
Sequential multidimensional screening

Sina Litterscheid and Dezsö Szalay�

University of Bonn

July 8, 2013
Preliminary

Abstract

We study a sequential screening problem where the agent produces multiple items

and has a multidimensional type that he learns over time. With multiple payo¤ rele-

vant parameters and action choices, the optimal contract does not necessarily induce

truthtelling o¤ equilibrium path. Instead, sequentially optimal lying strategies need

to be discouraged. The resulting optimal mechanism displays nonstandard features

such as upward distortions. We apply our results to the optimal timing of productive

decisions; if postponing all production decisions is feasible, then it is always preferred

unless the principal�s utility of consuming the goods is independent of the amount of

other goods consumed.

1 Introduction

Contracting is often plagued by problems of asymmetric information. E.g., sellers have

typically better information about costs of production. A vast literature has studied such

problems. The majority of contributions is built around two central assumptions. First,

the seller�s private information can be captured by a one-dimensional parameter. Second,
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the seller is endowed from the outset with his private information. The literature on mul-

tidimensional mechanism design relaxes the �rst assumption. The literature on sequential

and dynamic mechanism design relaxes the second assumption. We study a problem that

combines both approaches.

Speci�cally, we have the following contracting problem in mind. A buyer wishes to

consume a bundle of two goods and contracts with a seller to trade these goods. The seller

has some private information about his costs of production already at the outset; however,

as time goes by, he learns more about his costs of production. More precisely, the bundle

of goods consists of x units of a �rst good and y units of a second good. At the outset, the

seller knows the marginal costs of raising quanitity x; but he does not know yet what the

marginal cost of raising y will be. However, knowing the marginal cost of x may provide

some information as to the likely marginal costs of y: Building on the Revelation Principle

for dynamic games (Myerson (1986)), the optimal way to write contracts in the present

context can be analyzed by means of a game where the seller is asked to announce each piece

of information as it arrives. So, at the outset, the seller is asked to announce his marginal

costs of producing the �rst good in quantity x; in the second period, the seller is asked to

announce his marginal costs of producing the second good in quantity y:

This model is a convex combination of the multidimensional model analyzed by Arm-

strong and Rochet (1999) and the sequential screening models studied by Baron and Besanko

(1984) and Courty and Li (2000). As in Armstrong and Rochet (1999) we take the mar-

ginal cost parameters from binary distributions, so that there are 2x2 cost realizations in

the model. In contrast to their model, the seller has only part of his information at the

outset, so that the information that arrives in each period is one-dimensional. As in Courty

and Li (2000), the early information may carry some information about future parameter

realizations. More, precisely, Courty and Li (2000) study the case where consumers learn

early on a distribution of their taste parameter and later on re�ne this information to a

particular parameter value. We depart from this assumption in that we allow the early

information to have direct payo¤ consequences in addition to a¤ecting the distribution of

preference parameters.

Among the questions that our model allows us to address are the following:

How does the presence of an additional payo¤ relevant parameter a¤ect the solution
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procedure? What is the set of implementable outcomes for our model? What behaviour does

an optimal contract induce in our model; that is, in what sense is truthtelling at all nodes of

the game still an equilibrium outcome of the game? A key insight of our modeling exercise

is that truthtelling is not always optimal o¤ the equilibrium path - obviously, truthtelling is

always optimal on equilibrium path. What new features of contracts can be explained if we

allow for this richer setup, where complicated, dynamic lying strategies present a binding

constraint on contract design?

O¤-equilibrium-path-lies have been analyzed in only a small literature, so it is in order

to explain their relevance in detail. In our model, there are two rounds of reporting. In the

�rst round of reporting, the seller faces a choice between being truthful or not. The buyer

designs contracts in a way that make sure that the seller has incentives to announce his true

marginal cost of raising x: Given he does so, then contracts make sure that he announces

the second piece of information - his marginal cost of raising y - again truthtully in the

second round of reporting. To put this di¤erently, on equilibrium path, reporting is truthful.

However, what if the seller chose to lie in the �rst round of reporting? What will the seller

chose to report in the second round of reporting? Truthful reporting is nothing natural at

all to expect in that case. The reason is that truthfulness usually is a shortcut for saying

that choices re�ect the preference parameter of the agent with private information. The

key insight is that truthfulness in the second round of reporting only re�ects the preference

parameter of the agent in case he was truthful already in the �rst period. If in contrast the

agent lied in the �rst round, then his preference parameters are di¤erent from the one of the

agent for whom contracts are designed to match his preferences.

At �rst glance, one is tempted to argue that o¤path lies are irrelevant to contract design,

precisely because they are not supposed to be observed if all players stick to their equilibrium

strategies. However, this is not quite right. As in every screening model, the seller receives

rents arising from his private information, in particular the private information that prevails

already at the outset of the contracting game. The level of rents that the seller is able to

capture depends on the mechanism and in particular on how attractive a lie in the �rst round

of communication is. When the seller contemplates a possible deviation in the �rst period,

he needs to make a plan about an optimal report also in the second round of communication.

In other words, he needs to formulate a sequentially rational lying strategy.
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Our contribution is a systematic analysis of optimal mechanisms in this largely unstud-

ied framework. In particular, we are able to delineate precisely under what circumstances

dynamic lying strategies in�uence optimal contracts and under what circumstances the best

strategy available to the seller satis�es a one-period deviation principle. To �x ideas we

look at the case of positively correlated types. In this case, the optimal mechanism can be

found imposing truthtelling constraints on equilibrium path exclusively only when the goods

are complementary to the buyer, but not too stongly so. For the case of relatively weak

substitutability, the mechanism still satis�es truthtelling constraints. However, among the

binding constraints is now also a truthtelling constraint o¤ equilibrium path. Finally, for the

case of strong complements or strong substitutes, the optimal mechanism induces lying o¤

equilibrium path.

The intuition for these results is very simple. Truthtelling o¤equilibrium path is neither a

necessary implication of incentive compatibility nor is it any desirable feature per se. Rather,

the buyer trades o¤ the bene�ts and costs of inducing di¤erent kinds of behavior o¤ path.

It may simply be impossible to implement truthtelling after a �rst round lie or it may be

cheaper to implement a sequentially rational lie.

There are two main lessons from this excercise. Firstly, we provide conditions such that

the standard contracts (that are derived from truthtelling constraints on equilibrium path

only) are fully optimal. This �nding is reassuring in that it says that not everything is auto-

matically di¤erent as soon as we depart from the standard context of the sequential screening

literature. Secondly, our exercise allows us to learn something about qualitative properties

of contracting solutions that we would not be able to spot in the standard framework. In

particular, while the standard approach delivers (in our context) the familiar downward dis-

tortions in economic activity, the case of binding o¤path constraints as well as the case where

lying is optimal o¤ path usually display some upward as well as some downward distortions.

Thus, this paper can be seen at the same time as a robustness analysis of the benchmark

case where early information is not ultimately payo¤ relevant later on, as well as providing

a taxonomy of other phenomena that the standard framework does not allow us to explain.

We believe these results are an important complement to other approaches that study the

more tractable cases.

Going beyond that, we apply our methodology to address optimal timing in the sequential
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screening problem. The literature usually looks at the case where the timing of allocation

choices is given. Using our methods, we can endogenize the optimal timing of decisions, if

that is �exible. In particular, we show that there is an option value to waiting. If allocation

variables are chosen based on early information only, then the designer loses the �exibility

that comes with designing the whole production scheme jointly. We show that this option

value is strictly positive except for the case where the goods are independent. In that case,

the timing of production becomes irrelevant.

The related literature is as follows. The simplest way to see our problem is as a combi-

nation of Armstrong and Rochet (1999), who study a tractable model of multidimensional

screening1, and Courty and Li (2000), who analyze a model of sequential screening, where a

consumer �rst learns the distribution of his taste parameter and later on learns the precise

realization of the taste parameter. In contrast to Armstrong and Rochet (1999), the agent

in our context learns his information over time, as in Courty and Li (2000). However, unlike

in the latter paper, the information that the agent receives early on is not only about the

distribution of his preference parameter but also directly payo¤ relevant. While the formu-

lation in Courty and Li (2000) de�nitely comes in more handy, we point out that the model

can rationalize a substantially wider variety of allocations once we allow for direct payo¤

e¤ects of early information.

Sequentially optimal lies are also analyzed in Es½o and Szentes (2007a,b, 2013). In their

framework, an agent who misreported early information will also misreport information that

arrives later on. More speci�cally, the agent undoes his earlier lie so that he receives the same

allocation as if he had been truthful at each instance. This is di¤erent in our context, and

hence optimal allocations re�ect di¤erent trade-o¤s. Krähmer and Strausz (2008) provide

an analysis of the case where it is impossible to undo an earlier lie in the Courty and Li

(2000) model, because the support of late information depends on the realization of early

information. As in our model, the optimal mechanims induces at times lies o¤the equilibrium

path. However, the model and questions they address are quite di¤erent from ours. For more

recent analyses of sequential screening models, see also Boleslavsky and Said (2012), Krähmer

and Strausz (2012,2013) and Li and Shi (2013).

Obviously, our results are closely related to Armstrong and Rochet (1999) who provide

1For a survey of multidimensional screening, see Rochet and Stole (2003).
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a taxonomy of binding constraints in the static two-by-two-dimensional model. In contrast

to their analysis, we stick to the case of positively correlated types. On the other hand,

we allow for the case of complements and substitutes, while Armstrong and Rochet (1999)

look at independent goods. We are not aware of any literature that attacks the standard

multidimensional model (that is twodimensional) model sequentially.

A question related to our timing application is addressed in Krähmer and Strausz (2012),

where it is shown that ex post participation constraints eliminate the value of sequential

screening in that there is bunching with respect to early information. In that sense, the

principal could simply wait for de�nite information to arrive and not screen until then. Note

that this is di¤erent in our context where early information is directly payo¤ relevant; not

screening early would expose the principal to a static multidimensional screening problem

later on; hence, this is suboptimal in our model.

Closely related to sequential screening is the literature on dynamic mechanism design.

Baron and Besanko (1984) and Battaglini (2005) provide the �rst general analysis of opti-

mal contracts in this dynamic framework. Battaglini (2005) studies monopolistic selling in

context where consumer�s tastes follow a Markov process. He shows that allocations sat-

isfy a generalized no distortion at the top property. Moreover, a central building block of

the analysis is that the most tempting deviations are single period deviations. Pavan et al.

(2012) provide a general model of dynamic mechanism design. In each period, new infor-

mation arrives and the designer chooses a set of allocation variables as a function of current

information and past reports. Again, a central block of their analysis is to establish a version

of the one-stage-deviation-principle. More speci�cally, they show that in their context, the

most tempting deviation strategy consists in a single period lie and reverting to truthful

reporting after that. We complement this approach by looking at a case where the one stage

deviation principle does not always apply. In particular, it applies for the case of weak com-

plements in our model, but not otherwise. As a result, we are able to rationalize allocations

that would be impossible to explain when the one-stage deviation principle does apply.

Complementary to this paper is contemporanous work by Battaglini and Lamba (2013)

who argue that there are important interactions between the regularity conditions imposed

on the screening problem and the length of the time horizon. In particular, in the dynamic

screening problem separation may not be feasible even though it would be feasible in the
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static counterpart of the model. Unlike in our model it is the within period incentive con-

straints that become binding beyond the local ones; in our model, within period incentive

compatibility poses no problem, but the across periods incentive constraints become binding

beyond the local ones. Similar to the present approach, their analysis allows them to explain

allocations that could not be rationalized using local constraints only.

We view our results as an important complement to the general approaches based on local

incentive constraints: our results demonstrate the robustness and the limitations of models

that lack the richness we allow for. We hope our results sharpen our awareness of what we

are usually assuming away. However, since our analysis cannot be extended to richer type

spaces, there is clearly no hope to develop a general approach based on our methodology.

So, our approach is de�nitely a complement, not a substitute for more tractable approaches.

We clearly do not do justice to many papers that we do not mention here. The reader

is deferred to Pavan et al. (2012) for an extensive survey of the literature on dynamic

mechanism design.

The paper is organized as follows. In section two, we present the model and state the

buyer�s problem. Sections three presents the buyer�s problem and presents some preliminary

observations. Section 4 breaks up the problem into two steps, where in the �rst step we search

for the minimal transfers and optimal o¤ path behaviour that implements given allocations.

