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Abstract

Two facts of bank lending policy over business cycles, i.e., countercyclical loan spread
and credit standard, are well documented in the empirical literature. Within a framework
of dynamic credit market, featuring asymmetric information and imperfectly competi-
tive banks with costly screening technology, it is showed analytically that the equi-
librium (of a repeated game) captures simultaneously the two aspects of bank lending
policy. Furthermore, the equilibrium countercyclicality stems exclusively from time
variation of competitive intensity among banks, which is supported specifically by an
often overlooked evidence contained in Fed’s Senior Loan Officer Opinion Survey. More
strikingly, when the basic framework is extended to account for variable funding cost,
i.e., risk-free rate, then it can be showed that an extended period of historically low risk-
free rate will induce excessively low credit standard, which provides an explanation for
the unusual events in the credit market over years leading up to the Crisis.
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I INTRODUCTION

Two facts of bank lending policy have been widely documented in the empirical literature:
both loan spread (loan rate minus funding cost) and credit standard (broadly defined) tend to
be countercyclical over business cycle.1 Clearly, the countercyclicality of bank lending pol-
icy suggests itself as a potentially forceful source that amplifies business cycle fluctuations,
given the prominence of bank credit—or more generally, any form of intermediated credit—
in financing real economic activities. Thus, it is important to understand the underlying
reasons for time variations in bank lending policy.

Intuitively, under perfect competition loan spread displays countercyclicality if associ-
ated risk is countercyclical in bank credit market. However, Aliaga-Dı́az and Olivero (2011)
show that countercyclicality is significant even after controlling various risk factors. More-
over, the countercyclicality of credit standard, such as standard for creditworthiness ex ante
and collateralization requirement ex post loan approval decision, is even more puzzling under
perfect competition (i.e., for a given loan spread), since the only criterion for granting a loan
should be the time invariant positive NPV rule for any profit maximizing bank, regardless of
the phase in which the business cycles is.

However, if one leaves the perfect competition paradigm and adopts an imperfect com-
petition perspective, then it is possible to resolve the puzzling facts on the countercyclicality
of loan spread and credit standard simultaneously, as showed in this paper. Actually, an
explanation rests on imperfect competition is favored strongly by an often neglected piece
of evidence contained in the Fed’s Senior Loan Officer Opinion Survey, that more aggres-
sive competition is consistently rated as the chief reason for both easing credit standard and
lowering loan spread.

Now let me spell out a bit more details about the framework developed in this paper and
the underlying intuitions for explaining the empirical facts about bank lending policy. The
basic setup of the framework consists of a dynamic (i.e., repeated) credit market in which
new borrowers apply for credit from the same set of N < 1 symmetric banks to finance
one-period projects and then die out. Bank lending is in simple loan contract and borrowers
are protected by limited liability. There are two types of borrowers, good and bad. Good
borrower have positive NPV projects whereas bad ones have only negative NPV projects,
and each project can only be financed by a loan contract from one bank. Given some private
benefit accruing to both types of borrowers, then only pooling equilibrium results and the

1For recent works on the former one, see Aliaga-Dı́az and Olivero (2010, 2011) and Corbae and D’Erasmo
(2012); and for the latter one, see Asea and Blomberg (1998), Lown, Morgan, and Rohatgi (2000), and Lown
and Morgan (2006).
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profitability of a loan on an average borrower depends only on the loan rate (assume no
possibility of posting different amounts of collateral by different borrowers). Banks can
(only) detect a borrower’s type via a noisy screening screening technology in the form of
creditworthiness test,2 which produces (randomly) an informative yet unprecise indicator,
G and B , of a borrower’s type. The precision of the indicator, called screening intensity,
is chosen by the testing bank; the test is costly in the screening intensity with a increasing
and convex cost function. Some mild regularity conditions guarantee that whenever a test
is conducted, the screening intensity is optimally chosen by the bank such that only G-
borrowers receive credit and B-borrowers are denied credit. Furthermore, under the model
structure, a lower screening intensity corresponds to a higher proportion of G-borrowers,
thus more bad borrowers obtain credit, which in turn corresponds to a situation with easy
credit standards.

The timing of the credit market in each period is specified in the following way. At the be-
ginning of each period, banks offer loan contracts, each of which specifies a loan rate (hence
a loan spread, assuming a constant funding cost that is zero), to attract borrowers. Next, each
borrower chooses among contracts the most preferred one (with a uniform tie-breaking rule).
The bank approached by a (unique) pool of borrowers then conducts creditworthiness test
on every borrower in its pool, choosing screening intensity optimally conditional on the of-
fered loan spread, and extends credit only to G-borrowers. At the end of the period, projects
are completed and payoffs to each party are realized. Clearly, a monopoly bank will choose
loan spread, and consequentially the screening intensity, so as to maximize the within-period
profit, while perfectly competitive banks undercut each other to a level at which optimally
chosen screening intensity can only result in zero profit on loans extended to G-borrowers.

To capture the notion of business cycles in this framework, consider a prototype binary-
valued (stochastic) shock to the size of each project, hence the size of associated loan con-
tract, which realizes at the beginning of each period, before credit market opens. The inter-
pretation is straightforward, that a larger size corresponds to the expansionary phase and a
smaller size corresponds to the recessionary phase. Banks are infinitely lived, with an ob-
jective of expected discounted profits for each. Intuitively, the (per period) monopoly profit
on each loan is higher in the expansionary phase than that in the recessionary phase, given
a larger loan size in the former phase. Nonetheless, the monopoly loan rate and associated
screening intensity will not change, if both project payoff and screening cost are linear in the
size of the loan; therefore, accordingly there is no fluctuation in bank lending policy over
business cycles.

2This follows the literature on bank competition with screening initiated by Broecker (1990).
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However, if one considers the optimal subgame perfect equilibrium amongN symmetric
banks competing in each period by offering loan contracts (i.e., loan spreads) subject to the
shock specified above, then the equilibrium prediction changes dramatically. Essentially, the
insight of Rotemberg and Saloner (1986) applies here, that banks compete more aggressively
by charging lower loan rate in the expansionary phase so as to reduce the incentive for any
one bank to deviate. The underlying intuition is straightforward. If equilibrium loan rate
were set at too high a level in the expansionary phase, then undercutting by a single bank to
acquire the entire market share would be strictly profitable under certain parametric restric-
tion even under harshest future punishment (zero profit) by other banks. But the same is not
true in the recessionary phase, as the potential profit from deviation is considerably limited
due to smaller loan size. Having established that the equilibrium (under certain condition)
features in a lower loan rate in the expansionary phase, it follows that the associated optimal
screening intensity is lower, hence the credit standard is easier, in the expansionary phase.

II THE MODEL: BASIC SETUP

Consider an environment of discrete time with infinite horizon, indexed by t . There is a
continuum of borrowers with unit mass and N <1 symmetric banks, indexed by i 2 N �
¹1; : : : ; N º, both risk-neutral and infinitely lived. Every period, borrowers and banks interact
in a credit market, where borrowers seeking credit constitute the demand-side while banks
competing in extending credit constitute the supply-side.

II.A BORROWER’S CHARACTERISTICS

At the beginning of time t , each one of ex ante identical borrowers is hit by an investment
opportunity shock � 2 ‚ �

®
�g ; �b

¯
� Œ0; 1� with Pr.�g/ D �0 and Pr.�b/ D 1 � �0, and

is called a type � borrower. For notational simplicity, ‚ is identified with ¹g; bº, indicating
“good” and “bad” respectively, with obvious meanings for g- and b-borrower. Shock �
is assumed to be iid across borrowers and over time, so that an application of a suitable
law of large number (LLN) implies that the distribution of borrower’s type is stationary,
characterized by �0, yet independent over time. Consistent with the iid assumption, � is
assumed to be borrower’s private information.

Coming with shock � is a � -project which makes available a constant-return-to-scale
(CRS) technology to a � -borrower: $

�
zX� C u�

�
consumption good (perishable) will be

produced at the end of time t by $1 capital good input as (the only) initial investment;3 zX�

3Implicitly, a unit of account (call it 1 dollar or $1) is assumed to be in place. However, I postulate that the
unit of account is denominated in real good in order to rule out complications brought up by inflation in the
subsequent dynamic analysis. Thus all interest rates discussed subsequently refer to real rates.
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is random and independent across borrowers, taking value X 2 .1;1/ with probability �
in success and � 2 .0; 1/ with probability 1 � � in failure; and u� > 0 is deterministic
(ug may differ from ub). In addition, zX� is publicly observable whereas u� > 0 is not,
thus u� represents all private benefits accruing to the borrower once the project is funded.
CRS technology implies that a project of size ´, 8 ´ > 0, will produce $´. zX� C u�/ output
from $´ input. However, a project is indivisible and all projects have a common size ´ given
exogenously, thus unless a borrower can raise $´, the project will not be started.

II.B LOAN CONTRACT

Borrowers receive no exogenous endowment (either consumption or capital good), neither do
they possess a storage technology that transforms perishable consumption good produced be-
fore into currently usable capital good. Borrowers rely on bank credit to fund their projects.
Bank lending is in one-period loan contract, each of which specifies a tuple lD hR;C i per
$1 credit: (gross) interest rate R � 1C r to be repaid in case of no default with r denoting
net interest rate, and collateral C to be transferred in case of default. Each loan is of size ´
and a project is not allowed to be funded by more than one loan. Borrowers are protected
by limited liability. As a result, on the one hand, since u� is not publicly observable, R is
bounded from above by X ; while on the other hand, hence not contractible, R is bounded
from below by 1 C rf , since banks are assumed to have access to elastic supply of funds
at risk-free rate rf . Without loss of generality, rf is normalized to 0. Given R � Œ1; X�, a
borrower defaults on the loan if and only if the project fails, thus the default probability of
a � -borrower is 1 � � , and 1 � � corresponds to loss given default. Moreover, by limited
liability, the maximum value of C that can be enforced by the contract is �. Evidently, in no
circumstance will a contract ask for a C < �. Thus, following analyses focus exclusively on
loans of a form l D hR; �i, or l D R for simplicity, where R 2 Œ1; X�. For a unit (size)
loan lD R granted to a � -project, Figure 1 depicts the payoff structure with expected payoff
u�.R/ D �.X �R/Cu� > 0 to the borrower and ��.R/ D �RC .1��/��1 to the lending
bank.

Since risk-free rate is zero, the expected net present value of a unit size � -project is given
by NPV� � ��.X/ D �X C .1 � �/� � 1.

Assumption 1. Success probability �g > �b is such that NPVg > 0 > NPVb. Moreover,
the investment shock distribution �0 � 1

2
is such that4

E
0
�
NPV�

�
� �0NPVg C .1 � �0/NPVb > 0:

4Assuming �0 � 1
2

is only for expositional convenience; for analysis below, all we need is �0�g � .1 �
�0/�b > 0, which is implied by �0 � 1

2
.
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Borrower’s
payoff

Bank’s
payoff

u� CX �R R � 1

$1

�
55

1 � � )) u� � � 1

Expected payoff u�.R/ ��.R/

FIGURE 1: Payoff structure of a unit loan lD R to a � -borrower, � 2 ‚.

In words, g-project has a higher success probability, and parameters .�0; �g ; �b; X; �/
are such that: (i) g-project has a positive (expected) NPV whereas b-project has a negative
(expected) NPV (this also explains why g-borrower is “good” while b-borrower is “bad”);
and (ii) ex ante, each project has a positive (expected) NPV. Note that, by LLN, E0

�
NPV�

�
also equals to the average NPV across all projects per unit size.

It is easy to show that ��.R/ is strictly increasing in R, �g.R/ > �b.R/, and �b.R/ <
0 8R 2 Œ1; X�. Since �g.X/ D NPVg > 0 and �g.1/ < 0, there is a unique R 2 Œ1; X�
such that �g.R/ D 0 and �g.R/ > 0 for all R > R. Evidently, no bank will ever offer a loan
with R < R, as the expected payoff is negative even for a g-borrower. Accordingly, let

Li
D
®
R.l/

ˇ̌
l2 Li

¯
� R� ŒR;X�

denote both the set of loans and the associated index set, offered by bank i 2 N ; and let
LD [i2NL

i denote the set of all loans in the market (symbol [ denotes disjoint union).

II.C INFORMATION ASYMMETRY

Since NPVb < 0, there exists no loan contract hR;C i such that lending bank’s expected
payoff from a b-borrower is greater than 1. As a result, if information is symmetric in the
credit market, i.e., banks know the type of each individual borrower, then lending decision
is trivial: b-borrowers will be denied credit unambiguously and a loan of size ´ will be of-
fered to each g-borrowers. To make the bank’s lending decision nontrivial, some form of
asymmetric information is necessary. In particular, I assume that banks do not know directly
the type of any individual borrower, nonetheless they do know the prior type distribution �0.
Note that this is consistent with the assumption that borrower’s type is private information.
This pure adverse selection problem is the only information friction present in this frame-
work. No effort is made for investigating implications of moral hazard problem on the part
of either borrowers or banks.
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II.D SCREENING TECHNOLOGY

Despite that on average lending to the entire population of borrowers can be profitable, as
E0
�
NPV�

�
> 0, a profit maximizing bank always has incentive to identify a loan application

from a b-borrower since NPVb < 0. To this end, I assume that each bank i has available a
screening technology T i , taking a form of creditworthiness test as in Broecker (1990), albeit
costly and noisy. The test works as follows.

TEST UPON FRESH BORROWER For a fresh borrower, i.e., a borrower without a publicly
visible test record, a test with screening intensity q generates an indicator � 2 ˆ � ¹G;Bº
which reveals some (but not all) information about the unobservable type of the borrower.
In particular, following Thakor (1996), � is random and correlated with � in a specific way
elucidated in the following assumption:

Assumption 2. Indicator � generated in a test with screening intensity q upon a fresh bor-
rower satisfies

Pr.� D Gj� D g/ D Pr.� D Bj� D b/ D q 2 Q �
�
1
2
; 1
�
: (1)

In words, conditioning on the true type being g (b resp.), the probability of observing
an indicator G (B resp.) is q.5 Evidently, with q close to 1, � becomes a fairly accurate
indicator for � . Indeed, the accuracy of the test is fully determined by the screening intensity
q, as demonstrated by the posterior probabilities

�G.q; �/ � Pr.gjGI q; �/ D
q�

Pr.Gjq; �/
D

q�

q�C .1 � q/.1 � �/

�B.q; �/ � Pr.gjBI q; �/ D
.1 � q/�

Pr.Bjq; �/
D

.1 � q/�

.1 � q/�C q.1 � �/

(2)

for an arbitrary prior Pr.g/ D � 2 U� Œ0; 1�.6 For a brief illustration, suppose � 2 IntU
(interior of U) and suspending .q; �/. When q D 1, Pr.gjG/ D Pr.bjB/ D 1, so that � is a
perfect indicator of � regardless of �. In general, when q 2 IntQ, there is Pr.gjG/ > � >

Pr.gjB/, thus � is informative yet noisy for � . Lastly, when q D 1
2
, Pr.gjG/ D Pr.gjB/ D �

5The specification that the test is symmetric on both types, Pr.Gjg/ D Pr.Bjb/ D q, is inconsequential. A
straightforward generalization, as in the original formulation of Broecker (1990), has the form Pr.Gjg/ D qg

and Pr.Bjb/ D qb , so that screening intensity is allowed to be chosen separately for identifying different
borrower’s type. See Gehrig (1998) for a model incorporates this alternative specification.

