
Working Paper

EFFICIENT DYNAMIC MECHANISMS IN INTERDEPENDENT VALUATION

ENVIRONMENTS

Heng Liu∗

In this paper, we provide a generic existence result for efficient mech-

anisms in dynamic interdependent valuation environments. We use the

intertemporal correlation of different agents’ private information to con-

struct a sequence of payment schedules under which truth-telling con-

sists of an ex post equilibrium after all histories. While previous results

in static mechanism design with interdependent valuations are mostly

negative, we show that intertemporal consideration can offer an easy and

intuitive solution to efficient implementation.

1. INTRODUCTION

This paper studies the problem of implementing the socially efficient allocation in

dynamic environments with private information and interdependent valuations. When

agents’ payoff functions are quasi-linear, the social objective is to maximize the expected

discounted sum of the individual payoffs. Because agents’ payoff-relevant private infor-

mation may evolve over time and allocation decisions are made in each period, the main

issue is to design a sequence of transfer payments for each agent so that she is willing

to reveal her information truthfully at every stage.

In dynamic private valuation environments, Bergemann and Välimäki (2010) con-

struct an efficient dynamic mechanism, which generalizes the well-known Vickrey-Clarke-

Groves (VCG) mechanism, in the sense that each agent reports truthfully and receives

her flow marginal contribution in each period. A key feature of the dynamic pivot mech-

anism in Bergemann and Välimäki (2010) is that in each period each agent is made

a residual claimant under the payment schedule so that her incentive is aligned with

the social objective. This is achieved by letting the agent pay the flow externality she

imposes on other agents. When an agent’s utility depends only on her own private in-

formation, this externality depends on her report only through the realized allocation.

Therefore, truthful report in each period consists of an equilibrium.
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2 H. LIU

Although the private value assumption is realistic in some interesting situations, may

fail in many important settings where each agent’s utility depends not only on her own

information but also on other agents’ private information. In these interdependent val-

uation environments, the VCG mechanism and its dynamic extension fail to provide

incentive for agents to reveal their private information. The problem with these mecha-

nisms is that, in order to make each agent a residual claimant, the payment rule has to

depend directly on all agents’ reports, which generates incentives for an agent to manip-

ulate her report. Since interdependent valuation or informational externality is common

in many practical instances, it is important to understand whether there exists efficient

mechanisms which are the interdependent-value counterparts of the VCG mechanism

and the dynamic pivot mechanism.

In static models where agents only report their private information once, results from

previous work (e.g. Dasgupta and Maskin (2000), Jehiel and Moldovanu (2001), Berge-

mann and Välimäki (2002), Jehiel, et. al. (2006)) indicate that it is in general impossible

to ex post implement the efficient allocation when agents’ preferences are interdependent

and private information is multidimensional. Moreover, even if private information is one

dimensional, efficient mechanisms can be constructed only under certain restrictions on

the utility functions.1 Therefore, interdependent valuations create a fundamental diffi-

culty for efficient mechanism design problems, at least in static models.

In dynamic models, interdependent valuations may arise even if each agent’s utility

function depends only on her own information. For example, when agents are uncertain

about the distributions of their future private information and all current private in-

formation can be used for inference, an agent’s expected continuation utility and hence

her total payoff may depend directly on other agents’ information. This suggests that a

slight modification of the dynamic private valuation environment would undermine the

validity of the dynamic pivot mechanism. Furthermore, given that there would be a lot

more incentive constraints because of intertemporal considerations in dynamic models,

truthful implementation of the efficient allocation may seem rather challenging. Do the

1In auctions with interdependent valuation, under an appropriate single-crossing condition, Crémer

and McLean (1985) first constructed a payment rule that generalized the Vickrey auction and imple-

mented the efficient outcome. This payment rule, which was later generalized to more abstract mech-

anism design setting by Jehiel and Moldovanu (2001) and Bergemann and Välimäki (2002), is often

referred to as the generalized VCG mechanism.



DYNAMIC MECHANISM 3

impossibility results in static setup persist in dynamic models? Under what conditions

do efficient dynamic mechanisms exist? How restrictive are those conditions?

In this paper, we consider an intertemporal mechanism design setting with interdepen-

dent valuations where each agent’s private information changes over time and allocation

decisions are made in each period. We provide sufficient conditions under which there

exist incentive compatible payment rules that truthfully implement the dynamic effi-

cient allocations in dynamic interdependent valuation environments. Surprisingly, the

conditions for the existence of efficient mechanisms in dynamic models are much less

restrictive than those in static models. In contrast to the generic impossibility results

in static models, our results suggest that efficient allocations are implementable under

an identification condition on the evolution of private information, even if each agent’s

private information is multidimensional in most periods. The identification condition,

which essentially requires different agents’ private information to be correlated intertem-

porally, is satisfied for an open set of parameters for the transition functions. Therefore,

the possibility of long-term interactions provides a solution to the efficient mechanism

design problem with interdependent valuation.

The intuition of our efficient dynamic mechanism is simple. Suppose that an agent’s

private signal today is correlated with other agents’ signals tomorrow. Then, given that

the dynamic mechanism could elicit all agents’ true signals tomorrow, we can amend the

original payment schedule tomorrow with a carefully chosen function of these signals so

that, in expectation, the agent’s total payoff today is equal to the social welfare less a

term that is independent of her own reports. Therefore, just like in the VCG mechanism

and dynamic pivot mechanism in private value models, the agent, as a residual claimant,

is willing to report her private information truthfully today.

While previous work on dynamic mechanism design often assumes that each agent’s

private information evolves independently in order to avoid the possibility of full surplus

extraction mechanism à la Crémer and McLean (1988), the efficient mechanism con-

structed in this paper suggests that there exists a different way to utilize information

correlation in dynamic environments, which would not appear in static settings.

When the identification condition is violated, exploiting the intertemporal correlation

of signals may not be possible for some utility functions. In this case, we restrict the

analysis to one dimensional private information and construct a sequence of payment
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schedules which is the dynamic counterpart of the payment rule in the generalized VCG

mechanism (e.g. Jehiel and Moldovanu (2001), Bergemann and Välimäki (2002)). Fur-

thermore, the sequence of payments reduces to the dynamic pivot mechanism in Berge-

mann and Välimäki (2010) when there is no interdependence of preferences. In this one

dimensional setting, we also identify sufficient conditions, which are generalizations of

the single-crossing condition in static models, for these payment rules to be incentive

compatible.

The rest of the paper is organized as follows. In Section 2 we review the literature and

compare the present paper with related work. In Section 3 we describe the model and

define dynamic efficiency and mechanisms. In Section 4, we first use a simple example to

illustrate the main ideas of our mechanisms, then we present the main results in greater

generality. Extensions are considered in Section 5. Section 6 concludes. All formal proofs

are relegated to the Appendix.

2. RELATED LITERATURE

This paper is related to the following strands of literature.