Section 5 presents and solves a reduced problem where some of the incentive constraints are

dropped and provides conditions under which the reduced problem solves the buyer�s overall

problem. Section 6 discusses the structure of optimal allocations in regular cases where

the strength of complementarity/substitutability of goods in the buyer�s utility function is

limited. Section 7 gives an example that is outside this regular structure. In Section 8, we

discuss an application of our approach to the optimal timing of productive decisions in the

sequential context. The �nal section concludes. The �nal section concludes. Lengthy proofs

are gathered in the appendix.
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2 The Model

A buyer contracts with a supplier to obtain two goods in quantities x and y: The buyer�s

utility is

V (x; y)� T;

where T is a transfer made to the seller. The seller�s payo¤ is

T � �x� �y;

where � and � are cost shifters.

Contracting is a sequential process. At date 1; the seller knows �; whereas the buyer only

knows that � 2
�
�; �
	
; where � > � > 0; and that Pr (� = �) = �: � is not known initially, not

even to the seller. However, both the seller and the buyer know that � 2
�
�; �
	
: The seller�s

date 1 information also carries some information about � in the sense that the conditional

distribution of � given � depends on �; let � (�) � Pr
�
� = � j�

	
: At date 2, � becomes

known to the seller but not to the buyer. Finally, the goods are produced and traded in

exchange for transfer T:

We place no assumptions on V (x; y) for the time being except that V (x; y) is jointly

concave in x and y and that the �rst unit of consumption is extremely valuable to the buyer,

that is limx!0 Vx (x; y) =1 for all y and limy!0 Vy (x; y) =1 for all x: Further assumptions

will be discussed as we go along.

3 The Buyer�s Problem

Invoking the appropriate revelation principle (Myerson (1986)), it is without loss of generality

to analyze optimal contracting in terms of direct, incentive compatible mechanisms. Our

contracting game is dynamic. In the �rst period of contracting, incentive compatibility is

equivalent to truthfulness about the agent�s �rst period information, �: In the second period,

the revelation principle implies that without loss of generality, we can restrict messages to

the incremental information that arrives in period two; that is, in period two, the sender

chooses a message �̂ 2
�
�; �
	
: Moreover, messages are truthful on equilibrium path; that is,

after a truthful report �̂ = � in the �rst period, the revelation principle implies truthfulness

8



of the second period report �̂ = �: The revelation principle does not have any implications

as to reporting o¤ equilibrium path, except for the fact that the agent chooses the optimal

report to send as part of his strategy. So, to assess the value of a �rst period deviation, we

need to consider the possibility that the optimal thing to do in the second period after a

�rst period lie is to lie again. Since the second period optimal behavior of the agent depends

on the �rst period report, the �rst period true type, and the second period true type, we

need to distinguish between the incremental information that arrives in period two and the

agent�s private information. That is, in the second period, the agent privately knows which

node, identi�ed by the triple
�
�; �̂; �

�
; in the game tree has been reached. We let �̂�

�
�; �̂; �

�
denote the optimal report at node

�
�; �̂; �

�
. It is easy to show that the optimal mechanism

is nonstochastic. This is because the principal is risk averse (with respect to lotteries over x

and/or y) while the agent only cares for the expected values of such lotteries. Even though

the equilibrium concept is a bit di¤erent, the proof essentially follows from Myerson (1986).

We can now state the buyer�s problem:

max
x(�;�);y(�;�);T (�;�);�̂�(�;�̂;�)

E�E�j� [V (x (�; �) ; y (�; �))� T (�; �)] (1)

s.t.

T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
�
� T

�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
�
; (2)

T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
�
� T

�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
�

(3)

T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
�
� T (�; �)� �x (�; �)� �y (�; �) (4)

T (�; �)� �x (�; �)� �y (�; �) � T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
�

(5)

E�j� [T (�; �)� �x (�; �)� �y (�; �)] (6)

� E�j�
�
T
�
�; �̂�

�
�; �; �

��
� �x

�
�; �̂�

�
�; �; �

��
� �y

�
�; �̂�

�
�; �; �

���
;

E�j�
�
T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
��

(7)

� E�j�
�
T
�
�; �̂�

�
�; �; �

��
� �x

�
�; �̂�

�
�; �; �

��
� �y

�
�; �̂�

�
�; �; �

���
;

E�j� [T (�; �)� �x (�; �)� �y (�; �)] � 0; (8)
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E�j�
�
T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
��
� 0; (9)

and for � 6= �̂
�̂�
�
�; �̂; �

�
2 argmax

�̂
T
�
�̂; �̂
�
� �x

�
�̂; �̂
�
� �y

�
�̂; �̂
�

(10)

for all �; �̂ 2
�
�; �
	
and � 2

�
�; �
	
:

Constraints (2) through (3) are the second period on equilibrium path constraints: after

a truthful report in period one, the seller must �nd it optimal to be truthful about � as well.

(6) and (7) are the �rst period incentive constraints. As of date one, the seller anticipates

that he chooses the second period report optimally, as captured by (10) : (8) and (9) are the

participation constraints.

The problem is relatively rich and requires careful analysis. To avoid useless case dis-

tinctions, we place enough structure on the problem to ensure that the low cost producer in

the �rst period is better to the buyer than the high cost producer. This obviously depends

on the correlation between costs. We impose the following assumption:

Assumption 1: costs are weakly positively correlated, that is � (�) � �
�
�
�
:

The assumption amounts to a regularity condition commonly used in the sequential

screening literature. The alternative implies a lot of hassle due to further case distinctions

one has to go through; however, our solution procedure can be readily adapted to this case.

Assumption 1 implies the following Lemma, which is of course the reason to impose it in

the �rst place:

Lemma 1 If � (�) � �
�
�
�
; then (8) is automatically satis�ed if (9) is.

The argument is essentially the same as in a static two-type model. We can use the �rst

period incentive constraint (6) to show that an allocation that satis�es (9) automatically

also satis�es (8) :

Clearly, at least one participation constraint must be binding; otherwise all payments

could be lowered and the buyer�s payo¤ could be increased. From Lemma 1 we can deduce

that constraint (9) is binding at the optimum. Likewise, at least one of the ex ante incentive

constraints must be binding. Otherwise we could again reduce some payments in a way

that keeps incentive compatibility satis�ed and increases the buyer�s expected payo¤. It is
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easy to see that the critical constraint is (6) : Which other constraints bind is a relatively

complex matter. The reason is that the implications of optimal o¤-path reporting are quite

intricate. We begin with a discussion of the implications of the on-equilibrium path incentive

constraints.

Lemma 2 �̂�
�
�; �; �

�
= � for x

�
�; �
�
� x

�
�; �
�
and �̂�

�
�; �; �

�
= � for x

�
�; �
�
� x (�; �) :

Likewise, �̂�
�
�; �; �

�
= � for x

�
�; �
�
� x

�
�; �
�
and �̂�

�
�; �; �

�
= � for x

�
�; �
�
� x (�; �) :

The on path constraints have some, however limited, implications for the optimal reports

o¤ path. In particular, it is never the case that all o¤ path types �nd it optimal to lie in the

second period. Depending on the monotonicity properties of the x�allocation, there is always
some types that will automatically - that is, by implications of the on-path constraints - �nd

it optimal to report their second period incremental information truthfully. The di¢ culty

at this stage is of course that the monotonicity of the x�allocation with respect to � is not
known and endogenous.

As should be obvious from Lemma 2, the optimal mechanism does not necessarily induce

truthtelling about � o¤ equilibrium path. Technically, this is due to the fact that both

� and � directly enter the agent�s payo¤ in period two. Therefore, the optimal report o¤

equilibrium path - where optimal carries both the meaning of incentive compatible from the

perspective of the agent and cost minimizing from the perspective of the principal - becomes

a design variable in addition to quantities and payments.

We solve our problem as follows. We aim for a reduced problem, where constraints (9)

and (6) hold as equalities, while (7) is slack. Moreover, we solve the reduced problem in a

two step procedure, where we determine at step one the cheapest way to implement a given

allocation and then determine the optimal allocation in step two. In the problem solved in

the �rst step we simultaneously optimize over payments and o¤ path reports.
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4 Implementing given allocations at lowest cost

Payments to types
�
�; �
�
and optimal o¤-path reporting by types

�
�; �; �

�
for � 2

�
�; �
	

solve the following problem:

� � min
fT(�;�);�̂�(�;�;�)g

�2f�;�g

E�j�
�
T
�
�; �̂�

�
�; �; �

��
� �x

�
�; �̂�

�
�; �; �

��
� �y

�
�; �̂�

�
�; �; �

���
(11)

s:t:

�̂�
�
�; �; �

�
2 argmax

�̂
T
�
�; �̂
�
� �x

�
�; �̂
�
� �y

�
�; �̂
�
for � 2

�
�; �
	

E�j�
�
T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
��
= 0;

(2) ; and (3) :

The buyer minimizes the rent that needs to be given to the seller with ex ante type �;

taking into account that the optimal reporting strategy of this type in period two can be

to misreport his parameter � when he has misreported his parameter � in the �rst period.

However, if the buyer wishes to implement such a sequential lying strategy - simply because

expected payments can be reduced this way - then he needs to explicitly make sure that the

strategy is optimal from the seller�s perspective as well.

Once the solution to the �rst program is found, we can choose payments to types (�; �)

and the optimal reporting by types
�
�; �; �

�
for � 2

�
�; �
	
to render constraint (7) as slack

as can be. Formally, for the payments and reports T
�
�; �
�
; �̂�
�
�; �; �

�
that solve the �rst

program, payments and reports T (�; �) ; �̂�
�
�; �; �

�
solve the problem:


 � min
fT (�;�);�̂�(�;�;�)g

�2f�;�g

E�j�
�
T
�
�; �̂�

�
�; �; �

��
� �x

�
�; �̂�

�
�; �; �

��
� �y

�
�; �̂�

�
�; �; �

���
(12)

s:t:

�̂�
�
�; �; �

�
2 argmax

�̂
T (�; �̂)� �x (�; �̂)� �y (�; �̂) for � 2

�
�; �
	

E�j� [T (�; �)� �x (�; �)� �y (�; �)] = �;
4, and (5) ;
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The solution to these two programs depends obviously on the allocation that the buyer

wishes to implement. In particular, de�ne the following sets

Xa �
�
(x; y) j

�
� � �

� �
y
�
�; �
�
� y (�; �)

�
�
�
� � �

� �
x
�
�; �
�
� x (�; �)

�
� 0
	
;

Xb �
�
(x; y) j

�
� � �

� �
x
�
�; �
�
� x (�; �)

�
�
�
� � �

� �
y
�
�; �
�
� y (�; �)

�
� 0
	
;

Xc �
�
(x; y) j �

�
� � �

� �
x
�
�; �
�
� x (�; �)

�
�
�
� � �

� �
y
�
�; �
�
� y (�; �)

�
� 0
	
;

Xd �
�
(x; y) j

�
� � �

� �
y
�
�; �
�
� y (�; �)

�
� �

�
� � �

� �
x
�
�; �
�
� x (�; �)

�
� 0
	
:

For future reference, also de�ne Xinti as these same sets when all the de�ning inequalities are

strict. These sets are depicted in the following graph:

Figure 1: The space of implementable allocations is divided into four regions, a through d.

The cost minimizing payments that implement allocations within each regime depend on the

regime itself.