6Here � may be different from �0, the distribution of shock � . Note ��.q; �/ is well defined — indeed,
smooth — over Q � U, except for two points, i.e., .1; 0/ for �G.�/ and .1; 1/ for �B.�/. However, subsequent
analysis does not depend on specific values assigned for �G.1; 0/ and �B.0; 1/. See Claim B.1 in Appendix
B.1 for various properties of ��.q; �/.
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and Pr.bjG/ D Pr.bjB/ D 1 � � and � ceases to be informative. To sum up, by assigning
a (fresh) borrower to some class G or B according to �, a test provides with the bank some
information on the type distribution of a borrower.

Central to this framework is that screening intensity q will be chosen optimally by a bank
at a cost, as captured by a per test cost function c.q/ for a unit loan.7 Screening cost displays
constant return to scale in loan size, thus it costs ´c.q/ for a test on a loan of size ´.8 As
standard, c.�/ is assumed to be increasing and convex, with c

�
1
2

�
D 0. Evidently, test result

is no longer informative when q D 1
2
, therefore the bank should be indifferent about whether

to conduct the test or not.

TEST UPON REVISITED BORROWER For a revisited �-borrower, i.e., a borrower with a
known test record �, a new test will not reveal extra information regarding to borrower’s
type beyond that already contained in �.9 In particular, following assumption holds:

Assumption 3. Indicator �C generated by a test upon a revisited �-borrower satisfies

Pr.�Cj� D g; �/ D Pr.�Cj� D b; �/; �C; � 2 ˆ: (3)

Note that � needs not to be the result of a test upon a fresh borrower. The relevant point
is on the availability of such a previous test result to the bank considering a new test on the
same borrower. On the one hand, a revisited borrower may be tested before yet test result
was not revealed, so that the borrower will still be tested as a fresh one at a cost cC D c.q/

with intensity q. On the other hand, however � is revealed, the next bank screening this
borrower will take into account this information; indeed, the bank is not allowed to simply
ignore a known �. A test upon a revisited �-borrower costs cC D NcC � 0. Nonetheless, as
showed later, the precise form of the cost structure for such a test is irrelevant for optimal
behavior of any party.

7In the literature of bank lending with screening, the screening intensity is typically assumed to be constant,
either costless as in Broecker (1990) and Riordan (1993) or of a fixed cost as in Thakor (1996), Cao and Shi
(2001), and Gehrig and Stenbacka (2004, 2011). Several exceptions to my notice include Chan, Greenbaum,
and Thakor (1986), Gehrig (1998), and Ruckes (2004), yet all of which have setups differ from this paper.

8This is a fairly strong assumption. However, as showed later, abstracting away scale economy in screening
technology greatly simplifies subsequent algebra. More importantly, throughout this paper loan size is exoge-
nous, thus allowing for scale economy in screening technology introduces only mechanical effect which sheds
little extra light on the optimal screening problem facing each bank.

9This is for sure an extreme case. A general specification takes the form Pr.Gjg; �/ D F.�/ C �,
Pr.Gjb; �/ D F.�/ � �, F.�/ 2 .0; 1/, 8� 2 ¹G;Bº. As long as � > 0 is small enough, i.e., a new test
does not generate too much extra information for a revisited borrower, identical conclusions will be derived
subsequently based on this slightly more general specification.
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This assumption is new to the literature of bank screening (via creditworthiness test), and
its principal implication will become transparent after specifying the timing within a period.
Nonetheless, several remarks are in place to motivate this fairly strong assumption. Basic
economics argument predicts that viable production technology used by any firm should have
stable performance as a basic requirement, otherwise the technology will be modified in one
way or another. In the same spirit, a bank’s screening technology should be expected to
generate close to identical posterior type distribution for the same borrower, no matter how
many times the test has been conducted. As a result, for two identical indicators � and �C
generated by consecutive tests of a bank, it is reasonable to expect that Pr.� j�C; �/ be close
to Pr.� j�/. Imposing equality then turns out to imply eq.(3). Indeed, Claim B.2 of Appendix
B.1 demonstrates that they are precisely equivalent. Along the same line of argument, if the
screening technology is such that the very initial test result persists in subsequent repetition
of test by the same bank, i.e., Pr.�Cj�/ D 1 for �C D �, then not only eq.(3) holds but both
sides equal to 1 (Claim B.3, Appendix B.1).

To carry the argument one step further, from single-bank repetitive-test to multi-bank
sequential-test, a particular interpretation of the assumption of symmetric banks comes into
stage. Typically, the assumption of symmetric firms means common production technology,
i.e., given identical inputs, symmetric firms end up with the same quantity and/or quality
of output. In the context of symmetric screening technology, taking as input a revisited
borrower � initially tested by bank i , a subsequent test by bank j should give rise to the
same posterior type distribution as that of bank i in a repeated test. Put in another way,
this reflects the idea that screening technology works in more or less identical way across
banks. Further comments on alternative specifications of screening technology are relegated
to Subsection V.A.

II.E TIMING OF THE LENDING PROCESS

Bank lending process in each period consists of five stages:

1. All Banks offer sets of loans simultaneously and publicly, Li for each bank i 2 N ,
and LD [i2NL

i .

2. Each borrower chooses a loan l 2 L to apply for as a fresh borrower. Borrowers
choosing a loan loffered by N.l/ > 1 banks independently apply for one bank out of
N.l/ with equal probability.

3. A bank offering ldecides whether to screen or not borrowers at l. Upon screening, the
bank chooses screening intensity q and conduct a test on every borrower. A lending
decision, i.e., approving (A) or denying (D) an borrower, is made after observing test
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result �, which is not revealed in any verifiable form by the testing bank. Otherwise,
the bank denies borrowers at l altogether incurring zero cost.

4. A borrower approved by bank i in stage 3 at l has two options: stay with i and get
a loan l of size ´, or leave i and apply for a loan lC from another bank j ¤ i . A
borrower denied by bank i in stage 3 can also apply for lC from j ¤ i .

5. Banks make lending decision as in stage 3 on revisited borrowers, conditional on all
information revealed in previous stages. In particular, banks know for which contract
a revisited borrower applied in stage 2.

II.F A GAME-THEORETIC FORMULATION

One interpretation of the lending process advocates a game-theoretic perspective. Coupled
with payoff structure for each loan and cost structure for each test, the timing of the lending
process determines a lending game among two types of (continuum) borrowers andN banks
within each period. This is an extensive form game with incomplete information. Common
knowledge about the entire game is presumed for all players. The corresponding game tree
is illustrated in Figure 2, where a shaded box contains the relevant player, a rounded box
indicates result of certain action, and a row vector in parenthesis at an terminal node rep-
resents payoffs to the relevant borrower (the first one) and bank (the second one). Figure
2 also makes clear the lending game has a particular structure: First, conditional on banks’
choices L D [i2NL

i , the subsequent game (stage 2–5) consists of a (proper) subgame;
second, stage 2–3 and 4–5 consist of two rounds of lending interaction; and third, when L

contains more than two loans, each round of lending interaction resembles a signaling game.
The signaling game structure stems from the fact that on the one hand each bank makes its
screening choice (D or q) conditional on a belief �.l/ D Pr.� D gjl/ 2 U held on the
prior type distribution at l, while on the other hand borrowers will take into account the
screening choice of each bank when choosing a loan l2 L to apply, as made explicit in the
next Section. Here l serves the role of a (potential) signal for borrower’s type. Intuitively,
these specific structures will have certain implications on the (static) equilibrium notion of
the lending game to be made precise in the next Subsection.

It is worth to stress that in this framework, neither any restriction is imposed on the
number of loans permitted to be offered by banks, nor a borrower is allowed only one chance
in applying for a loan. The only seemingly restrictive assumption is that a borrower can apply
for one loan in each round of lending interaction, yet supplemented with extra opportunities
of applying for other loans in a second round. The sequential nature of this assumption is
in no way too unrealistic. Indeed, a serious screening process by a bank on an borrower is a
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� � � i
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��

Stage 3 � 2 ¹G;Bº

D
��

A
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D

//
q

oo

		

Stage 4 �

))

�

lC 2 Lj

��

l
//
�
u�.R/; ��.R/ � c.q/

�
Stage 5 �C 2 ¹G;Bº

D
��

A
))

j; �C.lC/
D

//
q

oo .0; 0/

.0;�cC/
�
u�.RC/; �

�.RC/ � cC
�

FIGURE 2: The lending game within a period.
Notes: Shaded box indicates the player making decisions in a stage, with �.l/ D Pr.gjl/ denoting the belief
held by i for l (likewise for �C.lC/). Labels along arrows indicate actions chosen by players. Rounded box
shows the outcome of a player’s action upon which subsequent action can be conditioned. Payoffs for a unit
loan are specified in parentheses with borrower ordered first, and R (RC) corresponds to l (lC). Cost c.q/ is
not shown when i denies � after screening in stage 4.

substantial one in that some intimate interaction between the bank and borrower is required
before any solid lending decision can be made, thus it seems reasonable to assume that a
borrower can interact with only one bank at a time given various constraints (time, file work,
etc.) facing the borrower. Moreover, the postulate of merely one extra round of lending
interaction is innocuous; straightforward extensions can be readily made for more than one
round, yet this adds no more insight but only complicates the model.

As a final remark on the lending game, strategic interaction among banks occurs only
in stage 1, i.e., banks compete directly with each other for market share. In the subgame,
in turn, strategic interaction occurs between two types of borrowers, each type as a whole,
and all banks as a whole. Bank’s decision on whether to screen or not, and (if the former)
the screening intensity q, have no direct impact on other bank’s screening decision. As
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shown below, under some suitable conditions, optimal screening choice depends only on the
common prior �.l/ and �C.l/ at each loan l.

There can be another interpretation of the lending process, in particular for stage 2–5
(i.e., the subgame L), which favors a typical competitive rational expectations perspective
with almost nil strategic concern except for stage 1. This interpretation will be discussed at
the end of Subsection III.D, in together with other comments on the timing specification and
the game theoretic formulation advocated here.

III ANALYSIS OF THE STATIC GAME

III.A SOLUTION CONCEPT

For expositional purpose, call all banks player ˛ and borrowers player ˇ. Individual bank
or borrower corresponds to distinct incarnation of ˛ or ˇ respectively. the action space
Ai � A˛ for each bank i consists of ¹Ljany subset of Rº for stage 1, and ¹D;Q � ¹D;Aºº
for both stage 3 and 5 where the first D in the braces effectively means “no screen.” A (pure
behavior) strategy � i of bank i specifies for each information set of i an action from A˛. It
is worth to stress that each l 2 Li is an information set of bank i in the subgame starting
from L, so is each realized � from a test. The description of the bank side completes
with a (common) belief system �.l/, �C.l/ 8 l 2 L, with the possibility that �C.�/ be
different from �.�/. In addition, posterior belief ��.�/ at � is determined by �.�/ and �C.�/
for stage 3 and 5 respectively, in together with screening intensity q. Turning to the borrower
side. Conditional L, the action space A� for a � -borrower consists of L in stage 2 and
LC � [j¤iL

j in stage 4 if a loan from i is chosen in stage 2 (hence LC is borrower-
bank specific). A (behavior) strategy �� of borrower � is defined accordingly, except that in
contrast to � i , a priori there is no restriction on borrower’s strategy to be pure; �� is allowed
to be mixed, so that arbitrary prior type distribution over L is possible whenever L contains
more than one loan.

The solution concept used for the static lending game is the standard sequential equilib-
rium of Kreps and Wilson (1982). Precisely, an equilibrium is a profile of

h.� i/i2N ; �.�/; �C.�/I .�
�/�2‚i

such that belief systems �.�/ and �C.�/ are consistent with the strategy profiles .� i/i2N and
.��/�2‚, and sequential rationality is satisfied at each information set of each player. For
notational simplicity, denote ��� D h���˛; ���ˇ i � h.� i/i2N ; .��/�2‚i the entire strategy profile.
Moreover, since banks are symmetric in this setup, it is natural to restrain the analysis to
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the case of symmetric equilibrium in which � i D �˛ for all i 2 N ,10 thus ���˛ D .�˛/1�N .
As mentioned before, conditional on L, subsequent lending interactions become a proper
subgame, denoted by L, of the original lending game, therefore, any sequential equilibrium
profile is subgame perfect conditional on L. Consequently, backward induction can be used
to solve the lending game: Determine the sequential equilibrium of each subgame L first,
and then determine the equilibrium action Li for each bank i in stage 1.

As is well-known, in general there are too many sequential equilibria in a signaling-like
game. This is also true for the subgame L of the lending game, for each round of lending
interaction resembles a signaling game. To be sure, when L contains only one loan contract,
the lending game terminates at stage 3, since there is no other loan for borrowers to apply one
more time. Accordingly, the number of sequential equilibria can be reduced considerably;
indeed, the lending interaction between borrowers and banks is no longer a genuine game,
since borrowers have only one loan to apply and banks only need to optimize the screening
intensity for a 1=N share of all borrowers. Nonetheless, restricting L to be a singleton set
is an overly stringent assumption, so is any explicit restriction on the action space A˛ or A� .
Clearly, it would be desirable to have certain mild restrictions on the strategic behavior of
borrowers and banks such that some particularly simple equilibrium outcome emerges.

In the rest of this Section, bank’s screening choice and borrower’s application choice
will be explored in turn, accompanied by discussions for certain strategic restrictions, such
that some particularly simple outcome holds necessary for any resulting sequential equilib-
rium. The guiding principle is on strategic complexity: players opt for strategies of low
complexity whenever doing so entails no direct impact upon immediate payoff. Essentially,
a program for refining the set of sequential equilibria is followed, though no effort is devoted
to formalize this strategic complexity consideration.11

III.B BANK’S DECISION

Suppose a bank is in stage 3. Given a fresh borrower for a loan lD R 2 R, the bank needs
to choose whether or not to screen the borrower, and if screen, at what screening intensity.
The borrower can be of two types, � D g or b, with expected payoff ��.l/ for a unit loan.
Bank’s choice depends on the expected payoff of a loan l to this borrower, which in turns

10Symmetric strategy on the part of borrowers of identical type has been incorporated into the definition of
�� , where a borrower’s strategy only depends on type � hence is identical across a continuum of borrowers of
the same type.

