3 + δb.

According to the strategy profile, Player kt accepts the proposal, which leads to a payoff

of at least δt(δ2b/3+δb). If Player kt deviates and rejects, in the case when Player jt rejects

also, an expected payoff is δt(δ2b/3 + δb). So rejection is not a profitable deviation.

3) Case xt 6= ρt(h) and xt
k < δb.

According to the strategy profile, Player kt rejects the proposal, leading to an expected

payoff of δt+1(1−δb)/3 = δt+1b, in the case when Player jt rejects also. If Player kt deviates

and accepts, it leads to a payoff less than δt+1b. So acceptance is not a profitable deviation.

4) Case xt 6= ρt(h) and xt
k ≥ δb.

According to the strategy profile, Player kt accepts the proposal, which leads to a payoff

of at least δt+1b. If Player kt deviates and rejects, in the case when Player jt rejects also,

an expected payoff is δt+1b. So rejection is not a profitable deviation. �

Claim 3.4 The responder who is offered larger share at history h = (π0, x0, . . . , πt, xt),

i.e. player jt, has no profitable one–shot deviations from σ at h.

Proof: According to the strategy profile, Player jt accepts xt if [xt = ρt(h)] or [xt
j ≥ δb],

and rejects otherwise. We consider three cases:

1. xt = ρt(h),

2. xt 6= ρt(h) and xt
j ≥ δb,
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3. xt 6= ρt(h) and xt
j < δb,

1) Case xt = ρt(h).

Note, that if xt = ρt(h), then xt
j ≥ δb. Any proposal prescribed by the strategy profile

by Table 1 provides xt
j = δb or xt

j = δb, any proposal prescribed by the strategy profile

by Table 2 provides xt
j = δb, and if xt = ai, i = 1, 2, 3, then xt

j ≥ δb. According to the

strategy profile, Player jt accepts, which leads to payoff δtxt
j ≥ δt+1b. If Player jt rejects

xt, it leads to an expected payoff of δt+1(1 − δb)/3 = δt+1b, in the case when Player kt

rejects also. So rejection is not a profitable deviation.

2) Case xt 6= ρt(h) and xt
j ≥ δb.

According to the strategy profile, Player jt accepts, which leads to a payoff of at least

δt+1b. If Player j deviates and rejects xt, it leads to an expected payoff of δt+1((1−δb)/3+

2δb/3) = δt+1b, in the case when Player kt rejects also. So rejection is not a profitable

deviation.

3) Case xt 6= ρt(h) and xt
j < δb.

According to the strategy profile, Player jt rejects, which leads to an expected payoff

of δt+1((1 − δb)/3 + 2δb/3) = δt+1b, in the case when Player kt rejects also. If Player jt

deviates and accepts he receives a payoff less than or equal to δt+1b. So acceptance is not

a profitable deviation. �

We have checked that responders have no profitable one-shot deviations. We presently

turn our attention to the proposers. The following claim states that whenever a proposer

deviates from σ and demands himself a share larger than 1 − δb, the proposal will be

rejected.

Claim 3.5 After history h = (π0, x0, . . . , πt−1, xt−1, πt) proposals xt 6= ρt(h) such that

xt
pt > 1− δb are rejected by both responders.

Proof: Note that xt
k+xt

j < δb. Since by definition player kt is the responder who is offered

a smaller share, we have xt
k < δb/2. Moreover, δb/2 ≤ δb as follows from the assumption

that δ ≤ 3/5. Thus xt
k < δb. It follows by the definition of σ that Player kt rejects the

proposal xt. Player jt rejects the proposal xt, since xt
j < δb. �

Claim 3.6 The proposer, i.e. Player pt, after history h = (π0, x0, . . . , πt−1, xt−1, πt) has

no profitable one-shot deviations from σ at h.

Proof: Following σ leads to a payoff greater than or equal to δt(1 − δb) for Player pt.

Indeed, this follows since both Tables 1 and 2 provide that xpt = 1 − δb or xpt = 1 − δb,
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and the proposal ρ(h) is accepted.

If Player pt proposes xt 6= ρt(h) such that xt
pt > 1− δb, then the proposal is rejected as

argued Claim 3.5 and an expected payoff for Player pt is equal to δt+1((1− δb)/3+ δb/3) ≤

δt(1− δb).