Only y-allocations that are monotonic in � are incentive compatible. Hence, we only need

to consider such allocations. From Lemma 2 we know that depending on the monotonicity

of the x-allocation, one type reports automatically truthful also o¤ path. Finally, whether it

is optimal to have the other type report truthfully depends both on the x� and on the y�
allocation. We state the important properties of the solution in the following Lemma. In

particular, these are the values of the optima of the implementation problems stated above.
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Moreover, for completeness we also state the optimal o¤-path reporting strategies. We have

the following results:

Lemma 3 For (x; y) 2 Xa

� = �a � E�j�
��
� � �

�
x
�
�; �
��
+
�
� (�)� �

�
�
�� �

� � �
�
y
�
�; �
�


 = 
a �
�
� � �

� �
E�j�

�
x
�
�; �
��
� E�j� [x (�; �)]

�
�
�
� (�)� �

�
�
�� �

� � �
� �
y
�
�; �
�
� y

�
�; �
��

and all types report truthfully o¤ path;

for (x; y) 2 Xb

� = �b �
�
� � �

�
x
�
�; �
�
+
�
1� �

�
�
�� �

� � �
�
y
�
�; �
�
� (1� � (�))

�
� � �

�
y
�
�; �
�


 = 
b � �
�
�
� �
� � �

�
y (�; �)� � (�)

�
� � �

�
y
�
�; �
�
�
�
� � �

�
x (�; �) + �b

and �̂�
�
�; �; �

�
= �̂�

�
�; �; �

�
= � and �̂�

�
�; �; �

�
= �̂�

�
�; �; �

�
= �;

for (x; y) 2 Xc

� = �c �
�
� � �

�
x
�
�; �
�
+ � (�)

�
� � �

�
y
�
�; �
�
� �

�
�
� �
� � �

�
y
�
�; �
�


 = 
c �
�
�
�
1� �

�
�
�� �

� � �
�
y
�
�; �
�
� � (�)

�
� � �

�
x
�
�; �
�
+ (1� � (�))

�
� � �

�
y (�; �) + �c

	
and �̂�

�
�; �; �

�
= �̂�

�
�; �; �

�
= � and �̂�

�
�; �; �

�
= �̂�

�
�; �; �

�
= �;

for (x; y) 2 Xd

� = �d �
�
� (�)� �

�
�
�� �

� � �
�
y
�
�; �
�
+ E�j�

��
� � �

�
x
�
�; �
��


 = 
d � �
�
� (�)� �

�
�
�� �

� � �
�
y
�
�; �
�
� E�j�

��
� � �

�
x (�; �)

�
+�d

and all types report truthfully o¤ path and o¤ path types
�
�; �; �

�
and

�
�; �; �

�
.are indi¤erent

between truthfully reporting and lying o¤ path.

The intuition is straightforward and can best be explained with the help of the graph.

Allocations in Xa induce truthtelling o¤ path automatically in the sense that we can naïvely
assume truthtelling o¤ path, that is, neglect any o¤ path constraints altogether and simply

impose truthtelling o¤ path. For allocations in Xd such a naïve conjecture would prove to
be false; the seller would not report truthfully o¤ path if we simply took such behavior

14



as given. While the optimal report o¤ path by types
�
�; �; �

�
and

�
�; �; �

�
is indeed to

tell the truth, this needs to be ensured explicitly with the appropriate constraints for types�
�; �; �

�
and

�
�; �; �

�
. Moreover, these constraints are binding at the optimum. Finally, when

dependencies of the x�allocation on information � becomes strong, it becomes too costly to
insist on truthtelling by all types o¤ path. Recall that there is no reason at all to believe in

truthtelling per se o¤ equilibrium path. Instead, the cheapest way to implement any given

allocation in sets Xb and Xc induces some type to lie o¤ path.
There is one subtlety that we deemphasize but wish to mention nevertheless to avoid con-

fusion. The setsXi for i = a; b; c; d are de�ned for both (x (�; �) ; y (�; �)) and
�
x
�
�; �
�
; y
�
�; �
��
.

The reason is that the dividing lines between the sets have isomorphic representations. To

get a complete description of the implementable set of allocations one would have to de�ne

sets Xi (�) ; the complete set of implementable allocations is then given by Xi (�) � Xj
�
�
�

for i; j = a; b; c; d: However, it turns out that the solutions of the overall problem have the

property that i = j: Therefore, to economize on space, we just present our result anticipating

this result.

5 Optimal allocations in the reduced problem

We can now turn to the design of the optimal allocations. We address this question �rst

in the reduced problems where we neglect constraint (7) altogether. Since the agent�s rent

depends on the allocation that is chosen, we need to perform this step of optimization

separately for each set Xi
�
�
�
: Since we are neglecting constraint (7) ; we allow for any

(x (�; �) ; y (�; �)) 2 X (�) ; where X (�) �
�
x (�; �) ; y (�; �)j y

�
�; �
�
� y (�; �)

	
is the union of

all sets Xi (�) for i = a; b; c; d: Formally, the reduced problem for each constraint set is

Wi � max
(x(�;�);y(�;�))2Xi(�)
(x(�;�);y(�;�))2X(�)

E�E�j� [V (x (�; �) ; y (�; �))� �x (�; �)� �y (�; �)]� ��i: (Pi)

The overall optimum for the buyer is

W = max fWa;Wb;Wc;Wdg :

The solution has the following simple structure:
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Figure 2: Along the dividing line between any two regimes, payo¤s from adjacent programs

are equal.

Proposition 1 If �V11 (x; y)
���
��� � V12 (x; y) � V11 (x; y)

���
��� for all x; y, thenW = max fWa;Wdg :

Moreover, Wd > Wa if V12 < 0 for all x; y and Wa � Wd if V12 � 0 for all x; y:

The intuition is straightforward and easiest to understand with the help of �gure 2.

The idea to prove the results is as follows. The payo¤s in the various regimes have a

continuity structure that is displayed in the �gure. For allocations that are feasible in two

regions, say region a and region d, the payo¤s from programs Pa and Pd are identical for a

given allocation. Formally, we have Wa = Wd for allocations that satisfy x
�
�; �
�
= x

�
�; �
�
:

Moreover, none of the programs Pi is ever so constrained that an allocation in the origin

of the diagram is implemented. Hence, we can use simple revealed preference arguments to

prove payo¤ dominance in the cases described in the proposition. For V12 < 0; the solution

to program Pa actually does satisfy x
�
�; �
�
= x

�
�; �
�
; whereas the solution to program Pd

does not. Since, the allocation that maximizes program Pa is feasible also under program

Pd, but is not chosen, it follows by strict concavity of the problem that the value of the

objective under program Pd is strictly higher. Likewise, for V12 � 0; the solution to program
Pd satis�es x

�
�; �
�
= x

�
�; �
�
; so the same argument can be made. However, the subtle

di¤erence in this case is that the optimal allocation under program Pa might also lie on the

feasibility constraint x
�
�; �
�
= x

�
�; �
�
: Hence, we can only establish payo¤ dominance in
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the weak sense.

The proposition not only compares payo¤s between programs Pa and Pd but between

all programs Pi: Complements versus substitutes are enough to determine whether program

Pa or program Pd gives a higher payo¤. To rule out that the optimum is attained by

programs Pc and Pb; we need to place bounds on the strength of interactions between the

goods. In the case of substitutes, if the substitutability is not too strong, in the sense that

V12 (x; y) � V11 (x; y)
���
��� for all x; y; then the solution to program Pc is on the dividing line

between Xc
�
�
�
and Xd

�
�
�
: However, on the dividing line we have Wc = Wd; so the payo¤

attained by program Pc could also be obtained by program Pd. However, the solution to

program Pd is not necessarily on the dividing line between Xc
�
�
�
and Xd

�
�
�
: If the solution

to program Pd is in the strict interior of Xd
�
�
�
; then Wd > Wc: By a similar argument,

we can rule out that the principal ever wishes to implement an allocation that is in the set

Xb
�
�
�
if the complementarity between the goods is not too strong.

Conceptually, there is nothing special in the cases where the interaction between goods

becomes strong. One can use the exact same methods to determine the optimum in these

cases as well. However, the conditions needed to ensure that the reduced problem solves the

overall problem become quite strong. So, we content ourselves showing that the optimum

lies in the particular region for a special case of our model below. For the time being, we

impose:

Assumption 2: �V11 (x; y)
���
��� � V12 (x; y) � V11 (x; y)

���
��� for all x; y:

The reader may verify that Assumption 2 captures a relevant parameter restriction with

the help of the following example:

Example 1 V (x; y) = �2 � 1
2
(x� �)2 � 1

2
(y � �)2 + �xy:

In the example, Assumption 2 is satis�ed for � 2
h
����
��� ;

���
���

i
: Note that the utility

function is jointly concave in x and y for � 2 (�1; 1) : Thus, depending on the relative
variation in � relative to �; the set of parameter values that violate Assumption 2 becomes

empty. Conversely, there is always a nonempty set of parameter values that generate a

concave buyer problem and satisfy Assumption 2. In this sense - at least in this example -

Assumption 2 isolates the important case rather than the pathological one.
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5.1 The solution to the full problem

Our results so far refer to the solution of a reduced problem where constraint (7) is dropped

from the problem. Obviously, the reduced problem is of interest only if it solves the overall

problem; that is, if the solution of the reduced problem satis�es the neglected constraint,

(7) :

Checking the neglected constraint requires knowing which o¤ path behavior is imple-

mented, which in turn requires knowing which type of allocation the principal wishes to

implement. It is convenient to address this question by �rst asking in which of the sets the

�rst-best allocation lies. This is useful for two reasons. First, the allocation for ex ante type

� that maximizes the reduced problem corresponds simply to the �rst-best allocation for

that type. Second, as � goes to zero, the second best allocation converges to the �rst-best

allocation. Hence, by continuity, the second best allocation is close to the �rst-best allocation

for � small.

The �rst-best allocation satis�es

V1 (x (�; �) ; y (�; �)) = � (13)

and

V2 (x (�; �) ; y (�; �)) = � (14)

for � 2
�
�; �
	
and � 2

�
�; �
	
:

Lemma 4 The �rst-best allocation de�ned by (13) and (14) satis�es (x; y) 2

Xa if 0 � V12 (x; y) � �
���
���V11 (x; y) for all x; y;

Xb if V12 (x; y) � �
���
���V11 (x; y) for all x; y

Xd if 0 � V12 �
(���)
(���)

V11 for all x; y;

Xc if V12 �
(���)
(���)

V11 for all x; y:

Moreover, the �rst-best allocation is in the interior of these sets if the de�ning inequalities

are strict.

It is now straightforward to check whether the neglected constraint is satis�ed, by com-

bining lemmas 3 and 4. Notice in particular that the solution to the reduced problem satis�es

18



fx (�; �) ; y (�; �)g�2f�;�g 2 Xi (�) for i = a; d if and only if
�
x
�
�; �
�
; y
�
�; �
�	

�2f�;�g 2 Xi
�
�
�

for i = a; d: Obviously, this was the reason to economize on space in Lemma 3 in the �rst

place.

The reduced problem picks up the overall optimum under natural conditions.

Proposition 2 The solution to the reduced problem solves the overall problem under As-

sumption 2 if in addition either

i) V12 = 0 or

ii) V12 6= 0 for all (x; y) ; V12 does not change sign,

max
x;y

���� V12

V11 _V22 � V 212
(x; y)

���� � � � �
� � � minx;y

���� V22

V11 _V22 � V 212
(x; y)

���� ;
and either

a) x; y 2 Xinta ; or
b) or x; y 2 Xintd and in addition � (�) = �

�
�
�
:

If the complementarity/subsitutability between x and y is not too strong relative to the

concavity of the problem, then the reduced problem picks up the overall optimum under

natural conditions. Without further conditions, this is the case if the goods are literally

independent. For the case of complements and substitutes, we need to impose further con-

ditions. The proof works as follows. Suppose the reduced problem has a solution that is

either in Xinta (for the case of complements) or in Xintd (for the case of substitutes). Then, the

neglected constraint that we identi�ed in Lemma 3 is satis�ed under the conditions given in

part ii of the proposition. For the case of substitutes, we need to assume independent types

in addition to that. The maximizers of problems Pa and Pd; respectively are indeed in the

interior of their allowed sets under the assumptions that render the value of these programs

higher than the value of the other program, respectively and the additional assumption that

� is su¢ ciently small. The reason is that in the limit where � tends to zero, the second

best allocation converges to the �rst-best allocation, whose properties we have described in

Lemma 4. The condition in the proposition is satis�ed in our example for � 2
h
� ���
��� ;

���
���

i
:

This is consistent with Assumption 2 for any di¤erences between types. If ���
��� = 1; then the

conditions are identical; otherwise, one set is a strict subset of the other.
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The complete description of the optimum obviously includes a characterization of the

optimal payments as well. These payments can be found in the proof to Lemma 3. We

are now ready to discuss the structure of optimal allocations and the optimal timing of

production.