11Strategic complexity considered here is indeed, in certain sense made clear below, a self-evident one. The
treatment differs from the formal conception of strategic complexity based on automata (Turning machine) in
the repeated game literature (see Rubinstein 1986, Abreu and Rubinstein 1988, and references therein).
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depends on the (common) prior type distribution. Let � denote this prior, i.e., � D Pr.gjl/.
As noted before, a test T with intensity q 2 Q can generate some information about the
unknown type of the borrower. In particular, bank’s expected payoff from a unit loan to a
class � borrower, � 2 ˆ, is

��.q; R;�/ D ��.q; �/�g.R/C
�
1 � ��.q; �/

�
�b.R/; (4)

where ��.q; �/ D Pr.gj�I q; �/ is given by eq.(2). It is straightforward to verify that ��.�/
is continuously differentiable over Q � R � IntU. Following Lemma summarizes several
properties of ��.�/, where @x denotes partial derivative with respect to x.

Lemma 1. Under Assumption 1 and 2. 8 .q; R;�/ 2 IntQ � R � IntU, @R��.q; R;�/,
@��

�.q; R;�/ > 0, 8� 2 ˆ, @q�G.q; R;�/ > 0, and @q�B.q; R;�/ < 0. For a given
R 2 .R;X�, there exists a unique a D a.R/ 2 IntU such that a�g.R/C .1� a/�b.R/ D 0.
Moreover,

(a) 8� � a.R/, �G.q; R;�/ � 0, 8 q 2 Q (equality holds only for � D a.R/ and
q D 1=2); and there exists qB.R; �/ 2 Q such that �B.q; R;�/ < 0 iff q > qB.R; �/
where qB.R; �/ is strictly increasing in R and �;

(b) 8� < a.R/, �B.q; R;�/ < 0, 8 q 2 Q; and there exists qG.R; �/ 2 Q such that
�G.q; R;�/ > 0 iff q > qG.R; �/ where qG.R; �/ is strictly decreasing in R and �.

The proof is in Appendix C (p.38). Intuitively, expected payoff is increasing in loan rate
and proportion of good borrowers. Moreover, since screening technology is informative, and
ex post borrower composition assigned to class G improves with the accuracy of test, �G.�/
is increasing in q, whereas the converse is true for �B.�/. In the same spirit, given a high
enough ex ante proportion � of good borrower, ex post composition of class G can not be
worse than �, so �G.�/ > 0, while with a sufficiently high screening intensity it is always
possible reduce the proportion of good borrowers in class B such that the expected payoff
from such a class is negative. Lastly, when ex ante composition is bad enough, one has
to screen borrowers with hight enough intensity such that expected payoff from class G is
positive.

Suppose a test has been conducted and an indicator � is available. Now, the bank needs
to decide whether or not to approve the loan application in light of information revealed by
�. Any strategy specifying an action at this point is necessarily a decision rule, since it will
be applied systematically across all borrowers, perhaps at different loan contracts, tested by
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the bank.12 A particularly simple decision rule suggests itself in this case: approval when
��.�/ � 0 and denial when ��.�/ < 0. Ignoring the strategic environment, this standard
NPV rule is optimal to the bank apparently. However, the strategic nature of the multi-round
lending interaction does render this simple NPV rule questionable as the unique equilibrium
outcome. In particular, if the bank is able, or even willing, to get involved in sophisticated
strategic reasonings, then it is no longer obvious that such a simple NPV rule should actually
prevail in any equilibrium.13

The underlying twist is twofold. First of all, if the bank is uncertain about whether
an approved borrower will stay with it, then the optimality of this simple decision rule is
called into question. More importantly, any particular decision rule to be applied upon tested
borrowers by one bank, such as the simple NPV rule, affects indirectly type distributions
of revisited borrowers over all loan contracts in stage 4, hence indirectly the payoffs of all
players (including the bank itself) in stage 5.

However, the validity of adopting the simple NPV rule can be ensured by resorting to
two extra conditions on bank’s behavior. The first one is a specific expectation held by the
bank in question, henceforth labeled by E-˛, which states that

whenever a loan application is approved by a bank, the applying borrower will
indeed choose to stay with it and not to apply another loan.

Under this hypothetic expectation, and suppose for a moment that the bank ignores any indi-
rect impact upon payoffs in stage 5, then sequential rationality implies that the simple NPV
rule is the unique best response of the bank, given payoff zero from denying an borrower
(gross of screening cost).

The second condition concerns with the supposed ignorance of the bank on indirect im-
pacts of a particular decision rule. This is where the strategic complexity consideration
comes into play. Assessing precisely and fully all strategic consequences of an alternative
decision rule is a vastly complicated task for any bank in this setup. Once taking into account

12Recall that there is a continuum of borrowers. Except for the extreme case in which the bank in question
either is approached by no borrower or decides to reject all borrowers, the bank should always be dealing with
many borrowers.

13As a first glance may suggest, provided that the particular lending interaction between a bank and a bor-
rower is a proper subgame where lending decisionD orA leads to directly a terminal node, backward induction
or dominance criterion should immediately solicit the simple NPV rule as the unique best response, regardless
strategic considerations in other respects. However, this reasoning is not valid since the bank is playing iden-
tical subgames with many (perhaps continuum) borrowers simultaneously, and any decision rule necessarily
applies to all those borrowers at the same time. It is precisely this last feature that makes a complete assessment
of any decision rule quite complicated.
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other banks’ lending decision rules (stage 3) and borrowers’ application choices (stage 4),
the optimality of the simple NPV rule is no longer guaranteed, since indirect benefit (calcu-
lated in stage 3) from obtaining (in stage 5) a �C-borrower with ��C.�/ > 0 denied by some
other bank (in stage 3, perhaps that bank knows this borrower is of positive expected payoff)
may outweigh direct cost of denying a �-borrower with ��.�/ > 0 (in stage 3). Computing
precisely relevant payoffs for given strategies is intricate per se, not even to mention the
large variety of other players’ strategies to be considered comprehensively by the bank in
question. In contrast, by focusing exclusively on the immediate payoff of a lending decision
from a � borrower, that is 0 forD and ��.�/ for A, not only a lending decision can be readily
made in a systematic manner, i.e., the simple NPV rule, but the entire obscure computation
associated with the complicated strategic consideration can be circumvented.

Above discussion is summarized in the following Lemma, which pins down bank’s opti-
mal lending decision rule in stage 3.

Lemma 2. Suppose a bank obtains indicator � after testing a borrower at l in stage 3. Then
under E-˛ and strategic complexity consideration, denying the loan application iff ��.l/ < 0
is the unique best response of the bank.

It is worth mentioning that the simple NPV rule will always be used in stage 5 whenever
a test is conducted on a revisited borrower, as the lending process terminates after bank’s
lending decision. Moreover, it will be proved later on that both the simple NPV rule and
borrower’s behavior prescribed by E-˛ are equilibrium outcomes in a particular equilibrium.
As a result, strategic complexity consideration can be viewed as a sharp refinement that
elicits a unique equilibrium of simple outcomes.

In light of Lemma 2, ex ante a test, bank’s expected payoff �.q;R;�/, from screening
with intensity q a borrower applying for a unit loan is

�.q;R;�/ D Pr.Gjq; �/max
®
�G.q; R;�/; 0

¯
C Pr.Bjq; �/max

®
�B.q; R;�/; 0

¯
; (5)

where the probability of observing an indicator �, Pr.�jq; �/ 8� 2 ˆ and .q; �/ 2 Q �

IntU, is given in eq.(2). Note that �.q;R;�/ is well-defined and continuous over Q �R�

U, with �.q;R; 1/ D �g.R/ and �.q;R; 0/ D 0. Bank’s lending decision, following the
simple NPV rule, is reflected in the max¹�º operator, since a �-borrower with ��.�/ < 0 will
be denied for sure after screening. Evidently, �.q;R;�/ is bounded from below by 0. In
addition, it turns out to be useful to denote

�ND.R; �/ D ��g.R/C .1 � �/�b.R/

16



bank’s expected payoff from always approving a unit loan to a borrower at l D R with �
(ND for “no denial”). Since �.q;R;�/ represents (per unit) expected payoff from screening
for a bank considering a test on a borrower, it is important to know the behavior of this
function over the parameter space in order to analyze bank’s optimal screening choice later.
This is shown in the following Lemma.

Lemma 3. Under Assumption 1 and 2. Fix an arbitrary R 2 .R;X�, and let a.R/ and
q�.R; �/ 8� 2 ˆ and � 2 IntU be those given in Lemma 1. Define

��.R; �/ D ��
g.R/ � .1 � �/�b.R/: (6)

Then ��.R; �/ > 0 8� 2 U. And �.q;R;�/ can be expressed as follows:

(a) When � � a.R/,

�.q;R;�/ D

8<:�ND.R; �/; if 1
2
� q � qB.R; �/I

q��.R; �/C .1 � �/�
b.R/; if qB.R; �/ < q � 1:

Moreover, �ND.R; �/ � 0, with equality only if � D a.R/ and q D 1
2
, in which case

��
�
1
2
; R; a.R/

�
D 0 8� 2 ˆ.

(b) When � < a.R/,

�.q;R;�/ D

8<:0; if 1
2
� q � qG.R; �/I

q��.R; �/C .1 � �/�
b.R/; if qG.R; �/ < q � 1:

The proof is in Appendix C (p.39). Putting in a simple way, this Lemma shows that for
given R and �, expected payoff from screening �.q;R;�/ is piece-wise linear in screening
intensity q, and is strictly increasing for all q above certain threshold. When �.q;R;�/ is
linearly increasing, the slope is given by @q�.q;R;�/ D ��.R; �/. Therefore, ��.R; �/
also represents the marginal benefit of screening. Note that��.R; �/ > 0 8R > R, regard-
less of �, and equals to 0 only if R D R and � D 1. So one concludes that the marginal
benefit of screening is always positive, except for one point, over the parameter space R�U.

Next, consider the problem of whether a bank should ever screen a borrower in stage 3,
taking as given l D R and �. Again, the very first question to be dealt with is the com-
plication caused by potential strategic consequences of a specific decision rule of screening.
Recall that a bank has the option of not screening, hance denying altogether, any borrower
applying for a loan. Thus any strategy, or equivalently any rule, governing the screening de-
cision necessarily entails certain implications for the payoffs of all players in the rest of the
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lending game. As in the case of lending decision after a test, here once again, the strategic
complexity consideration suggests the bank in question focusing on exclusively on the im-
mediate payoff associated with the screening decision: zero if the bank decides not to screen
any borrower versus the net (expected) payoff �.q;R;�/�c.q/ if the bank decides to screen
a borrower with intensity q. The bank has the option of choosing any q 2 Q. As a result, the
bank is willing to actually conduct a test only if the (unit) profit

�.R;�/ D max
q2Q

�.q;R;�/ � c.q/

from a (unit) loan to a borrower screened optimally by the bank is not negative; otherwise,
the bank will deny all borrowers at lD R with prior distribution �. Also, let

BQ.�.R;�// D argmax
q2Q

�.q;R;�/ � c.q/

denote the set of profit maximizing q for given R;�.
One mild clarification on terminology is required here. As noted above, �.q;R;�/ �

0 D c
�
1
2

�
, therefore by choosing q D 1

2
the net payoff is bounded from 0 and the profit

�.R;�/ � 0 by definition. However, by Lemma 3, for any R 2 R, �.q;R;�/ D 0 if and
only if .q; �/ belongs to either

®
.q; �/

ˇ̌
� 2

�
0; a.R/

�
; q 2

�
1
2
; qG.R; �/

�¯
or
®�
1
2
; a.R/

�¯
[®

.q; �/
ˇ̌
� 2

�
0; a.R/

�
; q D qG.R; �/

¯
. It can be easily checked that the latter set a segment

of the boundary of the former region, over which ��.q; R;�/ < 0 8� 2 ˆ. It follows
that 8R 2 R and � 2 Œ0; a.R/�, as long as �.q;R;�/ D 0, both G- and B-borrower
will be denied even after being screened with q 2

�
1
2
; qG.R; �/

�
, except for one point q D

qG.R; �/ where �G.q; R;�/ D 0. Alternatively, the statement that bank chooses not to
screen (i.e., deny all borrowers) at .R; �/ if �.q;R;�/ D 0 for all q 2 BQ.0/ is generically
true.

Subject to this qualification, bank’s screening decision rule can be stated formally as
follows.

Lemma 4. Under E-˛ and strategic complexity consideration, the unique best response for
a bank in stage 3 is that denying all borrowers at lD R with prior distribution � without
screening iff �.R;�/ D 0 and �.q;R;�/ D 0 8 q 2 BQ.0/.

As a consequence of this Lemma, screening decision depends on crucially on when
�.R;�/ D 0 for a given loan l D R with prior �. To further characterize the unit profit
function �.R;�/ with optimal screening, following regularity assumption on the screening
cost function c.q/ is imposed.
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Assumption 4. Screening cost c.q/ is continuously differentiable with second order deriva-
tive well defined over Q. Moreover,

(a) there is a q 2
�
1
2
; 1
�

such that c.q/ D 0 over Q0 �
�
1
2
; q
�
, c0.q/ and c00.q/ > 0 over

Q1 � .q; 1� with c0.q/ D 0;

(b) c0.1/ > ��.X; �0/, and c.1/ < �.1 � �0/�b.X/; in addition

(c) c00.q/ � C � max
®
C1;C2

¯
, 8 q 2 Q1, where

C1 D 2
�
�0 � .1 � �0/�b=�g

��
�g.X/C ug

�
;

C2 D
c0.q/ � .2�0/2��.R; �

0/

1 � q
;

with C1 > 0 and q � �0�g.X/=��.X; �0/ 2
�
1
2
; 1
�

according to Assumption 1.14

By setting q D 1
2
, part (a) becomes a standard strictly increasing and convex cost as-

sumption. So that by allowing q > 1
2
, part (a) is slightly weaker than the standard one.15 Part

(b) and (c) imposes two regularity conditions on c.q/, of which the full implications will
become clear below.16

Before stating the main result of this paper, it is helpful to first define a function. Specif-
ically, 8 .R; �/ 2 R� U, let

q�.R; �/ D .c0/�1
�
��.R; �/

�
; (7)

14Some simple algebra shows that R D �C .1 � �/=�g , hence ��b.R/ D .1 � �b=�g/.1 � �/ > 0, and
��.R; �

0/ D �0�g.R/ � .1 � �0/�b.R/ D .1 � �0/.1 � �b=�g/.1 � �/ > 0.
15Assuming c.q/ D 0 over Q0 captures the idea that sloppy screening practice does not require exerting

significant effort by a bank’s loan officers/underwriters; even though some information about the borrower
can be generated, as q > 1

2
, it is based on some superficial and easily exploitable attributes of the application

profile, and the information is not sufficient to differentiate good ones from bad ones since �G.q; �/ and �B.q; �/
are of the same sign for q sufficiently low.

