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Abstract

We generalize traditional equilibrium concepts for finite games in extensive form
with behavioral strategies so that they apply to all games, including games of im-
perfect recall. Adapting and augmenting previous definitions (in particular, by
Piccione and Rubinstein, and by Battigalli), we define four notions: Distributed
Agent Equilibrium (DAE), Distributed Nash Equilibrium (DNE), Distributed
Sequential Equilibrium (DSE), and Distributed Perfect Equilibrium (DPE). We
show that, in a precise sense, these extend the classical equilibrium notions:
(a) they form a strict inclusion hierarchy (e.g., every DNE is a DAE but not
necessarily vice versa, and so on up the hierarchy), (b) every game has a DPE
(and therefore also a DSE, DNE and DAE), and (c) in the subclass of games
of perfect recall, DAE, DNE, DSE and DPE collapse, respectively, to agent
equilibrium, Nash equilibrium, sequential equilibrium, and perfect equilibrium.
In service of these results we introduce several novel notions – including partial
symmetry, the distributed agent form and phantom strategies – which may be
interesting in their own right.1

1 Introduction

Games of imperfect recall are those in which players may not remember their
entire experience during the game (specifically, when in some information set, a
player may not know the information sets she visited previously, nor the actions
she took). Although historically under-researched in game theory, imperfect
recall is a key notion if one hopes to apply game theoretic models in practice.
In the real world, humans and computer agents alike do not have unlimited
memory, and requiring players to remember the entire history of play is often
unrealistic. Even when realistic, it can be counterproductive. A good example
of this can be seen in computer poker. The state of the art in computer poker
for the past few years has been for players to abstract the full extensive form
game of poker (by losing the distinction among certain cards) and then play
an approximate Bayes-Nash equilibrium of this abstract game. Recently, it has

1While this paper covers equilibria in imperfect recall, we have a companion paper that
tackles complexity in imperfect recall.
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been shown that allowing imperfect recall strategies improves the quality of the
resulting strategy [7]. There is every reason to think that this lesson applies
broadly in many application domains.

Games of imperfect recall present several novel fundamental challenges. In
this paper we address the modeling challenges, specifically solution concepts
that are appropriate for all extensive-form games, including those of imperfect
recall. In a companion paper we address computational challenges.

In order to understand imperfect recall, it is a good idea to understand
the state of the art of perfect recall. A good starting point for this discussion
is provided by games in extensive forms with perfect information. For this
class of games the two most common solution concepts are the Bayes Nash
equilibrium (BNE)2 [12], and its refinement subgame-perfect equilibrium (SPE)
[10]. When one moves to games of imperfect information, the notion of SPE
must be replaced by the more involved notions of sequential equilibrium (SE) [9]
and perfect equilibrium (PE) [14]. But so long as one restricts the discussion to
games with mixed strategies rather than the more natural behavioral strategies,
the intuitions carry over from the perfect-information case, as do the formal
properties: The solution concepts form a strict hierarchy (every SE is a NE but
not vice versa; and every PE is a SE but not vice versa), and every game has a
PE (and thus also a SE and NE).

All this is still true with behavioral strategies in the subclass of games of
perfect recall, that is, games in which agents in fact do remember their history
in the game. It is well known that in such games behavioral strategies can be
emulated by mixed strategies, and vice versa [10], and thus in general these
games do not present new issues. But all this changes in games of imperfect
recall. In this broader class neither the standard intuitions nor the standard
technical results hold, and the elegant map of solution concepts breaks down.
The goal of this paper is to extend the elegance to games with imperfect recall.

To gain appreciation for the challenges associated with imperfect recall, we
first note that the basic properties of the standard solution concepts cease to
hold in this class. For one thing, games with imperfect recall may not have a
NE, as seen in the game depicted in Figure 1. It is not hard to see that this
game has no NE. This has been known for a while; it was shown formally by
Wichardt [16], but observed informally earlier (cf. [2], example 2.4).

Other standard properties also break down in games of imperfect recall; for
example, it is shown by Kline that there exist SE that are not NE and PE that
are not SE [8]. However, it is not only the formal properties that start to break
down, but also the intuition about the very concepts involved. This was most
strikingly demonstrated in Piccione and Rubinstein’s 1997 paper on imperfect
recall in extensive decision problems (that is, extensive-form games with a single
player) [13]. That paper provides a paradoxical example demonstrating that
naive reasoning about beliefs and behavioral strategies can lead to inconsistent
conclusions.

The literature following the Piccione and Rubinstein paper (e.g., [1, 3, 5, 4])

2We will simply refer to this as the Nash equilibrium (NE) for the remainer of the article.
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Figure 1: An extensive form game with no Nash equilibrium in behavioral
strategies.

offered a variety of formal constructs that shed light on the situation, but did
not culminate in a map of solution concepts that naturally extends the elegant
map from the perfect-recall case. We will provide exactly this extension, which
is summarized in Figure 2.

All Games

DAE

DNE

DSE

AE

NE

SE

Perfect Recall
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strict

inclusion

collapse

Games with

Figure 2: The map of solution concepts for extensive form games.

In this symmetric picture, we add to the perfect-recall class the solution
concept of agent equilibrium (AE). Introduced by Kuhn [10], in games of perfect
information AE considers each player as being composed of multiple agents (or
“selves”), all sharing the same payoff function, and each controlling a single
information set. The four solution concepts form a strict inclusion hierarchy
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(that is, every PE is a SE but not vice versa, and so on up the hierarchy (Figure 6
shows examples that demonstrate the strictness of the inclusion)). All four
notions are generalized to the class of games with imperfect recall, in the form
of Distributed Agent Equilibrium (DAE), Distributed Nash Equilibrium (DNE),
Distributed Sequential Equilibrium (DSE), and Distributed Perfect Equilibrium
(DPE). The generalized versions form their own hierarchy (that is, every DAE is
a DNE, etc.), and collapse to the standard notions in games with perfect recall.
Note that from (a) the inclusion among the generalized notions, (b) the collapse
to classical notions in case of perfect recall, and (c) the strictness of inclusion in
the case of perfect recall, follows the strictness of inclusion of these generalized
solution concepts as well. Most importantly, we will prove the existence of this
hierarchy; we will show that every game has a DPE (and therefore also a DSE,
DNE and DAE).

Two remarks are in order. First, although as we said previously, research has
not resulted in a clean picture such as the one we present here, it definitely pro-
duced many of the ingredients needed to construct this picture. We will discuss
that literature in more detail in Section 6, but let us highlight two papers in par-
ticular. Piccione and Rubinstein themselves discuss approaches to resolving the
apparent paradox, one of which they call modified multiselves consistent strategy
(or MMCS), so called since it is a modification of Strotz’s original multiselves
approach [15]. Our notion of DAE is essentially the multi-player generalization
of MMCS. Battigalli, among other things, defines the Modified Multiselves Se-
quential Equilibrium (MMSE). Our notion of DSE is essentially MMSE, again
generalized to the multi-player case. So the solution concepts we lay out have
their origins in these two earlier papers (as well as some others we will discuss in
Section 6), although some nuanced changes and additional constructs are needed
in order to have the clean inclusion relations among them, and the collapse to
the traditional notions in the special case of perfect recall. The hardest technical
contribution in this paper consists of existence proofs, specifically existence of
DPE. This part has no precedent in the papers mentioned; they are concerned
almost exclusively with the single agent case, in which existence is trivial (any
optimal strategy is outcome equivalent to a DPE). Our proof appeals to a novel
game form we call the distributed agent form, which may have interest in its
own right. The distributed agent form can be viewed as further breaking up the
strategic entities; if the agent form assigns a strategic decision maker to each
information set, the distributed agent form assigns a strategic decision makers
to certain subsets of nodes within each information set.