6 The structure of optimal allocations

We can now investigate how the optimal allocation depends qualitatively on the interaction

between goods in the buyer�s utility function. To discuss this question in the simplest

possible case, we simply state the result for the case where the optimum for ex ante type �

is an allocation in Xinta
�
�
�
and Xintd

�
�
�
: In this case, the optimal allocation for ex ante type

� satis�es

V1
�
x
�
�; �
�
; y
�
�; �
��

= � +
�

(1� �)
�i

�
�
�
� �� � ��

V2
�
x
�
�; �
�
; y
�
�; �
��

= �

and

V1
�
x
�
�; �
�
; y
�
�; �
��

= � +
�

(1� �)
(1� �i)�
1� �

�
�
�� �� � ��

V2
�
x
�
�; �
�
; y
�
�; �
��

= � +
�

(1� �)

�
� (�)� �

�
�
���

1� �
�
�
�� �

� � �
�
;

where �a = � (�) and �d = �
�
�
�
; while the optimal allocation for ex ante type � is given by

(13) and (14) :

For the case of complements, the optimal allocation for ex ante type � displays the stan-

dard downward distortions relative to the �rst best. For strictly positive complementarities,

all allocation variables are strictly below the �rst best optimal levels. This is quite di¤er-

ent for the case of substitutes, which displays both upward and downward distortions. In

particular, x
�
�; �
�
is distorted downwards and as result, y

�
�; �
�
is distorded upwards.
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7 The case of strong interactions

So far, we have characterized optimal allocations for regular cases, where the strenght of

interactions between the goods is relatively mild. If the ratio
���
��� is relatively large, then

�most�utility functions will display relatively mild interactions between the goods in this

sense. This lose statement can be given a very precise meaning in the concrete example of

negative quadratic utility. For that case, all concave utility functions satisfy Assumption

2 if the support of second period information is wider than the support of �rst period

information. On the other hand, if the reverse is true, then one can give natural examples,

where an allocation outside the sets Xa [ Xd becomes optimal. Speci�cally, we have the
following result:

Proposition 3 Suppose that ���
��� < 1 and consider the quadratic utility function of Example

1 with � 2
�
���
��� ; 1

�
: For that utility function, for � su¢ ciently close to zero, the overall

optimal allocation satis�es x; y 2 Xb:

The idea is simple. Assume the conditions of Lemma 4 hold so that the �rst-best is in the

interior of one of the sets Xi for i = a; b; c; d: Now consider an allocation that maximizes each
of the problems Pi for i = a; b; c; d; where the set of allowed allocations is Xi: Now let � go
to zero. The solutions to the problems Pi converge uniformly to the �rst-best allocation as

� tends to zero. Therefore, for � positive but small, if the �rst best allocation is an element

of Xi; then the solution to Pi is still an element of Xi: Moreover, we show in the proof of
the proposition, that the neglected constraint is satis�ed for the example. Hence, we have

shown that there are natural conditions such that an allocation in, say, Xb becomes optimal.
Thus, it can be strictly optimal to induce lying o¤ equilibrium path.

The optimal allocation for the case where x; y 2 Xintb has interesting features. The

�rst-order conditions for the allocation o¤ered to ex ante type � are as follows:

V1
�
x
�
�; �
�
; y
�
�; �
��

= � +
�

(1� �)
1

�
�
�
� �� � ��

V2
�
x
�
�; �
�
; y
�
�; �
��

= � � �

(1� �)
(1� � (�))
�
�
�
� �

� � �
�
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and

V1
�
x
�
�; �
�
; y
�
�; �
��

= �

V2
�
x
�
�; �
�
; y
�
�; �
��

= � +
�

(1� �)
�
� � �

�
This allocation displays upwards distortions in the quantity y

�
�; �
�
; for given quantity

x
�
�; �
�
: Since we are considering complements, this upwards distortion does not arise sim-

ply as a compensating e¤ect due to a downard distortion in x
�
�; �
�
; but rather re�ects the

particular structure of binding incentive constraints for this particular case.

8 Sequential screening and the value of waiting

Our formulation departs from the standard setup in sequential screening problems as this

literature typically studies problems where in each period a given choice has to be made.

The problems in the sequential and dynamic mechanism design literature correspond in our

model to the case where x has to be chosen right away after � is reported and y is chosen only

later when � is reported. We now show that, if given the option of waiting, it is always better

to keep the �exibility to adjust both allocation choices to both informational parameters,

except for the case where the buyer�s utility is separable in the two goods.

We can obtain the optimal mechanism with sequential production from our problem if

we add the consistency requirement that

x
�
�; �
�
= x (�; �) for � 2

�
�; �
	
: (15)

Technically, (15) is a consistency requirement in the sense that the level of x can only depend

on information that is available when the level of x is chosen.

It is straightforward to see that o¤-path lies are not an issue under this constraint. The

reason is that �x
�
�̂
�
is sunk by the time the report about � needs to be made and moreover

enters the seller�s pro�t in an additively separable way. So, seller types who have lied in

the past correspond to types with di¤erent �xed costs of producing the y good. However,

�xed costs do not change the seller�s incentive to report about �: So, the on-path incentive

constraints automatically ensure that reporting is truthful also o¤ path.
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It is also obvious that sequential production cannot do better than delaying production

of both goods until all information is there. The reason is that we are simply adding another

constraint, (15) ; to the buyer�s problem and thereby eliminate some �exibility o¤equilibrium

path (precisely because the on-path constraints automatically imply a particular o¤-path

behaviour).

Solving the transfer minimization problems (11) and (12) for given allocation choices

x and y, under the consistency condition (15) and its implication of truthfulness of path,

we �nd that at the solutions to these problems constraints (2) and (9) and (6) and (5) are

binding. Using the optimal payments, the buyer�s problem of �nding an optimal allocation

can be written as

max
x(�);y(�;�)

E�E�j� [V (x (�) ; y (�; �))� �x (�)� �y (�; �)]

��
��
� � �

�
x
�
�
�
+
�
� (�)� �

�
�
�� �

� � �
�
y
�
�; �
��

Moreover, the neglected incentive constraint (7) is equivalent to�
� (�)� �

�
�
�� �

� � �
� �
y
�
�; �
�
� y

�
�; �
��
�
�
� � �

� �
x
�
�
�
� x (�)

�
:

The following proposition is now obvious:

Proposition 4 Delayed and early production achieve the same payo¤ only for independent
goods. For V12 (x; y) 6= 0 for all x; y; delayed production is strictly better than early produc-
tion.

The proof of the statement follows from the discussion in an obvious way and is therefore

omitted. The logic is simply that the allocation under sequential production is always feasible

under delayed production of both goods but is not chosen at the optimum, except for the

case of independent goods.

It is instructive to take a closer look into the losses associated to sequential production.

The allocation o¤ered to ex ante type � is �rst-best e¢ cient; that is, there is no distortion

at the top. The allocation o¤ered to ex ante type � satis�es the �rst-order conditions

E�j�
�
V1
�
x
�
�
�
; y
�
�; �
���

= � +
�

1� �
�
� � �

�
;

23



V2
�
x
�
�
�
; y
�
�; �
��
= �;

and

V2
�
x
�
�
�
; y
�
�; �
��
= � +

�

1� �
� (�)� �

�
�
�

1� �
�
�
� �

� � �
�
:

The expected marginal bene�t of x
�
�
�
is equal to � + �

1��
�
� � �

�
: For given allocation

y
�
�; �
�
; this corresponds to the standard result that x

�
�
�
is distorted downwards relative

to the �rst-best. Likewise, for given allocation x
�
�
�
; y
�
�; �
�
is set e¢ ciently, while y

�
�; �
�

is distorted downwards. Whether the entire allocation is higher or lower than �rst-best

depends on the nature of interactions between the goods. For the case of independent

goods, the overall allocation relates exactly as stated to the �rst-best allocation.

For nonzero interactions between the goods, there are two sources of losses for the prin-

cipal due to choosing x early on. Firstly, it is simply the case that both allocation choices

should be adjusted to both cost conditions. Secondly, as we have explained at great lengths,

it is sometimes not optimal to insist on truthtelling o¤ path when both x and y are chosen

late. Intuitively, it becomes easier to screen the information in the second round of reporting

when the principal has more screening instruments available.

It is interesting to note that in the case of weak substitutes in the sense of Proposition 2,

the �rst-order conditions di¤er only in that the marginal utilities interact with each other; the

virtual cost expressions on the right hand side are identical for both timing con�gurations.2

It is then straightforward to see how the optimal allocations di¤er from each other in the more

�exible regime with delayed production and in the regime with early production of x: For an

allocation in the regime with delayed production in Xintd
�
�
�
; we have that y

�
�; �
�
> y

�
�; �
�

and x
�
�; �
�
> x

�
�; �
�
: If the x�allocation is now forced to take the common value x

�
�
�
;

then, heuristically, x
�
�; �
�
is reduced while x

�
�; �
�
is increased. Since the marginal utility

of consuming y still must take on the same value, the y�allocation has to respond more to
� than it does in the �exible regime. Hence, the variation in the level of y is increased in

response to the reduction in the variation in the level of x:

We �nd these observations interesting; however, it should be stressed that the optimal

timing of decisions is an issue only if the production process is �exible in this regard. The

2In the case of complements, the virtual marginal cost of x
�
�; �
�
is increased while the virtual marginal

cost of x
�
�; �
�
is decreased for given level of y:
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literature we are aware of so far works under the assumption that there is no �exibility; in

each period a production decision has to be taken. We show that, if there is �exibility and

absent discounting, then the designer wants to postpone all production decisions until all

information is present.

9 Conclusion

This paper solves a tractable two-dimensional model of screening when the agent produces

two goods, knows one cost parameter from the outset, and learns a second one at some later

date. Depending on whether the goods are complements or substitutes and on how strongly

the goods interact, a di¤erent pattern of binding constraints arises at the optimum. For weak

complements, we obtain a standard solution, where the principal only needs to worry about

single deviations. As a result, the solution to the full problem could also be obtained by a

naive procedure that simply imposes truthtelling at all nodes of the game, even at those that

are not reached if the agent is truthful early on in the game. For weak substitutes, it is still

true that the solution can be obtained by imposing truthtelling on and o¤ equilibrium path.

However, now a truthtelling constraint o¤ equilibrium path is binding at the optimum. As a

result, the solution displays both upward and downward distortions. Finally, in the case of

strong interactions between the goods, it may become optimal for the principal to give up

on truthtelling o¤ path and let the agent lie again after a �rst lie.

10 Appendix

Proof of Lemma 1. Note �rst that at least one participation constraint must be binding;

otherwise all payments could be reduced by the same amount, resulting in higher buyer

surplus. To prove the statement, it su¢ ces to show the standard result that (9) together

with (6) imply (8) : This is true if � (�) � �
�
�
�
:

Let u (�; �) denote equilibrium utility.
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From (6) ; we have

E�j� [u (�; �)]

= E�j� [T (�; �)� �x (�; �)� �y (�; �)]
� E�j�

�
T
�
�; �̂�

�
�; �; �

��
� �x

�
�; �̂�

�
�; �; �

��
� �y

�
�; �̂�

�
�; �; �

���
On the other hand

E�j�
�
T
�
�; �̂�

�
�; �; �

��
� �x

�
�; �̂�

�
�; �; �

��
� �y

�
�; �̂�

�
�; �; �

���
� E�j�

�
T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
��

since �̂�
�
�; �; �

�
and �̂�

�
�; �; �

�
are chosen optimally. Moreover,

E�j�
�
T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
��

= E�j�
�
u
�
�; �
�
+
�
� � �

�
x
�
�; �
��

� E�j�
�
u
�
�; �
��
;

where the last inequality follows since production is non-negative.

Hence, from (6) ; we have that

E�j� [u (�; �)] � E�j�
�
u
�
�; �
��
:

Now, from (2) it is straightforward to see that

u
�
�; �
�
� u

�
�; �
�
+
�
� � �

�
y
�
�; �
�
;

and thus u
�
�; �
�
� u

�
�; �
�
: Using �(�) � �(�); we have moreover that

E�j�
�
u
�
�; �
��
� E�j�

�
u
�
�; �
��
:

(9) written in terms of equilibrium utilities amounts to

E�j�
�
u
�
�; �
��
� 0;

which proves the claim.
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Proof of Lemma 2. The proof is by direct inspection. We consider all four o¤-path types

in sequence.