Efficient mechanisms with interdependent valuations. In static quasilinear en-

vironments with interdepedent valuation, previous results have pointed that efficient

mechanism desgin is generically impossible. Dasgupta and Maskin (2000), and Jehiel

and Moldovanu (2001) prove that efficient allocations cannot be implemented by any

Bayesian incentive compatible mechanisms, if private signals are multidimensional and

statistically independent. Jehiel, et. al. (2006) further show that if a more robust notion

of implementation–ex post implementation–is required, then only constant allocation

rules are ex post incentive compatible in generic frameworks with multidimensional sig-

nals. Given these negative results, dynamic implementaion of efficiency seems rather

hopeless. Yet our main result suggests that efficient mechanism design is possible in

a large class of dynamic environments. One crucial feature of the dynamic mechanism

design framework is that private information may evolve over time. Agents’ private sig-

nals may be correlated over time even they are conditionally indepedently distributed

in each period. We show precisely how to use the intertemporal correlation to construct

payment rules that implement the dynamic efficient allocation, without imposing much

structure on the signal space.
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Conceptually, our mechanism is related to the two-stage VCG mechanism in Mezzetti

(2004). Mezzetti provides one way to get over the impossibility result and implement

the efficient allocation, under the assumption that all agents can observe their realized

utilities and transfers can be made based on the reported utilities. However, the assump-

tions in Mezzetti (2004) are not very realistic in many situations. Another drawback with

Mezzetti’s mechanism is that agents are indifferent among all messages when they are

asked to report their realized utilities, since each agent’s transfer payment only depends

on other agents’ reported utilities. If reporting the realized utilities is costly for agents,

then no matter how small the cost is, agents would want to walk away from the mecha-

nism in this stage. Our efficient dynamic mechanism indicates that, instead of assuming

realized payoffs are observable, it is sufficient to have some intertemporal correlation

in different agents’ private signals. Since agents maximize their continuation payoffs in

dynamic environments, delayed payments are constructed so that an agent’s expected

continuation valuation is equal to the social surplus in each period. In our mechanism,

truth-telling consists of a perfect equilibrium and no agent is ever indifferent among all

messages at any time.

On the other hand, a few postive results on the existence of ex post incentive com-

patible efficient mechanisms are established in a very small class of environments. In

interdependent-value auctions with one dimensional private information, Crémer and

McLean (1985) construct the generalized VCG mechanism and show that it is ex post

incentive compatible under an additional single-crossing condition on the utility func-

tions.2 Jehiel and Moldovanu (2001) and Bergemann and Välimäki (2002) later extend

the generalized VCG mechanism to abstract mechanism design settings, again assuming

one dimensional signals and certain single-crossing conditions. This paper also extends

these postive findings to dynamic environments with one dimensional signals. With cer-

tain single-crossing assumptions, we construct a sequence of transfer payments that

mirrors the generalized VCG payments and implements the dynamic efficient allocation.

Dynamic mechanism design. Recent papers by Bergemann and Välimäki (2010)

and Athey and Segal (2012) have constructed efficient dynamic mechanisms in private

valuation environments. They focus on finding the dynamic counterparts of the classic

VCG mechanism and the expected externality mechanism in static mechanism design.

2See also Dasgupta and Maskin (2000).
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The main departure of our model from previous research is that we study a general model

with interdependent valuations. As the existing results on efficient design with private

valuations are not applicable in our setup, we propose conceptually a quite different way

solving the design problem. Our mechanism also applies to private-value models under

the same assumptions.

There is also a large body of literature on revenue maximizing dynamic mechanisms.

Early studies (Baron and Besanko (1984), Courty and Li (2000), Battaglini (2005) ,Eso

and Szentes (2007)) consider several special models and characterize the optimal mech-

anism under regularity assumptions. A recent work (Pavan, Segal and Toikka (2012))

extends the first order approach for incentive compatibility in static models to dynamic

settings with evolving private information and provides general sufficient conditions for

incentive compatibility and revenue equivalence.3 However, none of these papers consid-

ers the possibility of correlated information.

Full surplus extraction. The idea of exploiting correlated information in our dy-

namic mechanism has some similarity with the results on full surplus extraction (e.g.

Crémer and McLean (1985), Crémer and McLean (1988), McAfee and Reny (1992)). The

idea of full surplus extraction is to construct lottery payments as entrance fees so that if

agents’ private signals are correlated, the mechanism designer’s expected revenue from

the mechanism is equal to the entire social surplus. The focus of this paper is efficient

design. We consider another type of correlated information and use lotteries or contin-

gent payments to make each agent a residual claimant, and hence provides incentive for

truth-telling in each period. Our construction is based on a different generalization of

the convex independence condition in Crémer and McLean (1988).

3. MODEL

3.1. The Environment

We consider a dynamic interdependent valuation environment with N (N ≥ 2) agents.

Time is discrete, indexed by t ∈ {1, 2, . . . , T}, where T <∞.4 In each period t, each agent

i ∈ {1, 2, . . . , N} privately observes a state variable θit ∈ Θi
t, where Θi

t is a compact subset

3See also the recent papers of Battaglini and Lamba (2912), Boleslavsky and Said (2013), Deb and

Said (2012), Pai and Vohra (2012) and Skrzypacz and Toikka (2012).
4We assume T is finite in the current draft. Results for the infinite horizon case will be incorporated

in the later version of the paper.



DYNAMIC MECHANISM 7

of a metric space endowed with the Borel σ-algebra. The state space in period t is Θt =∏N
i=1 Θi

t with a generic element θt = (θ1
t , . . . , θ

N
t ). For each i and t, denote the private

information held by agents other than i in period t by θ−it = (θ1
t , . . . , θ

i−1
t , θi+1

t , . . . , θNt ) ∈∏
j 6=i Θ

j
t .

In each period t, the flow utility of agent i is determined by the current state profile

θt, the current allocation at ∈ A and the current monetary transfer pit ∈ R, where A is a

finite set of social alternatives. The flow utility of each agent is assumed to be quasilinear

in monetary transfers and agents have a common discount factor δ ∈ (0, 1). Given

sequences of states {θt}Tt=1, allocations {at}Tt=1 and monetary transfers {p1
t , . . . , p

N
t }Tt=1,

the total payoff of each agent i is

T∑
t=1

δt−1
[
ui(at, θt)− pit

]
,

where the functions ui : A×Θt → R+ are bounded and measurable. Let M ∈ R+ denote

a bound for all ui’s, i.e., for every i, t, at and θt,

ui(at, θt) < M.

The private information of each agent evolves over time and is modeled as a Markov

process. Specifically, in the initial period, the state profile θ1 follows a prior probability

measure µ1 ∈ ∆(Θ1). In any period t > 1, the distribution of current state profile θt

is determined by the realized state profile θt−1 and the allocation decision at−1 in the

previous period, which is represented by a transition probability µt : At−1 × Θt−1 →
∆(Θt). The utility functions ui, the prior µ1 and the transition probabilities µt are

assumed to be common knowledge.

Notice that in contrast to previous work which often assumes that the prior distribu-

tion and the transitions are independent across agents, here we specify a rather general

Markov process for the evolution of states, which allows correlation of private informa-

tion. While the existence of efficient mechanisms does not depend on whether correlation

is allowed or not in private valuation environment as shown by Athey and Segal (2012),

it will be clear in Section 4 how and what type of correlation is going to make a difference

for efficient implementation with interdependent valuations.
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3.2. Efficiency and Mechanism

In our setup, a socially efficient allocation rule is a sequence of measurable mappings5

{a∗t : Θt → A}Tt=1 which solves the following social program

max
{at}Tt=1

E

[
T∑
t=1

δt−1

N∑
i=1

ui(at, θt)

]
.

Since the flow utility depends only on current state profile which is assumed to be

Markovian, the social program can also be written in a recursive form. Specifically, for

each t ∈ {1, 2, . . . , T}

(1) Wt(θt) = max
at∈A

N∑
i=1

ui(at, θt) + δE [Wt+1(θt+1)|at, θt] ,

where Wt(θt) is the social surplus starting from period t with realized state profile θt and

WT+1 ≡ 0. By the principle of optimality, a∗t is also a solution to this recursive problem.