The second comment is that Figure 2 tells only part of the story. Additional
solution concepts can be defined, and relationships among them proved. Sec-
tion 6 presents some of this expanded map. However, in our view, while the
expanded map is useful to explain precisely the connections to previous work,
Figure 2 captures the most salient concepts and relationships.

The rest of the paper is organized as follows. Section 2 will go over back-
ground definitions and notation, and then define the notions of DAE, DNE,
DSE, and DPE. Section 3 will establish the inclusion hierarchy among these
four equilibrium notions. Section 4 will prove the existence of a DPE (and thus
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also DAE, DNE, and DSE). Section 5 will prove the collapse to standard equi-
librium notions in the case of perfect recall. Section 6 will expand the map of
Figure 2, and use the expanded map to position relevant prior work. Finally,
Section 7 will discuss the implications of our results and some open questions.

2 Background and Definitions

2.1 Standard Definitions and Notation

In this section we cover the necessary material to understand AE, NE, SE, and
PE and define these four equilibrium concepts.

Definition 1 (Extensive Form). An extensive form game is a six-tuple Γ =
〈N,H,P, ρ, u, I〉, where

• N is a finite set of players.

• H is a finite set of sequences that represent the possible histories of actions.
H must contain the empty sequence and if (a1, . . . , aK) ∈ H and K 6= 0
then (a1, . . . , aK−1) ∈ H. A history (a1, . . . , aK) is terminal if there is no
action a such that (a1, . . . , aK , a) ∈ H. The set of terminal histories of
H is denoted Z. The set of actions available at a particular history h is
defined as A(h) = {a : (h, a) ∈ H}.

• P : H/Z → N ∪{c} (where H/Z is the set of all non-terminal histories) is
the player function that assigns a player or Nature to each non-terminal
history. We will denote C to be the set of non-terminal histories assigned
to Nature and D to be the set of non-terminal histories assigned to players.

• ρ is a prior on Nature’s actions (i.e. for all h ∈ C, ρ(h) ∈ ∆(A(h))).

• ui : Z → R is the utility function for player i.

• I is the set of information sets. I is a partition of D such that if X ∈ I
then for all h, h′ ∈ X, A(h) = A(h′) and P (h) = P (h′). Because of
this requirement we will overload the action and player functions; for an
information set X we define A(X) = A(h), P (X) = P (h) where h ∈ X.
For a player i, Ii = {X : P (X) = i} denotes the set of information sets
assigned to player i.

The experience of player i at history h, denoted expi(h), is the sequence of
information sets and actions of player i along the history h. An extensive form
game has perfect recall if for every information set X and for every h, h′ ∈ X it is
the case that expi(h) = expi(h

′), where i is the player assigned to X. A game of
imperfect recall is one without perfect recall. Given a history h = (a1, . . . , aK)
and L ≤ K the history h′ = (a1, . . . , aL) is said to precede h, which is denoted
h′ ≤ h. Furthermore, a history h′ strictly precedes history h, written h′ < h, if
h′ ≤ h and h′ 6= h. A game exhibits absentmindedness if there is an information
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set X and h, h′ ∈ X such that h′ < h; thus, absentmindedness is a special case
of imperfect recall.

A behavioral strategy3 for player i, bi, is a distribution for each information
set assigned to i over the actions available at that information set (i.e. bi ∈∏
X∈Ii ∆(A(X)) ). The set of strategies for player i will be denoted Σi. A

strategy profile b =
∏
i∈N bi is a set of strategies, one for each player. Likewise

the set of strategy profiles for a game will be denoted Σ. Given a strategy
profile b and an information set X we let b(X) denote the distribution over
A(X) defined by b (that is, b(X) = bi(X) where bi ∈ B and i is the player
assigned to X). Thus given a particular action a ∈ A(X), b(X)(a) gives the
probability of playing a upon reaching information set X. We will often break
up a strategy profile into two parts; b = (bi, b−i) where bi is strategy for player
i and b−i is the set of strategies for all other players.

A strategy profile b induces a probability distribution over terminal histories,
pb ∈ ∆(Z). pb can be extended to all (not necessarily terminal) histories h ∈ H
by

pb(h) =
∑

z∈Z:h≤z

pb(z)

Note that the resulting function is not a distribution over H (i.e. pb /∈ ∆(H)).
We use this distribution to extend the utility function for player i to a

strategy profile b linearly as follows

ui(b) =
∑
z∈Z

pb(z)ui(z)

Definition 2 (Nash Equilibrium [12]). A strategy profile b is a Nash equilibrium
(NE) if for every player i and every strategy b′i.

ui(b
′
i, b−i) ≤ ui(b)

The following definition has its roots in much prior work, in particular [10].

Definition 3 (Agent Form). The agent form of a game Γ = 〈N,H,P, ρ, u, I〉
is a derivative game Γ′ where:

• N ′ = I.

• H ′ = H.

• P ′(h) =

{
c : If h ∈ C
X : If h ∈ X for X ∈ I

• ρ′ = ρ.

• For X ∈ I, u′X = uP (X).

• I ′ = I.

3We will refer to behavioral strategies simply as strategies for the remainder of the paper.
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In other words, the agent form gives control of every information set to an
independent agent who receives the same payoff as the player that originally
controlled that information set. Notice that because the set of histories and the
set of information sets remains unchanged there is a clear bijective correspon-
dence between strategy profiles of the agent game and strategy profiles of the
original game. This fact allows us to define the agent equilibrium (AE) of a
game.

Definition 4 (Agent Equilibrium). An agent equilibrium of a game Γ is a
strategy profile that corresponds to a Nash equilibrium of the agent form of Γ.

Before we define sequential equilibrium, we need to define the notion of
beliefs [13]. For each information set X, a belief µ(X) is an distribution over
the histories in X. A belief µ is said to be consistent with a strategy profile
b if for every information set X with positive probability of being reached and
every h ∈ X we have

µ(X)(h) =
pb(h)∑

h′∈X pb(h
′)

We can also consider the distribution over terminal histories induced by
strategy profile b when we assume play starts at a particular history h: pb(·|h) ∈
∆(Z). We can similarly define utility for player i conditioned on history h as

ui(b|h) =
∑
z∈Z

pb(z|h)ui(Z)

Combining beliefs and conditional utility, we can develop a subjective version
of utility. That is to say for a strategy profile b, a player i, and an information
set X the subjective utility is given by

SUi (b;X,µ) =
∑
h∈X

µ(X)(h)ui(b|h)

Armed with this machinery we can define sequential equilibrium (SE).

Definition 5 (Sequential Equilibrium [9]4). A strategy profile b is a sequen-
tial equilibrium if there exists a sequence of completely mixed strategy profiles
b1, b2, ... that converge to b and a sequence of positive real numbers ε1, ε2, ... that
converge to 0 such that for every k, for every belief µ consistent with bk, for
every information set X (assigned to player i), and for every strategy b′i

SUi
(
(b′i, b

k
−i);X,µ

)
≤ SUi

(
bk;X,µ

)
+ εk

The last standard definition we will present is perfect equilibrium. In order
to define this concept we must give a definition of a perturbed game [14]. Given a
game Γ, a perturbation η of Γ is a function that associates with every information

4The reader may be more familiar with another common characterization of SE involving
strongly consistent beliefs also given by Kreps and Wilson [9].
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set X and action a ∈ A(X) a positive probability η(X)(a) > 0 such that for
every information set X,

∑
a∈A(X) η(X)(a) < 1. A perturbed game is then a pair

(Γ, η) consisting of of a game Γ a perturbation η. In a perturbed game players
are not allowed play strategies that assign less than η probability to each of
their actions. That is to say for every player i strategy bi of the perturbed game
(Γ, η), it must be that for each information setX assigned to player i and for each
action a ∈ A(X), we have bi(X)(a) ≥ η(X)(a). In order to distinguish these
more restricted strategies from strategies of Γ, we call the strategies allowed in
(Γ, η) perturbed strategies. We can analogously define perturbed strategy profiles
in the obvious way.