If Player pt proposes xt 6= ρt(h) such that xt
pt ≤ 1 − δb, then the proposal is either

accepted and leads to payoff δtxt
pt ≤ δt(1− δb), or rejected and leads to an expected payoff

of δt+1((1 − δb)/3 + δb/3) ≤ δt(1 − δb). In both cases, the payoff of Player pt is less than

or equal to δt(1− δb). �

3.2 The proof of Theorem 3.1 for δ > 3/5

Suppose δ > 3/5. The function f is defined by Table 1 above and Table 3 below. As before

Table 1 gives the values f(pt, xt, jt, kt, pt+1, yt) when xt = yt and Table 3 when xt 6= yt.

The function θ is defined by the equation

θ(xt
k) =




xt
k/δ − b, if δb < xt

k < δb/2,

0, otherwise.
(3.2)

Table 3: f(pt, xt, jt, kt, pt+1, yt), where xt 6= yt and θ = θ(xt
k).

pt jt kt pt+1 = 1 pt+1 = 2 pt+1 = 3

1 2 3 (1− δb, δb− θ, θ) (δb, 1− δb− θ, θ) (0, δb− θ, 1− δb+ θ)

1 3 2 (1− δb, θ, δb− θ) (0, 1− δb+ θ, δb− θ) (δb, θ, 1− δb− θ)

2 1 3 (1− δb− θ, δb, θ) (δb− θ, 1− δb, θ) (δb− θ, 0, 1− δb+ θ)

2 3 1 (1− δb+ θ, 0, δb− θ) (θ, 1− δb, δb− θ) (θ, δb, 1− δb− θ)

3 1 2 (1− δb− θ, θ, δb) (δb− θ, 1− δb+ θ, 0) (δb− θ, θ, 1− δb)

3 2 1 (1− δb+ θ, δb− θ, 0) (θ, 1− δb− θ, δb) (θ, δb− θ, 1− δb)

Define the strategy σ as follows:

1. For each t ≥ 0, for each history h = (π0, x0, . . . , πt−1, xt−1, πt), Player pt proposes

ρt(h)

2. After history h = (π0, x0, . . . , πt−1, xt−1, πt, xt) Player jt accepts xt if

• xt = ρt(h) or

• xt
k ≤ δb and xt

j ≥ δb or
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• xt
k ≥ δb/2 and xt

j ≥ δb or

• δb < xt
k < δb/2 and xt

j ≥ δb+ δb− xt
k,

and rejects otherwise.

3. After history h = (π0, x0, . . . , πt−1, xt−1, πt, xt) Player kt accepts xt if

• xt = ρt(h) and xt
k ≥ δ2b/3 + δb or

• xt 6= ρt(h) and xt
k ≥ δb/2,

and rejects otherwise.

Note, that when θ(xt−1
k ) = 0, Table 3 is identical to Table 2. Therefore, when θ(xt−1

k ) =

0 the intuition of the strategy profile is the same for any δ. In the case θ(xt−1
k ) 6= 0 Player

jt−1 obtains an expected payoff of b − θ(xt−1
k ) - Player jt−1 is still rewarded for rejecting

the proposal that was not prescribed by the strategy profile, but he shares a part of the

reward with Player kt−1; Player kt−1 receives the rest, which is xt−1
k /δ. It makes Player

kt−1 indifferent between accepting and rejecting

The proof of the fact that the strategy profile σ = (σ1, σ2, σ3) described above is a

subgame perfect equilibrium is divided into five steps, that are the same as in the proof for

δ ≤ 3/5: Claim 3.7 states that σ has “no delay property”, Claim 3.8 shows that after any

responder history h the responder, who receives the lower share has no profitable one-shot

deviations from σ at h. Claim 3.10 show that after any responder history h the responder,

who receives the higher share has no profitable one-shot deviations from σ at h. Claim 3.11

show that proposals xt 6= ρt(h) which gives to the proposer more than 1− δb are rejected

by both responders. And finally, Claim 3.12 show that after any proposer history h the

proposer has no profitable one-shot deviations from σ at h.

Claim 3.7 The strategy profile σ has the following no delay property: if after history

h = (π0, x0, . . . , πt−1, xt−1) players play according to the strategy σ, ρt(h) is proposed and

accepted by one of the responders and the game ends.

Proof: The Claim is immediate from the above definition: indeed, Player jt according to

the strategy profile accepts offers xt, such that xt = ρt. �

Claim 3.8 The responder who is offered smaller share, i.e. player kt, after history h =

(π0, x0, . . . , πt, xt) has no profitable one-shot deviations from σ at h.