By the revelation principle (Myerson (1986)), we focus on truthful equilibria of direct

mechanisms which implement the socially efficient allocations {a∗t}Tt=1. In a direct mech-

anism, in each period t, each agent i is asked to make a public report rit ∈ Θi
t of her

current private state θit. Then a public allocation decision at and a transfer payment pit

for each agent i are made as functions of the current report profile rt = (rit)
N
i=1 and the

period-t public history ht. The period-t public history contains all reports and allocations

up to period t− 1, i.e.,

ht = (r1, a1, r2, a2, . . . , rt−1, at−1).

Let Ht denote the set of possible period-t public histories. Formally, an efficient direct

revelation mechanism Γ = {Θt, a
∗
t , pt}Tt=1 consists of (i) a message space Θt in each

period t; (ii) a sequence of allocation rules a∗t : Θt → A, and (iii) a sequence of monetary

transfers pt : Ht ×Θt → RN .

The period-t private history hit of each agent i contains the period-t public history and

the sequence of her realized private states until period t, i.e.,

hit = (r1, a1, θ
i
1, r2, a2, θ

i
2, . . . , rt−1, at−1, θ

i
t−1, θ

i
t).

5We assume that the program always has a solution so the efficient rule is always well-defined. Note

that the solution to the program may not be unique due to the possibility of indifference. If this case,

we simply choose a measurable selection of the solution correspondence.
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Let H i
t denote the set of agent i’s possible period-t private histories. With a slight abuse

of notation, a behavioral strategy for agent i in period t is a mapping rit : H i
t → Θi

t

assigning a report to each of her period-t private history. A strategy for agent i is truthful

if it always reports agent i’s private state θit truthfully in each period t, regardless of her

private history.

Given a mechanism Γ = {Θt, a
∗
t , pt}Tt=1 and a strategy profile r = {(rit)Ni=1}Tt=1, agent

i’s expected discounted payoff is

E
T∑
t=1

δt−1
[
ui(a∗t (rt), θt)− pit(ht, rt)

]
.

The equilibrium concept we adopt is periodic ex post equilibrium defined by Bergemann

and Välimäki (2010) and Athey and Segal (2012). We say that the mechanism is periodic

ex post incentive compatible, or equivalently, the truthful strategy profile is a periodic

ex post equilibrium if for each agent and in each period, truth-telling is always a best

response regardless of the private history and the current state of other agents given

that other agents adopt truthful strategies. Formally, let V i
t (hit) be agent i’s continuation

payoff given period-t private history, given that other agents always report truthfully.

That is,

(2) V i
t (hit) = max

rit∈Θi
t

E
[
ui(a∗t (r

i
t, θ
−i
t ), θt)− pit(ht, rit, θ−it ) + δV i

t+1(hit+1)
]
,

with V i
T+1 ≡ 0. The efficient mechanism is periodic ex post incentive compatible if for

each i, t and hit,

θit ∈ arg max
rit∈Θi

t

ui(a∗t (r
i
t, θ
−i
t ), θt)− pit(ht, rit, θ−it ) + δE

[
V i
t+1(hit+1)|a∗t (rit, θ−it ), θt

]
,

for each θt ∈ Θt.

As suggested by Bergemann and Välimäki (2010), ex post incentive compatibility

notions need to be qualified within each period in a dynamic environment, as an agent

may wish to change her report in some previous round based on the new information

she has received in later periods. Since dominant strategy equilibrium is too strong with

interdependent valuations, periodic ex post incentive compatibility is probably the most

robust solution concept we could achieved in our setup.

With some exgenously given outside options for each agent after each private history,

we can define the periodic ex post individual rationality condition in a similar way as in
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Bergemann and Välimäki (2010). The mechanism is periodic ex post individually rational

if in the truthful equilibrium each agent’s payoff is no less than her outside option after

any history.

Finally, budget balancedness notions can also be defined naturally. The mechanism is

ex ante budget balanced if

E

[
T∑
t=1

δt−1

N∑
i=1

pit

]
≥ 0.

The mechanism is budget balanced if for each t,

N∑
i=1

pit ≡ 0.

In situations where the mechanism designer can use outside financing, a balanced budget

requires the expected present value of all transfer payments from agents to be nonneg-

ative. Without outside financing, a balanced budget means that in each period agents’

transfer payments sum to zero.

4. EFFICIENT MECHANISM DESIGN

4.1. A Two-Period Example

Consider the following two-round repeated auction example. Two bidders, i and j, com-

pete for a non-storable good in each of the two periods. Suppose there is no discounting.

In each period t ∈ {1, 2}, bidder i (j) observes a private signal θit (θjt ). The allocation

in period t is at ∈ {i, j} where at = i means that agent i obtains the good and at = j

otherwise. The flow payoffs are 1{at=i}(θ
i
t+γθ

j
t )−pit for bidder i and 1{at=j}(θ

j
t +γθit)−p

j
t

for bidder j, where 1{·} is an indicator function and γ < 1 is a constant. Signals in the

first period θ1 = (θi1, θ
j
1) are drawn from the joint distribution F1(θ1) = F i

1(θi1)F j
1 (θj1).

Given θ1 and a1, signals in the second period θ2 = (θi2, θ
j
2) are drawn from the transition

kernel F2(θ2|a1, θ1) = F i
2(θi2|a1, θ1)F j

2 (θj2|a1, θ1).

An efficient allocation (a∗1, a
∗
2) maximizes the social surplus. In particular, a∗2(θ2) = i

if θi2 > θj2, and the efficient social surplus in period 2 is

W2(θ2) = 1{a∗2=i}(θ
i
2 + γθj2) + 1{a∗2=j}(θ

j
2 + γθi2).
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In period 1, a∗1(θ1) = i if

(θi1 + γθj1) + E [W2(θ2)|i, θ1] > (θj1 + γθi1) + E [W2(θ2)|j, θ1].

Given γ < 1, in the second period, the generalized VCG mechanism

pi2 = 0, pj2 = (1 + γ)θi2 if θi2 < θj2; pi2 = (1 + γ)θj2, p
j
2 = 0, if θi2 ≥ θj2

is ex post incentive compatible in period 2. Under this payment rule, the flow payoffs of

bidders i and j in the second period are V i
2 = 1{θi2≥θ

j
2}

(θi2−θ
j
2) and V j

2 = 1{θi2≤θ
j
2}

(θj2−θi2),

respectively.

Suppose the payment rule in period 2 is the generalized VCG mechanism momentarily

and consider the incentive problem in the first period. Assume bidder j always reports

truthfully and fix θj1 = 0.5. Assume that the transition kernel F2(θ2|a1, θ1) is specified

as in Table I. Then the efficient allocation in the first period satisfies a∗1 = j if θi1 = 0.4,

TABLE I

Transition kernel F2(θ2|a1, θ1)

(θi1, a1) θi2 θj2

(0.4, i) → uniform[1, 2] uniform[0, 1]

(0.4, j) → uniform[0, 1] uniform[1, 2]

(0.6, i) → uniform[0, 1] uniform[1, 2]

(0.6, j) → uniform[1, 2] uniform[0, 1]

and a∗1 = i if θi1 = 0.6. Now consider the first period payment rule for agent i. We need

to find pi1(0.4) and pi1(0.6) so that the following two incentive constraints are satisfied.

0.6 + 0.5γ − pi1(0.6) + 0 ≥ 0− pi1(0.4) + 1

0− pi1(0.4) + 0 ≥ 0.4 + 0.5γ − pi1(0.6) + 1

However, summing up the two inequalities gives 0.2 ≥ 2, which is impossible. The reason

for this impossibility is that given the generalized VCG payment in period 2, bidder i

has a strong incentive to misreport in period 1 in order to gain advantage in period 2.

Notice that an implicit assumption in the above mechanism is that the generalized VCG

payment rule in the second period p2 : Θ2 → R2 is a function of current reports only

and is independent of the reports and allocation in the first period. While focusing on
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this kind of history independent payment rules for efficient implementation is without

loss in private valuation models as illustrated in Bergemann and Välimäki (2010) and

Athey and Segal (2012), it may be too restrictive in the interdependent valuation setup.