Recall that u (�; �) denotes the equilibrium utility of type (�; �) :

Consider type
�
�; �; �

�
; that is an agent with preference parameters �; � who has sent a

�rst period report �̂ = �: By reporting �̂ = �, he obtains utility

T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
�
= u

�
�; �
�
+
�
� � �

�
x
�
�; �
�

If he reports �̂ = �; then he obtains utility

T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
�
= u

�
�; �
�
+
�
� � �

�
x
�
�; �
�
�
�
� � �

�
y
�
�; �
�
:

Type
�
�; �; �

�
prefers to report �̂ = � if

u
�
�; �
�
+
�
� � �

�
x
�
�; �
�
� u

�
�; �
�
+
�
� � �

�
x
�
�; �
�
�
�
� � �

�
y
�
�; �
�

From the on equilibrium path constraint 3, we know that

u
�
�; �
�
� u

�
�; �
�
�
�
� � �

�
y
�
�; �
�
:

adding
�
� � �

�
x
�
�; �
�
to both sides we get

u
�
�; �
�
+
�
� � �

�
x
�
�; �
�
� u

�
�; �
�
+
�
� � �

�
x
�
�; �
�
�
�
� � �

�
y
�
�; �
�
;

which implies that �̂�
�
�; �; �

�
= � if

x
�
�; �
�
� x

�
�; �
�
:

It is easy to demonstrate the other results by the exact same procedure. In particular:

�̂�
�
�; �; �

�
= � follows from the on-path constraint (2) if x

�
�; �
�
� x

�
�; �
�
;

�̂�
�
�; �; �

�
= � follows from the on-path constraint (4) if x (�; �) � x

�
�; �
�
; and

�̂�
�
�; �; �

�
= � follows from the on-path constraint (5) if x

�
�; �
�
� x (�; �) :

Proof of lemma 3. We split the proof in two cases, depending on whether x
�
�; �
�
�

x (�; �) is nonnegative or nonpositive. For both cases, we �rst prove the part concerning the

allocations of type �. Afterwards we turn to the allocation for type �.

Preliminaries:
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For convenience, note that the on path constraints (2)� (5) can be rewritten as follows:

T
�
�; �
�
� T

�
�; �
�
� �

�
x
�
�; �
�
� x

�
�; �
��
+ �

�
y
�
�; �
�
� y

�
�; �
��

(16)

T
�
�; �
�
� T

�
�; �
�
� �

�
x
�
�; �
�
� x

�
�; �
��
+ �

�
y
�
�; �
�
� y

�
�; �
��

(17)

T
�
�; �
�
� T (�; �) � �

�
x
�
�; �
�
� x (�; �)

�
+ �

�
y
�
�; �
�
� y (�; �)

�
(18)

T
�
�; �
�
� T (�; �) � �

�
x
�
�; �
�
� x (�; �)

�
+ �

�
y
�
�; �
�
� y (�; �)

�
(19)

Likewise, the o¤ path-constraints take the following form:

Type
�
�; �; �

�
prefers to report �̂ = � if

T
�
�; �
�
� T

�
�; �
�
� �

�
x
�
�; �
�
� x

�
�; �
��
+ �

�
y
�
�; �
�
� y

�
�; �
��
: (20)

and prefers to report �̂ = � if

T
�
�; �
�
� T

�
�; �
�
� �

�
x
�
�; �
�
� x

�
�; �
��
+ �

�
y
�
�; �
�
� y

�
�; �
��
: (21)

Type
�
�;�; �

�
prefers to report �̂ = � if

T
�
�; �
�
� T

�
�; �
�
� �

�
x
�
�; �
�
� x

�
�; �
��
+ �

�
y
�
�; �
�
� y

�
�; �
��

(22)

and prefers to report �̂ = � if

T
�
�; �
�
� T

�
�; �
�
� �

�
x
�
�; �
�
� x

�
�; �
��
+ �

�
y
�
�; �
�
� y

�
�; �
��
: (23)

Type
�
�; �; �

�
prefers to report �̂ = � if

T
�
�; �
�
� T (�; �) � �

�
x
�
�; �
�
� x (�; �)

�
+ �

�
y
�
�; �
�
� y (�; �)

�
(24)

and prefers to report �̂ = � if

T
�
�; �
�
� T (�; �) � �

�
x
�
�; �
�
� x (�; �)

�
+ �

�
y
�
�; �
�
� y (�; �)

�
: (25)

Type
�
�; �; �

�
prefers to report �̂ = � if

T
�
�; �
�
� T (�; �) � �

�
x
�
�; �
�
� x (�; �)

�
+ �

�
y
�
�; �
�
� y (�; �)

�
(26)
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and prefers to report �̂ = � if

T
�
�; �
�
� T (�; �) � �

�
x
�
�; �
�
� x (�; �)

�
+ �

�
y
�
�; �
�
� y (�; �)

�
: (27)

Suppose that
�
x
�
�; �
�
� x

�
�; �
��
� 0: By Lemma 2 this implies that �̂�

�
�; �; �

�
= �.

Adding the expected utility of the high type (which is zero by (9)) to the objective, we

obtain the following problem:

� � min
fT(�;�)g

�2f�;�g;�̂
�(�;�;�)

8>><>>:
(�(�)��(�))(T(�;�)��x(�;�)��y(�;�))+�(�)(���)x(�;�)

+(1��(�))(T(�;�̂�(�;�;�))��x(�;�̂�(�;�;�))��y(�;�̂�(�;�;�)))

�(1��(�))[T(�;�)��x(�;�)��y(�;�)]

9>>=>>;
subject to (16) ; (17) ; and

either (20) if �̂�
�
�; �; �

�
= �

or (21) if �̂�
�
�; �; �

�
= �:

Consider now both possible o¤ path reports. If �̂�
�
�; �; �

�
= �; then the objective is

min
T(�;�)�T(�;�)

�
� (�)� �

�
�
�� �
T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
��
+ � (�)

�
� � �

�
x
�
�; �
�

�
�
� (�)� �

�
�
�� �
T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
��
+ (1� � (�))

�
� � �

�
x
�
�; �
�

subject to the constraints (16) ; (17) ; and (20) : Note that (17) is automatically satis�ed if

(20) is. There exists a solution to the problem only if the constraint set is non-empty, that

is, if the right-hand side of (20) is weakly larger than the right-hand side of (16) : This is

the case for (x; y) 2 Xa
�
�
�
: In this case (16) is binding. Using (9) and (16) to solve for the

optimal payments, we have 
T
�
�; �
�

T
�
�; �
�! =  �x ��; ��+ �y ��; ��+ �1� � ���� �� � �� y ��; ��

�x
�
�; �
�
+ �

�
�
�
�y
�
�; �
�
+
�
1� �

�
�
��
�y
�
�; �
� ! : (28)

Substituting back into the objective we have obtain

�a =
�
� (�)� �

�
�
�� �

� � �
�
y
�
�; �
�
+ E�j�

��
� � �

�
x
�
�; �
��
:
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On the other hand, if �̂�
�
�; �; �

�
= �; then the problem is

minT(�;�)�T(�;�)
�
1� �

�
�
�� �

T
�
�; �
�
� T

�
�; �
�	

+
�
� � �

�
x
�
�; �
�
� (1� � (�))

�
� � �

�
y
�
�; �
�

�
�
1� �

�
�
�� �

�
�
x
�
�; �
�
� x

�
�; �
��
+ �y

�
�; �
�
� �y

�
�; �
��

subject to the constraints (16) ; (17) ; and (21) : The right-hand side of (16) is weakly larger

than the right-hand side of (21) for (x; y) 2 Xb
�
�
�
and the reverse is true for (x; y) 2

Xa
�
�
�
: Clearly, the right-hand side of (17) is always larger than the right-hand side of (16) :

Therefore, for (x; y) 2 Xb
�
�
�
; at the solution of the problem, constraint (16) holds as an

equality. It follows that for �̂�
�
�; �; �

�
= � and (x; y) 2 Xb

�
�
�
; the transfers can be taken

from (28) so that the objective takes value

�b =
�
� � �

�
x
�
�; �
�
� (1� � (�))

�
� � �

�
y
�
�; �
�
+
�
1� �

�
�
�� �

� � �
�
y
�
�; �
�
:

For (x; y) 2 Xa
�
�
�
the right-hand side of (17) becomes smaller than the right-hand side of

(21) ; so the feasible set becomes empty. Hence, no solution exists.

Next consider the second problem for the case where x
�
�; �
�
� x (�; �) : By lemma 2 this

implies that �̂�
�
�; �; �

�
= �:So, the problem can be written as


 = min
fT (�;�)g�2f�;�g;�̂

�(�;�;�)

8>><>>:
�(�)[T(�;�̂�(�;�;�))��x(�;�̂�(�;�;�))��y(�;�̂�(�;�;�))]

+(1��(�))[T (�;�)��x(�;�)��y(�;�)]

�E�j�[T (�;�)��x(�;�)��y(�;�)]+�

9>>=>>;
subject to

(18) ; (19) ; and either

(24) if �̂�
�
�; �; �

�
= �; or

(25) if �̂�
�
�; �; �

�
= �;

where the objective is obtained from substituting the constraint (6) as an equality into the

objective.
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Consider �rst the case where �̂�
�
�; �; �

�
= �: In this case, the problem is

min
T(�;�)�T (�;�)

�
�
� (�)��

�
�
�� �

T
�
�; �
�
� T (�; �)

	
+
�
� (�)��

�
�
�� �
�x
�
�; �
�
+ �y

�
�; �
�
� �x (�; �)� �y (�; �)

�
�
�
1��

�
�
�� �

� � �
�
x (�; �)� � (�)

�
� � �

�
x
�
�; �
�
+�:

subject to the constraints (18) ; (19) and (24) : The right-hand side of (18) is weakly smaller

than the right-hand side of (24) : Hence, the constraint set is nonempty if the right hand

side of (24) is weakly smaller than the right-hand side of (19) ; which is exactly true for

(x; y) 2 Xa (�) : So, in this case, (19) is binding at the solution to the problem. Solving for
the transfers from (19) and (6) ; we obtain 

T
�
�; �
�

T (�; �)

!
=

 
�+ �x

�
�; �
�
+
�
� (�) � + (1� � (�)) �

�
y
�
�; �
�

�+ �x (�; �) + �y (�; �)� � (�)
�
� � �

�
y
�
�; �
�! : (29)

Substituting these transfers back into the objective, we obtain


a = ��
�
�
� �
� � �

�
x
�
�; �
�
�
�
� (�)��

�
�
�� �

� � �
�
y
�
�; �
�
�
�
1��

�
�
�� �

� � �
�
x (�; �)+�:

For future reference, we note that for (x; y) 2 Xa; this can be written as


a = E�j�
��
� � �

�
x
�
�; �
��
�E�j�

��
� � �

�
x (�; �)

�
�
�
� (�)��

�
�
�� �

� � �
� �
y
�
�; �
�
� y

�
�; �
��
:

Consider next the case where �̂�
�
�; �; �

�
= �: In this case, the problem becomes

min
T(�;�)�T (�;�)

�� (�)
�
T
�
�; �
�
� T (�; �)

	
�
�
� � �

�
x (�; �) + �

�
�
� �
� � �

�
y (�; �)

+� (�)
�
�x
�
�; �
�
� �x (�; �) + �y

�
�; �
�
� �y (�; �)

�
+�:

subject to the constraints (18) ; (19) and (25) : The right-hand side of (25) is larger than the

right-hand side of (19) for (x; y) 2 Xb (�) : In this case, the feasible set is nonempty and at
the solution (19) is binding; hence the transfers are given by (29) and the objective takes

value


b = �� (�)
�
� � �

�
y
�
�; �
�
�
�
� � �

�
x (�; �) + �

�
�
� �
� � �

�
y (�; �)

+� (�) �
�
x
�
�; �
�
� x (�; �)

�
+�:
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Again, for future reference, if (x; y) 2 Xb; then we can write


b = �� (�)
�
� � �

�
y
�
�; �
�
+ �

�
�
� �
� � �

�
y (�; �)

+� (�) �
�
x
�
�; �
�
� x (�; �)

�
� (1� � (�))

�
� � �

�
y
�
�; �
�
+
�
1� �

�
�
�� �

� � �
�
y
�
�; �
�
:

For (x; y) 2 Xa (�), the right-hand side of (25) is smaller than the right-hand side of (19) :
Moreover, the feasible set is always nonempty and thus at the solution constraint (25) is

binding. Hence, we can substitute

T
�
�; �
�
� T (�; �) = �

�
x
�
�; �
�
� x (�; �)

�
+ �

�
y
�
�; �
�
� y (�; �)

�
into the objective and obtain


̂a = �� (�)
��
� � �

� �
x
�
�; �
�
� x (�; �)

�
+
�
� � �

�
y (�; �)

	
�
�
� � �

�
x (�; �) + �

�
�
� �
� � �

�
y (�; �) + �:

We have 
a � 
̂a for (x; y) 2 Xa (�) ; so �̂�
�
�; �; �

�
= � is cheaper to implement in that case.