16As a prelude, part (b) ensures that banks deny B-borrowers in stage 3 when screening optimally even in
the case of charging X , i.e., highest possible interest rate (recall E0

�
NPV�

�
> 0, thus banks make no loss in

lending to all borrowers when charging R D X ); whereas part (c) ensures that both g- and b-borrowers find
it optimal to apply first in stage 2 the loan with the lowest interest rates, even after accounting for possible
denials in stage 3. A legitimate concern is whether Assumption 1 and 4 together render the parameter space
(one component of which is the space of screening cost functions) empty, as Assumption 4 shows an upper
bound on c.1/ as well as lower bounds on c0.1/ and c00.q/, of which most relevant terms are in turn constrained
by Assumption 1. It turns out that under some additional, yet both mild and intuitive, parametric restrictions,
the parameter space satisfying all Assumptions is non-empty. In particular, Assumption 4 imposes no severe
restrictions on c.�/. Detailed discussion is relegated to Appendix B.2.
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where function .c0/�1 W
�
0;max

®
�g.X/;��b.R/; c0.1/

¯�
! Œq; 1� is defined as follows

.c0/�1.x/ D

8<:q 2 Œq; 1�; if 0 � x � c0.1/ and c0.q/ D xI

1; if c0.1/ < x � max
®
�g.X/;��b.R/

¯
:

Broadly speaking, .c0/�1.�/ denotes the inverse of c0.�/ over Q1, with the domain extended
from Œ0; c0.1/� to the whole range of ��.R; �/ 8 .R; �/ 2 R � U.17 Since c0.�/ is strictly
increasing over Œq; 1�, .c0/�1.�/ is well-defined over Œ0; c0.1/�. In addition, .c0/�1.x/ D q

only at x D 0, and it is continuously differentiable over Œ0; c0.1// with d.c0/�1.x/=dx D
1=c00

�
.c0/�1.x/

�
> 0.18

Equipped with Assumption 4, following proposition fully characterizes optimal screen-
ing decision of a bank in stage 3.

Proposition 1. Under Assumption 1–2 and 4 (a). For any R 2 .R;X�, there exists a unique
�.R/ 2 .0; a.R// and a unique �.R/ 2 .a.R/; 1/ such that

(a) 8� 2
�
�.R/; 1

�
, �.R;�/ > 0, BQ.�.R;�// D Q0 where ��.q; R;�/ > 0 8� 2 ˆ;

(b) 8� 2
�
0; �.R/

�
, �.R;�/ D 0, BQ.�.R;�// D Q0 where ��.q; R;�/ < 0 8� 2 ˆ;

(c) 8� 2
�
�.R/; �.R/

�
, �.R;�/ > 0, BQ.�.R;�// D q�.R; �/, and �G.q; R;�/ >

0 > �B.q; R;�/ at q D q�.R; �/;

(d) for � D �.R/, �.R;�/ > 0, BQ.�.R;�// D Q0 [ ¹q�.R; �/º where ��.q; R;�/ >
0 8� 2 ˆ except for �B.q; R;�/ < 0 at q D q�.R; �/; and

(e) for � D �.R/, �.R;�/ D 0, BQ.�.R;�// D Q0 [ ¹q�.R; �/º where ��.q; R;�/ <
0 8� 2 ˆ except for �G.q; R;�/ > 0 at q D q�.R; �/.

Remark. For R 2 .R;X�, ��.R; �/ > 0 8� 2 U, thus q�.R; �/ > q. As a result, for
� D �.R/ and �.R/, BQ.�.R;�// has two disconnect components Q0 and ¹q�.R; �/º.

The proof is contained in Appendix C (p.39). The principal conclusion of this Proposi-
tion is part (c), which asserts that for interim prior type distribution, the optimal screening

17Since ��.R; �/ D ��g.R/ � .1 � �/�b.R/ � 0, the range of ��.�/ is
�
0;max

®
�g.X/;��b.R/

¯�
. Part

(b) of Assumption 4 only requires that c0.1/ > ��.X; �
0/, it remains possible that max

®
�g.X/;��b.R/

¯
>

c0.1/ > ��.X; �
0/. Consequently the domain of function .c0/�1 is

�
0;max

®
�g.X/;��b.R/; c0.1/

¯�
.

18Moreover, this last observation also implies that there is a kink of .c0/�1.x/ at x D c0.1/ pro-
vided that c0.1/ < max

®
�g.X/;��b.R/

¯
, since d.c0/�1.x/=dxjxDc0.1/� D 1=c00

�
.c0/�1.1/

�
> 0, while

d.c0/�1.x/=dxjxDc0.1/C D 0 as .c0/�1.x/ D 1 8 x > c0.1/.
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FIGURE 3: Payoffs and costs from screening a (unit) loan application.
Notes: This figure illustrates situations for a generic R 2 .R;X� and various �, with �1 > �.R/ > �2 >

�.R/ > �3. Moreover, z�.q;R;�/ � q��.R; �/C .1 � �/�
b.R/ 8 q 2 Q, and z�

�
1
2
; R; �

�
D

1
2
�ND.R; �/.

The kinks of �.�; �1/ and �.�; �2/ are at qG.R; �1/ and qG.R; �2/ respectively, and the kink of �.�; �3/ is at
qB.R; �3/. The black dot denotes the optimal screening intensity q�.R; �2/. In this illustration, ��.R; �/ is
decreasing in �.

intensity is uniquely pinned down by eq.(7). The reason is straightforward: The marginal
benefit from screening is ��.R; �/, and the marginal cost is c0.q/, bank’s optimization of
screening intensity subject to q � 1 results in c0.q�/ � ��.R; �/ where inequality holds
only for q� D 1 and c0.1/ < ��.R; �/. As a result, optimal screening decision q�.R; �/
can be expressed as in eq.(7). The main intuition of this proposition is illustrated in Figure
3. For � large enough, the payoff from always approving a borrower, �ND.R; �/, is even
higher then the net payoff from screening optimally at q�.R; �/, thus a bank will choose q
sufficiently low such that c.q/ D 0. In contrast, for � small enough, the net payoff from
screening optimally at q�.R; �/ is still negative, i.e., positive payoff from allG-borrowers is
more than offset by the screening cost, thus a bank will simply choose to deny all borrower
and receive zero profit.

For each R 2 .R;X�, there is a multiplicity of BQ.�.R;�// for � 2 Un
�
�.R/; �.R/

�
.

However, except for two boundary points �.R/ and �.R/, bank’s lending decision is identi-
cal regardless what q is chosen from BQ.�.R;�//: Lemma 4 and the preceding Proposition
implies that a bank approves all borrowers at lD R if � > �.R/ and deny all if � < �.R/
by choosing arbitrary q 2 Q0. When � D �.R/ or �.R/, a bank is indifferent between
q 2 Q0 and q D q�.R; �/. For convenience of subsequent discussion, let a bank choose
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q�.R; �/ in these two cases. Under this convention, next Proposition fully characterizes
bank’s lending decision rule.

Proposition 2. Under E-˛ and strategic complexity consideration. Fix a loan l D R 2

.R;X� in stage 3. A bank approves all borrowers at R if � > �.R/ while denies all if
� < �.R/. When � 2

�
�.R/; �.R/

�
, a bank chooses optimally an intensity q�.R; �/ > q to

screen each borrower, and depending on test result � D G or B , approves all G-borrowers
while denies all B-borrowers.

To be sure, this Proposition depicts bank’s optimal behavior in stage 3 only. For poten-
tially different screening cost structure cC in stage 5, the optimal screening decision by then
will be different accordingly. However, as a preclude, it will be showed later that only pre-
viously denied borrowers, hence with a negative expected payoffs as of stage 3, will apply
again for a loan in stage 5. So that in conjunction with Assumption 3, no bank will approve
these borrower for the prospect of identifying a good borrower is sufficiently low. Yet to
reach this conclusion, first will be addressed borrower’s problem in stage 2 and 4. As a final
remark, the last Proposition justifies our restriction on bank’s strategy to be pure, at least in
the subgame L. There is no point of randomizing lending decision rule for a bank, which
essentially reflects the fact that one bank’s action has no direct impact upon other bank’s
payoff in the subgame.

III.C BORROWER’S DECISION

In this Subsection, consider the loan application problem facing a � -borrower, � 2 ‚ D
¹g; bº, in stage 2. Since a borrower is presumed to apply for one loan, and in light of
Proposition 2, denial rate (probability) may differ at distinct loan, a borrower has incentives
to take into account denial rate at each loan for calculating expected payoff.

Continue to denote L the set of loan available in stage 2, and let p�.l/ denote the ap-
proval rate (i.e., one minus denial rate) at l 2 L for a � -borrower. Given that there is a
continuum of both g- and b-borrowers, for each individual borrower, prior type distribution
� 2 U at a loan lD R is determined by all other borrowers’ mixed strategy profile ���ˇ .19

Therefore, once ���ˇ D .��/�2‚ is fixed, � becomes common knowledge, among not only
borrowers but also banks, and will not be altered by an individual borrower’s unilateral devi-
ation. Moreover, once .R; �/ becomes common knowledge, lending decision rule, including

19If one is concerned with the possibility that a continuum set L of loans is offered and precisely each
individual borrower chooses a distinct loan thus prior type distribution at each loan is degenerate, then feel free
to make an additional assumption restricting L to be finite. Indeed, since L is offered by banks in stage 1, in
no equilibrium will a bank find it profitable to offer a continuum of loans.
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optimal screening intensity, of a bank which has offered lD R is determined according to
Proposition 2. Recall that this lending decision rule is the best response of a bank facing
.R; �/, thus in any equilibrium the individual borrower in question will rightly anticipate it
and hence calculate denial rate accordingly.

Preceding argument suggests that p�.l/ has the following functional form:

pg.l/ and pb.l/ D

8̂̂̂<̂
ˆ̂:
1; if � 2

�
�.R/; 1

�
q and 1 � q resp.; if � 2

�
�.R/; �.R/

�
0; if � 2

�
0; �.R/

� (8)

where l effectively refers to both R and �, and q D q�.R; �/. Given q, a good borrower
will be assigned to classG, hence approved, with probability q > 1

2
, whereas a bad borrower

will be assigned to class G and denied with probability 1 � q < 1
2
.

Note that expected payoff for a � -borrower in stage 2, ex ante the screening process, is
actually associated with borrower’s (pure) strategy in both stage 2 and stage 4, i.e., .l; lC/. In
particular, lC is of a form

�
lAC ; l

D
C

�
, where lAC ; l

D
C denote loans chosen in stage 4 conditional

on being approved (A) or denied (D) respectively in stage 3. Moreover, conditional on A,
borrower’s strategy is a binary choice such that either lAC D l 2 Li � L or lAC 2 LC D

[j¤iL
j , i.e., either choose to stay with bank i at l or apply for a loan from other banks.

Lastly, let p�;�C .lC/ 2 Œ0; 1� denote the approval rate at a loan RC with �C in stage 4 for
a � -borrower assigned to class � in stage 3.20 With these notations, the ex ante expected
payoff U �.l; lC/ for a � -borrower employing strategy .l; lC/ can be written as

U �.l; lC/ D U
�;A.l; lC/p

�.l/C U �;D.lC/
�
1 � p�.l/

�
; (9)

in which

U �;A.l; lC/ D

8<:u�.l/; if lAC D l

u�
�
lAC
�
p
�;�
C

�
lAC
�
; if lAC 2 LC

U �;D.lC/ D u
�
�
lDC
�
p
�;�
C

�
lDC
�

denote conditional payoffs from being approved and denied in stage 3 respectively, where
u�.l/ � u�.R/ D �.X � R/ C u� for l D R. Taking strategy profile ��� D h���˛; ���ˇ i

20Of course, the bank approached by this .�; �/-borrower may or may not know the previous test result �.
Even if the bank does not know �, approval rate p�;�C .�/ determined by bank’s screening decision may differ
from p� .�/, because, as for p� .�/, in principle p�;�C .�/ may depend on the cost structure cC (particularly NcC) in
stage 5. However, as to be showed below, the precise form of this approval rate is irrelevant for our analysis.
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of all other player as given, an individual � -borrower’s problem is to maximize U �.l; lC/

over
®
.l; lC/

ˇ̌
l 2 L; lC D

�
lAC ; l

D
C

�
2 .¹lº [LC/ �LC

¯
, where disjoint union ¹lº [LC

represents the binary choice to be made upon approval.
With the aid of the explicit expression of U.l; lC/ given in eq.(9), a couple of results

regarding to borrower’s optimal application behavior can be established formally. First, we
claim that, conditional on choosing not to stay with l, i.e., to leave the bank applied for
in stage 2, it is never optimal for a borrower to choose lC D

�
lAC ; l

D
C

�
2 LC � LC such

that u�
�
lAC
�
p
�;�
C

�
lAC
�
¤ u�

�
lDC
�
p
�;�
C

�
lDC
�
. The reason is straightforward to explain. For

instance, suppose lAC D l1, lDC D l2, and u�.l1/p
�;�
C .l1/ > u�.l2/p

�;�
C .l2/ without lose of

generality. Then, by modifying strategy lC D .l1; l2/ to l0C D .l1; l1/, we have

U �.l; lC/ D u
�.l1/p

�;�
C .l1/p

�.l/C u�.l2/p
�;�
C .l2/

�
1 � p�.l/

�
< u�.l1/p

�;�
C .l1/p

�.l/C u�.l1/p
�;�
C .l1/

�
1 � p�.l/

�
D U �.l; l0C/;

i.e., .l; lC/ can be improved upon by replacing l2 with l1. Putting in another way, choosing
.l; l1; l2/ with l1, l2 ¤ l and u�.l1/p

�;�
C .l1/ ¤ u�.l2/p

�;�
C .l2/ is a dominated strategy.

Notably, preceding reasoning is valid for any specification of p�.�/ and p�;�C .�/, meaning
that a borrower can effectively reach this conclusion without knowing precisely absolute
magnitudes of approval rates but only relative likelihood of approval.