Proof: According to the strategy Player kt accepts xt if [xt 6= ρt(h) and xt
k ≥ δb/2] or

[xt = ρt(h) and xt
k ≥ δ2b/3 + δb], and rejects otherwise. We consider five cases:
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1. xt = ρt(h) and xt
k < δ2b/3 + δb - same proof as in Claim 3.3,

2. xt = ρt(h) and xt
k ≥ δ2b/3 + δb - same proof as in Claim 3.3,

3. xt 6= ρt(h) and xt
k ≤ δb- same proof as in Claim 3.3,

4. xt 6= ρt(h) and δb < xt
k < δb/2,

5. xt 6= ρt(h) and xt
k ≥ δb/2.

4) Case xt 6= ρt(h) and δb < xt
k < δb/2.

According to the strategy profile, Player kt rejects the proposal. Letting θ = θ(xt
k) =

δ−1xt
k − b, and using Equation (3.1) we compute the rejection to give the expected payoff

of δt+1
(
1
3
(1− δb+ θ) + 1

3
θ + 1

3
θ
)
= δt+1

(
1
3
(1− δb) + θ

)
= δt+1(b + θ) = δtxt

k, in the case

when Player jt rejects also. If Player kt deviates and accepts, he obtain a payoff of δtxt
k.

So acceptance is not a profitable deviation.

5) Case xt 6= ρt(h) and xt
k ≥ δb/2.

According to the strategy profile, Player kt accepts the proposal, which leads to a payoff

of at least δtb/2. If Player kt deviates and rejects, in the case when Player jt rejects also,

he obtain an expected payoff of δt+1((1− δb)/3) = δt+1b < δtδb/2 for δ > 3/5. So rejection

is not a profitable deviation. �

Claim 3.9 It holds that δb− θ(z) ≥ δb for each z ∈ [0, 1].

Proof: It follows from the definition of θ that θ(z) ≤ 1
2
b− b. Hence

δb− θ(z) ≥ δb− 1
2
b+ b = (δ − 1

2
)b+ b ≥ (δ − 1

2
)2b+ b = 2δb ≥ δb.

where we have used the fact that δ ≥ 3/5 and b ≥ 2b. �

Claim 3.10 The responder who is offered larger share, i.e. player jt, after history h =

(π0, x0, . . . , πt, xt) has no profitable one–shot deviations from σ at h.

Proof: According to the strategy profile, Player jt accepts xt if

• xt = ρt(h) or

• xt
k ≤ δb and xt

j ≥ δb or

• xt
k ≥ δb/2 and xt

j ≥ δb or
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• δb < xt
k < δb/2 and xt

j ≥ δb+ δb− xt
k,

and rejects otherwise. We consider five cases:

1. xt = ρt(h),

2. xt 6= ρt(h) and [xt
k ≤ δb or xt

k ≥ δb/2] and xt
j ≥ δb - same proof as in Claim 3.4,

3. xt 6= ρt(h) and [xt
k ≤ δb or xt

k ≥ δb/2] and xt
j < δb,

4. xt 6= ρt(h) and δb < xt
k < δb/2 and xt

j ≥ δb+ δb− xt
k,

5. xt 6= ρt(h) and δb < xt
k < δb/2 and xt

j < δb+ δb− xt
k.

1) Case xt = ρt(h).

First we argue that if xt = ρt(h), then xt
j ≥ δb. Any proposal in Table 1 provides

xt
j = δb or xt

j = δb. Any proposal in Table 3 offers the responders the shares δb and θ,

or the shares δb − θ and 0. In view of the preceding claim, in either case one of the two

responders is offered at least δb, so xt
j ≥ δb. Finally if xt = a then xt

j ≥ δb.

According to the strategy profile, Player jt accepts, leading to a payoff δtxt
j ≥ δt+1b.

If Player jt deviates and rejects xt, in the case when Player kt rejects also, it leads to an

expected payoff of δt+1(1− δb)/3 = δt+1b. So rejection is not a profitable deviation.

3) Case xt 6= ρt(h) and [xt
k ≤ δb or xt

k ≥ δb/2] and xt
j < δb.

According to the strategy profile, Player jt rejects, leading to an expected payoff of

δt+1((1 − δb)/3 + 2δb/3) = δt+1b, in the case when Player kt rejects also. If Player jt

deviates and accepts he receives a payoff less than δt+1b. So acceptance is not a profitable

deviation.

4) Case xt 6= ρt(h) and δb < xt
k < δb/2 and xt

j ≥ δb+ δb− xt
k.