Next consider the case where
�
x
�
�; �
�
� x

�
�; �
��
� 0: By Lemma 2, this implies that

�̂�
�
�; �; �

�
= �: Adding and subtracting the expected utility of type �; we can write the

objective as

� � min
fT(�;�)g

�2f�;�g;�̂
�(�;�;�)

8>><>>:
�(�)(T(�;�̂�(�;�;�))��x(�;�̂�(�;�;�))��y(�;�̂�(�;�;�)))

�(�(�)��(�))(T(�;�)��x(�;�)��y(�;�))+(1��(�))(���)x(�;�)

��(�)[T(�;�)��x(�;�)��y(�;�)]

9>>=>>;
subject to

(16) ; (17) and either

(22) if �̂�
�
�; �; �

�
= �; or

(23) if �̂�
�
�; �; �

�
= �:

Consider �rst the case where the o¤-path report is �̂�
�
�; �; �

�
= �: In this case, the objective

is

� � min
T(�;�)�T(�;�)

8<: (�(�)��(�))(T(�;�)��x(�;�)��y(�;�))+�(�)(���)x(�;�)

�(�(�)��(�))(T(�;�)��x(�;�)��y(�;�))+(1��(�))(���)x(�;�)

9=;
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subject to the constraints (16) ; (17) ; and (22) : The right-hand side of (22) is always at least

as large as the right-hand side of (16) (by the fact that
�
x
�
�; �
�
� x

�
�; �
��
� 0): Hence, the

constraint set is nonempty if the right-hand side of (17) is at least as large as the right-hand

side of (22) ; which is precisely the case for (x; y) 2 Xd
�
�
�
: Since the objective is increasing

in T
�
�; �
�
�T

�
�; �
�
and we are minimizing �; T

�
�; �
�
�T

�
�; �
�
is set as small as possible,

implying that (22) is binding. We can compute the transfers from (22) and (9) : We obtain0@T(�;�)

T(�;�)

1A =

0@��(�)[(���)y(�;�)�(���)(x(�;�)�x(�;�))]+�x(�;�)+�y(�;�)+�(x(�;�)�x(�;�))+�(y(�;�)�y(�;�))

��(�)[(���)y(�;�)�(���)(x(�;�)�x(�;�))]+�x(�;�)+�y(�;�)

1A :
(30)

Substituting these transfers back into the objective, we obtain

�d �
�
� (�)� �

�
�
�� ��

� � �
�
y
�
�; �
��
+ E�j�

��
� � �

�
x
�
�; �
��
:

For (x; y) 2 Xc
�
�
�
; no solution with �̂�

�
�; �; �

�
= � exists.

Suppose thus that �̂�
�
�; �; �

�
= �: In this case, the objective is

��minT(�;�)�T(�;�)f�(�)(T(�;�)��x(�;�)��y(�;�)�[T(�;�)��x(�;�)��y(�;�)])+(���)x(�;�)+�(�)(���)y(�;�)g

subject to (16) ; (17) ; and (23) : The right-hand side of (17) is weakly smaller than the right-

hand side of (23) for (x; y) 2 Xc: Since the objective is decreasing in T
�
�; �
�
� T

�
�; �
�
and

we seek to minimize the objective function, at the optimum (17) mus be binding. Thus, we

can compute the optimal transfers from (17) and (9) : We obtain0@T(�;�)

T(�;�)

1A =

0@ �x(�;�)+E �j��y(�;�)+�(�)[�(x(�;�)�x(�;�))]

�x(�;�)+E �j��y(�;�)��(y(�;�)�y(�;�))�(1��(�))[�(x(�;�)�x(�;�))]

1A : (31)

Substituting these transfers back into the objective, we obtain

�c � ��
�
�
� �
� � �

�
y
�
�; �
�
+
�
� � �

�
x
�
�; �
�
+ � (�)

�
� � �

�
y
�
�; �
�
:

For (x; y) 2 Xd
�
�
�
; the right-hand side of (23) is weakly smaller than the right-hand side of

(17) and moreover, the constraint set is empty. Hence, �̂�
�
�; �; �

�
= � cannot be implemented

for (x; y) 2 Xd
�
�
�
:
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Consider next the second problem in case where x
�
�; �
�
� x (�; �) : By lemma 2, this

implies that �̂�
�
�; �; �

�
= �: The objective then becomes


 = min
fT (�;�)g�2f�;�g;�̂

�(�;�;�)

0BB@ �(�(�)��(�))[T(�;�)��x(�;�)��y(�;�)]��(�)(���)x(�;�)

+(1��(�))(T(�;�̂�(�;�;�))��x(�;�̂�(�;�;�))��y(�;�̂�(�;�;�)))

�(1��(�))[T (�;�)��x(�;�)��y(�;�)]+�

1CCA
subject to

(19) ; (18) ; and either

(26) if �̂�
�
�; �; �

�
= �; or

(27) if �̂�
�
�; �; �

�
= �:

where we have added the di¤erence between the right- and the left-hand side of (6) ; which

is zero by the fact that this constraint binds.

Consider �rst the possibility that �̂�
�
�; �; �

�
= �: In that case the problem becomes


 = min
T(�;�)�T (�;�)

0BB@ �(�(�)��(�))[T(�;�)��x(�;�)��y(�;�)]

+(�(�)��(�))(T (�;�)��x(�;�)��y(�;�))

��(�)(���)x(�;�)�(1��(�))(���)x(�;�)+�

1CCA
subject to (19) ; (18) and (26) :

The right-hand side of (26) is always weakly smaller than the right-hand side of (19) :

Hence, (19) cannot become binding at the optimum. Moreover, the constraint set is non-

empty exactly for (x; y) 2 Xd (�) : Since the objective is decreasing in T
�
�; �
�
� T (�; �) ; at

the optimum, (26) is binding and we can compute the transfers from (26) and (6) : 
T(�;�)

T (�;�)

!
=

0@�+(1��(�))[�(x(�;�)�x(�;�))+�(y(�;�)�y(�;�))]+�(�)(�x(�;�)+�y(�;�))+(1��(�))[�x(�;�)+�y(�;�)]

���(�)[�(x(�;�)�x(�;�))+�(y(�;�)�y(�;�))]+�(�)(�x(�;�)+�y(�;�))+(1��(�))[�x(�;�)+�y(�;�)]

1A
Since (26) is binding, we can substitute for

T
�
�; �
�
� T (�; �) = �

�
x
�
�; �
�
� x (�; �)

�
+ �

�
y
�
�; �
�
� y (�; �)

�
into the objective and obtain


d = �E�j�
��
� � �

�
x (�; �)

�
+��

�
� (�)� �

�
�
�� �

� � �
�
y
�
�; �
�
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If (x; y) 2 Xd; then this can be written as


d = E�j�
��
� � �

�
x
�
�; �
��
�E�j�

��
� � �

�
x (�; �)

�
�
�
� (�)� �

�
�
�� �

� � �
� �
y
�
�; �
�
� y

�
�; �
��
:

Consider �nally the possibility that �̂�
�
�; �; �

�
= �: In that case the problem becomes


 = min
T(�;�)�T (�;�)

0@ (1��(�))fT(�;�)��x(�;�)��y(�;�)�[T (�;�)��x(�;�)��y(�;�)]g
�(1��(�))(���)y(�;�)�(���)x(�;�)+�

1A
subject to (19) ; (18) ; and (27) :

The right-hand side of (18) is weakly larger than the right-hand side of (27) exactly for

(x; y) 2 Xc (�) : Moreover, for such allocations, the constraint set is nonempty, and at the
solution of the problem T

�
�; �
�
� T (�; �) reaches its lower bound, so (18) is binding. The

transfers can then be computed from (6) and (18) : 
T
�
�; �
�

T (�; �)

!
=

 
�+ (1� � (�))

�
� � �

�
y (�; �) + �x

�
�; �
�
+ �y

�
�; �
�

�+ �x (�; �) +
�
� (�) � + (1� � (�)) �

�
y (�; �)

!

Since (18) is binding, we can substitute

T
�
�; �
�
� T (�; �) = �

�
x
�
�; �
�
� x (�; �)

�
+ �

�
y
�
�; �
�
� y (�; �)

�
into the objective and obtain


c = (1� � (�))
�
� � �

�
y (�; �)�

�
1� �

�
�
�� �

� � �
�
y
�
�; �
�
�
�
� � �

�
x
�
�; �
�
+�

For future reference, if (x; y) 2 Xc; then we can write


c = �� (�)
�
� � �

� �
y (�; �)� y

�
�; �
��
�
�
� � �

� �
x
�
�; �
�
� x

�
�; �
��

��
�
�
� �
� � �

� �
y
�
�; �
�
� y

�
�; �
��
�
�
� � �

� �
y
�
�; �
�
� y (�; �)

�
:

For (x; y) 2 Xd (�) ; the right-hand side of (27) is weakly larger than the right-hand side
of (18). Moreover, since the right-hand side of (27) is smaller than the right-hand side of

(19) ; the constraint set is nonempty. At the solution, (27) is binding, so we can substitute

for

T
�
�; �
�
� T (�; �) = �

�
x
�
�; �
�
� x (�; �)

�
+ �

�
y
�
�; �
�
� y (�; �)

�
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into the objective and obtain


̂d = (1� � (�))
�
� � �

� �
x
�
�; �
�
� x (�; �)

�
�
�
� (�)� �

�
�
�� �

� � �
�
y
�
�; �
�
�
�
� � �

�
x
�
�; �
�
+�

Since 
d � 
̂d for any (x; y) 2 Xd (�) ; implementing �̂�
�
�; �; �

�
= �; the principal cannot

gain by implementing this report.

Proof of Proposition 1. The proof of the �rst statements is given in three parts. Part

i establishes properties of the solution of program d; part ii does likewise for program a;

�nally, part iii compares the value of the objectives. The proof of the fact thatWc � Wd and

Wb � Wa is not given here but is available upon request from the authors; it uses essentially

the same arguments.

Part i) Consider program d. Up to a constant program d can be written as

(1� �)E�j�
�
V
�
x
�
�; �
�
; y
�
�; �
��
� �x

�
�; �
�
� �y

�
�; �
��

��
�
�
�
�
� �
� � �

�
x
�
�; �
�
+
�
� (�)� �

�
�
�� �

� � �
�
y
�
�; �
�
+
�
1� �

�
�
�� �

� � �
�
x
�
�; �
�	

+�
�
x
�
�; �
�
� x

�
�; �
��
+ �

��
� � �

� �
y
�
�; �
�
� y

�
�; �
��
�
�
� � �

� �
x
�
�; �
�
� x

�
�; �
��	

The conditions of optimality are�
(1� �)�

�
�
� �
V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�
� ��

�
�
� �
� � �

�
� �+ �

�
� � �

��
= 0 (32)�

(1� �)
�
1� �

�
�
�� �

V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�
� �

�
1� �

�
�
�� �

� � �
�
+ �� �

�
� � �

��
= 0

(33)�
(1� �)�

�
�
� �
V2
�
x
�
�; �
�
; y
�
�; �
��
� �
�
+ �

�
� � �

��
= 0 (34)�

(1� �)
�
1� �

�
�
�� �

V2
�
x
�
�; �
�
; y
�
�; �
��
� �
�
� �

�
� (�)� �

�
�
�� �

� � �
�
� �

�
� � �

��
= 0:

(35)

We show by contradiction that at most one constraint binds at the optimum of program d.

Suppose both constraints bind. If �; � > 0; then x
�
�; �
�
= x

�
�; �
�
= x

�
�
�
and y

�
�; �
�
=

y
�
�; �
�
= y

�
�
�
and the conditions of optimality imply that�

V1
�
x
�
�
�
; y
�
�
��
� �
�
� �

1� �
�
� � �

�
= 0 (36)

and  
V2
�
x
�
�
�
; y
�
�
��

��
�
�
�
� �

�
1� �

�
�
��
� � �

1��
�
� (�)� �

�
�
�� �

� � �
� ! = 0: (37)
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Using (34) ; the Kuhn-Tucker-�rst-order-optimality-condition for y
�
�; �
�
and substituting

(37) we have for � 6= 0�
(1� �)�

�
�
��
�
�
�
�
� +

�
1� �

�
�
��
� +

�

1� �
�
� (�)� �

�
�
�� �

� � �
�
� �
�
+ �

�
� � �

��
= 0

which simpli�es to

(1� �)�
�
�
���

1� �
�
�
��
+

�

1� �
�
� (�)� �

�
�
���

= ��

This implies � < 0 which contradicts the supposition that both constraints bind at the

optimum. It follows that at most one constraint binds at the optimum of program d.

Further results require a case distinction between V12 < 0 and V12 � 0:
Case i) V12 � 0:
First, we show that if V12 � 0, then either constraint x

�
�; �
�
� x

�
�; �
�
� 0 or constraint�

� � �
� �
y
�
�; �
�
� y

�
�; �
��
�
�
� � �

�
x
�
�; �
�
�x

�
�; �
�
� 0 binds at the optimum of program

d.