Next, let’s consider the choice to be made upon approval (A) at l 2 Li , i.e., whether to
stay with bank i or to leave and apply for a loan from a bank other than i . For clarity, let’s
label this loan by l1. Sequential rationality requires that a borrower chooses l1 and stays with
bank i if and only if u�.l1/ � maxl02LC

u�.l0/p
�;�
C .l0/. Suppose there is a l2 2 LC such

that u�.l1/ < u�.l2/p
�;�
C .l2/, so that given the chance of applying for another loan upon A,

the borrower would be willing to discard l1 and leave bank i . We claim that the strategy of
a form

�
l; lAC ; l

D
C

�
D .l1; l2; l3/, for some l3 2 LC, is a weakly dominated strategy, if l2 is

offered by more than two banks. In light of the previous claim, without lose of generality, we
can replace l3 with l2 and consider the strategy in the form of .l1; l2; l2/ only. The expected
payoff associated with this strategy is

U �.l1; l2; l2/ D u
�.l2/p

�;�
C .l2/p

�.l1/C u
�.l2/p

�;�
C .l2/

�
1 � p�.l1/

�
D u�.l2/p

�;�
C .l2/:

Since p�;�C .l2/ � 1 in any event, expected payoff from a modified strategy .l2; l2; l2/ is such
that

U �.l2; l2; l2/ D u
�.l2/p

�.l2/C u
�.l2/p

�;�
C .l2/

�
1 � p�.l2/

�
� u�.l2/p

�;�
C .l2/p

�.l2/C u
�.l2/p

�;�
C .l2/

�
1 � p�.l2/

�
D U �.l1; l2; l2/:
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Note that the result that .l1; l2; l2/ is weakly dominated by .l2; l2; l2/ depends crucially on
the premise that l2 is offered by at least two banks; insofar this is the case, upon being denied
by a bank at l2, the borrower can apply for l2 again from some bank other than the first one,
which makes the dominating strategy .l2; l2; l2/ feasible.

This last claim is of some significance. Paraphrasing in a slightly different way, it reads:
to leave bank i upon approval for a loan l0 from other bank is weakly dominated provided
that l0 is offered by more than one bank. Or still in another way, given symmetric strategy
profile among banks, ���˛ D .�˛/1�N , staying with the bank from which a borrower initially
applies for a loan upon approval weakly dominates leaving the bank and applying for a loan
from any other banks. This is precisely what is needed to justify the particular expectation
E-˛ elucidated in the previous Subsection.

Yet by far, E-˛ has not been fully justified, as demonstrated by the qualification that l2 be
offered by more than one bank. The remaining case to be considered is where l2 is offered
by only one bank. In specific, consider a strategy .l1; l2; l2/ where l1 2 Li and l2 2 Lj for
a unique j ¤ i , i.e., l2 is offered uniquely by bank j . Now, a modified strategy, .l2; l2; l2/,
as the one used for demonstrating the previous claim, is no longer feasible to the borrower
in question, because once denied by bank j , nowhere in the market can be found l2 to apply
for again, i.e., the borrower has to end up with lDC ¤ l2. Nonetheless, we claim that strategy
.l1; l2; l2/ is still weakly dominated by .l2; l2; l1/. The argument runs as follows. First,
observe that since

U �.l2; l2; l1/ D u
�.l2/p

�.l2/C u
�.l1/p

�;�
C .l1/

�
1 � p�.l2/

�
;

for U �.l2; l2; l1/ < U �.l1; l2; l2/ D u�.l2/p
�;�
C .l2/, it has to be the case that p�.l2/ <

p
�;�
C .l2/. Suppose the preceding two inequalities hold, i.e., approval rate at l2 is higher in the

second round lending interaction than the first and .l1; l2; l2/ is the preferred to .l2; l2; l1/.
Identify the set of borrowers applying for l2 2 Lj in the second round by the type distri-
bution �. Sine both approved and denied borrowers in the first round screening process opt
for l2 in the second round, the first round test does not generate any useful information for
bank j to condition on. As a result, j is left with the only option of treating � as fresh
borrowers. But, in doing so, approval rate, p�;�C .l2/, determined by j ’s optimal screening
decision, will be identical to those given by eq.(8) for a loan l2 with �.21 In other words, had
any borrower of � applied for l2 in the very first round, this borrower would have been tested
optimally by j with the approval rate being exactly the same as that in the second round, i.e.,
p�.l2/ D p

�;�
C .l2/. This contradiction proves what we claimed before.

21Note there is no more lending interaction after stage 5, so that bank j must choose to screen borrowers in
� optimally, which then leads to those approval rates given in eq.(8)
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Combining the preceding two claims yields the following Proposition, which justifies the
expectation E-˛ stated above.

Proposition 3. For any borrower The strategy of leaving a bank initially approached upon
approval and applying for a loan from some other bank is weakly dominated by the strategy
of staying with the bank once being approved.

Remark. Virtually identical reasoning shows that any strategy of applying for a loan lwith
p�.l/ D 0 (8 � 2 ‚ according to eq.8) in stage 2 is a dominated one, provided that there is
some other loan l0 with p�.l0/ > 0. In other words, it is never optimal for any borrower to
simply dismiss the first round loan opportunity.

In a nutshell, this proposition is merely a formal exposition of the intuitive idea that
borrowers, when provided with opportunities of choosing among a set of loans to apply for,
always choose to settle down upon approval and secure credit from those banks, rather then
search for loans with uncertain approval prospect due to screening activities. We consider
this idea to be a realistic one, especially given our intention of modeling a serious screening
process, both to banks and borrowers: If credit is not readily available upon application, why
dismiss security now (upon approval) and seek for uncertainty elsewhere.

III.D SIMPLIFYING THE STATIC GAME

Based on previous analysis of bank’s screening decision and borrower’s application deci-
sion, it is then possible to simplify the original lending game. In particular, we will show
that the equilibrium outcome of the second round lending interaction, i.e., stage 4 and 5, is
determined mechanically by equilibrium outcome in the first round lending interaction, i.e.,
stage 2 and 3, under Assumption 3. Thus the second round interaction plays no essential
role and consequently can be suspended in equilibrium analysis. This leads to a reduction of
the original 5-stage lending game to a 3-stage game, which can then be analyzed in a more
straightforward manner.

To begin with our reasoning, first note that by Proposition 3 no borrower approved in
stage 3 will choose to apply for another loan in stage 4, therefore, only borrowers who
are denied in their first round loan application will choose to participate the second round
application in stage 4. Next, by Proposition 2, a borrower will be denied credit at a given
loan lD R in stage 3 only if the expected payoff from a loan to such a borrower is negative
to the lending bank. There are two cases to consider: all borrowers are denied at lor only B-
borrowers are denied. The former case corresponds to the situation where p�.l/ D 0, 8 � 2
‚, according to eq.(8), which will not occur in any equilibrium by the Remark following 3.
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Therefore, only the latter case is possible, i.e., banks conclude that all borrowers applying
for loans in stage 4 are of class B .

In this way, banks are informed indirectly previous test results of all revisited borrow-
ers. On top of this information, banks also know where those revisited borrowers came
from, i.e., the loan for which each of those B-borrowers applied in stage 2. To fix nota-
tion, suppose a B-borrower was denied at loan l D R, with prior type distribution � 2�
�.R/; �.R/

�
� .0; 1/, in stage 3, and is applying for a loan lC D RC at bank i in stage

4. By Proposition 2, this borrower was screened optimally by the previous testing bank at
intensity q�.R; �/ 2 .q; 1/, thus the posterior probability of this borrower being type g is
given by �B.q�.R; �/; �/ 2 .0; �/ according to eq.(2). As bank i knows that this borrower
is of class B , in together with .R; �/, it knows as well �B.q�.R; �/; �/, which becomes
i ’s prior now. According to Assumption 3, were i to test this revisited B-borrower again,
it would find that the new test be completely uninformative about the borrower’s type, i.e.,
posterior be identical to prior �B.q�.R; �/; �/, while be required to pay a cost NcC > 0. As a
result, bank i will optimally choose not to test this B-borrower again, but calculate expected
payoff of a unit loan to such a borrower using prior �B.�/ directly as

�C
�
RC; �

B.q�.R; �/; �/
�

� �B.q�.R; �/; �/�g.RC/C
�
1 � �B.q�.R; �/; �/

�
�b.RC/;

and subsequently approve the loan if �C
�
RC; �

B.q�.R; �/; �/
�
� 0while deny it otherwise.

Turn to the problem of the revisited B-borrower. Although test result was not revealed
by the testing bank in stage 3, the borrower B could still rightly infer the test result, i.e.,
� D B , from the denial decision of the bank. As a result, B knows that, regardless of
his/her true type � , any bank pondering about whether to approve or not a loan to B is using
�B.q�.R; �/; �/ as its prior. In order to maximize expected payoff from a loan, subject to
being approved, B will apply for a minimal RC such that �C

�
RC; �

B.q�.R; �/; �/
�
� 0.

The candidate interest rate is trivially determined as the unique RC 2 .R;1/ that solves

�C
�
RC; �

B.q�.R; �/; �/
�
D 0; (10)

for �C
�
RC; �

B.q�.R; �/; �/
�

is strictly increasing in RC and �C
�
R; �B.q�.R; �/; �/

�
< 0

(this is whyB is denied). Denote the unique solution of eq.(10) byRC.R; �/, for any .R; �/
such thatR 2 .R;X� and � 2

�
�.R/; �.R/

�
. EvidentlyRC.R; �/ > R, with the possibility

of exceeding X provided that �B.q�.R; �/; �/ is small enough. If RC.R; �/ 2 .R;X�,22

22We are not concerned with the issue of whether RC.R; �/ 2 LC for B or not, as it will be showed that
equilibrium strategy of bank’s takes the form Li D ŒR;X� where R � R. Intuitively, had a bank offered some
R, it would be happy to offer any interest rate above R.

27



B’s application will be approved for sure, and RC.R; �/ will generate maximum payoff to
B among all loans thatB will not be denied. Otherwise, asRC.R; �/ > X , B will be denied
for sure from any loan by any bank.

By combining above discussion and Proposition 3, type � borrower’s ex ante expected
payoff, eq.(9), can be refined as:

U �.R; �/ D u�.R/p�.R; �/C u�
�
RC.R; �/

��
1 � p�.R; �/

�
1¹RC.R;�/�Xº

; (11)

together with the requirement that p�.�/ > 0, where 1¹�º denotes indicator function, and �
is the (common) prior held by all banks on borrower composition at loan R.23 In principle,
bank’s prior � should depend on R, i.e., � D �.R/. So far as �.R/ is specified in one
way or another, U �.�/ becomes a genuine function of solely R. It is conceivable that prop-
erties of U �.�/, hence optimal choice of � -borrower, depend on crucially the entire function
�.R/ 8R 2 .R;X�. Yet equilibrium outcome is likely to be concentrated on a few values
of R. Therefore, the renowned problem of specifying properly out-of-equilibrium beliefs
emerges in our setup, and the choice of �.R/ becomes a vital issue for determining equilib-
ria of the static lending game.

To solicit a proper �.R/ as an equilibrium candidate (or, indeed, what we believe to
be the proper one), we break our reasoning into two steps. First, we pin down a unique
�.R/ under the temporary hypothesis that all borrowers confine their calculation of expected
payoffs to the first round lending interaction only, i.e., the first term on the RHS of eq.(11).24

This behavior pattern will be consistent with borrower’s payoff maximization of U �.R; �/,
if all borrowers hold a specific expectation, henceforth labeled by E-ˇ, which reads as

banks’ prior belief (function) �.R/ is such that maxR2LU �.R; �.R// leads to
the same solution as maxR2Lu�.R/p�.R; �.R//.

As a second step, we will verify that the particular �.R/ determined in the first step does
satisfy expectation E-ˇ.

STEP 1: SOLICITING �.R/ Using standard terminology, we call an equilibrium outcome
in a single round lending interaction a pooling equilibrium, if both types of borrowers choose

23Under the notation adopted in eq.(9), we have p�;BC .RC/ D 1¹RC�Xº not depending on � ; and p�;GC .�/

does not enter into eq.(11), hence is irrelevant.
24We argue that this hypothesis is a realistic one. Intuitively, when choosing the loan to apply for in a first

time, a borrower may well be concerned more about expected payoff from this application alone, rather than
taking into account for expected payoff in any continuation process at a completely equal footing. Although
this may induce certain inconsistency with borrower’s objective function given in eq.(9) (and in eq.11), this
potential difficulty is resolved under E-ˇ.
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the same loan l D R; otherwise, we call it a separating equilibrium. For the latter, it can
be divided into two subclasses: complete separating and quasi separating equilibrium. The
following Lemma shows that only pooling equilibrium is possible under E-ˇ.

Lemma 5. Under E-ˇ the only possible equilibrium outcome is pooling in the first round
lending interaction.

The proof is contained in Appendix C (p.42). It is worth to point out that the underlying
reason for the unique equilibrium outcome being pooling goes entirely the payoff function
specification (restricted to the first round lending) of borrowers, given optimal lending deci-
sion responses of banks. As shown in the proof, any form of separating equilibrium outcome
does not satisfy incentive compatibility constraint that prevents one type of borrowers from
mimicking the loan choice of another type of borrowers. From another perspective, the pool-
ing result does not rely on the use of a particular equilibrium refinement scheme, such as the
anticipatory equilibrium of Wilson (1977). 25

Putting in an equivalent way, this pooling result also shows that there is no room for
mixed strategy by any borrower. Moreover, since any loan l D R 2 R, once chosen
by borrowers in any equilibrium, must be associated with a pooling equilibrium outcome,
the type distribution at R is uniquely determined by �0, i.e., the primitive distribution of
the investment shock. As a consequence, the unique common prior of all banks is trivially
�.R/ D �0 8R. Formally, following is a direct corollary of the preceding Lemma.

Corollary 6. Under E-ˇ in any equilibrium all borrowers use pure strategy and the unique
common prior of all banks on borrower’s type distribution at any loan l D R 2 L is a
constant �0 regardless of R.