Definition 6 (Perfect Equilibrium [14]). Given a game Γ, a strategy pro-
file b is a perfect equilibrium if there exists a sequence of perturbed games
(Γ, η1), (Γ, η2), . . . where ηk → 0 and a sequence of correspondingly perturbed
strategy profiles b1, b2, . . . that converge to b such that bk is a Nash equilibrium
of (Γ, ηk) for all k.5

Finally, having presented the definitions of these four concepts, we note that
it is also well known that they form an inclusion hierarchy [10, 9]. Furthermore,
as demonstrated in Figure 6, this hierarchy is strict.

2.2 Main Definitions

We now move on from these well known definitions to our new definitions that
are the focus of this paper: DAE, DNE, DSE, and DPE.

All of these notions rely on the hypothetical construct we will call phan-
tom strategies. Whereas a standard strategy specifies a distribution for every
information set (i.e., a strategy bi is in

∏
X∈Ii ∆(A(X))), a phantom strategy

βi specifies for each node h assigned to player i a distribution over the actions
available at h. A phantom strategy profile β =

∏
i∈N βi is a set of phantom

strategies, one for each player. Like a normal strategy profile, a phantom strat-
egy profile induces a distribution of terminal nodes (both ex-ante and from a
particular history h). Thus we can further extend the notions of utility to apply
to phantom strategy profiles in the obvious way.

Phantom strategies allow us represent the ex-interim reasoning of the agent.
Of particular interest to us will be a subclass of phantom strategy profiles called
single-deviation phantom strategy. Specifically, given a player i, a (standard)
strategy bi, a history h assigned to player i, and a deviation distribution s ∈
∆(A(h)), we denoted the single-deviation phantom strategy profile bi[h/s] and
formally define it given a player i history h′ (in information set X) by

bi[h/s](h
′) =

{
s : If h′ = h

bi(X) : otherwise

Intuitively, in a single-deviation phantom strategy the agent is saying “just
this once I will deviate from the strategy prescribed for this information set.”

5A Nash equilibrium of a perturbed game is a perturbed strategy profile of such that no
player can profit by deviating to some other perturbed strategy.
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Of course the agent does not know at which node in the information set she is,
hence the name “phantom”, but she may have a belief regarding the nodes, in
which case she can reason about the effect of this “just this one time” deviation
on an expected basis.

The role of phantom strategies becomes apparent when we define a new form
of subjective utility, called distributed subjective utility. Given a strategy profile
b, a player i, an information set X, a distribution s ∈ A(X), and belief µ, we
define distributed subjective utility to be

DSUi (b;X, s, µ) =
∑
h∈X

µ(X)(h)ui((bi[h/s], b−i)|h)

In words, distributed subjected utility first calculates for each node in informa-
tion set X the expected payoff given strategy profile b and assuming that the
deviation occurs only at that node, and then takes the expectation over the
nodes given the belief µ. Note that SUi (b;X,µ) = DSUi (b;X, b(X), µ).

We can now move on the definitions of our equilibrium concepts.

Definition 7 (Distributed Agent Equilibrium (DAE)). A strategy profile b is a
Distributed Agent Equilibrium if there exists a belief µ consistent with b such
that for every information set X assigned to player i and reached with positive
probability, and for every distribution over actions in X, s ∈ ∆(A(X)), it is the
case that

DSUi (b;X, s, µ) ≤ SUi (b;X,µ)

In other words, if a player reaches a history but only knows what information
set she is in, it is not beneficial to change the action of a DAE at that history
subject to her uncertainty about where she is.

A DSE is defined similarly to a DAE only we no longer ignore the information
sets that are not visited.

Definition 8 (Distributed Sequential Equilibrium (DSE)). A strategy profile b
is a Distributed Sequential Equilibrium if there exists a sequence of completely
mixed strategy profiles b1, b2, ... that converge to b and a sequence of positive real
numbers ε1, ε2, ... that converge to 0 such that for every k, for every belief µ
consistent with bk, for every information set X (assigned to player i), and for
every s ∈ ∆(A(X)), it is the case that

DSUi
(
bk;X, s, µ

)
≤ SUi

(
bk;X,µ

)
+ εk

In order to define DPE we must extend DAE to perturbed games. A DAE of
a perturbed game (Γ, η) is a perturbed strategy profile that satisfies the defini-
tion of a DAE with the addition provision that the deviations considered must
also be perturbed. By this we mean that for an information set X, deviations
s ∈ ∆(A(X)) must satisfy for all a ∈ A(X), s(a) ≥ η(X)(a).

Definition 9 (Distributed Perfect Equilibrium (DPE)). Given a game Γ, a
strategy profile b is a Distributed Perfect Equilibrium if there exists a sequence
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of perturbed games (Γ, ν1), (Γ, η2), . . . where ηk → 0 and a sequence of corre-
spondingly perturbed strategy profiles b1, b2, . . . that converge to b such that bk is
a DAE of (Γ, ηk) for all k.

DNE is a bit of a contrived notion, and for this reason we present it last. To
define DNE we first have to present the notion of equivalent strategy profiles, as
defined by Battigalli [3]: Two strategy profiles b and b′ are equivalent, written
b ∼= b′, if they induce the same probability for every history. We extend this
definition slightly to apply to strategies, not only strategy profiles. Given a
strategy profile b, two strategies b′i and b′′i of player i are equivalent with respect
to b, written b′i

∼=b b
′′
i , if (b′i, b−i)

∼= (b′′i , b−i).

Definition 10 (Distributed Nash Equilibrium (DNE)). A strategy profile b is an
Distributed Nash Equilibrium if it is a DAE and for every player i there exists a
strategy b′i

∼= bi, a sequence of completely mixed player i strategies b1i , b
2
i , . . . that

converge to b′i, and a sequence of positive real numbers ε1, ε2, . . . that converge to
0 such that for all k, for every belief µ consistent with bk = (bki , b−i), for every
information set X (assigned to player i) with positive probability in bk, and for
every s ∈ ∆(A(X)), it is the case that

DSUi
(
bk;X, s, µ

)
≤ SUi

(
bk;X,µ

)
+ εk

3 Establishing the Hierarchy of Distributed Equi-
librium Concepts

We begin by proving the inclusion relationships that are analogous to the inclu-
sion relationships among AE, NE, SE, and PE.

Proposition 1. Every DPE is a DSE.

Proof. See Appendix.

Proposition 2. Every DSE is a DNE.

Proof. See Appendix.

Proposition 3. Every DNE is a DAE.

Proof. This is true by definition.

The strictness of these inclusion relations is implied by the collapse of the dis-
tributed equilibrium concepts to their standard counterparts (as will be shown
in Section 5) and the strictness of the inclusion relations for these standard
concepts (as shown, for example, in Figure 6).
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4 Proof of Existence

This section will be concerned with proving the following theorem:

Theorem 1. All games of imperfect recall have a DPE.

From this theorem, we will immediately get the corollary:

Corollary 2. All games of imperfect recall have a DSE, a DNE, and a DAE.

Before we tackle the existence of DPE directly we must present two new
concepts. First, we define the notion of partial symmetry and show the existence
of partially symmetric perfect equilibria in partially symmetric games. We then
go on to define a generalization of the agent form of a game which we dub the
distributed agent form. Finally, we bring these two concepts together to and
show that a partially symmetric perfect equilibrium of this distributed agent
form corresponds to a DPE of the original game.