In fact, agent i’s signal in the first period is statistically correlated with agent j’s signal

in the second period according to the transition kernel in Table I. We can indeed exploit

this correlation by adding another history-dependence payments to the generalized VCG

payments in period 2 to obtain incentive compatibility in period 1. Consider the following

period-2 transfer payment schedule p̄i2 : Θ2 × A1 for bidder i

p̄i2(θ2; a1) = pi2(θ2) + p̃i2(θj2; a1),

where pi2 is the generalized VCG payment defined above and p̃i2 satisfies

p̃i2(a∗1 = i) = −1.5− 0.5γ, if θj2 ∈ [1, 2]; p̃i2(a∗1 = i) = −0.5− 0.5γ, if θj2 ∈ [0, 1];

p̃i2(a∗1 = j) = −2− 0.9γ, if θj2 ∈ [1, 2]; p̃i2(a∗1 = j) = −1− 1.1γ, if θj2 ∈ [0, 1].

Since the generalized VCG payment p2 is incentive compatible in period 2 and p̃i2 is

independent of bidder i’s report, period-2 ex post incentive compatibility still holds

under p̄i2. Set pi1 ≡ 0, then bidder i’s incentive constraints in period 1 are:

0.6 + 0.5γ + 1.5 + 0.5γ ≥ 0.5 + 0.6γ + 1.5 + 0.5γ,

0.5 + 0.4γ + 1.5 + 0.5γ ≥ 0.4 + 0.5γ + 1.5 + 0.5γ,

which hold obviously given the assumption γ < 1.

The intuition for this modified mechanism is the following. By exploring the intertem-

poral correlation between θi1 and θj2 conditional on any a1, the payment rule p̄i2 simply

makes each agent a claimant for the entire social surplus in the first period with out

affecting her incentive for truthful report in the second period. Given bidder j adheres

to truthful strategies, it is optimal for bidder i to be truthful so as to maximize the

social surplus and hence her own payoff.

Finally, we note that bidders’ signals are assumed to be conditionally independent

in this example and the only correlation in signals comes from the dynamic aspect of

the model. Without any correlation, it is impossible to construct such a “VCG-style”

mechanism whenever preferences are interdependent.
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4.2. Main Results

In this section, we first consider the existence of periodic ex post incentive compatible

efficient dynamic mechanisms under general state transition dynamics. Theorem 4.1

shows that under a generic intertemporal correlation condition (Assumption 1) and

a uniform lower bound condition (Assumption 2) on the transition probabilities, and

some restrictions on utility functions and state spaces in the last period (Assumption

3),6 such a dynamic mechanism always exists. If the correlation condition is violated, the

construction of the dynamic mechanism in the proof of Theorem 4.1 may not work for

some utility functions. In this case, we restrict our attention to a one-dimensional setting

(Assumption 4) and construct a payment schedule which extends the generalized VCG

mechanism to dynamic settings. Theorem 4.4 shows that our dynamic generalized VCG

mechanism achieves periodic ex post incentive compatibility under several restrictions

on utilities and transitions.

First consider the following assumptions on the relation of different agents’ private

information over time.

Assumption 1 (Identification condition) For any t, i, at, θt, there exists no measur-

able function h : Θi
t → R such that for any measurable subset Θ̃−it+1 ⊂ Θ−it+1,∫

Θi
t

µ−it+1(Θ̃−it+1|at, θit, θ−it )h(θit)µ
i
t(dθ

i
t|at−1, θt−1) = 0,

where µit and µ−it are the marginals of µt on Θi
t and Θ−it , respectively.

Assumption 2 (Uniform lower bound) There exists ε > 0 such that for each

i, t, at−1, at, θt−1 and θt, we have

µ−it+1(Θ̃−it+1|at, θit, θ−it ) ≥ ε

∫
Θi

t

µ−it+1(Θ̃−it+1|at, θit, θ−it )µit(dθ
i
t|at−1, θt−1),

for each measurable subset Θ̃−it+1 ⊂ Θ−it+1.7

Assumption 1 says that each of the transition probability exhibits intertemporal cor-

relation among different agents’ signals. In particular, conditional on each at and θ−it ,

agent i’s current private state θit is correlated with other agents’ private states θ−it+1 in

the next period. Independent evolution of private information across agents is ruled out

6For the infinite horizon case, we do not need to impose any restriction on utilities or state spaces.
7For t = 1, we use µi

1(a0, θ0) ≡ µi
1 to simplify notations.
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by this assumption. Assumption 2 is a technical assumption, which essentially requires

that conditional on any at and θ−it , the transition from θit to θ−it+1 admits a density that

is bounded from below.

To motivate the information correlation in Assumption 1, suppose that there is a

underlying state of nature ωt with possible values in a compact set Ω in each period

t. In addition, ωt follows a hidden Markov process which evolves over time and is not

observed by any agent. In each period t, the relationship between the state of nature ωt

and agents’ private information θt is described by a joint distribution ξt over Ω × Θt.

If each agent’s private information θit provides useful information about ωt, i.e., the

conditional ξt(ωt|θit) varies with θit, then as long as ωt is not independently distributed,

θit is correlated with θ−it+1 even conditional on θ−it and at.

If for each i and each t, Θi
t is a subset of a finite-dimensional Euclidean space and if

each transition probability µt(at−1, θt−1) have a density representation ft(θt|at−1, θt−1)

which is strictly positive, then Assumptions 1 and 2 are equivalent to the following

requirements on the transition densities.

Assumption 1’ (Identification condition with densities) For any t, i, at, θt, there

exists no measurable function h : Θi
t → R such that for almost all θ−it+1,∫

Θi
t

f−it+1(θ−it+1|at, θit, θ−it )h(θit)dθ
i
t = 0.

Where f−it+1(·|at, θt) is the marginal density of ft+1(·|at, θt) on Θ−it+1.

Assumption 2’ (Uniform lower bound on densities) There exists ε > 0 such that

for each t > 1, at−1, θt−1 and θt, the transition density ft(θt|aa−1, θt−1) satisfies

ft(θt|aa−1, θt−1) ≥ ε,

If each state space Θi
t is finite, then fix any pair (at, θ

−i
t ), each f−it+1(θ−it+1|at, θit, θ−it ) is

an element of a |Θ−it+1| × |Θi
t| stochastic transition matrix. In this case, Assumption 1’

is similar to the convex independence condition in Crémer and McLean (1988), which

requires the transition matrix to have full column rank. Assumption 2’ requires each

probability distribution to have full support on. Unlike Crémer and McLean (1988), we

focus on ex post efficient mechanisms in this paper and leave the analysis of dynamic

surplus extraction for later research.
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Next we impose some conditions on the last-period primitives to guarantee ex post

implementability in the last period. Note that in our setup, the allocation problem in

period T is a static one. Thus, we simply adopt a set of sufficient conditions from the

existing research (Bergemann and Välimäki (2002) in particular) on static mechanism

design.

Let the finite allocation space be A = {a1, . . . , aK}. Fix any i and θ−iT . For each

k = 1, . . . , K define the set Θi,k
T ⊂ Θi

T as

Θi,k
T =

{
θiT ∈ Θi

T

∣∣∣∣∣∑
i

ui(ak, θT ) ≥
∑
i

ui(al, θT ), ∀al 6= ak

}
.