Suppose no constraint binds. Then the �rst-order conditions with respect to y are given

by

V2
�
x
�
�; �
�
; y
�
�; �
��
� � = 0

V2
�
x
�
�; �
�
; y
�
�; �
��
� � �

�
�
� (�)� �

�
�
��

(1� �)
�
1� �

�
�
�� �� � �� = 0:

The �rst-order conditions with respect to x are given by

V1
�
x
�
�; �
�
; y
�
�; �
��
� � � �

1� �
�
� � �

�
= 0

V1
�
x
�
�; �
�
; y
�
�; �
��
� � � �

1� �
�
� � �

�
= 0

which imply

V1
�
x
�
�; �
�
; y
�
�; �
��
= V1

�
x
�
�; �
�
; y
�
�; �
��
: (38)

By concavity, V11 < 0; and x
�
�; �
�
� x

�
�; �
�
> 0; we have

V1
�
x
�
�; �
�
; y
�
�; �
��
< V1

�
x
�
�; �
�
; y
�
�; �
��

(39)
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Together conditions (38) and (39) imply

V1
�
x
�
�; �
�
; y
�
�; �
��
< V1

�
x
�
�; �
�
; y
�
�; �
��
: (40)

By complementarity, V12 � 0, and y
�
�; �
�
� y

�
�; �
�
> 0; we have

V1
�
x
�
�; �
�
; y
�
�; �
��
� V1

�
x
�
�; �
�
; y
�
�; �
��

(41)

which contradicts (40).

It follows that at least one constraint must be binding at the optimum of program d.

Next, we show that if V12 � 0, then the optimal allocation satis�es�
� � �

� �
y
�
�; �
�
� y

�
�; �
��
�
�
� � �

� �
x
�
�; �
�
� x

�
�; �
��
> 0:

Suppose, contrary to our claim,�
� � �

� �
y
�
�; �
�
� y

�
�; �
��
�
�
� � �

� �
x
�
�; �
�
� x

�
�; �
��
= 0

and moreover � = 0 and � > 0.

The �rst-order conditions with respect to x are given by

V1
�
x
�
�; �
�
; y
�
�; �
��
� � �

��
�
�
� �
� � �

�
� �

�
� � �

�
(1� �)�

�
�
� = 0

V1
�
x
�
�; �
�
; y
�
�; �
��
� � �

�
�
1� �

�
�
�� �

� � �
�
+ �

�
� � �

�
(1� �)

�
1� �

�
�
�� = 0

implying that

V1
�
x
�
�; �
�
; y
�
�; �
��
< V1

�
x
�
�; �
�
; y
�
�; �
��

if and only if

��
�
�
� �
� � �

�
� �

�
� � �

�
(1� �)�

�
�
� <

�
�
1� �

�
�
�� �

� � �
�
+ �

�
� � �

�
(1� �)

�
1� �

�
�
��

()
0 < �:

However, we must have V1
�
x
�
�; �
�
; y
�
�; �
��
� V1

�
x
�
�; �
�
; y
�
�; �
��
.
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To see this, note that by V11 < 0

V1
�
x
�
�; �
�
; y
�
�; �
��
> V1

�
x
�
�; �
�
; y
�
�; �
��
:

By V12 � 0
V1
�
x
�
�; �
�
; y
�
�; �
��
� V1

�
x
�
�; �
�
; y
�
�; �
��

Together these imply that

V1
�
x
�
�; �
�
; y
�
�; �
��
> V1

�
x
�
�; �
�
; y
�
�; �
��
;

so that the conditions above would imply that � < 0; a contradiction.

It follows from these arguments that the optimal allocation for V12 � 0 satis�es x
�
�; �
�
=

x
�
�; �
�
:

Case ii) V12 < 0:

If V12 < 0; then the solution to program d satis�es x
�
�; �
�
� x

�
�; �
�
> 0:

Suppose not. We know that �; � > 0 is not possible. So, if x
�
�; �
�
= x

�
�; �
�
; this would

have to imply that � = 0: So, we would have x
�
�; �
�
= x

�
�; �
�
= x

�
�
�
, y
�
�; �
�
< y

�
�; �
�

and � = 0. Adding up of conditions (32) and (33), the �rst-order conditions for x
�
�; �
�
and

x
�
�; �
�
; gives 
�
�
�
� �
V1
�
x
�
�
�
; y
�
�; �
��
� �
�
+
�
1� �

�
�
�� �

V1
�
x
�
�
�
; y
�
�; �
��
� �
�

� �
1��

�
� � �

� !
= 0: (42)

V12 < 0 and y
�
�; �
�
� y

�
�; �
�
> 0 imply that

V1
�
x
�
�
�
; y
�
�; �
��
< V1

�
x
�
�
�
; y
�
�; �
��
:

Together with (42) ; this implies that

V1
�
x
�
�
�
; y
�
�; �
��
< � +

�

(1� �)
�
� � �

�
< V1

�
x
�
�
�
; y
�
�; �
��
:

Plugging the �rst of these inequalities into (32) ; we obtain�
(1� �)�

�
�
� �

(1� �)
�
� � �

�
� ��

�
�
� �
� � �

�
� �+ �

�
� � �

��
> 0:
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Plugging the latter of the inequalities into (33) ; we obtain�
(1� �)

�
1� �

�
�
�� �

(1� �)
�
� � �

�
� �

�
1� �

�
�
�� �

� � �
�
+ �� �

�
� � �

��
< 0;

which simpli�es to

�
�
� � �

�
> �:

For � = 0 this implies � < 0. Hence, V12 < 0 implies that x
�
�; �
�
� x

�
�; �
�
> 0:

Part ii: Consider program a. Up to a constant program a can be written as

(1� �)E�j�
�
V
�
x
�
�; �
�
; y
�
�; �
��
� �x

�
�; �
�
� �y

�
�; �
��

��
(
(1� � (�))

�
� � �

�
x
�
�; �
�
+ � (�)

�
� � �

�
x
�
�; �
�

+
�
� (�)� �

�
�
�� �

� � �
�
y
�
�; �
� )

+�
�
x
�
�; �
�
� x

�
�; �
��
+ �

" �
� � �

� �
y
�
�; �
�
� y

�
�; �
��

�
�
� � �

� �
x
�
�; �
�
� x

�
�; �
�� #

The conditions of optimality are given by 
(1� �)�

�
�
� �
V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�

��� (�)
�
� � �

�
+ � � �

�
� � �

� !
= 0 (43)

(1� �)�
�
�
� �
V2
�
x
�
�; �
�
; y
�
�; �
��
� �
�
+ �

�
� � �

�
= 0 (44) 

(1� �)
�
1� �

�
�
�� �

V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�

�� (1� � (�))
�
� � �

�
� � + �

�
� � �

� !
= 0 (45)

 
(1� �)

�
1� �

�
�
�� �

V2
�
x
�
�; �
�
; y
�
�; �
��
� �
�

��
�
� (�)� �

�
�
�� �

� � �
�
� �

�
� � �

� !
= 0 (46)

�; � � 0

�
�
x
�
�; �
�
� x

�
�; �
��
= 0

�
��
� � �

� �
y
�
�; �
�
� y

�
�; �
��
�
�
� � �

� �
x
�
�; �
�
� x

�
�; �
���

= 0

First, we show by contradiction that at most one constraint binds at the optimum of program

a.
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So suppose both constraints bind at the optimum, i.e. �; � > 0.´If �; � > 0, then y
�
�; �
�
=

y
�
�; �
�
= y

�
�
�
and x

�
�; �
�
= x

�
�; �
�
= x

�
�
�
. Then

V1
�
x
�
�
�
; y
�
�
��
= � +

�

(1� �)
�
� � �

�
and

V2
�
x
�
�
�
; y
�
�
��
= �

�
�
�
� +

�
1� �

�
�
��
� +

�
�
� (�)� �

�
�
��

(1� �)
�
� � �

�
:

Using the �rst-order condition with respect to y
�
�; �
�
; (44) ; gives

V2
�
x
�
�
�
; y
�
�
��
= � � �

(1� �)�
�
�
� �� � �� :

Substituting for V2
�
x
�
�
�
; y
�
�
��
gives

�
�
�
�
� +

�
1� �

�
�
��
� +

�
�
� (�)� �

�
�
��

(1� �)
�
� � �

�
= � � �

(1� �)�
�
�
� �� � ��

which simpli�es to

�
�
1� �

�
�
��
(1� �)�

�
�
�
� �

�
� (�)� �

�
�
��
�
�
�
�
= �;

implying that � < 0. It follows that at the optimum �; � > 0 is not true.

Further results require a case distinction between V12 < 0 and V12 � 0:
Case i) V12 < 0:

First, whe show that if V12 < 0; then x
�
�; �
�
� x

�
�; �
�
= 0 at the solution to program a.

To show this, we establish �rst that V12 < 0 implies that at least one constraint binds.

Moreover, we show that
�
� � �

� �
y
�
�; �
�
� y

�
�; �
��
>
�
� � �

� �
x
�
�; �
�
� x

�
�; �
��
at the

optimum of program a.

Suppose no constraint binds at the optimum, i.e.
�
� � �

� �
y
�
�; �
�
� y

�
�; �
��
>�

� � �
� �
x
�
�; �
�
� x

�
�; �
��
> 0. Then � = � = 0: The �rst-order conditions with respect to

x are given by

V1
�
x
�
�; �
�
; y
�
�; �
��
� � � �� (�)

(1� �)�
�
�
� �� � �� = 0

V1
�
x
�
�; �
�
; y
�
�; �
��
� � � � (1� � (�))

(1� �)
�
1� �

�
�
�� �� � �� = 0
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Since �(�)

�(�)
> (1��(�))
(1��(�))

; these conditions imply that

V1
�
x
�
�; �
�
; y
�
�; �
��
> V1

�
x
�
�; �
�
; y
�
�; �
��
: (47)

However, by V12 < 0 and y
�
�; �
�
� y

�
�; �
�
> 0

V1
�
x
�
�; �
�
; y
�
�; �
��
< V1

�
x
�
�; �
�
; y
�
�; �
��
: (48)

By V11 < 0 and x
�
�; �
�
� x

�
�; �
�
> 0

V1
�
x
�
�; �
�
; y
�
�; �
��
< V1

�
x
�
�; �
�
; y
�
�; �
��
: (49)

Taken together (48) and (49) imply that

V1
�
x
�
�; �
�
; y
�
�; �
��
< V1

�
x
�
�; �
�
; y
�
�; �
��
:

which contradicts (47) derived previously from the �rst order-conditions.

It follows that at least one constraint must bind at the optimum of program a if V12 < 0.

Suppose that contrary to our claim, that the solution of program a satis�es
�
� � �

� �
y
�
�; �
�
� y

�
�; �
��

=
�
� � �

� �
x
�
�; �
�
� x

�
�; �
��
> 0; � = 0 and � > 0: Adding up (43) and (45) gives 

(1� �)�
�
�
� �
V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�
� �� (�)

�
� � �

�
+(1� �)

�
1� �

�
�
�� �

V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�
� � (1� � (�))

�
� � �

� ! = 0:
By V11 < 0 and x

�
�; �
�
� x

�
�; �
�
> 0

V1
�
x
�
�; �
�
; y
�
�; �
��
< V1

�
x
�
�; �
�
; y
�
�; �
��

By V12 < 0 and y
�
�; �
�
� y

�
�; �
�
> 0

V1
�
x
�
�; �
�
; y
�
�; �
��
< V1

�
x
�
�; �
�
; y
�
�; �
��
:

Taken together, we have

V1
�
x
�
�; �
�
; y
�
�; �
��
< V1

�
x
�
�; �
�
; y
�
�; �
��
:

Combining with the implications of the �rst-order conditions with respect to x we obtain�
V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�
<

�

(1� �)
�
� � �

�
<
�
V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�
:
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Substituting into (43) ; using � = 0; and simplifying, we have

�
��
�
�
�
�
� � (�)

� �
� � �

��
> �

�
� � �

�
;

which would imply that v < 0; a contradiction.