4.1 Partial Symmetry

A symmetry of a game Γ is a permutation χ over the players of Γ such that the
strategy spaces of permuted players remains the same and the utility to each
player of permuting all players’ roles by χ remains the same. In other words χ
is a symmetry of Γ if for every player i and every strategy profile b we have

1. Σi = Σχ(i)

2. ui(b) = uχ(i) (χ(b))

Note that the second line overloads the permutation χ to permute the strategies
of a strategy profile (which produces a well defined strategy profile so long so
long as the first line holds).6

Let G be a subgroup of Sn (the symmetric group on n symbols). A game Γ
with n players is G-symmetric if for every χ ∈ G,χ is a symmetry of the game
Γ. Furthermore, a G-symmetric strategy profile of a G-symmetric game Γ is
a strategy profile b ∈ Σ such that for all χ ∈ G,χ(b) = b (we will denote the
set of G-symmetric strategy profiles of Γ as ΣG). Lastly, a G-symmetric Nash
equilibrium is a G-symmetric strategy profile that is also a Nash equilibrium of
Γ.

Thus an n-player symmetric game (in the well known sense) is a Sn-symmetric
game and a symmetric equilibrium of this game is a Sn-symmetric Nash equi-
librium. Also note that all games are still symmetric with respect to the trivial
subgroup. Partial symmetry, therefore, bridges the gap between fully symmetric
games and games with no explicit symmetry.

A natural question to ask is whether a partially symmetric Nash equilibrium
is guaranteed to exist in a partially symmetric game. Thankfully, just as with

6This notion of symmetry is inspired by Nash’s seminal work showing the existence of
symmetric equilibria [12]. Note that while Nash originally defines a symmetry to be over all
pure actions he mainly concerns himself with the permutation that this induces over players.
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standard Nash and fully symmetric Nash, a partially symmetric Nash equilib-
rium exist in every game. Formally, this is shown in the following proposition.

Proposition 4. Ever G-symmetric game has a G-symmetric Nash equilibrium.

Proof. See Appendix.

We now turn our attention to partially symmetric perfect equilibria. For
our purposes it won’t be sufficient to simply show the existence of a perfect
equilibrium that is also partially symmetric. Instead we will opt for a notion of
perfectness with partial symmetry built in.

To this end we need to define the notion of a partially symmetric perturba-
tion. A perturbation η is consider a G-symmetric perturbation if for all χ ∈ G
χ(η) = η. In this definition we again overload χ to permuted perturbations
as though they were strategy profiles (that happens to not sum to 1 for every
information set). Similarly, a G-symmetric perturbed game is a perturbed game
(Γ, η) where η is aG-symmetric perturbation.

Before proving the existence of partially symmetric perfect equilibria we
must first show the existence of partially symmetric Nash equilibria in partially
symmetric perturbed games.

Proposition 5. Let Γ be a G-symmetric game and η a G-symmetric perturba-
tion of Γ. There exists a G-symmetric Nash equilibrium of (Γ, η).

Proof. See Appendix.

We now have sufficient vocabulary to define a partially symmetric perfect
equilibrium.

Definition 11. Let Γ be a G-symmetric game. b is a G-symmetric perfect equi-
librium if there exists a sequence of G-symmetric perturbed games (Γ, η1), (Γ, η2), . . .
and a sequence of G-symmetric Nash equilibria b1, b2, . . . of these perturbed
games such that bk → b and ηk → 0.

Our final proposition of the section follows easily from this definition and
our other previous result.

Proposition 6. Let Γ be a G-symmetric game. There exists a G-symmetric
perfect equilibrium of Γ

Proof. See Appendix.

4.2 The Distributed Agent Form

The standard agent form of a game gives control of every information set to
an independent agent. The distributed agent form further breaks down control
of information sets. Before we talk about the distributed agent form, however,
we must first take an aside and define a few crucial constructions. First, we

12



must stratify an information set into partitions that have no absentmindedness.
To do this we define a more general version of the Grove and Halpern upper
frontier of an information set [5].

Let dX(h) denote the depth of h within information set X. Formally, let us
recursively define depth within an information set as follows:

Definition 12. For a history h, Let H<h = {h′ : h′ < h}. The depth of history
h within information set X is given by

dX(h) =

 0 : If h /∈ X
1 : If h ∈ X and ¬∃h′ : h′ < h

maxh′∈H<h
(dX(h′)) + 1 : If h ∈ X

Definition 13. Let the nth frontier of an information set X, denoted X̂n, be
defined as follows:

X̂n = {h : dX(h) = n}

Finally let us define the depth of an information set D(X).

Definition 14. The depth of an information set X is defined as the highest
depth value of any history for that information set. In other words,

D(X) = max
h∈X

(dX(h))

Now that we have the definition of a frontier, we can give an informal descrip-
tion of the distributed agent form. Just as in the agent form each information
set is controlled by an independent agent, in the distributed agent form each
frontier is controlled by an independent agent. However, this game allows for
strategy profiles not allowed in the original game. To mitigate this we will have
Nature randomly choose which frontier within an information set an agent con-
trols without any agent knowing what that choice is. Applying a specific form
of partial symmetry to this game then eliminates the excess strategy profiles.
This is made significantly clearer in Figure 3.

Formally, the distributed agent form is defined as follows.

Definition 15 (distributed agent form). The agent form of a game Γ = 〈N,H,P, ρ, u, I〉
is a derivative game Γ′′ where:

• Ñ =
⋃
X∈I{X}×{1, . . . , D(X)}. There is an agent for every frontier and

if (X, j) ∈ Ñ then the agent represented by (X, j) is assigned to frontier
X̂j. Additionally, let ñ =

∣∣Ñ ∣∣.
• Consider the following set of permutations over Ñ which will be denoted

Ψ. A permutation ψ is in Ψ if (and only if) for every agent i = (X, j),
if ψ(i) = (Y, `) then it must be the case that X = Y . It is easy to see
that this set of permutations in fact composes a subgroup of Sñ and that
Ψ ∼=

∏
X∈I SD(X).
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Figure 3: This figure demonstrates the relationship between the original game
and the distributed agent form. Note there is only one set of payoffs in the
distributed agent form since both agents receive the same payoff.

If h ∈ H and h = (a1, . . . , ak) then for all ψ ∈ Ψ, h̃ = (ψ, a1, . . . , ak) ∈ H̃.
Additionally we add the empty sequence, φ, to H̃, in order to make H̃ a
properly defined set of histories. In other words, at the beginning of play
a permutation from Ψ is chosen, then play resumes as in H.

• Given a history h̃ /∈ Z̃

P̃ (h̃) =


c : If h̃ = φ

c : If h̃ = (ψ, h) and P (h) = c

(X,ψ(j)) : If h̃ = (ψ, h) and h ∈ X̂j

• Given a history h̃ ∈ C̃ and an action a ∈ A(h̃)

ρ̃(h̃)(a) =

{
1/|Ψ| : If h̃ = φ

ρ(h)(a) : If h̃ = (ψ, h)

• For i = (X, j) ∈ Ñ , and z̃ = (ψ, z) ∈ Z̃ , ui(z̃) = uP (X)(z).

• Ĩ is simply the partition induced by the player function over D̃. That is
to say for all i ∈ Ñ , X̃i = {h̃ : P̃ (h̃) = i} and Ĩ = {X̃i : i ∈ Ñ}.