According to the strategy profile, Player jt accepts, leading to a payoff of at least

δt+1b + δt+1b − δtxt
k. If Player jt deviates and rejects, in the case when Player kt rejects

also, it leads to an expected payoff of δt+1(1
3
(1 − δb − θ) + 2

3
(δb − θ)) = δt+1(b − θ) =

δt+1b+ δt+1b− δtxt
k, where we used (3.1) and where θ = θ(xt

k) = δ−1xt
k − b. So rejection is

not a profitable deviation.

5) Case xt 6= ρt(h) and δb < xt
k < δb/2 and xt

j < δb+ δb− xt
k.

According to the strategy profile, Player jt rejects, leading to an expected payoff of

δt+1b+ δt+1b − δtxt
k, in the case when Player kt rejects also. If Player jt deviates and ac-

cepts, it gives him a payoff of at most δt+1b+δt+1b−δtxt
k. So acceptance is not a profitable

deviation. �
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Claim 3.11 After history h = (π0, x0, . . . , πt−1, xt−1, πt) proposals xt 6= ρt(h) such that

xt
pt > 1− δb are rejected by both responders.

Proof: Note, that xt
j + xt

k < δb. Since kt is the responder who is offered smaller share, we

have xt
k ≤ δb/2. We consider 2 cases:

1. xt
k ≤ δb,

2. δb < xt
k < δb/2.

Case 1. xt
k ≤ δb.

According to the strategy profile, Player kt rejects the proposal, as xt
k < δb/2.

According to the strategy profile, Player jt rejects the proposal, as xt
j < δb.

Case 2. δb < xt
k < δb/2.

According to the strategy profile, Player kt rejects the proposal, as xt
k < δb/2.

According to the strategy profile, Player jt rejects the proposal, as xt
j < 1− xt

p − xt
k ≤

1− (1− δb)− xt
k = δb− xt

k < δb− xt
k + δb. �

Claim 3.12 The proposer, i.e. Player pt, after history h = (π0, x0, . . . , πt−1, xt−1) has no

profitable one-shot deviations from σ at h.

Proof: First we argue that following σ leads to a payoff at least δt(1 − δb) for Player pt.

According to σ the proposer demands one of the four shares: 1− δb, 1− δb, 1− δb+ θ, or

the share 1− δb− θ. Each of these is at least 1− δb. In particular, the fact that 1− δb− θ

is at least 1− δb follows from Claim 3.9.

If Player pt proposes xt 6= ρt(h) such that xt
pt > 1 − δb, then the proposal is rejected

according to Claim 3.11 and the expected payoff for Player pt is equal to δt+1((1− δb)/3+

δb/3) ≤ δt(1− δb), which holds for every δ ∈ [0, 1).

If Player pt proposes xt 6= ρt(h) such that xt
pt ≤ 1 − δb, then the proposal is either

accepted and leads to payoff δtxt
pt ≤ δt(1− δb), or rejected and leads to an expected payoff

of δt+1((1− δb)/3+ δb/3) ≤ δt(1− δb). In both cases the payoff of Player pt is less than or

equal to δt(1− δb). �

Now we can compare our result with experimental literature, where for the game with

three players, a stationary subgame perfect equilibrium predicts a payoff of 1− δ/3 to the

proposer in period 0 and a payoff of δ/3 to one of the responders. We have shown that

broader set of payoffs is consistent with subgame perfect equilibrium strategies.
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In one of the first experimental investigations of the Baron-Ferejohn model, McKelvey

(1991) studies a stochastic bargaining game with three voters and three alternatives. He

concludes that the data is not precisely predicted by the solution of the game. In the data

proposers usually offer too much to the responding players and the proposals have been

accepted with too high probability.

Diermeier and Morton (2005) consider a finitely-repeated version of the Baron-Ferejohn

model to obtain more accurate predictions that in the model of McKelvey (1991). Exper-

iment consists of five periods with a zero payoff if no agreement is reached. Diermeier and

Morton use different recognition probabilities for players, in contrast with Baron-Ferejohn

model. Similar to McKelvey, Diermeier and Morton find little support for the predictions

of the Baron-Ferejohn model. First, in 1/3 of the cases positive amount was proposed

to all players, not just tothe members of the minimal winning coalition. Which is al-

lowed in our paper. Second, proposers do not select the coalition partner with the lowest

continuation value. Third, proposers do not use their power as it was predicted by the

Baron-Ferejohn model for stationary strategies. They consistently offer too much to other

coalition members. Fourth, a significant percentage of first period proposals above the

continuation value were rejected.