We say the collections of sets {Θi,k
T }Kk=1 satisfies monotonicity if for each k, θiT , θ̃

i
T ∈ Θi,k

T

implies that for each λ ∈ [0, 1], λθiT + (1 − λ)θ̃iT ∈ Θi,k
T . That is, {Θi,k

T }Kk=1 is monotone

if each Θi,k
T is connected. Under monotonicity, there exists an efficient allocation a∗T in

period T such that after relabeling the social alternatives, Θi
T can be partitioned into

successive intervals {Si,1T , . . . , S
i,K
T } and each ak is chosen if and only if θiT ∈ S

i,k
T . Then

there is a linear order ≺iT (which also depends on θ−iT ) on A: a1 ≺iT . . . ≺iT aK .

Assumption 3 (Implementation conditions in period T ) For each i and θT , mono-

tonicity holds. Moreover, for each i and θT , the utility function ui(ak, θiT , θ
−i
T ) is super-

modular in (ak, θiT ).

The sufficient conditions for ex post efficient implementation in static models are

restrictive given the impossibility results in Dasgupta and Maskin (2000) and Jehiel

and Moldovanu (2001). In particular, period-T signals are one dimensional and utility

functions satisfy a single-crossing condition under Assumption 3. If we relax ex post

incentive compatibility to Bayesian incentive compatibility in period T , then there exist

less restrictive conditions when period-T signals are correlated.

We also emphasize that no assumption is made on the private signals from period 1 to

T − 1. Any θit (t < T ) can be a vector in a multidimensional or even infinite dimensional

space. We can think of a situation where agents trade an new asset with each other

in multiple periods. Initially, each agent’s private information may be multidimensional

since there is much uncertainty about many aspects of the asset. As agents trade over

time, they gradually learn about the asset. And in the last period, each agent’s signal is

simply a real number which represents her estimation of the asset value.
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Now we state and prove the main result in this paper which generalizes the idea of the

example in Section 4.1.

Theorem 4.1 Under Assumptions 1,2 and 3, there exists an efficient dynamic mech-

anism which is periodic ex post incentive compatible.

Proof: See Appendix, Section 7.2. �

Remark 4.2 The identification condition on the joint transition probability (Assump-

tion 1) is generically satisfied even if we assume that signals are independently distributed

conditional on the underlying state of nature in each period. Accordingly, efficient dy-

namic mechanisms can be constructed in a very large class of dynamic settings provided

that ex post implementability is achievable in the last period.8 Therefore, contrary to

the generic impossibility results in static environments, an implication of Theorem 4.1 is

that efficient dynamic mechanisms “always” exist even preferences are interdependent.

Repeated interactions in a sense help us achieve efficiency rather than hampering it.

Remark 4.3 From a theoretical point of view, the dynamic mechanism constructed

in the proof of Theorem 4.1 is closely related to the classical VCG mechanism and the

dynamic pivot mechanism. As we explained in the introduction, with interdependent

valuations the idea of making agents residual claimants is not applicable if they interact

only once. When agents interact for multiple periods, our dynamic mechanism uses (one-

period) delayed payments to link different agents’ information over time so that each

agent’s expected continuation payoff in each period is equal to the continuation social

surplus plus a term that is independent of her own report, when all agents adopt the

truthful strategy.

Suppose that Assumption 1 is violated, then in a restricted environment, we have the

following result which extends the generalized VCG mechanism in static one dimen-

sional models to dynamic settings. We say that a payment rule {pt}Tt=1 or a mechanism

({a∗t , pt}Tt=1) is history-independent if for each t and θt, and for any two public histories

8A later version of the paper will show that Assumption 2 is not needed for Theorem 4.1 to hold in

the infinite horizon case.
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ht and h′t,

pt(ht, θt) = pt(h
′
t, θt).

That is, a history-independent payment pt depends only on the reported profile rt ∈ Θt

in period t. Under a history-independent mechanism, agent i’s period-t continuation

payoff (2) depends only on her private state θit, i.e.,

V i
t (θit) = max

rit∈Θi
t

E
[
ui(a∗t (r

i
t, θ
−i
t ), θt)− pit(rit, θ−it ) + δV i

t+1(θit+1)
]
.

In this case, we also define V i
t (at, θt) as

V i
t (at, θt) = ui(at, θt) + δE [V i

t+1(θit+1)|at, θt].

Assumption 4 (One dimensional private states) For each i and each t, Θi
t = [0, 1].

Under Assumption 4, we can define monotonicity and related notions similar to those

considered in Assumption 3. For any i, t and θ−it . Define the set Θi,k
t ⊂ Θi

t as

Θi,k
t =

{
θit ∈ Θi

t

∣∣∣∣∣ ui(ak, θt) + δE [Wt+1(θt+1)|ak, θt]
≥
∑

i u
i(al, θt) + δE [Wt+1(θt+1)|al, θt],

∀al 6= ak

}
.

The collections of sets {Θi,k
t }Kk=1 satisfies monotonicity if for each k, θit, θ̃

i
t ∈ Θi,k

t implies

that for each λ ∈ [0, 1], λθit + (1 − λ)θ̃it ∈ Θi,k
t . Under monotonicity, there exists an

efficient allocation a∗t in period t such that after relabeling the social alternatives, Θi
t

can be partitioned into successive intervals {Si,1t , . . . , S
i,K
t } and each ak is chosen if and

only if θit ∈ S
i,k
t . Then for each i, t and θ−it , there is a linear order ≺it (which also depends

on θ−it ) on A:

a1 ≺it . . . ≺it aK .

Assumption 5 (Independent transitions) For t = 1, µ1 =
∏N

i=1 µ
i
1, where for each

i, µi1 ∈ ∆(Θi
1). For each t > 1, µt(at−1, θt−1) =

∏N
i=1 µ

i
t(at−1, θ

i
t−1), where for each i,

µit : A×Θi
t−1 → ∆(Θi

t) is a transition probability.



18 H. LIU

Suppose a∗t (θt) = ak, then consider the following history-independent transfer payment

pit
∗
(θt) =

k∑
κ=1

∑
j 6=i

[
uj(aκ−1, xit(κ, θ

−i
t ), θ−it )− uj(aκ, xit(κ, θ−it ), θ−it )

]
(3)

+
k∑

κ=1

δE
[
Wt+1(θt+1)− V i

t+1(θt+1)|aκ−1, xit(κ, θ
−i
t ), θ−it

]
−

k∑
κ=1

δE
[
Wt+1(θt+1)− V i

t+1(θt+1)|aκ, xit(κ, θ−it ), θ−it
]
,

where xit(κ, θ
−i
t ) = inf{θit : a∗t (θ

i
t, θ
−i
t ) = aκ}. Note that pit

∗
(θt) does not depend directly

on θit under Assumption 5.

Finally, we define a function that will be used in the next result. Recall that Wt(θt) is

the continuation social surplus given period-t state profile θt. For each at and θt, define

Wt(at, θt) as

Wt(at, θt) =
N∑
i=1

ui(at, θt) + δE [Wt+1(θt+1)|at, θt].

In Theorem 4.4, we show that the payment rule constructed in (3) is periodic ex post

incentive compatible under some restrictions. Therefore, it is an appropriate extension

of the generalized VCG mechanism.