STEP 2: VERIFYING E-ˇ Once �.R/ D �0 is determined, there is no difficulty in
verifying E-ˇ under the stated assumption. Note that according to our formulation, even
if banks approve some applications in the second round lending process, the (expected)
profit is 0. Thus only profit from the first round lending matters for bank’s loan pricing
decision. As a preliminary step, we first characterize the bank’s profit function �.R;�/

25To illustrate the nature of this result a bit, let’s consider the case in which approval rates are q and 1�q re-
spectively for g- and b-borrowers at lD R. The corresponding payoff functions are ug.R/q and ub.R/.1�q/.
Evidently, only the former is increasing in q whereas the latter is decreasing in q. Thus the payoff function
specification used here violates the typical condition that informed parties’ payoffs be uniformly increasing or
uniformly decreasing in uninformed parties’ actions. In tandem with a single crossing property (which is triv-
ially satisfied here) and a uniform monotonicity of payoffs in informed parties’ own actions, the aforementioned
conditions guarantee incentive compatibility be satisfied for at least some separating equilibrium outcome.
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from a unit loan under the prior specification �.R/ D �0. For notational simplicity, let
�.R/ � �.R;�0/ D maxq2Q �.q;R;�0/ � c.q/, q�.R/ � q�.R; �0/ D .c0/�1

�
��.R/

�
,

and ��.R/ � ��.R; �0/, then we have following Lemma:

Lemma 7. Under Assumption 1–2 and 4 (a)–(b), there exists a unique R0 2 .R;X/ such
that (i) �.R/ > 0 iff R 2 .R0; X�, (ii) �.R/ D 0 iff R 2 ŒR;R0�, (iii) all B-borrowers
be denied credit, and (iv) over ŒR0; X�, both �.R/ and q�.R/ 2 .q; 1/ are continuous and
strictly increasing.

Remark. Recall that q�.R/ is defined 8R 2 R, and it can be easily checked that q�.R/ is
strictly increasing over R.

The proof is contained in Appendix C (p.43). Note that when borrower’s composition is
fixed at �0, optimal screening intensity q�.R/ is always interior. This result stems from
part (b) of Assumption 4: (i) c.1/ < �.1 � �0/�b.X/, or equivalently, �ND.X; �0/ <

�0�g.X; �/ � c.1/, dictates that it is always optimal for banks to choose q� > q even
when charging the highest possible interest rate X ; and (ii), c0.1/ > ��.X/ D ��.X; �

0/

leads to an optimal screening intensity q� being always strictly less than 1.
As a direct implication of the preceding Lemma, borrower’s expected payoff U �.R/ �

U �.R; �0/ given in eq.(11) can be written as

U g.R/ D ug.R/ � q�.R/C ug
�
RC.R/

�
� .1 � q�.R// � 1¹RC.R/�Xº

;

U b.R/ D ub.R/ � .1 � q�.R//C ub
�
RC.R/

�
� q�.R/ � 1¹RC.R/�Xº

;

where RC.R/ � RC.R; �
0/. Following Lemma verifies E-ˇ, that U �.R/ is decreasing in

R, under stated Assumptions.

Lemma 8. Under Assumption 4 (c), U �.R/ is decreasing in R over RD ŒR;X� 8 � 2 ‚.

The proof is contained in Appendix C (p.43).

III.E TWO CASES OF STATIC EQUILIBRIUM

E.1 MONOPOLY

Having established key properties of optimal decisions of banks and borrowers, we can pro-
ceed to analyze equilibria of the static lending game. In so doing, we will focus on two cases
in sequel: equilibrium with a monopoly bank (N D 1) and zero profit equilibrium of perfect
competition (N > 1 with free entry).
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FIGURE 4: The simplified subgame LD [i2NL

i within a period.
Notes: Shaded box indicates the player making decisions in a stage, with �.l/ D Pr.gjl/ denoting the belief
held by i for l. Labels along arrows indicate actions chosen by players. Rounded box shows the outcome of
a player’s action upon which subsequent action can be conditioned. Payoffs for a unit loan are specified in
parentheses with borrower ordered first.

E.2 PERFECT COMPETITION

IV REPEATED GAME AMONG BANKS

IV.A SETUP AND SOLUTION CONCEPT

IV.B ANALYSIS OF THE DYNAMIC EQUILIBRIUM

IV.C SHOCKS IN OTHER FORMS

V ROBUSTNESS OF THE BASIC FRAMEWORK

V.A SCREENING PROCESS

I tend to argue that these seemingly stringent properties of the screening technology are not
entirely unreasonable. What’s being called a creditworthiness test is all about exploiting to
the maximum extent under cost consideration a borrower’s profile including both application
filing and background investigation if any. Test result is based on the judgement made against
the processing of the entire profile. A pure repeat of a test amounts to going through once
more the borrower’s profile, and it is not at all surprising that the same test result should
be drawn out as no new information about the borrowers is gathered. Even if somewhat
more effort is devoted to uncovering previously neglected facets of the borrower, one may
reasonably doubt the effectiveness of this sort of marginal improvement in overturning the
established conclusion backed by the existent profile. As an analogy, it is fairly evident
that overturning a verdict of a court without definitive, convincing, and newly-assembled
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evidence is indeed too unlikely to happen.
An even more forceful argument is based on a less well known observation on the now

prevailing practice of credit analyses within in the banking industry. Benefiting from ad-
vancement of information technology, large-scale, statistic-based analysis of credit data (in-
cluding credit history data via credit bureaus and registers, procedural filing data for credit
applications, in plus any “hard information” from other sources) is now commonly employed
in banking industry. One concrete example is the use of binary choice model for predicting
credit performance either at the loan level or the borrower level. Fed with the same data,
almost identical statistical model used at different banks can only be hoped to generate very
similar, if not at all identical, quantitative, let alon qualitative, result. Taking literally the
ideal case considered in this paper, identical statistical test model used by all bank necessar-
ily lead to identical test result, conditional on a given borrower, which actually justifies the
argument for expecting Pr.�Cj�/ D 1. 26

A final remark on the specification of screening technology adopted in this paper con-
cerns with what can be termed as conditionally independent test (CIT) assumption, made
popular by pioneering work of Broecker (1990). CIT says that, conditional on a given bor-
rower type � , test results of all banks, i.e., �i from T i across i 2 N , are statistically mutually
independent. To clarify somehow in advance, screening process is structured in a sequential
manner in my setup, thus no explicit assumption is made about the statistical property of
correlation pattern across T i . In particular, given a multi-bank sequential-test setup, As-
sumption 3 should not be interpreted, or perhaps more relevant to the point, criticized as
alluding any specific statistical property across T i that would hold were T i be conducted
simultaneously upon a given borrower, unless for the intended case of a revisited borrower.
On the contrary, in a multi-bank simultaneous-test setup, CIT assumption is clearly a conve-
nient device to work with and imparts the renowned “winner’s curse” effect into models of
bank competition with screening albeit at the cost of necessitating mixed strategy equilibria
in many setups.27

CIT assumption maintained in the multi-bank simultaneous-test setup has a clear root
in the closely related common-value auction game, the analogy between which had already

26I’m grateful to Yina Lu who informed me the wide use of statistical credit models among major commercial
banks.

27The nonexistence of pure strategy equilibrium is caused by a combination of discrete signal space and the
“winner’s curse” effect, analogous to that of common value auction game (Broecker, 1990; Wang, 1991). If
the signal space is continuous, then it is possible to purify the equilibrium (in the sense of Harsanyi 1973),
as demonstrated by Riordan (1993); however the equilibrium strategy is still a complicated function of the
continuum signal.
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been acknowledged in the Broecker’s paper. However, whereas CIT in a symmetric auction
games deems an apparent plausibility as it’s all about subjective valuation of anonymously
(even randomly perhaps) gathered bidders, the same assumption is much less justifiable for
the case of constantly interacting banks. Even if one were not convinced by the above ar-
gument favoring the assumption made in this paper based explicitly on technological con-
siderations, one should not ground a counter-argument purely on the appealing theoretical
implications imparted by CIT. In particular, the “winner’s curse” effect, which can be de-
rived easily from CIT assumption under simultaneous tests, should not be viewed as the only
theoretical short-cut of adverse selection problems facing each bank. The reason is simple,
that the “loser’s curse” effect should be of an equal footing as the “winner’s curse” effect,28

i.e., missing good borrowers should be as plausible a consideration of each bank as getting
bad ones.

CIT with sequential tests.

V.B INFORMATION STRUCTURE

Market segmentation a long the line of Dell’Ariccia and Marquez (2006) and direct infor-
mation sharing, i.e., direct announcement of test results either fully or selectively.

Houston et al. (2010) for strong empirical evidence positive effects of information sharing
among banks.

V.C TIMING AND EQUILIBRIUM NOTION OF THE STATIC GAME

Make a comment on the alternative specification on the lending process, i.e., approved bor-
rower is forced by a pre-commitment to stay with the bank while only denied borrower can
apply one more time, which leads to the same equilibrium outcome.

Make another comment on the competitive nature of the credit market which can be
viewed as motivating the strategic complexity consideration.

Also make a comment on the competitive rational expectations perspective in interpreting
the lending process.

V.D ALTERNATIVE FORMS OF CONTRACT AND COMPETITION

Commitment to screening intensity q and contract of the form hR; qi. The proper measure
of competitive intensity is by no means the level of price, i.e., interest rate in this case, but
the percentage deviation of the actual profit rate (per unit product/loan) from the monopoly

28See Pesendorfer and Swinkels (1997) for a thorough analysis on the role played by “loser’s curse” effect
on bringing about informational efficiency in an auction game, and Holt and Sherman (1994) for experimental
evidence on the prevalence of “loser’s curse”.
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profit rate to be achieved under the same physical environment, where the only difference is
the market structure.

VI EMPIRICAL FACTS

VII CONCLUDING REMARKS
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APPENDIX

A MORE ON SLOOS DATA

B SUPPLEMENTS TO THE BASIC SETUP

B.1 PROPERTIES OF THE SCREENING TECHNOLOGY

Various properties of the screening technology upon a fresh borrower are summarized in the
following Claim, where ��.q; �/ D Pr.gjG; q; �/ is defined in eq.(2) for � 2 ˆ D ¹G;Bº.

Claim B.1. 8 .q; �/ 2 Q � IntU and � 2 ˆ it follows that

(a) ��.q; �/ is continuously differentiable, ��
�
1
2
; �
�
D �, �G.1; �/ D 1, �B.1; �/ D 0;

(b) @q�G.q; �/ > 0, @q�B.q; �/ < 0, @���.q; �/ > 0; and

(c) 1 > �G.q; �/ > � > �B.q; �/ > 0 8 q 2 IntQ.

Proof: Part (a) is straightforward to verify given eq.(2), and part (c) follows from part (b).
For (b), note that by eq.(2) there is �G.q; �/ D �

ı�
�C .1 � �/1�q

q

�
. Since .1 � q/=q D

1=q � 1 is decreasing in q, �G.q; �/ is increasing in q. For �B.q; �/, note that q=.1 � q/
is increasing in q, so that �B.q; �/ D �

ı�
�C .1 � �/ q

1�q

�
is decreasing in q. Analogous

reasoning proves that ��.q; �/ is strictly increasing in �. Q.E.D.

For the clarity of exposition, fix the context: let � be the class to which a � -borrower is
assigned when screened as a fresh borrower under prior � 2 IntU by a test with intensity q.

Claim B.2. Suppose q < 1. Then Pr.� j�C; �/ D Pr.� j�/ for all �C D � 2 ˆ � ¹G;Bº

and � 2 ‚ � ¹g; bº if and only if Pr.�Cjg; �/ D Pr.�Cjb; �/ for all �C; � 2 ˆ.

Proof: When � 2 .0; 1/ and q < 1, both Pr.gj�/; Pr.bj�/ > 0 by eq.(2).
Necessity. By Bayes rule, for all �C; �, and �

Pr.�Cj�; �/ D
Pr.�C; � j�/

Pr.� j�/
D

Pr.� j�C; �/Pr.�Cj�/
Pr.� j�/

: (B.1)

Therefore, Pr.�Cjg; �/ D Pr.�Cj�/ D Pr.�Cjb; �/ if �C D �. If �C ¤ �, note that
Pr.�Cj�; �/ D 1 � Pr.ˆ n �Cj�; �/.

Sufficiency. Again by Bayes rule, for all �C; �

Pr.�Cj�/ D
Pr.�C; �/

Pr.�/
D

Pr.�Cjg; �/Pr.g; �/C Pr.�Cjb; �/Pr.b; �/
Pr.�/

D Pr.�Cjg; �/Pr.gj�/C Pr.�Cjb; �/Pr.bj�/: (B.2)
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Since Pr.�Cjg; �/ D Pr.�Cjb; �/ for �C D �, then Pr.�Cj�/ D Pr.�Cj�; �/ for all � , and
by eq.(B.1), desired result follows. Q.E.D.

Claim B.3. Suppose q < 1 and Pr.�Cj�/ D 1 for �C D � 2 ˆ. Then Pr.�Cjg; �/ D
Pr.�Cjb; �/ D 1 for all �C D � 2 ˆ.

Proof: As noted above, Pr.gj�/; Pr.bj�/ > 0 by eq.(2). Since Pr.�Cj�; �/ � 1, the desired
result follows from eq.(B.2). Q.E.D.

B.2 NON-EMPTINESS OF THE PARAMETER SPACE

Below we develop sufficient conditions that guarantee the non-emptiness of the parameter
space, part of which is the space of the screening cost function c.�/, under Assumption 1 and
4 (2–3 impose no independent restriction on the parameter space).

Let  D .�0; X; �; �g ; �b; ug ; ub; q/ 2 � denote the parameter vector with � � R8

the corresponding scalar-parameter space defined by model primitives (e.g., u� > 0) and
Assumption 1. Denote cl.�/ the closure of � under standard topology of R8. Essentially, �
is a product space subject to several linear constraints enlisted in Assumption 1, so that cl.�/
is a convex polyhedron with � the interior. A complete description of the parameter space
of this model includes not only � , but also the space of function c.�/. For this, let Cq.Q/

denote the space of second-order differentiable functions such that part (a) in Assumption 4
is satisfied for a particular q 2

�
1
2
; 1
�
, and C.Q/ D [q2Œ1=2;1�Cq.Q/. Clearly, the genuine

parameter space of the model (for the static game) is

M� ¹h; c.�/i 2 � � C.Q/ j Assumption 4 is satisfied by  and c.�/º;

which is a subset of � � C.Q/.
Recall that Assumption 4 (b)–(c) requires that (i) c0.1/ > ��.X; �0/, (ii) c.1/ < �.1 �

�0/�b.X/, and (iii) c00.q/ � C over Q1. For a given  2 � , we are interested in finding
sufficient conditions on c.�/ 2 C.Q/ such that h; c.�/i 2 M. It turns out that a convenient
way of identifying proper conditions is to focus on bounds of the second-order derivative of
c.�/. More specifically, for a given c.�/ 2 C.Q/, let C � c00.q/ � C , 8 q 2 Œq; 1�, be some
lower and upper bound of second-order derivative of c.�/ over Œq; 1�. Given c.q/ D c0.q/ D

0, basic calculus implies that

C.1 � q/ � c0.1/ D

Z 1

q

c00.x/dx � C.1 � q/;

1

2
C .1 � q/2 � c.1/ D

Z 1

q

Z q

q

c00.x/dxdq �
1

2
C .1 � q/2:
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Thus, if C is too big, (ii) will be violated for sure; whereas if C is too small, (i) can not hold
for sure. In light of this, a set of sufficient conditions for (i)–(iii) to hold reads as follows

V./ �
��.X; �

0/

1 � q
< C < C <

�2.1 � �0/�b.X/

.1 � q/2
�W./; (B.3)

C > C � C./ D max
®
C1./;C2./

¯
; (B.4)

where expressions of C1./ and C2./ are given in part (c) of Assumption 4. Note that if we
can find C./, for a given  2 � , such that

V./ < C./ <W./ and C./ > C./ (B.5)

hold simultaneously, then we can always find C./ < W./ such that eq.(B.3) is satisfied,
thereby h; c.�/i 2M for any c.�/ 2 C.Q/ satisfying C./ � c00.�/ � C./. The preceding
discussion also suggests that the non-emptiness of M depends crucially whether there exists
at least some subset of � such that for any  in this subset we can find a C./ satisfying
eq.(B.5).