In Breitmoser and Tan (2010) the following treatment is considered:

Game 1 (PB95). In each round, one player is recognized as proposer by a uniform draw

from N . This player chooses x, x ∈ R
3
+, x1 + x2 + x3 ≤ 24, and the other players vote

on x. If one of them accepts, then the payoffs are x. Otherwise, the payoffs are 0 with

probability .05 and a new round begins with probability .95. In other terms δ = 0.95.

The prediction of Baron-Ferejohn in stationary strategies gives 16.4 to the proposer

and 7.6 to one of the responders. The sample estimates are 10.69 (with standard deviation

3.44) to the proposer, 8.61 (with standard deviation 2.39) to Player j, and 4.12 (with

standard deviation 3.14) to Player k. The gap between proposer and second voter payoffs

was smaller than the stationary subgame perfect equilibrium prediction. Note, that our

result predicts payoff to the proposer in the range from 4.5 (1−δb) to 22.49 (1−δb); payoff

to the player, who receives higher share is predicted to be in the range from 1.5 (δb) to

16.11 (δb). Moreover, the responder received on average the continuation payoff, while the

other voter got more than nothing - contrary to stationary equilibrium predictions, but also

in line with our result. These observations of Breitmoser and Tan (2010) are similar with

those of previous studies, which also noted the under-realization of proposer power and

the generosity shown to voters outside the minimal winning coalition as in Frechette et al.

(2005). Frechette et al. (2005) study four experimental designs of Baron-Ferejohn model

with three players, considering different weights (amount of votes of a player) and different
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selection probabilities. Frechette etal. suggestthat players rely on a“fair”reference point of

1/n shareof the benefits when making decisions. Offers below that share are consistently

rejected in all treatments, while shares above 1/n are usually accepted.

Miller and Vanberg (2010) compares the costs of reaching agreement under majority

and unanimity rule in the context of an experimental bargaining game. In the game every

period the pie shrinks by 10%, so δ = 0.9. Miller and Vanberg use the prediction of Baron-

Ferejohn model as a benchmark, but they also consider delay as a hypothesis, which is

not predicted by Baron-Ferejohn, but in line with our result. Under both rules, they find

patterns very similar to those reported on in previous literature. Proposers demand a

higher share than they allocate to non-proposers, but the difference is still far from the

equilibrium prediction. Interestingly, approximately half of the proposals in the first period

are three-way equal splits and only one out of five allocates 0 to one of the non-proposers.

In our solution three-way equal splits are SPE payoffs for δ ≥ 0.84, which is the case for

the experiment. In the last 10 periods, more than 75% of proposals include a zero- offer

and the proportion of three-way equal splits is consistently below 15%. Thus, it looks as

though many subjects were initially inclined to propose equal splits and learned over time

to form minimum winning coalitions.

In many experiments we see behavior that is not in line with stationary equilibria, but

consistent with SPE. We show that more complicated strategies may lead to broader set

of SPE payoffs that are in line with surprising results of the experiments.

4 Equilibria with one period delay

There are several results about delay in acceptance in subgame perfect equilibrium in

the theoretical and the experimental literature. Miller and Vanberg (2010) show that

delay occurs more often under unanimity rule than under majority rule in a experimental

framework. Agranov and Tergiman (2012) make an experiment based on the Baron-

Ferejohn model with the possibility of unrestricted cheap-talk communication before a

proposal is submitted. In both treatments - with and without communication- about 15%

of the games results in delay in acceptance. Some evidence for delay in acceptance in

the experiments based on the Baron-Ferejohn model was found, which is not predicted

by Baron-Ferejohn theoretical benchmark, where the equilibrium proposal is made and

accepted in period 0.

In this section we find necessary and sufficient conditions for one period delay.

A strategy σ is said to have a one–period delay if, irrespectively of the moves of nature,

the proposal in period 0 is rejected by both responders, and the proposal in period 1 is
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accepted by at least one responder. Even more precisely, σ has one–period delay if for all

permutations π0 and π1 the proposal σ(π0) is rejected by both players π0(2) and π0(3)

while the proposal σ(π0, σ(π0), π1) is accepted by π1(2) or π1(3).

Theorem 4.1 There exists an subgame perfect equilibrium with one period delay if and

only if δ ≥ 0.804.

A simple computation reveals that the condition δ ≥ 0.804 is equivalent to the in-

equality 1− δb ≤ δb. The latter plays a crucial role in the proofs below. We first prove the

only if part of the theorem.