Theorem 4.4 Suppose that Assumptions 4 and 5 hold. There exists a periodic ex post

incentive compatible mechanism (a∗t , pt) with history-independent payment rules if for

each t, i and θ−it , there exists an order on the set of allocations A such that

1. Wt(at, θ
i
t, θ
−i
t ) is single-crossing in (at, θ

i
t),

2. V i
t (at, θ

i
t, θ
−i
t ) has increasing difference in (at, θ

i
t)

Proof: See Appendix, Section 7.3. �

Remark 4.5 The payment rule (3) is also a generalization of the dynamic pivot mech-

anism proposed by Bergemann and Välimäki (2010). To see this, suppose that each ui

does not depend on θ−it and that private information is statistically independent across
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agent, then the payment rule in equation (3) can be written as

pit
∗
(θt) =

∑
j 6=i

[
uj(a∗t (θ

i, θ−i), θ−it )− uj(a∗t (θt), θ−it )
]

+ δE
[
W−i(θt+1)|a∗t (θi, θ−i), θt

]
− δE

[
W−i(θt+1)|a∗t (θt), θt

]
,

where

W−i(θt) = W (θt)− V i(θt) = max
{as}s≥t

E

[∑
s≥t

δs−t

(
ui(as, θ

i) +
∑
j 6=i

uj(as, θ
j
s)

)]
.

Therefore each agent i’s payment pit
∗

in every period t is the flow externality cost she

imposes on other agents.

Remark 4.6 We have explored on the existence of history-independent efficient mech-

anisms in Theorem 4.4. History-independent mechanisms are appealing in practice as

they do not depend on the entire history of allocations and reports. So the mechanism

designer does not need to keep track of what happened in the past when deciding cur-

rent payments. In addition, we can show that focusing on history-independent rules

are without loss of generality under Assumption 5. Specifically, if there is a periodic ex

post incentive compatible mechanism {a∗t , pt}Tt=1 with history-dependent payments, then

there exists a sequence of history-independent payments {p̄t}Tt=1 such that the resulting

mechanism {a∗t , p̄t}Tt=1 is also periodic ex post incentive compatible.

5. EXTENSIONS

Many questions remain to be explored. Here we discuss a few extensions that will be

formalized in later versions of the paper.

First, if the time horizon is infinite, there exists efficient dynamic mechanisms that

are ex post incentive compatible under Assumptions 1 and 2. The construction in the

proof of Theorem 4.1 can be extended to the infinite horizon case without imposing

Assumption 3. The idea is again to use the intertemporal correlation of signals with

one-period delayed transfers such that an agent’s transfer payment tomorrow in today’s

expectation is equal to the sum of other agents’ flow utility today. Using the one-shot

deviation principle, we can show that truth-telling strategy is still an periodic ex post

equilibrium in the infinite horizon case.
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Second, our efficient dynamic mechanism always runs a budget deficit, since the de-

signer needs to make subsidies in each period in order to make each agent a claimant

of the social surplus. Therefore, it is important to understand whether we can construct

efficient dynamic mechanisms that are either budget balanced or ex ante budget bal-

anced, depending on different instances. Assuming signals are conditionally independent

across agents in each period, we would like to explore whether or how the balanced team

mechanism in Athey and Segal (2012) can be adapted to our setup. It is even more

interesting to find necessary and sufficient conditions for our mechanism to be periodic

ex post individually rational and (ex ante) budget balanced.

Third, we would like to incorporate arrivals and departures of agents into consideration.

With interdependent valuations, allowing new agents to join or existing agents to leave

will alter the amount of information available to the mechanism designer and all current

participating agents. One way to handle the departure of an agent is to integrate out

her information from the moment of her departure.

Fourth, since we consider direct revelation mechanisms in this paper, it is of interest

to consider whether our efficient dynamic mechanism can be implemented in a more

practical manner. This question is particularly relevant in dynamic auctions.

Finally, while our focus is dynamic efficiency here, it would be interesting to consider

problems related to revenue maximization. For example, given that efficiency is achiev-

able, can the mechanism designer fully extract the surplus with some carefully designed

lotteries as in Crémer and McLean (1985)? This question is not as straightforward as

previous ones. One easy case is to assume private information is correlated aross agents

in each period and there is no intertemporal correlation. Then applying the Crémer-

McLean mechanism repeatedly would give full surplus extraction in each period if we

consider interim incentive compatibility in each period. Suppose instead that private

signals are conditionally independently distributed in each period but are intertempo-

ral correlated as in our setup, can we get full surplus extraction with a periodic ex

post incentive compatible mechanism? More generally, it is interesting to characterize

conditions for full surplus extraction in dynamic environments.
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6. CONCLUSION

The main result in this paper is that efficient mechanisms generically exist in dynamic

interdependent valuation environments. This is in striking contrast to the impossibility

results in static settings. We construct an efficient dynamic mechanism based on the

intertemporal correlation of different agents’ private information, a feature that does not

exist in static models. An important implication of the result is that information from

future interactions can be used to influence agents’ behavior in the current interaction.

7. APPENDIX

7.1. A Useful Lemma

We first prove a lemma (Lemma 7.1) which generalizes the characterization of convex

independence in Crémer and McLean (1988) to infinite type spaces.

Let (S,S) and (T, T ) be compact metric spaces endowed with the corresponding Borel

σ-algebras. Let λ be a regular probability measure on S⊗T with marginals λs on S and

λt on T . Let µ : T ×S → [0, 1] denote a version of the transition probability From T to

S. Then for any S ′ ∈ S and T ′ ∈ T , we have λ(S ′ × T ′) =
∫
T ′

∫
S′
µ(t, ds)dλt. Similarly,

let ν : S × S → [0, 1] be a version of the transition probability From S to T .

Lemma 7.1 Assume that there exists ε > 0 such that for each s ∈ S and each T ′ ∈ T ,

we have ν(s, T ′) ≥ ελt(T
′). For any bounded and measurable function π : T → R+,

there exists a bounded measurable function p : S → R+ such that for λt-a.e. t ∈ T ,

π(t) =

∫
S

p(s)µ(t, ds)

if and only if there does not exist a non-zero signed measure η on (T, T ) that is absolutely

continuous with respect to λt such that∫
T

∫
S′
µ(t, ds)η(dt) = 0,

for any S ′ ∈ S.

Proof: For the only if part, suppose by contradiction that there exists a non-zero

signed measure η that is absolutely continuous with respect to λt such that∫
T

∫
S′
µ(t, ds)η(dt) = 0,
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for any S ′ ∈ S. By absolute continuity, there exists a measurable function h : T → R
such that h = dη/dλt for λt-a.e. t ∈ T . Using Fubini’s Theorem, we have

0 =

∫
T

∫
S′
µ(t, ds)h(t)dλt =

∫
S′

∫
T

h(t)ν(s, dt)dλs.

for any S ′ ∈ S. Therefore, for λs-a.e. s ∈ S, we have∫
T

h(t)ν(s, dt) = 0.

Since for any bounded and measurable function π : T → R+, there exists a bounded

and measurable function p : S → R+ such that

π(t) =

∫
S

p(s)µ(t, ds)

for λt-a.e. t ∈ T , by Fubini’s Theorem, we have∫
T

π(t)η(dt) =

∫
T

π(t)h(t)dλt

=

∫
T

∫
S

p(s)µ(t, ds)h(t)dλt

=

∫
S

p(s)

∫
T

h(t)ν(s, dt)dλs

=

∫
S

p(s) · 0dλs = 0.

Since π is an arbitrary measurable function, it follows that η(t) = 0 for λt-a.e. t ∈ T ,

which is a contradiction.

Next consider the if part. The proof is in two steps. We first prove that the result holds

for any simple function π(t). Then we use an approximation argument to show that the

result holds for any measurable function π(t).

Step 1. Let π(t) be a nonnegative simple function, i.e., π(t) =
∑n

i=1 πi1Ti , where

(π1, . . . , πn) ∈ Rn
+ and {T1, . . . , Tn} is a finite partition of T where for each i, λt(Ti) > 0.