Thus each agent will assigned a frontier of a particular information set uni-
formly at random, but will never have knowledge of which frontier she has been
assigned. Notice that the distributed agent form does have perfect recall as
claimed since each agent only has one information set and it cannot be visited
twice in the course of the game. Note further that when the original game does
not have absentmindedness Ψ is the trivial subgroup and thus collapses to the
standard agent form (with an additional single action move by Nature at the
beginning of the game).7 On the other hand, if there is only one information

7We would like to point out that most of the desired properties of the distributed agent
form are preserved when using any subpartition of information sets that does not exhibit

14



a b+c
2

b+c
2 d

L1

R1

L2 R2

Agent 1

Agent 2

Figure 4: The canonical normal form game of the distributed agent form as
seen in Figure 3. This form of the distributed agent form provides a good
demonstration of the symmetry of the distributed agent form.

set (and therefore only one player) then Ψ = Sn and as will be shown the
distributed agent form is a fully symmetric game.

There are two crucial observations to make about the distributed agent form.
First, notice that the distributed agent form is Ψ-symmetric. This can easily
be seen since agents’ roles are determined by the permutation Nature chooses
uniformly at random from Ψ and agents receive the same payoff as any agent
they could be mapped to by a permutation in Ψ.

Second, note that there is a bijection between Ψ-symmetric strategy profiles
and strategy profiles of the original game. This follows immediately from the
fact that any strategy profile of the distributed agent form respects Ψ if and
only if agents assigned to the same information set are using the same strategy.
Thus there is a well defined strategy for each information set which is identical
to saying that it defines a strategy profile of the original game.

Remark: We will consistently be using the term “player” to refer to some-
one playing the original game and “agent” to refer to someone playing the
distributed agent form (on behalf of some player). Also because of the natural
bijection between strategy profiles of the original game and Ψ-symmetric strat-
egy profiles of the distributed agent form, where appropriate due to context
adding or removing a tilde will change the game that strategy refers to (i.e. if
b is strategy profile for the original game b̃ is the corresponding Ψ-symmetric
strategy profile for the distributed agent form and visa versa).

4.3 Final Proof

The following lemma will help form a bridge between utility of the distributed
agent form and the original game.

Lemma 1. Let b be a Ψ-symmetric strategy profile for the original game, let
µ be a belief consistent with b, let X be an information set with positive prob-

absentmindedness. However, one advantage of using the subpartition based on frontiers is
that the distributed agent form reduces to the agent form in games without absentmindedness
as mentioned.
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ability of being reached under b, and let i = (X, j) be an agent assigned to X.
Furthermore, let s and s′ be distributions over A(X) and let ` = P (X). Then
the following two statements are equivalent:

ũi(s, b̃−i) ≥ ũi(s′, b̃−i) (1)

DSU` (b;X, s, µ) ≥ DSU` (b;X, s′, µ) (2)

Proof. See Appendix.

This bridge lemma can be used to give a characterization of the DPE using
the distributed agent form.

Proposition 7. A strategy profile is a distributed perfect equilibrium if and only
if it corresponds to a Ψ-symmetric perfect equilibrium of the distributed agent
form.

Proof. See Appendix.

We now have all the tools needed to prove Theorem 1.

of Theorem 1. By Proposition 6 we know that a Ψ-symmetric perfect equilib-
rium exists for the distributed agent form and by Proposition 7 this must be
a DPE of the original game. Therefore every game has a distributed perfect
equilibrium.

5 Collapse to Standard Notions

We now present our final set of results: the collapse of our four equilibrium
notions, DAE, DNE, DSE, and DPE, to their standard versions in games of
perfect recall.

Before tackling the collapse of DAE to AE we present a characterization in
terms of the distributed agent form as we did for DPE.

Proposition 8. A strategy profile is a DAE if and only if it corresponds to a
Ψ-symmetric Nash equilibrium of the distributed agent form.

Proof. See Appendix.

The collapse of DAE to AE follows quickly from this proposition.

Proposition 9. Let Γ be a game with perfect recall. A strategy profile is a DAE
if and only if it is a Nash equilibrium of the agent form of Γ.

Proof. See Appendix.

Proposition 10. Let Γ be a game with perfect recall. A strategy profile is a
DPE if and only if it is a perfect equilibrium of Γ.

Proof. See Appendix.
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Proposition 11. Let Γ be a game with perfect recall. A strategy profile is a
DSE if and only if it is a sequential equilibrium of Γ.

Proof. See Appendix.

We now turn to the collapse of the last distributed equilibrium concept,
DNE.

Proposition 12. Let Γ be a game with perfect recall. A strategy profile is a
DNE if and only if it is a Nash equilibrium of Γ.

Proof. See Appendix.

6 Connection to Previous Work

Now that we have presented our main results, we can explain their connection
to previous research. As was said in the introduction, our work builds on this
previous work very directly. To properly assign the credit, it is useful to expand
the map of solution concepts from Figure 2 into the one in Figure 5.

All Games

DAE

DNE

DSE

SDAE

SDNE

SDSE

Games without

collapse

AE

NE

SE

Games of

DPE SDPE PE

strict

Absentmindedness Perfect Recall

inclusion

Figure 5: An expanded map of solution concepts for extensive form games.
Bold solution concepts and arrows indicate our contributions.

In this expanded picture we add a third column, for the class of games that
may exhibit imperfect recall but not absent-mindedness (that is, a player in an
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information set may not recall her entire game experience, but will never visit
that information set more than once).

We populate this column with a new set of novel equilibrium concepts. These
concepts (which we denote with an “SD” moniker for “semi-distributed”) are
very similar to their distributed (“D”) versions. Both reflect an ex-interim per-
spective; in both we consider each node in turn, perform a payoff calculation
with respect to that node given a certain strategy profile, and take an expecta-
tion with respect to some belief function. The difference is in the calculation.
In the D version, as we discussed, we assume a one-time deviation, assuming all
other nodes (histories) obey the given strategy profile. In the SD version, we
assume a deviation at that node as well as all nodes downstream from it in the
information set.

More formally, given a player i, a strategy bi, an information set X assigned
to player i, a history h ∈ X, and a deviation s ∈ ∆(A(X)), we can define a
persistent-deviation phantom strategy, denoted bi[h//s], for a player i history h′

(in information set X ′) by

bi[h//s](h
′) =

{
s : If h′ ∈ X and h ≤ h′

bi(X
′) : otherwise

The definition of SD-solution concepts are identical to the D ones, except the
notion of single deviation is replaced by that of persistent deviation. Specifically,
where D concepts use distributed subjective utility, will use semi-distributed
subjective utility which is defined for a player i, a strategy profile b, an infor-
mation set X, a deviation s ∈ ∆(A(X)), and a belief µ by

SDSUi (b;X, s, µ) =
∑
h∈X

µ(X)(h)ui((bi[h//s], b−i)|h)

As an explicit example of SD-based solution concepts, we define Semi-Distributed
Agent Equilibrium.

Definition 16 (Semi-Distributed Agent Equilibrium). A strategy b is a semi-
distributed agent equilibrium if there exists a belief µ consistent with b such
that for every information set X assigned to player i and reached with positive
probability, and for every distribution over actions in X, s ∈ ∆(A(X))

SDSUi (b;X, s, µ) ≤ SUi (b;X,µ)

Notice that the only difference between DAE and SDAE is that theDSUi (b;X, s, µ)
term has been replaced with SDSUi (b;X, s, µ). For this reason, it is easy to
see that in games without absentmindedness our distributed concepts collapse
to their semi-distributed counterparts. On the other hand, the absentminded
driver game described by Piccione and Rubinstein cleanly distinguishes the
distributed concepts from the semi-distributed ones (i.e. all distributed con-
cepts prescribe one strategy, while the semi-distributed concepts yield a different
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one8).
In Figure 5, the bold solution concepts and (subset or collapse) relationships

between them denote our novel contributions; the rest are either produced by
previous research, or easily obtained from it. The following list briefly acknowl-
edges the sources of these previous contributions; we discuss a few of them in
more detail below.