Claim 4.2 Suppose there is a subgame perfect equilibrium with one period delay. Then

δ ≥ 0.804.

Proof: Let σ be a subgame perfect equilibrium with one period delay. For concreteness

consider the permutation π0 = (1, 2, 3). Following σ after the history (π0) leads to the

payoff of at most δu to player 1. On the other hand for each ǫ > 0 the proposal

(1 − δu − ǫ, δu + ǫ, 0) is accepted by Claim 2.3. Since σ is subgame perfect we must

have 1− δu− ǫ ≤ δu for each ǫ > 0. Hence 1− δu ≤ δu. Now by our main result (Theorem

2.2) u = b. Thus 1− δb ≤ δb, which leads to δ ≥ 0.804 �

To prove the if part of the theorem we construct a subgame perfect equilibrium strategy

profile σ̂ such that on the equilibrium path of play the proposer in period 0 (Player p0)

demands the entire surplus, the proposal is rejected, the proposal in period 1 is accepted

leading to the payoff δb to player p0. Any deviation by Player p0 results in a payoff of at

most 1− δb. Under the assumption that 1− δb ≤ δb the deviation is not profitable.

We define the strategy profile τ1 to be the strategy profile provided by Theorem 3.1

with a1 = (1− δb, δb, 0), a2 = (δb, 1− δb, 0), and a3 = (δb, 0, 1− δb). Following the strategy

profile τ1 leads to an expected payoff of b for Player 1.

We define the strategy profile τ2 to be the strategy profile provided by Theorem 3.1

with a1 = (1− δb, δb, 0), a2 = (0, 1− δb, δb), and a3 = (0, δb, 1− δb). Following the strategy

profile τ2 leads to an expected payoff of b for Player 2.

We define the strategy profile τ3 to be the strategy profile provided by Theorem 3.1

with a1 = (1− δb, 0, δb), a2 = (0, 1− δb, δb), and a3 = (0, δb, 1− δb). Following the strategy

profile τ3 leads to an expected payoff of b for Player 3.

Finally we define the strategy profile γ as the strategy profile provided by Theorem 3.1

with a1 = (1− δb, δb, 0), a2 = (0, 1− δb, δb), and a3 = (δb, 0, 1− δb).
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For period t = 0 we define

σ̂(π0) = ep0

σ̂(π0, ep0) = r

σ̂(π0, x0) = γ(π0, x0), if x0 6= ep0 .

The latter equality is in fact a pair of equations, one for each of the two responding players.

The same remark applies to all formulae below where σ̂ is defined at a responder history.

For histories of period t ≥ 1 following the proposal ep0 in period t = 0 we define

σ̂(π0, ep0, π
1, x1, . . . , πt) = τp0(π

1, x1, . . . , πt)

σ̂(π0, ep0, π
1, x1, . . . , πt, xt) = τp0(π

1, x1 . . . , πt, xt).

For histories of period t ≥ 1 following the proposal x0 6= ep0 in period t = 0 we define

σ̂(π0, x0, π1, x1, . . . , πt) = γ(π0, x0, π1, x1, . . . , πt)

σ̂(π0, x0, π1, x1, . . . , πt, xt) = γ(π0, x0, π1, x1, . . . , πt, xt).

Let 0 ≤ j ≤ t. For a history h in period t we define “the tail” of h starting from

period j, h−j, as follows: for h = (π0, x0, . . . , πt) we define h−j = (πj, xj , . . . , πt), and for

h = (π0, x0, . . . , πt, xt) we define h−j = (πj , xj, . . . , πt, xt). In particular h−0 = h. We write

h ≥ h0 if h = h0 or history h extends history h0.

The claim below makes an almost trivial observation: Suppose that the strategy σ is a

subgame perfect equilibrium of Γ. Suppose furthermore that the strategy σ̂ requires that,

as soon as some given history h0 in period j has been reached, all events preceding period

j be deleted from memory, and strategy σ be executed. Then σ̂ is subgame perfect in the

subgame starting at h0. Notice that h0 can be a proposer or a responder history.

Claim 4.3 Let σ be a subgame perfect equilibrium of Γ and h0 a history in period j.

Suppose that σ̂(h) = σ(h−j) for each history h ≥ h0. Then there are no profitable one–shot

deviations from σ̂ at h ≥ h0.