By far it remains possible that, because restrictions put by (i)–(iii) are so severe, for no
 2 � there exists a C./ satisfying eq.(B.5), which renders M empty. In what follows, we
shall prove M is non-empty by constructing a particular lower bound (function) C./ and a
particular subset �0 � � such that 8  2 �0, C./ satisfies eq.(B.5). By choosing a proper
C./, which is always possible given the particular C./, the following non-empty set

M0 D ¹h; c.�/i 2 �0 � C.Q/jC./ � c00.q/ � C./ over Œq; 1�º

becomes a subspace of M, hence M itself is non-empty.
To construct the particular �0 and C./, first let O denote a particular parameter vector

such that O�0 > 1
2
, 1 > O�g > O�b > 0, yX > 1 > O� > 0, Oub > 0 D Oug , Oq D 1

2
, and O satisfies

E
�
NPV�

�ˇ̌
D O
D O�0 O�g

�
yX
�
C
�
1 � O�0

�
O�b
�
yX
�
D 0; (B.6)

where O�g
�
yX
�
D O�g yXC

�
1� O�g

�
O��1 > 0, and O�b

�
yX
�
< 0 is defined analogously. Existence

of such a O is of no problem. Also, observe that O … � because of eq.(B.6), but O 2 cl.�/.

Claim B.4. Suppose C./ D 6�0�g.X/. Then eq.(B.5) holds at  D O .

Proof: (a) C. O/ > C. O/. First note that eq.(B.6) implies ��.X; �0/jDO D 2 O�0 O�g
�
yX
�
,

therefore qjDO D 1
2
. It then follows that C2. O/ < 0, as c0.q/jD O D 0, and

C. O/ D C1. O/ D 2
�
O�0 �

�
1 � O�0

�
O�b= O�g

�
O�g
�
yX
�
:
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Evidently, C. O/ < 2 O�0 O�g
�
yX
�
< 6 O�0 O�g

�
yX
�
D C. O/.

(b) V. O/ < C. O/. Since ��.X; �0/jD O D 2 O�0 O�g
�
yX
�
, we have V. O/ D 4 O�0 O�g

�
yX
�
<

6 O�0 O�g
�
yX
�
D C. O/.

(c) C. O/ <W. O/. From eq.(B.6), we have O�0 O�g
�
yX
�
D �

�
1� O�0

�
O�b
�
yX
�
, thus W. O/ D

8 O�0 O�g
�
yX
�
> 6 O�0 O�g

�
yX
�
D C. O/. Q.E.D.

Corollary B.5. There exists a non-empty set M0 which is a subspace of M. Thus M is
non-empty.

Proof: Evidently, C./, C./, V./, and W./ are continuous at  D O , hence there exists
� > 0 such that eq.(B.5) holds for all  2 B. O; �/, where B. O; �/ � R8 denotes the
open ball centering at O with radius � calculated under the standard Euclidean norm. Since
O 2 cl.�/, �0 � � \ B. O; �/ is non-empty. Because C./ satisfies eq.(B.5) over �0 by
construction, we can always choose C./ 8  2 �0 such that eq.(B.3) and eq.(B.4) are
satisfied. Consequently, M0 is a subspace of M, and M is thereby non-empty. Q.E.D.

Parameter vectors lying in �0 possess some intuitive implications in terms of the intu-
itions we are capturing by this model. First, because of requirement imposed by eq.(B.6),
payoff from lending to all borrowers indiscriminately, as bounded above by �ND.X/j2�0 D

E0
�
NPV�

�ˇ̌
2�0

, is small, relative to �0�g.X/j2�0 � O�
0 O�g

�
yX
�
> 0, i.e., payoff from ex-

erting a non-negligible effort in screening borrowers. Next, as Oug D 0, ug j2�0 is also small,
which is the consistent with our modeling intention that the private benefit accruing to bor-
rowers be small. Lastly, Oq D 1

2
implies that qj2�0 is close to 1

2
, so that the region of costless

yet informative screening intensity is small, which is in accordance with our formulation
preference.

C PROOFS OF RESULTS IN THE MAIN TEXT

Proof of Lemma 1: Monotonicity of ��.�/ follows from those of ��.R/ and ��.q; �/ (see
Claim B.1 above). For the existence of a.R/ 2 IntU, observe that 8R 2 .R;X�, �g.R/ >
0 > �b.R/, and f .R; a/ � a�g.R/C .1 � a/�b.R/ is linear in a 2 U.

To prove (a), first observe that for � � a.R/, �G.q; �/ � � � a.R/, therefore
�G.q; R;�/ D f .R; �G.q; �// � 0, 8 q 2 Q, where equality holds only if � D a.R/ and
q D 1

2
so that �G

�
1
2
; a.R/

�
D a.R/. Second, observe that �B.q; R;�/ D f .R; �B.q; �//

which is strictly decreasing in q. Recall that �B
�
1
2
; �
�
D � and �B.1; �/ D 0, so that

�B
�
1
2
; R; �

�
D f .R;�/ � 0 and �B.1; R;�/ D f .R; 0/ < 0, which implies the existence

of a unique qB.R; �/ 2 Q. Moreover, since @R�B ; @��B > 0, it follows that qB.R; �/ is
strictly increasing in R and �. Analogous reasoning establishes (b). Q.E.D.
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Proof of Lemma 3: Notice that for R 2 .R;X�, �g.R/ > 0 and �b.R/ < 0, therefore
��.R; �/ > 0 8� 2 U. For part (a) where � � a.R/, first notice that when q � qB.R; �/,
��.q; R;�/ � 0 8� 2 ˆ, which results in

�.q;R;�/ D Pr.Gjq; �/�G.q; R;�/C Pr.Bjq; �/�B.q; R;�/

D q��g.R/C .1 � q/.1 � �/�b.R/C .1 � q/��g.R/C q.1 � �/�b.R/

D ��g.R/C .1 � �/�b.R/

D �ND.R; �/:

Alternatively, when q > qB.R; �/, �G.q; R;�/ > 0 and �B.q; R;�/ < 0, which result in

�.q;R;�/ D Pr.Gjq; �/�G.q; R;�/

D q��g.R/C .1 � q/.1 � �/�b.R/

D q��.R; �/C .1 � �/�
b.R/:

Moreover, the definition of a.R/ is such that a�g.R/C .1�a/�b.R/ D 0, so �ND.R; �/ > 0

when � > a.R/. Proof for part (b) follows almost identical derivations. Q.E.D.

Proof of Proposition 1: To circumvent complications due to the kink of �.q;R;�/, let

z�.q;R;�/ D q��.R; �/C .1 � �/�
b.R/ 8 q 2 Q

z�.R;�/ D max
q2Q
z�.q;R;�/ � c.q/ (C.1)

8 .R; �/ 2 .R;X� � U and it is evident that z�.�/ is continuously differentiable over Q �

.R;X� � U. From Lemma 3, it can be easily verified that

�.R;�/ D max
®
z�.R;�/; �ND.R; �/; 0

¯
; (C.2)

Thus the main task becomes investigating properties of z�.R;�/ and z�.q;R;�/. Note that
z�.q;R;�/ is a linear function with slope ��.R; �/ > 0 over Q, therefore z�.q;R;�/ �
c.q/ is convex over Q and strictly convex over Q1, hence Kuhn-Tucker first-order necessary
condition is also sufficient. The FOC takes the form

c0.q�/ � ��.R; �/;

where the inequality holds only if q� D 1 and c0.q�/ < ��.R; �/. It follows that optimal
screening intensity q�.R; �/8 .R; �/ 2 .R;X��Ucan be expressed as in eq.(7). Moreover,
since R > R, ��.R; �/ > 0 8� 2 U, we have q�.R; �/ > q (see the Remark following
Proposition 1) over .R;X� � U.
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It also follows that

z�.R;�/ D z�
�
q�.R; �/;R; �

�
� c

�
q�.R; �/

�
� ��.R; �/.q�.R; �/ � 1/

is differentiable inR and �, where ��.R; �/ is the multiplier in the optimum associated with
constraint q � 1. Then by Envelope Theorem, there is

@�z�.R;�/ D q
�.R; �/�g.R/ � .1 � q�.R; �//�b.R/:

For any R 2 .R;X�, since q�.R; �/ 2 .q; 1� and �g.R/ > 0 > �b.R/, @�z�.R;�/ > 0,
therefore z�.R;�/ is strictly increasing in � over U.29

Following two claims are important for the rest of the proof of the proposition.

Claim C.1. 8R 2 .R;X�, z�.R; 0/ < 0 < z�.R; a.R// where a.R/ is given in Lemma 1.

Proof: When � D 0, z�.q;R; 0/ D ��b.R/qC �b.R/, thus z�.q;R; 0/ < 0 over Q except for
q D 1. It follows that z�.q;R; 0/ � c.q/ < 0 over Q, and consequently z�.R; 0/ < 0. Recall
that when � D a.R/, �ND.R; a.R// D 0, so that z�

�
1
2
; R; a.R/

�
� c
�
1
2

�
D

1
2
�ND.R; a.R// D

0. As @q
�
z�
�
1
2
; R; a.R/

�
� c

�
1
2

��
D ��.R; a.R// > 0, there is z�.R; a.R// > 0. Q.E.D.

Claim C.2. 8R 2 .R;X�, 0 < z�.R; 1/ < �g.R/.

Proof: Observe that when � D 1, z�
�
1
2
; R; 1

�
D

1
2
�g.R/ > 0, so that similar argument as for

z�.R; a.R// proves that z�.R; 1/ > 0. Next, since q�.R; 1/ 2 .q; 1� and z�.q;R; 1/ is strictly
increasing in q, it follows that z�.R; 1/ < z�.q�.R; 1/; R; 1/ < z�.1;R; 1/ D �g.R/. Q.E.D.

Return to the proof of the proposition. For any given R 2 .R;X�, z�.R;�/ is continuous
and strictly increasing in � over U. First, z�.R; 0/ < 0 < z�.R; a.R//, there is a unique
�.R/ 2 .0; a.R// such that z�

�
R;�.R/

�
D 0 and z�.R;�/ > 0 iff � 2

�
�.R/; 1

�
. Next,

observe that �ND.R; �/ is strictly increasing in � and

�ND.R; 0/ D �b.R/ < �ND.R; a.R// D 0 < �ND.R; 1/ D �g.R/;

29Actually, z�.R;�/ is strictly convex in � so long as �g.R/C �b.R/ ¤ 0 and c0.1/ � ��.R; �/:

@2�z�.R;�/ D
�
�g.R/C �b.R/

�
@�q

�.R; �/ D
�
�g.R/C �b.R/

� @���.R; �/
c00
�
q�.R; �/

�
D

�
�g.R/C �b.R/

�2
c00
�
q�.R; �/

� > 0;

in which the differentiability of q�.R; �/ D .c0/�1
�
��.R; �/

�
is guaranteed by c0.1/ � ��.R; �/ (see the

discussion following eq.(7)).
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FIGURE 5: Illustration of z�.R;�/, �ND.R; �/, and �.R;�/ as functions of � 2 U.
Notes: The grey shaded line denotes the profit function �.R;�/, which equals to max

®
z�.R;�/; �ND.R; �/; 0

¯
.

it follows that: (i) �ND.R; �/ < z�.R;�/ over � 2
�
�.R/; a.R/

�
; and (ii) there is a unique

�.R/ 2 .a.R/; 1/ such that z�
�
R;�.R/

�
D �ND

�
R;�.R/

�
and z�.R;�/ < �ND.R; �/ iff

� 2
�
�.R/; 1

�
. The preceding argument is illustrated in Figure 5.

Claim C.3. 8R 2 .R;X�,

(a) qG.R; �/ > q if � 2
�
�.R/; 1

�
and qB.R; �/ > q if � 2

�
0; �.R/

�
;

(b) q�.R; �/ > qG.R; �/ if � 2
�
a.R/; �.R/

�
; and

(c) q�.R; �/ > qB.R; �/ if � 2
�
�.R/; a.R/

�
.

Proof: For part (a), note that � � �.R/ iff �ND.R; �/ � z�.R;�/. Suppose qG.R; �/ � q,
then z�.q; R; �/ � �ND.R; �/. As @q

�
z�.q; R; a.R/

�
� c.q/

�
> 0, z�.R;�/ > z�.q; R; �/ �

�ND.R; �/, which leads to a contradiction. The same reasoning establishes that qB.R; �/ >
q. To see part (b), note that in this case

z�
�
qG.R; �/;R; �

�
D �ND.R; �/ � z�.q�.R; �/;R; �/ � c.q�.R; �//

< z�.q�.R; �/;R; �/;

thus q�.R; �/ > qG.R; �/ as z�.q;R;�/ is increasing in q. To see part (c), note that in this
case

z�.q�.R; �/;R; �/ D c.q�.R; �// > 0 � z�
�
qB.R; �/;R; �

�
;

and as z�.q;R;�/ is increasing in q, the result follows. Q.E.D.
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As a direct implication of this claim and Lemma 1, ��.q; R;�/ > 0 (< 0) over Q0 8� 2
ˆ when � � �.R/ (� �.R/). Moreover, when � > �.R/, �.R;�/ D �ND.R; �/, so
that BQ.�.R;�// D Q0 as qG.R; �/ > q. Analogously, when � < �.R/, �.R;�/ D
0 > z�.R;�/, so that BQ.�.R;�// D Q0 as qB.R; �/ > q. When � D �.R/, �.R;�/ D
�ND.R; �/ D z�.q�.R; �/;R; �/�c.q�.R; �//, therefore BQ.�.R;�// D Q0[¹q�.R; �/º;
so for the case of � D �.R/. Lastly, observe that when � D �.R/, q�.R; �/ > qG.R; �/ >
q, it follows that ��.q; R;�/ > 0 over Q0 8� 2 ˆ except for �B.q; R;�/ < 0 at q D
q�.R; �/; and analogously, when � D �.R/, q�.R; �/ > qB.R; �/ > q, it follows that
��.q; R;�/ < 0 over Q0 8� 2 ˆ except for �G.q; R;�/ > 0 at q D q�.R; �/. For interim
value � 2

�
�.R/; �.R/

�
, desired result follows from the fact that q�.R; �/ > qG.R; �/ and

qB.R; �/. This completes the proof of Proposition 1. Q.E.D.