• NE defined by Nash [12].

• AE defined by Kuhn [10].

• PE defined by Selten [14].

• SE defined by Kreps and Wilson [9].

• DAE is a straightforward multiagent generalization of Modified Multi-
selves Consistency as defined by Piccione and Rubinstein [13].

• DSE is a straightforward multiagent generalization of Modified Multiselves
Sequential Equilibrium as defined by Battigalli [3].

• NE ⊆ AE shown by Kuhn [10].

• PE ⊆ NE shown by Selten [14].

• SDPE collapse to PE shown by Selten [14].

• PE ⊆ SE shown by Kreps and Wilson [9].

• SE ⊆ NE shown by Kreps and Wilson [9].

• DSE ⊆ DAE shown by Battigalli [3].

• DAE collapse to SDAE shown by Battigalli [3].

• DSE collapse to SDSE shown by Battigalli [3].

Notice that in Figure 5 there are a few non-bold arrows that either originate
or end in bold solution concepts. For example, we say that Battigalli showed
the collapse from DAE to SDAE and from DSE to SDSE. In reality, Battigalli
showed in games without absentmindedness that DAE collapses to AE and DSE
collapses to SE of the agent form. However, it makes sense to attribute these
results to others because it is trivial to show that SDAE is equivalent to AE
in games without absentmindedness and SDSE is trivially equivalent to SE of
the agent form for all games. Likewise, we say that Selten showed the collapse
from SDPE to PE, when he actually showed the equivalence of PE and PE of
the agent form in games with perfect recall. Again, our claim is justified by the

8Specifically, the distributed concepts give the same solution as Piccione and Rubin-
stein’s Modified Multiselves Consistency (which is also the ex-ante optimum), while the semi-
distributed concepts give the same solution as Piccione and Rubinstein’s Time Consistency
[13].
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trivial observation that SDPE is equivalent to PE of the agent form for games
without absentmindedness.

As mentioned in the introduction, this work is a natural outgrowth from a
series of papers sparked by Piccione and Rubinstein. Piccione and Rubinstein
initially defined two equilibrium notions for games9 of imperfect recall [13].
The first –time consistency – is similar to our notion of SDAE. It does not
play a major role in our story, nor in the previous literature; Piccione and
Rubinstein themselves, as well as the literature that followed them, found this
notion problematic, for a number of reasons. Their second definition, however –
modified multiselves consistency or MMCS – seemed less problematic. MMCS
took hold in the ensuing literature; for example, Aumann, Hart, and Perry
explicitly advocate the mathematically equivalent notion of action optimality
[1]. MMCS is central to our paper, as DAE is its straightforward generalization
to the multiagent case.

The previous literature establishes several important properties of MMCS.
Piccione and Rubinstein themselves show that all optimal solutions to the ex-
tensive decision problem must be MMCS. Still focusing on the single-agent case,
Battigalli [3] shows that, when restricted to games without absentmindedness, a
MMCS is a Nash equilibrium of the agent form of the game. Among other things
Battigalli defines modified multiselves sequential equilibrium (MMSE). Our def-
inition of DSE is a straightforward generalization of MMSE to the multiagent
case.

These two papers – by Piccione and Rubinstein, and by Battigalli – are the
ones we drew on the most, in additional to the seminal papers by Nash, Kuhn,
Selten, and Kreps and Wilson. In addition, we have benefited from the insights
in the papers by Gilboa and by Halpern and Pass [4, 6]. Overall, though, in order
to synthesize the pictures depicted in Figures 2 and 5 we have needed to not only
modify and extend the definitions, but add more of our own (the central ones
being DPE and DNE). Most of the specific (inclusion and collapse) relations are
novel, and most fundamentally so is the existence result (of DPE, and therefore
also of all the weaker notions). As mentioned in the introduction, the fact that
existence was not addressed in the previous literature is not surprising, since
that literature focused primarily on the single-agent case, in which existence is
trivial.

7 Final Thoughts

We have extended the classical scheme of solution concepts for (finite) extensive-
form games with perfect recall to the full class of games, including games
with imperfect recall. Specifically, we defined the four notions of Distributed
Agent Equilibrium (DAE), Distributed Nash Equilibrium (DNE), Distributed
Sequential Equilibrium (DSE) and Distributed Perfect Equilibrium (DPE) as
distributed versions of their classical counterparts. We showed that (like the

9Although strictly speaking they only addressed single-agent games, or decision problems.
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classical notions) the distributed notions form a strict hierarchy, that they ex-
ist in every game, and that they collapse to their classical counterparts in the
special class of games with imperfect recall.

In developing the scheme we defined novel notions such as the distributed
agent form, phantom strategies, and partial symmetry, which may merit in-
terest beyond the specific results they enable in this paper. In general, this
work suggests a deeper structure of games which underlies the classical view of
them, somewhat akin to the way in which quantum physics underlies classical
mechanics.10 It suggests that an individual decision maker can be broken down
into even more basic units than “agents” or “selves” corresponding to informa-
tion sets; within a given state of knowledge (the information set) the decision
maker is made up of multiple – phantom, counterfactual – decision makers, each
operating in smaller contexts, as small as a single node.

Our results have made use of certain restricting assumptions. These in-
clude the probabilistic assumption of, given a strategy profile, setting the sub-
jective probability (belief) of a node within an information set proportionally
to its probability of being visited under the given strategy profile. This as-
sumption, which we inherit from previous models (in particular, Piccione and
Rubinstein’s), is substantive, and it is interesting to contemplate whether it can
be relaxed while retaining some or all of our results. Similarly, we have made
a specific use of phantom strategies, namely those corresponding to frontiers
of an information set. Our essential results also hold in the context of other
subpartitions of information sets, so long as those do not exhibit absentmind-
edness. It is interesting to see whether these alternate partitions can give rise
to interesting theories.
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APPENDIX
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Figure 6: In game a. (R1, R2) is an AE but not an NE, in game b. (R, r) is
an NE but not an SE, and in game c. (R, r) is an SE but not a PE. Thus all
inclusion relations are strict.

of Proposition 1. Let b be a DPE with corresponding sequence of perturbations
η1, η2, . . . and corresponding sequence of perturbed DAE b1, b2, . . .. Given a
perturbation η, an information set X (assigned to player i), and a distribution
s ∈ ∆(A(X)), consider the following function

πη(X, s) =
∑

a∈A(X)

η(X)(a) · a+

1−
∑

a∈A(X)

η(X)(a)

 · s
As can easily be seen, this function shifts the distribution s according to η. More
importantly if b is a perturbed strategy profile for perturbation η then for all
h ∈ X, b[h/πη(X, s)] is a valid perturbed phantom strategy profile. Moreover,
πη(X, s) is clearly continuous with respect to η and if η = 0 it maps back to
the initial distribution. Because of this and the fact that ηk → 0, given ε > 0
we can choose a K such that for all k ≥ K for all strategy profiles b, for all
information sets X (assigned to player i), and for all s ∈ ∆(A(X)).

|ui(b[x/πηk(s,X)]|x)− ui(b[x/s]|x)| < ε

Now let ε1, ε2, . . . be a sequence of positive real numbers that converge to
0. Let ` be an arbitrary positive integer. Using the above argument and the
definition of distributed subjective utility, we can choose a K` such that for all
k ≥ K`, for all beliefs µ consistent with bk, for all information sets X (assigned
to player i), and for all s ∈ ∆(A(X)).∣∣DSUi (bk;X,πηk(X, s), µ

)
−DSUi

(
bk;X, s, µ

)∣∣ < ε

Furthermore, because bk is a DAE of (Γ, ηk) and because bk[h/πηk(X, s)] is a
valid perturbed phantom strategy profile for all h ∈ X, we have

DSUi
(
bk;X,πηk(X, s), µ

)
≤ SUi

(
bk;X,µ

)
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combining these two inequalities yields

DSUi
(
bk;X, s, µ

)
≤ SUi

(
bk;X,µ

)
+ ε

Without loss of generality, assume that for positive integers ` < m im-
plies K` < Km. This provision ensures that the sequence of completely mixed
strategies bK1 , bK2 , . . . converges to b. Thus this sequence, along with ε1, ε2, . . .,
satisfies the necessary conditions to prove that b must be a DSE.

of Proposition 2. First, note that a DSE must be a DAE and thus the fact that
a DNE is defined to be a DAE plays no part in the remaining proof. This fact
follows easily from the definitions and will not be explicitly proven.