Proof: The subgame starting at history h is strategically equivalent to that starting at

h−j . Hence, if there were a profitable one–shot deviation from σ̂ at h, there would be one

from σ at h−j . �

Claim 4.4 There are no profitable one–shot deviations from σ̂.
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Proof: Consider the proposer history (π0). We compare the strategies γ and σ̂. At history

(π0) the strategy γ requires that the proposal γ(π0) is accepted, and player p0 receives the

payoff 1−δb. The strategy σ̂ prescribes that player p0 propose ep0 , the proposal be rejected,

and as of period 1 strategy τp0 be played, leading to the payoff δb to player p0. Notice that

1− δb ≤ δb since δ ≤ 0.804.

We argue that there are no profitable one–shot deviations from σ̂ at (π0). Take some

x0 6= ep0 . Crucially, after the history (π0, x0) the strategy σ̂ coincides with γ since according

to our definition σ̂(h) = γ(h) for every history h ≥ (π0, x0). Hence, playing x0 at history

(π0) and following σ̂ thereafter results in exactly the same payoff as playing x0 at π0 and

following γ thereafter. Let this common payoff be denoted by v.

Since γ is subgame perfect, no player has a profitable one–shot deviation from γ. In

particular, we must have v ≤ 1−δb. Hence also v ≤ δb, implying that x0 is not a profitable

one–shot deviation from σ̂.

Consider the responder history (π0, ep0). According to σ̂ responders rejects the proposal.

Accepting the proposal gives both responders the payoff 0 and is clearly not a profitable

deviation from σ̂.

For all other histories the one–shot deviation follows from Claim 4.3. Indeed, take an

x0 6= ep0. For histories h ≥ (π0, x0) Claim 4.3 applies with h0 = (π0, x0), j = 0, and

σ = γ. Take any permutation π1. For all histories h ≥ (π0, ep0, π
1) Claim 4.3 applies with

h0 = (π0, ep0, π
1), j = 1, and σ = τp0 . �

5 Arbitrarily long delay

In this section we show that any finite delay is compatible with subgame perfection, pro-

vided that the players are patient enough. By analogy with the case of 1–period delay, we

say that the strategy σ has k–period delay if, irrespectively of the moves of nature, the

proposals in period 0, . . . , k − 1 are rejected, and the proposal in period k is accepted.

Theorem 5.1 Given a k ≥ 1 there exists a strategy σ̃ having k–period delay, and a δ̃ < 1

such that σ̃ is subgame perfect in the game with a discount factor δ > δ̃.

We let δ̃ be the unique value of δ solving the equation

δk

3
= 1− δ

3− δ

9− 6δ − δ2
.

Notice that the right hand side of the equation is exactly 1 − δb. This is a decreasing

function of δ with value 1 at δ = 0 and value 0 at point δ = 1. Hence the solution exists

and is unique. Moreover for each δ > δ̃ it holds that δk/3 > 1− δb.
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We can estimate δ̃ from above as follows:

0 = δ̃k+2 + 6δ̃k+1 − 9δ̃k − 27δ̃ + 27

≤ δ̃k + 6δ̃k − 9δ̃k − 27δ̃k + 27

= −29δ̃k + 27,

from which it follows that δ̃ ≤ (27/29)1/k.

For δ > δ̃ the vector (δk/3, δk/3, δk/3) belongs to the sets V1, V2, and V3 since δk/3 >

1 − δb and 1 − δb ≥ δb. We let γ be the strategy profile provided by Theorem 3.1 with

a1 = a2 = a3 = (δk/3, δk/3, δk/3). The vector (1/3, 1/3, 1/3) also belongs to the sets V1,

V2, and V3. Let τ be the strategy profile provided by Theorem 3.1 with a1 = a2 = a3 =

(1/3, 1/3, 1/3).

We construct a strategy profile σ̃ such that on the equilibrium path of play in periods

0, . . . , k − 1 the proposers demand the entire surplus, and their proposals are rejected. If

period k is reached without deviations, the memory of preceding periods is deleted and

as of period k the strategy τ is followed. In particular, on the equilibrium path of play

equal split is proposed and accepted in period k. However, as soon as a proposer deviates

in some period ℓ < k, the memory of preceding periods is deleted, and the strategy γ is

followed.

We use the notation introduced in the previous section. Partition the set H of histories

into pairwise disjoint sets D−1, D0, . . . , Dk as follows:

D−1 = {h ∈ H | (π0, eπ0(0), . . . , π
k, eπk(0)) ≥ h}

D0 = {h ∈ H | h ≥ (π0, x0) where x0 6= eπ0(0)}

Dℓ =
{
h ∈ H | h ≥ (π0, eπ0(0), . . . , π

ℓ−1, eπℓ−1(0), π
ℓ, xℓ) where xℓ 6= eπℓ(0)

}

for 0 < ℓ < k and

Dk =
{
h ∈ H | h ≥

(
π0, eπ0(0), . . . , π

k−1, eπk−1(0), π
k
)}

.