Proof of Lemma 5: Complete separating equilibrium is impossible, because all b-borrowers
will be denied optimally by lending banks as they are separated from g-borrowers.

The remaining possibility is quasi separating. It suffices to focus on the situation with
two distinct loans. To fix notation, suppose there are two loans, l1 D R1 < l2 D R2, with
arbitrary priors (of banks) �1 and �2 respectively. Also, let p�j D p

�.Rj ; �j / > 0 8 � 2 ‚

(recall that, by Proposition 3 and the associating Remark, no borrower will choose a loan with
p� D 0), and q�j D q�.Rj ; �j / 2 .q; 1/ �

�
1
2
; 1
�

if .Rj ; �j / is such that q�j > q (q�j D 1

implies pbj D 0, hence excluded from the discussion), for j D 1; 2. Observe that for l1

and l2 both being present in an equilibrium outcome, it has to be the case that g-borrowers
are indifferent between lj , j D 1; 2; otherwise, some Rj attracts only b-borrowers, but this
leads them to be denied for sure, i.e., pbj D 0. This observation indicates that ug.R1/p

g
1 D

ug.R2/p
g
2 , so that pg1 < p

g
2 as R1 < R2 implies ug.R1/ > ug.R2/. According to eq.(8),

there are thus two cases to consider:

� p
g
2 D 1, hence pb2 D 1, pg1 D q

�
1 >

1
2
, and pb1 D 1 � q

�
1 ; and

� p
g
2 D q

�
2 2

�
1
2
; 1
�
, hence pb2 D 1 � q

�
2 , pg1 D q

�
1 >

1
2
, and pb1 D 1 � q

�
1 .

CASE 1: pg2 D 1 For this to be an equilibrium outcome, it is necessary for b-borrowers
not to strictly prefer l2 to l1, i.e., ub.R1/.1 � q�1 / � ub.R2/; otherwise, all b-borrowers
will choose l2 and �1 will become 1, which in turn implies pg1 D 1. Rearranging g- and
b-borrower’s incentive constraints yields

f .�b/ � 1 � q�1 < q
�
1 D f .�

g/;

where f .�/ � �.X�R2/Cu
�

�.X�R1/Cu�
over Œ0; 1�. However, since R1 < R2 and u� > 0, it is easily

verified that f .�/ is strictly decreasing over Œ0; 1�, therefore f .�b/ > f .�g/ as �b < �g ,
which results in a contradiction.
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CASE 2: pg2 < 1 First, note that q�2 > q�1 as ug.R1/q�1 D ug.R2/q
�
2 and ug.R1/ >

ug.R2/. Second, for this case to be an equilibrium outcome, there must be ub.R1/.1�q�1 / D
ub.R2/.1 � q

�
2 /; otherwise either one of pgj D 1, for j D 1; 2. However, this is impossible

since ub.R1/ > ub.R2/ > 0 as R1 < R2 and 1 � q�1 > 1 � q
�
2 > 0. Q.E.D.

Proof of Lemma 7: The second half of Assumption 4 (b) is equivalent to

�ND.X; �0/ D �0�g.X/C .1 � �0/�b.X/

< �0�g.X/ � c.1/ D �.1;X;�0/ � c.1/;

therefore, by letting z�.R/ � z�.R;�0/ where z�.R;�/ is defined in eq.(C.1), it follows that
z�.X/ D maxq2Q1 z�.q;X;�0/ � c.q/ > �ND.X; �0/ D E0

�
NPV�

�
> 0 according to As-

sumption 1. Straightforward calculation shows that on the one hand z� 0.R/ D �0q�.R/�gC
.1��0/.1� q�.R//�b > 0, since �g > �b > 0, q�.R/ > 1

2
, and �0 > 1

2
by Assumption 1;

and on the other hand, @R�ND.R; �0/ D �0�g C .1 � �0/�b.
Assumption 4 (b) also states that c0.1/ > ��.X; �0/, which implies that

c0.1/ > ��.R; �
0/; 8R;

since @R��.R; �0/ D �0�g�.1��0/�b > 0 by Assumption 1, i.e.,��.R; �0/ is increasing
in R. It then follows that q�.R/ < 1 according to eq.(7). Given q�.R/ 2

�
1
2
; 1
�
, it follows

that z� 0.R/ < @R�
ND.R; �0/, hence z�.R/ > �ND.R; �0/, 8R. Observe that z�.q;R; �0/ �

c.q/ D .1 � �0/.1 � q/�b.R/ � c.q/ < 0 8 q 2 Q, z�.R/ < 0, so we conclude that there
exists a unique R0 2 .R;X/ such that z�.R0/ D 0, and z�.R/ > 0 (< 0) iff R > R0

(< R0). In addition, recall that by eq.(C.2), �.R/ D max
®
z�.R/; �ND.R; �0/; 0

¯
, thus

�.R/ D z�.R/ > �ND.R; �0/ over ŒR0; X�. In viewing of Figure 5, this amounts to say that
�0 2

�
�.R/; �.R/

�
8R 2 .R0; X� and �0 D �.R0/ < �.R0/, thus by Proposition 2 all

B-borrowers are denied credit over ŒR0; X�. Correspondingly, 8R 2 ŒR0; X� and the fixed
�0, optimal screening decision entails q�.R/ D q�.R; �0/ D .c0/�1

�
��.R; �

0/
�
2 .q; 1/.

Observe that
dq�.R/

dR
D
@R��.R; �

0/

c00.q�.R//
D
�0�g � .1 � �0/�b

c00.q�.R//
> 0;

we conclude that dq�.R/=dR > 0. Note this is true over the entire domain R, not only
ŒR0; X�, hence q�.R/ is strictly increasing over R. Q.E.D.

Proof of Lemma 8: It is useful to first develop several simple results regarding to the candi-
date interest rate in the second round lending process, RC.R/, defined as the unique solution
of eq.(10) when � D �0.
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Claim C.4. (i) Over R,RC.R/ is strictly increasing inR andRC.R/ > R; (ii)RC.R/ � X
iff q�.R/ D .c0/�1

�
��.R/

�
� q � �0�g.X/

��.X/
, or equivalently, R is such that ��.R/ � c0.q/;

and (iii) if q�.R/ � q, then there exists a unique R1 2 ŒR;X/ such that RC.R/ � X 8R 2
ŒR;R1�; otherwise RC.R/ > X 8R 2 R.

Proof: (i) Solving eq.(10) for RC.R/ yields

RC.R/ D
1 � �

.�g � �b/�B.R/C �b
C �; (C.3)

where �B.R/ � �B.q�.R/; �0/ is given by eq.(2). By Claim B.1, @q�B.q; �0/ < 0, and
by Lemma 7, q�.R/ is strictly increasing in R, thus RC.R/ is strictly increasing in R over
R. Note that when RC D R in eq.(10), �C

�
R; �B.q�.R/; �0

�
D �B

�
q�.R/;R;�0

�
< 0 by

Proposition 2, so that RC.R/ > R over R as �C.�/ is strictly increasing in RC.
(ii) Observe that RC.R/ � X is equivalent to �B.R/�g.X/C .1 � �B.R//�b.X/ � 0,

which in turn is equivalent to

�0.1 � q�.R//�g.X/C .1 � �0/q�.R/�b.X/ � 0:

From this last inequality, we obtain RC.R/ � X” q�.R/ � �0�g.X/

��.X/
, and by eq.(7), we

arrive at .c0/�1
�
��.R/

�
� q, or equivalently, ��.R/ � c0.q/.

(iii) If q�.R/ � q, RC.R/ � X , hence there exists uniquely a required R1 2 ŒR;X/
since RC.X/ > X and RC.R/ is continuous and strictly increasing in R. Evidently, if
q�.R/ > q, RC.R/ > X , thus RC.R/ > X over R. Q.E.D.

Resuming the proof of the monotonicity of U �.R/ over R. We will first look at U g.R/,
then U b.R/.

MONOTONICITY OF U g.R/ By the preceding Claim, 1¹RC.R/�Xº
D 1 iff RC.R/ � X

and R 2 ŒR;R1�. In this case, 1¹RC.R/�Xº
is weakly decreasing in R over R; otherwise,

1¹RC.R/�Xº
D 0 over R, nonetheless, it is weakly decreasing. Also by the preceding claim,

RC.R/ is strictly increasing in R, and ug
�
RC.R/

�
is thereby strictly decreasing in R. In

addition, that q�.R/ is strictly increasing implies 1 � q�.R/ is strictly decreasing. To sum
up, the second term of U g.R/, U g

2 .R/, is decreasing in R, and when it is not zero, it is
strictly decreasing.

To prove the first term of U g.R/, i.e., U g
1 .R/ D ug.R/q�.R/, is decreasing in R, let’s

take derivative of U g
1 .R/ w.r.p. R, which yields

dU g
1 .R/

dR
D ��gq�.R/C ug.R/

�0�g � .1 � �0/�b

c00.q�.R//
:
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Clearly, dU g
1 .R/=dR < 0 is equivalent to c00.q�.R// >

�
�0�.1��0/�b=�g

�
ug.R/=q�.R/.

Recalling that q�.R/ > 1
2
, the RHS of the last inequality is less than 2

�
�0�.1��0/�b=�g

�
�

ug.R/, which in turn is less than 2
�
�0 � .1 � �0/�b=�g

��
�g.X/ C ug

�
as ug.R/ �

ug.R/ D �g.X/ C ug . Part (c) of Assumption 4 implies that c00.q�.R// > 2
�
�0 � .1 �

�0/�b=�g
��
�g.X/C ug

�
, therefore, U g

1 .R/ is strictly decreasing in R. Hence we conclude
that U g.R/ is strictly decreasing in R.

MONOTONICITY OF U b.R/ Similar reasoning as for U g
2 .R/ establishes that U b

1 .R/ is
strictly decreasing in R. The remaining work is to show that U b

2 .R/ is also decreasing in R.
Since 1¹RC.R/�Xº

D 0 ifRC.R/ > X , in which case the desired result trivially follows from
U b.R/ D U b

1 .R/, we shall consider the case of RC.R/ � X in what follows.
Given that RC.R/ � X , 1¹RC.R/�Xº

D 0 for R > R1 by the preceding Claim. Con-
sequently, it suffices to show that U b.R/ D ub.R/.1 � q�.R// C ub

�
RC.R/

�
q�.R/ is

decreasing over ŒR;R1�. Taking derivative w.r.p R yields

dU b.R/

dR
D ��b.1 � q�.R// � ub.R/

dq�.R/
dR

C
d

dR

�
ub
�
RC.R/

�
q�.R/

�
: (C.4)

Plugging RC.R/ given by eq.(C.3) into ub
�
RC.R/

�
results in

ub
�
RC.R/

�
D �b.X � �/C ub �

1 � �

1C .�g=�b � 1/�b.R/
;

substituting out �b.R/ D �0.1�q�.R//
ı�
�0.1�q�.R//C.1��0/q�.R/

�
and rearranging

resulting expression yields

ub
�
RC.R/

�
D � C

��.R/�=�

q�.R/� � �
;

where

� D �b.X � �/C ub � .1 � �/.2�0 � 1/=�;

� D .1C �g=�b/�0 � 1 > 0;

� D �0�g=�b:

Note that R affects ub
�
RC.R/

�
only through its impact on q�.R/. It follows that

d
dR

�
ub
�
RC.R/

�
q�.R/

�
D

�
� �

��.R/�
2=�

.q�.R/� � �/2

�
dq�.R/

dR
;

hence the second and third term on the RHS of eq.(C.4) can be consolidated into�
� ub.R/C � �

��.R/�
2=�

.q�.R/� � �/2

�
dq�.R/

dR

D

�
�b.R � �/ � .1 � �/.2�0 � 1/=� �

��.R/�
2=�

.q�.R/� � �/2

�
dq�.R/

dR
;
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and by using dq�.R/=dR D
�
.1C �g=�b/�0� 1

�
�b=c00.q�.R// D ��b=c00.q�.R//, the last

equation becomes�
�b.R � �/� � .1 � �/.2�0 � 1/ �

��.R/

.q�.R/�=� � 1/2

�
�b

c00.q�.R//
:

Some algebra shows that
�
�b.R��/��.1��/.2�0�1/ D ��.R/, thus eq.(C.4) simplifies

into

1

�b
dU b.R/

dR
D �.1 � q�.R//C

�
��.R/ �

��.R/

.q�.R/�=� � 1/2

�
1

c00.q�.R//
; (C.5)

from which it can be easily seen that dU b.R/=dR < 0 is equivalent to�
��.R/ �

��.R/

.q�.R/�=� � 1/2

�
1

c00.q�.R//
< 1 � q�.R/: (C.6)

Since we are considering the case ofR 2 ŒR;R1�, the preceding Claim implies that q�.R/ �
q and ��.R/ � c0.q/, thus a sufficient condition for eq.(C.6) is�

c0.q/ �
��.R/

.q�.R/�=� � 1/2

�
1

c00.q�.R//
< 1 � q;

” c00.q�.R// > c0.q/=.1 � q/ �
��.R/=.1 � q/

.q�.R/�=� � 1/2
: (C.7)

Moreover, observe that 0 < �=� D 1 � 1��0

�0
�b

�g
< 1 and 1

2
< q�.R/ < 1, thus 0 >

q�.R/�=� � 1 > 1
2
�=� � 1, and consequently

.q�.R/�=� � 1/2 <
1

4
.�=� � 2/2 D

1

4

�
1C

1 � �0

�0
�b

�g

�2
<
1

4

�
1C

1 � �0

�0

�2
D

1

.2�0/2
:

As a result, �1=.q�.R/�=� � 1/2 < �.2�0/2, and eq.(C.7) is thereby implied by

c00.q�.R// >
c0.q/ � .2�0/��.R/

1 � q
;

which is precisely C2 in part (c) of Assumption 4. Q.E.D.
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