For each i = 1, . . . , n, define a mapping τi : S → [0, 1] by

τi(s) ,

∫
Ti
ν(s, dt)

λt(Ti)
≥ ε

for each s ∈ S. Consider the set W ⊂ Rn
+ defined as

W =

{
w ∈ Rn

+ :
∃ p : S → R+ bounded & measurable s.t.

w =
(∫

S
p(s)τ1(s)dλs, . . . ,

∫
S
p(s)τn(s)dλs

) } .
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Note that W is closed and convex.

If (π1, . . . , πn) ∈ W , that is, there exists a measurable function p : S → R+ such that

for each i = 1, . . . , n, πi =
∫
S
p(s)τi(s)dλs,then for λt-a.e. t ∈ T ,

π(t) =

∫
S

p(s)µ(t, ds).

Moreover, since τi(s) ≥ ε for each i and s, it follows that for λs-a.e. s ∈ S,

(4) p(s) ≤ 1

ε
·max{π1, . . . , πn}.

On the other hand, suppose that (π1, . . . , πn) /∈ W , then by the Separating Hyperplane

Theorem, there exists a non-zero vector (η1, . . . , ηn) ∈ Rn such that for any measurable

function p : S → R+, we have

η1 ·
∫
S

p(s)τ1(s)dλs + · · ·+ ηn ·
∫
S

p(s)τn(s)dλs = 0.

By the definition of τi’s, we have

0 =

∫
S

p(s)
n∑
i=1

ηiτi(s)dλs

=

∫
S

p(s)
n∑
i=1

ηi

∫
Ti

ν(s, dt)dλs

=

∫
S

p(s)

∫
T

(
n∑
i=1

ηi1Ti

)
ν(s, dt)dλs

=

∫
T

∫
S

p(s)µ(t, ds)

(
n∑
i=1

ηi1Ti

)
dλt

,
∫
T

∫
S

p(s)µ(t, ds)η(dt),

where in the last equality the signed measure η on (T, T ) is absolutely continuous with

respect to λt. Since p : S → R+ is arbitrary, it follows that for any S ′ ∈ S,∫
T

∫
S′
µ(t, ds)η(dt) = 0,

which contradicts the hypothesis that there does not exist such a signed measure η.
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Step 2. Let π : T → R+ be any bounded and measurable function. Let K < ∞ be

a bound on π, i.e., ‖π‖ = supt∈T |π(t)| < K. Then there exists a sequence of simple

functions {πn(t)} such that ‖πn‖ ≤ K and for each t,

lim
n→∞

πn(t) = π(t).

By the Bounded Convergence Theorem, for any T ′ ∈ T ,

lim
n→∞

∫
T ′
πn(t)dλt =

∫
T ′
π(t)dλt.

By Step 1, for each n, there exists a bounded measurable function pn : S → R+ such

that for λt-a.e. t ∈ T ,

πn(t) =

∫
S

pn(s)µ(t, ds).

Since each simple function πn satisfies ‖πn‖ < K, by the inequality (4) in step 1, we

have

(5) pn(s) ≤ K

ε
,

for λs-a.e. s ∈ S. Therefore, for each n we have∫
T ′
πn(t)dλt =

∫
T ′

∫
S

pn(s)µ(t, ds)dλt =

∫
S

pn(s)

∫
T ′
ν(s, dt)dλs =

∫
S

pn(s)ν(s, T ′)dλs.

Note that pn ∈ L∞(S,S, λs) and for each T ′ ∈ T , ν(·, T ′) ∈ L1(S,S, λs). From inequality

(5), it follows that ‖pn‖ = ess sups∈S |pn(s)| ≤ K/ε for every n. Thus by Alaoglu’s

Theorem,9 the sequence {pn} lies in a weak-* compact subset of L∞. By passing to a

subsequence, it follows that there exists p∞ ∈ L∞(S,S, λs) with ‖p∞‖ ≤ K/ε such that

for any T ′ ∈ T

lim
n→∞

∫
S

pn(s)ν(s, T ′)dλs =

∫
S

p∞(s)ν(s, T ′)dλs.

Note that for every t ∈ T ,

(6)

∫
S

p∞(s)µ(t, ds) ≤
∫
S

K

ε
µ(t, ds) =

K

ε
.

9See Theorem 6.21 in Aliprantis and Border (2006), page 235.
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Applying Fubini’s Theorem again gives∫
S

p∞(s)ν(s, T ′)dλs =

∫
S

p∞(s)

∫
T ′
ν(s, dt)dλs =

∫
T ′

∫
S

p∞(s)µ(t, ds)λt.

Therefore, we have∫
T ′
π(t)dλt =

∫
T ′

∫
S

p∞(s)µ(t, ds)λt,

for any T ′ ∈ T . Hence,

π(t) =

∫
S

p∞(s)µ(t, ds)

for λt-a.e. t ∈ T .

�

7.2. Proof of Theorem 4.1

The proof consists of two lemmas. The first lemma (Lemma 7.2) shows that if the tran-

sition probability satisfies the condition in Assumption 1, then any bounded measurable

function can be represented as a linear combination of the transition probability.

Lemma 7.2 For each i and each t < T , consider any bounded and measurable function

πi : A × Θi
t × Θ−it → R+. Then under Assumption 1 and Assumption 2, there exists a

bounded and measurable function p̃it+1 : Θ−it+1 × A×Θ−it → R+ such that

πi(at, θ
i
t, θ
−i
t ) =

∫
Θt+1

p̃it+1(θ−it+1, at, θ
−i
t )dµt+1(at, θt),

for every at, θ
−i
t and µit(at−1, θt−1)-a.e. θit ∈ Θi

t, where µit(at−1, θt−1) is the marginal of

µt(at−1, θt−1) on Θi
t.

Proof: Given any i, t, at−1, θt−1, and any bounded measurable function πi(at, θ
i
t, θ
−i
t ),

note that for any pair (at, θ
−i
t ), πi(at, θ

i
t, θ
−i
t ) is measurable in θit. By Assumption 1, there

is no measurable function hit(θt) such that∫
Θi

t

µ−it+1(Θ̃−it+1; at, θ
i
t, θ
−i
t )h(θit)µ

i
t(dθ

i
t; at−1, θt−1) = 0,
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for any measurable subset Θ̃−it+1 ⊂ Θ−it+1. Then Assumption 2 allows us to invoke Lemma

7.1, which implies that for each fixed pair (at, θ
−i
t ) there exists a bounded function

qit+1(θ−it+1; at, θ
−i
t ) which is measurable in θ−it+1 such that

πi(at, θ
i
t, θ
−i
t ) =

∫
Θ−i

t+1

qit+1(θ−it+1; at, θ
−i
t )dµ−it+1(at, θt)

for µit(at−1, θt−1)-a.e. θit ∈ Θi
t. Since qit+1(θ−it+1; at, θ

−i
t ) is independent of θit+1, we have

πi(at, θ
i
t, θ
−i
t ) =

∫
Θt+1

qit+1(θ−it+1; at, θ
−i
t )dµt+1(at, θt)

for µit(at−1, θt−1)-a.e. θit.

Applying the measurable selection theorem in Mertens (2003), there exists a bounded

measurable function p̃it+1(θ−it+1, at, θ
−i
t ) on Θ−it+1 × A×Θ−it such that

πi(at, θ
i
t, θ
−i
t ) =

∫
Θt+1

p̃it+1(θ−it+1, at, θ
−i
t )dµt+1(at, θt),

for for every at, θ
−i
t and µit(at−1, θt−1)-a.e. θit.

�

The next lemma (lemma 7.3) establishes the existence result in Theorem 4.1.

Lemma 7.3 Under Assumptions 1, 2 and 3, there exists a sequence of payment rules

p̄t : Ht ×Θt → RN such that the efficient dynamic mechanism {a∗t , p̄t}Tt=1 is periodic ex

post incentive compatible.