Now, Let b be a DSE with corresponding sequences b1, b2, . . . and ε1, ε2, . . ..
Since strategy equivalence is, as its name suggests an equivalence relation, we
have for all i bi ∼=b bi. Furthermore, for player i let us choose the sequences
b1i , b

2
i , . . . (the sequence of player i strategies drawn from the original sequence

of strategy profiles) and ε1, ε2, . . .. It is clear from the definition of DSE that
for each player i, bi and these two sequences satisfy the definition of DNE.

of Proposition 4. Let us consider the set-valued best response function B : Σ→
2Σ. It is well known that this function satisfies the requirements of Kakutani’s
fixed point theorem [11]. It is sufficient to show that for all b ∈ ΣG, B(b) ∩
ΣG is convex and non-empty. Nash already noted that convex combinations
of symmetric strategies are also symmetric (all with respect to a particular
symmetry χ) [12]. Thus the set of χ-symmetric strategies, Σχ is convex and
because ΣG =

⋂
χ∈G Σχ, ΣG is convex as well. Finally, because B(b) is convex

for all b ∈ Σ, B(b) ∩ ΣG is convex.
Let b′ be a best response to some G-symmetric strategy profile b (i.e. b′ ∈

B(b) ). Notice that for χ ∈ G that χ(b′) is also a best response to b since b is
G-symmetric. Now consider the following strategy

b′′ =
∑
χ∈G

χ(b′)

|G|

Clearly b′′ is a G-symmetric strategy profile and because b′′ is the average of
best responses it is a best response. Hence B(b) ∩ ΣG is non-empty.

of Proposition 5. The argument used to prove proposition 4 is valid provided
that for any perturbed strategy profile b and any symmetry χ ∈ G, χ(b) must be
a valid perturbed strategy profile. Fortunately, this follows immediately from
the fact that η is a G-symmetric perturbation and thus

b ≥ η

=⇒ χ(b) ≥ χ(η)

=⇒ χ(b) ≥ η
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of Proposition 6. Choose an arbitrary infinitely long sequence of G-symmetric
perturbations η1, η2, . . . that converge to 0. For each perturbation ηk choose
a G-symmetric Nash equilibrium bk (which exists by Proposition 5). By the
compactness of ΣG, there exist a subsequence of the sequence b1, b2, . . . that
converges to a G-symmetric strategy profile. It is clear this strategy profile
satisfies the criterion of a G-symmetric perfect equilibrium.

of Lemma 1.

ũi(s, b̃−i) ≥ ũi(s′, b̃−i)
⇐⇒ 1

D(X)

∑D(X)
j=1 u`(b[X̂

j/s])− 1
D(X)

∑D(X)
j=1 u`(b[X̂

j/s′]) ≥ 0

⇐⇒
∑D(X)
j=1

∑
z∈Z

(
pb[X̂j/s](z)u`(z)− pb[X̂j/s′](z)u`(z)

)
> 0

⇐⇒
∑D(X)
j=1

∑
x∈X̂j pb(x)

∑
z∈Z

(
pb[x/s](z|x)u`(z)− pb[x/s′](z|x)u`(z)

)
≥ 0

⇐⇒ 1∑
x∈X pb(x)

∑
x∈X pb(x)

∑
z∈Z

(
pb[x/s](z|x)u`(z)− pb[x/s′](z|x)u`(z)

)
≥ 0

⇐⇒
∑
x∈X µX(x)

∑
z∈Z

(
pb[x/s](z|x)u`(z)− pb[x/s′](z|x)u`(z)

)
≥ 0

⇐⇒
∑
x∈X µX(x) (u`(b[x/s]|x)− u`(b[x/s′]|x)) ≥ 0

⇐⇒ DSU` (b;X, s, µ) ≥ DSU` (b;X, s′, µ)

of Proposition 7. Consider the fact that bijective relationship between Ψ-symmetric
strategy profiles of the distributed agent form and strategy profiles of the orig-
inal game also holds for perturbations. That is to say, there is a bijective
mapping between Ψ-symmetric perturbations of the distributed agent form and
perturbations of the original game. As with strategy profiles, for a perturbation
of the original game η, we will denote η̃ to be the corresponding Ψ-symmetric
perturbation of the distributed agent form.

Now let b be a perturbed strategy profile of the original game, let X be an
information set, and let s = b(X). Notice that if statement 1 of Lemma 1 is
true for b̃, s and arbitrary i = (X, j) and perturbed deviation s′, then b̃ is a
Nash equilibrium of the perturbed distributed agent from. Moreover, it is a Ψ-
symmetric Nash equilibrium since b̃ is a Ψ-symmetric strategy profile. Likewise,
notice that if statement 2 of Lemma 1 is true for b, X, s, ` = P (X) as given and
for arbitrary perturbed deviation s′, then b is a DAE of the original perturbed
game. Hence Lemma 1 implies that b is a DAE of a perturbed game (Γ, η) if
and only if b̃ is a Nash equilibrium of (Γ̃, η̃). It follows immediately from this
that a strategy profile b is a DPE of a game Γ if and only if it is a Ψ-symmetric
perfect equilibrium of the distributed agent form of Γ.

of Proposition 8. Let b,X, i, `, s, and s′ be chosen as in the preamble of Lemma
1.

Note that if we consider information sets X (and an agent i assigned to X)
with zero probability of being reached when using b all payoffs are the same. In
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other words, for all pairs of player i strategies s, s′ we have

∀h ∈ X, pb(h) = 0⇒ ũi(s, b̃−i) = ũi(s
′, b̃−i)

Thus if statement 1 of Lemma 1 is true for all X (and any agent i assigned to
X) with positive probability of being reached it is equivalent to stating that b̃
is a Ψ-symmetric Nash equilibrium of the distributed agent form since b̃ is a
Ψ-symmetric strategy profile. Furthermore, if statement 2 is true for all X with
positive probability of being reached it is equivalent to stating that b is a DAE.
Therefore b̃ is a Ψ-symmetric Nash equilibrium if and only if b is a DAE.

of Proposition 9. Proposition 8 tells us that a strategy profile is a DAE if and
only if it is a Ψ-symmetric Nash of the distributed agent form. In games that
don’t have absentmindedness (which of course include games of perfect recall) Ψ
is the trivial subgroup and the distributed agent form collapses to the standard
agent form of the game. Thus in games without absentmindedness a strategy
profile is a DAE if and only if it is a Nash equilibrium of the agent form and
hence an agent equilibrium.