Define the strategy σ̃ as follows:

σ̃(π0) =eπ0(0) (5.1)

σ̃(π0, eπ0(0), . . . , π
ℓ−1, eπℓ−1(0), π

ℓ) =eπℓ(0) for 1 ≤ ℓ < k, (5.2)

σ̃(π0, eπ0(0), . . . , π
ℓ, eπℓ(0)) =r for 0 ≤ ℓ < k. (5.3)

σ̃(h) =τ(h−k) for h ∈ Dk. (5.4)

σ̃(h) =γ(h−ℓ) for h ∈ Dℓ, 0 ≤ ℓ < k. (5.5)

Equations (5.1)–(5.3) specify σ̃ on the setD−1 of histories, Equations (5.5) onD0, . . . , Dk−1,

and Equations (5.4) on Dk.
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From (5.4) we get

σ̃(π0, eπ0(0), . . . , π
k−1, eπk−1(0), π

k) = τ(πk) =
(
1
3
, 1
3
, 1
3

)
(5.6)

σ̃(π0, eπ0(0), . . . , π
k−1, eπk−1(0), π

k,
(
1
3
, 1
3
, 1
3

)
) = τ

(
πk,

(
1
3
, 1
3
, 1
3

))
= a. (5.7)

Equations (5.1), (5.2), (5.3), (5.6), and (5.7) specify the equilibrium path of play under

σ̃: The proposals eπ0(0), . . . , eπk−1(0) are to be made and rejected, followed by the proposal

(1/3, 1/3, 1/3), which is to be accepted. Thus the strategy σ̃ has a delay of k periods. All

players receive the payoff δk/3. Equation (5.4) specifies the play of the game as of period

k, provided that no deviations occurred in the preceding periods. Equation (5.5) specifies

the continuation play following a deviation from the equilibrium play in period ℓ < k.

In the case k = 1 the above construction resembles that in the previous section. The

difference is that here the play following the histories of the form (π0, eπ0(0), π
1) as defined

by Equation (5.4) is independent of the permutation π0 whereas in the preceding section

it does depend on π0(1).

Claim 5.2 There are no one–shot profitable deviations from σ̃.

Proof: Take the proposer history h = (π0, eπ0(0), . . . , π
ℓ−1, eπℓ−1(0), π

ℓ) for 0 ≤ ℓ < k. Fix

any proposal xℓ 6= eπℓ(0).

We compare the strategies γ and σ̃. The strategy γ dictates that at history (πℓ) Player

πℓ(0) make the proposal (δk/3, δk/3, δk/3) and the proposal be accepted. Let v′ be the

payoff to Player πℓ(0) that results from making the proposal xℓ at history (πℓ), provided

that the continuation play is according to γ. Since γ is a subgame perfect, it holds that

v′ ≤ δk/3.

Following the strategy σ̃ at h yields the payoff δk/3. Let v be the payoff to Player πℓ(0)

that results from making the proposal xℓ at history h, provided that the continuation play

is according to σ̃. It follows from Equation (5.5) that the payoffs v and v′ are related by

v = δℓv′. So v ≤ δℓδk/3 ≤ δk/3. We conclude that proposing xℓ is not a profitable one–shot

deviation from σ̃ at h.

Consider the responder history h = (π0, eπ0(0), . . . , π
ℓ, eπℓ(0)) for 0 ≤ ℓ < k. The strategy

σ̃ requires rejection. Deviation to acceptance yields zero to both responders, and is hence

not a profitable.

For histories in D0, . . . , Dk the one–shot deviation property follows by an application

of Claim 4.3. �
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6 Conclusion

In this paper we consider a three-person majority voting bargaining game with complete

information and discounting. In our model players moves are sequential and the order of

responding players is irrelevant, despite the fact that one acceptance is enough to implement

the proposal. We construct subgame perfect equilibria in which any given vector from the

set of feasible payoffs is equilibrium outcome for some discount factor. Our result is in

line with many experimental papers, where we observe behavior that was not consistent

with stationary equilibria. We show that inefficiencies are possible in the form of delay:

we provide necessary and sufficient conditions for one period of delay in acceptance and

construct subgame perfect equilibrium where arbitrary long delay occurs with probability

one.
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