Proof: The proof is by backward induction. Let Wt(θt) denote the expected period-t

continuation social surplus given state profile θt, i.e.,

Wt(θt) = E

[
N∑
i=1

ui(a∗t (θt), θt)

]
.

First consider the problem in period T . By Assumption 3, there exists an ex post

incentive compatible payment pT : ΘT → RN that implements the efficient allocation

a∗T . Given (a∗T , p
∗
T ), the payoff V i

T for each agent i in the truth-telling equilibrium is given

by

V i
T (θT ) = ui(a∗T (θT ), θT )− piT (θT ),
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for each θT .

Next consider agent i’s incentive problem in period T − 1 with an arbitrary public

history hT−1 = (r1, a1, r2, a2, . . . , rt−1, at−1). Suppose that agents other than i always

report truthfully. For each pair (aT−1, θT−1), define

πiT−1(aT−1, θT−1) =
∑
j 6=i

uj(aT−1, θT−1) + δE
[
W (θT )− V i

T (θT )|aT−1, θT−1

]
.

Since the resulting function πiT−1 is nonnegative, bounded and measurable, by Lemma

7.2 there exists a bounded measurable function p̃iT (θ−iT , aT−1, θ
−i
T−1) such that for every

aT−1, θ−iT−1 and µiT−1(aT−2, rT−2)-a.e. θiT−1,

πiT−1(aT−1, θT−1) = δ

∫
ΘT

p̃iT (θ−iT , aT−1, θ
−i
T−1)dµT (aT−1, θT−1).

Define a new period-T payment rule p̄iT : Θ−iT−1 × AT−1 ×ΘT → R for agent i as

p̄iT (θ−iT−1, aT−1, θT ) = piT (θT )− p̃iT (θ−iT , aT−1, θ
−i
T−1).

Note that p̃iT is independent of θiT , so agent i still finds it optimal to report truthfully

in period T under this new payment p̄iT . Suppose agent i reports riT−1 in period T − 1,

then for any realized state profile θT−1, her expected continuation payoff from T − 1 on

is µiT−1(aT−2, rT−2)-a.e. equal to

ui(a∗T−1(riT−1, θ
−i
T−1), θT−1)+δE [V i(θT )|a∗T−1(riT−1, θ

−i
T−1), θT−1]+πiT−1(a∗T−1(riT−1, θ

−i
T−1), θT−1)

=
N∑
i=1

ui(a∗T−1(riT−1, θ
−i
T−1), θT−1) + δE

[
WT (θT )|a∗T−1(riT−1, θ

−i
T−1), θT−1

]
.

Denote the exceptional set by Θ̂i
T−1. Note that µiT−1(Θ̂i

T−1|aT−2, rT−2) = 0.

By definition, the allocation rule a∗T−1 : ΘT−1 → A maximizes the social surplus from

period T − 1 onward. Given that other agents always report truthfully, it follows that

for µiT−1(aT−2, r
i
T−2, θ

−i
T−2)-a.e. realized signal θiT−1, it is optimal for agent i to report

riT−1 = θiT−1.

Note that we actually need incentive compatibility to hold for µiT−1(aT−2, θ
i
T−2, θ

−i
T−2)-

a.e. θiT−1. If µiT−1(Θ̂i
T−1|aT−2, θT−2) = 0, then the payment rule is also ex post incentive

compatible under the true transitions. On the other hand, if µiT−1(Θ̂i
T−1|aT−2, θT−2) > 0,

then we have to consider the following possibility. Since in period T − 1, there may
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exist a state θiT−1 ∈ Θ̂i
T−1 that occurs with positive probability under the true transition

µiT−1(aT−2, θ
i
T−2, θ

−i
T−2) so that agent i wants to manipulate her report. Therefore, agent

i may in turn want to misreport in period T − 2. To deal with this type of incentive of

lying, we modify the payments by adding punishments in period T −1 for types in Θ̂i
T−1

as follows.

Since each function ui is bounded by some M <∞,10 we can define a function p̂iT−1 :

Θi
T−1 → R as

(7) p̂iT−1(θiT−1) =

{
MN
1−δ if θiT−1 ∈ Θ̂i

T−1

0 otherwise.

That is, all types in Θ̂i
T−1 receive a large punishment under p̂iT−1. This implies that there

is also no benefit for agent i from manipulating mechanism designer’s perceived transition

probabilities µiT−1. Note that on the equilibrium path, Θ̂i
T−1 has measure zero, so the

punishment does not affect the truth-telling incentive for almost every state. Therefore,

given p̂iT−1 and p̄iT , it is always optimal for agent i to report truthfully in period T − 1.

Also note that for µT−1(aT−2, θT−2)-a.e. state profile θT−1, agent i’s continuation payoff

V i
T−1 in the truth-telling equilibrium is

V i
T−1(θT−1) = WT−1(θT−1).

Now for any t < T , suppose that there exist payment schedules p̂it and {p̄is+1}T−1
s=t for

every agent i such that truth-telling consists of a periodic ex post equilibrium at any

period s = t, . . . , T and each agent i’s continuation payoff in the truth-telling equilibrium

is V i
t (θt) = Wt(θt) for µt−1(at−2, θt−2)-a.e. θt.

We would like to construct a transfer payment p̄it : Θ−it−1 × At−1 × Θt → R for each

agent i as

p̄it(θ
−i
t−1, at−1, θt) = p̂it(θt)− p̃it(θ−it , at−1, θ

−i
t−1),

where p̃it satisfies∑
j 6=i

uj(at−1, θt−1) = δ

∫
Θt

p̃it(θ
−i
t , at−1, θ

−i
t−1)dµt(at−1, θt−1),

10Together with finite time horizon, or discounting in the infinite horizon case.
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for every at−1, θ−it−1 and µit−1(at−2, θt−2)-a.e. θit−1. The existence of such a bounded and

measurable function p̃it again follows from Lemma 7.2. Since p̄it is independent of θit,

incentive constraints for truth-telling in periods s = t, . . . , T still hold.

For µit−1(at−2, θt−2)-a.e. realized state profile θt−1, suppose agent i reports rit−1, then

her expected continuation payoff from t− 1 on is

N∑
i=1

ui(a∗t−1(rit−1, θ
−i
t−1), θt−1) + δE

[
Wt(θt)|a∗t−1(rit−1, θ

−i
t−1), θt−1

]
.

Denote the exceptional set by Θ̂i
t−1 and µit−1(Θ̂i

t−1; at−2, θt−2) = 0 and define p̂it−1 :

Θi
t−1 → R by

(8) p̂it−1(θit−1) =

{
MN
1−δ if θit−1 ∈ Θ̂i

t−1

0 otherwise.

By the definition of a∗t−1 and similar arguments along those following equation (7), for

each agent i, any report rit−1 ∈ Θi
t−1 in period t− 1 other than θit−1 is suboptimal under

p̂t−1 and {p̄s}Ts=t.
Finally, note that in period t − 1, agent i’s continuation payoff in the truth-telling

equilibrium is

V i
t−1(θt−1) = Wt−1(θt−1),

for µt−1(at−2, θt−2)-a.e. state profile θt−1.

Inducting on t backwards, we have a sequence of payments {p̄t}Tt=1, where p̄i1 = p̂i1 for

each i. By the one-shot deviation principle, truth-telling consists of a periodic ex post

equilibrium under the efficient dynamic mechanism {a∗t , p̄t}Tt=1.

�

7.3. Proof of Theorem 4.4

Using the one-shot deviation principle, the proof is by backward induction on t. For

each t, the argument follows the same lines as the proof of Proposition 3 in Bergemann

and Välimäki (2002)11 with the payment rule defined in (3).

11Pages 1029–1030.
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