of Proposition 10. By a similar argument to the one used in Proposition 9,
Proposition 7 implies that in games without absentmindedness a strategy profile
is a DPE if and only if it is a perfect equilibrium of the agent form. By Theorem
4 of [14], for games of perfect recall a strategy profile ia a perfect equilibrium of
the agent form if and only if it is a PE.11

of Proposition 11. Before we tackle this proposition head on we must first estab-
lish a couple of lemmas. Our first lemma requires a couple new definitions. First,
we will define a uniform-deviation strategy much like we defined single-deviation
phantom strategies. Namely, a given a player i, a strategy bi, an information set
X assigned to player i, and a deviation distribution s ∈ ∆(A(X)), we denoted
the single-deviation strategy bi[X/s] and formally define it given an information
set X ′ by

bi[X/s](X
′) =

{
s : If X ′ = X

bi(X
′) : otherwise

Second is a slight variant of subjective utility that explicitly includes this
type of deviation. Namely, given a strategy profile b, a belief µ consistent with
b, a player i, an information set X, and a deviation s ∈ ∆(A(X)) the subjective
utility of this deviation is given by

SUi (b;X, s, µ) = SUi ((bi[X/s], b−i);X,µ)

Lemma 2. Let b be a strategy profile of a game without absentmindedness and µ
be a belief consistent with b. Furthermore, let i be a player, X be an inforamtion
set, and let s ∈ ∆(A(X)). Then the following statement is true:

SUi (b;X, s, µ) = DSUi (b;X, s, µ)

11This was actually shown for the agent normal form of a game, but because the Nash
equilibria of the agent form and the agent normal form coincide, even for perturbed variants,
this is equivalent to what Selten stated.
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Proof. The proof of this lemma follows easily from the fact that for any h ∈ X
ui(b[X/s]|h) = ui(b[h/s]|h) in games without absentmindedness.

Lemma 3. Let b be a strategy profile of a game Γ with perfect recall and µ be
a belief consistent with b. Let X be an information set (controlled by player i)
and J be the set of information sets that come after X that are still controlled
be player i (Note that this is well defined because Γ does not have absentmind-
edness). Given εY such that for all Y ∈ J and for all strategy profiles b′

SUi ((b′i, b−i);Y, µ) ≤ SUi (b;Y, µ) + εY

Also given εX such that for all a ∈ A(X)

SUi (b;X, a, µ) ≤ SUi (b;X,µ) + εX

Then for all strategy profiles b′

SUi ((b′i, b−i);X,µ) ≤ SUi (b;X,µ) + εX + max
Y ∈J

εY

where max of the empty set evaluates to 0.

Proof. Assume that information set X has been reached and action a ∈ A(X)
taken. Now consider the set of information sets Ĵ that are reached first after
action a is taken (again this is unambiguous since Γ has perfect recall). Y ∈ Ĵ
will have a probability of p(Y |X, b) of being reached. Moreover because this
is a game of perfect recall

∑
Y ∈Ĵ p(Y |X, b) ≤ 1. Furthermore, because for all

strategy profiles b′

SUi
(
(b′i, b

k
−i);Y, µ

)
≤ SUi (b;Y, µ) + εY

the most that changing strategy at information set Y can contribute to increas-
ing the payoff is pb(Y |X)εY . Therefore we have

SUi ((b′i[X/a], b−i);X,µ) ≤ SUi (b[X/a];X,µ) +
∑
Y ∈Ĵ

pb(Y |X)εY

=⇒ SUi ((b′i[X/a], b−i);X,µ) ≤ SUi (b[X/a];X,µ) + max
Y ∈J

εY

=⇒ SUi ((b′i[X/a], b−i);X,µ) ≤ SUi (b;X,µ) + εX + max
Y ∈J

εY

For a game with perfect recall there is always a pure strategy best response
at every information set. As a result, it is sufficient to consider deviations of
the form b′i[X/a] instead of b′i in the above inequality. Taking this into account
leads to the statement

SUi ((b′i, b−i);X,µ) ≤ SUi (b;X,µ) + εX + max
Y ∈J

εY

as desired.
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Lemma 4. Let Γ be a game with perfect recall. b is a sequential equilibrium if
and only if it is a sequential equilibrium of the agent form.

Proof. =⇒ Clearly any sequential equilibrium is a sequential equilibrium of the
agent game since it expands the set of strategies under consideration at every
information set.
⇐= Let ε > 0 and let b be a sequential equilibrium of the agent form with

associated sequences b1, b2, . . . and ε1, ε2, . . .. Furthermore, let µ be a belief
consitent with b. Finally, let m be the most number of decisions made by any
one player in the course of play (i.e. the number of information sets passed
through). Because εk → 0 we can choose a k such that εk ≤ ε/m.

For a particular information set X (assigned to player i), let d be the maxi-
mum number of moves left for player i including a decision at X. An inductive
application of Lemma 3 yields that for all strategy profiles b′

SUi
(
(b′i, b

k
−i);X,µ

)
≤ SUi

(
bk;X,µ

)
+ dε/m

Because d ≤ m we have

SUi
(
(b′i, b

k
−i);X,µ

)
≤ SUi

(
bk;X,µ

)
+ ε

Furthermore, if a sequence of such ε are chosen that converge to 0, the result-
ing sequence of completely mixed bk will converge to b. Thus b is a sequential
equilibrium.

We can now return to the proof of proposition 11.
First notice that if we replace the DSU term with the comparable SU term

defined for Lemma 2 in the definition of DSE then the resulting equilibrium con-
cepts is the same as a sequential equilibrium of the agent form. This observation
combined with Lemma 2 implies that a DSE must collapse to a sequential equi-
librium of the agent form in games without absentmindedness.12 By Lemma 4
this implies that DSE collapses to SE in games of perfect recall.

of Proposition 12. First note that the fact that a DNE is stipulated to be a
DAE will be irrelevant to this proof. This is because DAE collapse to AE in
games of perfect recall, as shown in Proposition 9, and all NE are AE in games
of perfect recall. Thus if we show that DNE collapse to NE without using the
fact that all DNE are stipulated to be DAE (as will be shown), the fact that it
is a DAE is redundant for games of perfect recall.

It follows easily from the definition of a DNE that a strategy profile b is a
DNE if and only if for every player i there exists a DSE of player i’s induced
decision problem that is equivalent to player i’s strategy in b (where player
i’s induced decision problem is the game where all other players actions are
regarded as fixed acts of Nature). By Proposition 11 this leads to the following
characterization of a DNE. A strategy profile b is a DNE if for every player i
there exists a SE of player i’s induced decision problem, b′i, such that bi ∼=b b

′
i.

12This fact was first observed without proof by Battigalli for single agent games [3].
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Furthermore, a strategy profile is a Nash equilibrium if and only if every player
is playing an optimum in her respective decision problem. Thus to prove this
proposition, it is sufficient to show that a strategy is an optimum of an extensive
decision problem if and only if it is equivalent to a sequential equilibrium.
⇐= An SE involves choosing optimal strategies at all of the initial informa-

tion sets (that is only Nature can precede them) and thus for games of perfect
recall it is clearly an optimal strategy ex-ante. Furthermore, because two equiv-
alent strategies induce the same distribution over histories they must have the
same payoff and if one is optimal, the other must be as well. Hence if a strategy
is equivalent to a sequential equilibrium it is optimal.

=⇒ It follows from Battigalli’s work (Propositions 3.5 and 4.3 [3]) that for
every optimal strategy b to a decision problem, there exists a DSE b′ such that
b ∼= b′.13 Because all DSE collapse to SE in games of perfect recall, it follows
that for every optimal strategy there exists an equivalent SE.

13Battigalli actually showed this for what he calls a Modified Multiselves Sequential Equi-
librium, which amounts to a single player version of a DSE.
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