It follows that for V12 < 0; the optimum of program a displays x
�
�; �
�
� x

�
�; �
�
= 0:

Case ii): V12 � 0:
If V12 � �V11

(���)
(���)

; then the optimum of program a displays
�
� � �

� �
y
�
�; �
�
� y

�
�; �
��
>�

� � �
� �
x
�
�; �
�
� x

�
�; �
��
:

We know that both constraints cannot bind simultaneously. Hence, if
�
� � �

� �
y
�
�; �
�
� y

�
�; �
��
=�

� � �
� �
x
�
�; �
�
� x

�
�; �
��
; then necessarily x

�
�; �
�
�x

�
�; �
�
> 0: Suppose this is the case,

so � = 0 and � > 0. De�ne Y
�
�; �
�
= y

�
�; �
�
� (���)
(���)

�
x
�
�; �
�
� x

�
�; �
��
. For � 6= 0 the

�rst order conditions with respect to x are given by0@ (1� �)�
�
�
� �
V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�
� �� (�)

�
� � �

�
� (���)
(���)

�
(1� �)

�
1� �

�
�
�� �

V2
�
x
�
�; �
�
; Y
�
�; �
��
� �
�
� �

�
� (�)� �

�
�
�� �

� � �
��
1A

= 0

and 0@ (1� �)
�
1� �

�
�
�� �

V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�
� � (1� � (�))

�
� � �

�
+
(���)
(���)

�
(1� �)

�
1� �

�
�
�� �

V2
�
x
�
�; �
�
; Y
�
�; �
��
� �
�
� �

�
� (�)� �

�
�
�� �

� � �
��
1A

= 0:

These conditions imply 
(1� �)�

�
�
� �
V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�
� �� (�)

�
� � �

�
+(1� �)

�
1� �

�
�
�� �

V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�
� � (1� � (�))

�
� � �

� ! = 0: (50)

De�ne s such that s > 0, s = y
�
�; �
�
� y

�
�; �
�
and x

�
�; �
�
= x

�
�; �
�
+
(���)
(���)

s. Then by

V1
�
x
�
�; �
�
; y
�
�; �
��

= V1
�
x
�
�; �
�
; y
�
�; �
��
+

Z s

0

@V1

�
x
�
�; �
�
+
(���)
(���)

k; y
�
�; �
�
+ k

�
@k

dk
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and

@V1

�
x
�
�; �
�
+
(���)
(���)

k; y
�
�; �
�
+ k

�
@k

=

0BB@
(���)
(���)

V11

�
x
�
�; �
�
+
(���)
(���)

k; y
�
�; �
�
+ k

�
+V12

�
x
�
�; �
�
+
(���)
(���)

k; y
�
�; �
�
+ k

�
1CCA

we have V1
�
x
�
�; �
�
; y
�
�; �
��
� V1

�
x
�
�; �
�
; y
�
�; �
��
since V12 � �V11

(���)
(���)

implies

@V1

�
x
�
�; �
�
+
(���)
(���)

k; y
�
�; �
�
+ k

�
@k

� 0 for all k > 0

and x
�
�; �
�
�x

�
�; �
�
> 0. V1

�
x
�
�; �
�
; y
�
�; �
��
� V1

�
x
�
�; �
�
; y
�
�; �
��
implies by (50) that�

V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�
� �

(1� �)
�
� � �

�
(51)

By (51) into (43)  
(1� �)�

�
�
�

�
(1��)

�
� � �

�
��� (�)

�
� � �

�
+ � � �

�
� � �

� ! � 0
which is equivalent to

��
�
� (�)� �

�
�
�� �

� � �
�
� �

�
� � �

�
which is true only if � < 0 since � = 0. Hence, we get a contradiction to � > 0 contradicting

that
�
� � �

� �
y
�
�; �
�
� y

�
�; �
��
�
�
� � �

� �
x
�
�; �
�
� x

�
�; �
��
binds in singularity at the

optimum of program a.

Part iii) Comparison between the programs.

As a preliminary argument, note that if x
�
�; �
�
� x

�
�; �
�
= 0; then the value of the

objectives of programs a and d become identical. To see this, note that the objectives are

identical up to the costs of implementation, �: Moreover, it is easy to verify from Lemma 3

that �d ��a for x
�
�; �
�
� x

�
�; �
�
= 0:

For V12 < 0; the maximum of program a satis�es x
�
�; �
�
� x

�
�; �
�
= 0; whereas the

maximum of program d satis�es x
�
�; �
�
� x

�
�; �
�
> 0: Hence, the solution of program a is

feasible but not chosen. By revealed preference, this implies that the solution to program d

is preferred.
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Likewise, for V12 � 0 the optimum of program d satis�es x
�
�; �
�
� x

�
�; �
�
= 0: Hence,

the solution is feasible under program a. Therefore, by revealed preference, the solution of

program a yields a weakly higher expected payo¤ than the solution of program d.

Proof of Lemma 4. The �rst-best allocation satis�es the system of conditions

V1 (x (�; �) ; y (�; �)) = �

V2 (x (�; �) ; y (�; �)) = �

for � 2
�
�; �
	
and � 2

�
�; �
	
:

By the fundamental theorem of calculus

x (�; �)� x
�
�; �
�
=

�Z
�

@

@�
x (�; �) d�:

Totally di¤erentiating the system of �rst-order conditions, we have

V11 (x (�; �) ; y (�; �)) dx+ V12 (x (�; �) ; y (�; �)) dy = 0

V21 (x (�; �) ; y (�; �)) dx+ V22 (x (�; �) ; y (�; �)) dy = d�

By Cramer�s rule
dx

d�
=

�V12
V11V22 � V 212

so

x (�; �)� x
�
�; �
�
=

�Z
�

�V12
V11V22 � V 212

(�; �) d�:

So x (�; �) � x
�
�; �
�
for V12 � 0 and x (�; �) > x

�
�; �
�
for V12 < 0:

Again by the fundamental theorem and by Cramer�s rule

y (�; �)� y
�
�; �
�
=

�Z
�

V11
V11V22 � V 212

(�; �) d�:

By concavity, we have y (�; �)� y
�
�; �
�
< 0:
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Combining these arguments, we have�
� � �

� �
y
�
�; �
�
� y (�; �)

�
>
�
� � �

� �
x
�
�; �
�
� x (�; �)

�
> 0

i¤ V12 > 0 and

0 >

�Z
�

V11 +
(���)
(���)

V12

V11V22 � V 212
(�; �) d�;

which is satis�ed if V12 < �
(���)
(���)

V11 for all (x; y) : Likewise, we have�
� � �

� �
x
�
�; �
�
� x (�; �)

�
>
�
� � �

� �
y
�
�; �
�
� y (�; �)

�
> 0

if V12 > �
(���)
(���)

V11 for all (x; y) :

Similarly, one shows that for V12 < 0 we have�
� � �

� �
y
�
�; �
�
� y (�; �)

�
> �

�
� � �

� �
x
�
�; �
�
� x (�; �)

�
> 0

if V12 >
(���)
(���)

V11 for all (x; y) and

�
�
� � �

� �
x
�
�; �
�
� x (�; �)

�
>
�
� � �

� �
y
�
�; �
�
� y (�; �)

�
for V12 <

(���)
(���)

V11 for all (x; y) :

Proof of Proposition 2. We show that the neglected constraint is satis�ed under the

assumptions.

Preliminaries:

For convenience, recall that the unconstrained solution (in the sense of unconstrained by

the implementation sets Xi for i = a or i = d, respectively) satis�es

V1 (x; y) (�; �) = � (52)

V2 (x; y) (�; �) = �

for � 2
�
�; �
	
and

V1 (x; y)
�
�; �
�
= � +

�

(1� �)
�i

�
�
�
� �� � �� (53)

V2 (x; y)
�
�; �
�
= �
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V1 (x; y)
�
�; �
�
= � +

�

(1� �)
(1� �i)�
1� �

�
�
�� �� � �� (54)

V2 (x; y)
�
�; �
�
= � +

�

(1� �)

�
� (�)� �

�
�
���

1� �
�
�
�� �

� � �
�
;

where �a = � (�) and �d = �
�
�
�
: Notice, that (52) and (53) have the common representation

V1 (x; y)
�
�; �
�
= � +

�

(1� �)
�i

�
�
�
� (� � �) (55)

V2 (x; y) (�; �) = �

so that for � = �; (55) is equivalent to (52) and for � = � and � = �; (55) is equivalent to (53) :

Likewise, note that for �d = �
�
�
�
; (52) ; (53) ; and (54) have the common representation

V1 (x; y) (�; �) = � +
�

(1� �) (� � �) (56)

V2 (x; y) (�; �) = � +
�

(1� �)

�
� (�)� �

�
�
���

1� �
�
�
�� �

� � �
�
;

so that for � = � and � 2 � 2
�
�; �
	
; (56) is equivalent to (52) ; for � = � and � = �, (56) is

equivalent to (53) ; and for � = � and � = �; (56) is equivalent to (55) :

Part i):The case of independent goods: V12 = 0:

From Proposition 1 we know that program Pa solves the reduced problem for V12 = 0:

Hence, the neglected constraint takes the form�
� (�)� �

�
�
�� �

� � �
� �
y
�
�; �
�
� y

�
�; �
��

+
�
� � �

� �
E�j� [x (�; �)]� E�j�

�
x
�
�; �
���

� 0:

Su¢ cient conditions for the neglected constraint to hold are

y
�
�; �
�
� y

�
�; �
�
� 0

and �
E�j� [x (�; �)]� E�j�

�
x
�
�; �
���

� 0:
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Moreover, we know again from Proposition 1 that x
�
�; �
�
= x

�
�; �
�
= x

�
�
�
at the solution.

So, the relevant �rst-order conditions describing the optimum simplify to

V1 (x (�; �)) = �

V2 (y (�; �)) = �

for � 2
�
�; �
	
and moreover

(1� �)E�j�
�
V1
�
x
�
�
��
� �
�
= �

�
� � �

�
V2
�
y
�
�; �
��
= � +

�

(1� �)

�
� (�)� �

�
�
���

1� �
�
�
�� �

� � �
�
:

It is easy to see (by concavity of V ), that x
�
�; �
�
= x (�; �) > x

�
�
�
; so
�
E�j� [x (�; �)]� E�j�

�
x
�
�; �
���

�
0: is satis�ed. By the same argument, we also have y

�
�; �
�
� y

�
�; �
�
� 0:

Part ii)

1. The case of complements.

For the case of complements with 0 � V12 < �V11
(���)
(���)

for all x; y;, by Lemmas 3 and 4,

the neglected constraint (7) is equivalent to�
� (�)� �

�
�
�� �

� � �
� �
y
�
�; �
�
� y

�
�; �
��

+
�
� � �

� �
E�j� [x (�; �)]� E�j�

�
x
�
�; �
���

� 0:

Su¢ cient conditions for the neglected constraint to hold are

y
�
�; �
�
� y

�
�; �
�
� 0

and �
E�j� [x (�; �)]� E�j�

�
x
�
�; �
���

� 0:

We now provide su¢ cient conditions such that the unconstrained solution satis�es these

monotonicity restrictions.

Incentive compatibility with respect to � alone requires that y
�
�; �
�
� y

�
�; �
�
: Hence,

a su¢ cient condition for y
�
�; �
�
� y

�
�; �
�
� 0 is that

�
y
�
�; �
�
� y

�
�; �
��
� 0: In turn, this
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follows trivially from the fact that � + �
(1��)

�i
�(�)

(� � �) is increasing in � and thus that an
increase in � reduces x; which by complementarity reduces y:

A su¢ cient condition for
�
E�j� [x (�; �)]� E�j�

�
x
�
�; �
���

� 0 is that

min
�2f�;�g

x (�; �) � max
�2f�;�g

x
�
�; �
�
;

which in turn holds if

x
�
�; �
�
� x (�; �) � x

�
�; �
�
� x

�
�; �
�
:

It is straightforward to see that x
�
�; �
�
� x (�; �) ; since x and y are complements. Sim-

ilarly, x
�
�; �
�
� x

�
�; �
�
follows from the fact that �(�)

�(�)
� (1��(�))
(1��(�))

and that x and y are

complements. So, we need to show that x (�; �) � x
�
�; �
�
: We can write

x (�; �)� x
�
�; �
�
= x (�; �)� x

�
�; �
�
+ x

�
�; �
�
� x

�
�; �
�
:

Let (x; y) be determined by (55) : Di¤erentiating the system of equations (55) ; we can write

x (�; �)� x
�
�; �
�
=

�Z
�

�V12
V11V22 � V 212

(�; �) d� =
�
� � �

� �V12
V11V22 � V 212

(�; �̂) :

where the �rst equality follows from Lemma 3 and the second equality from the mean value

theorem, for some �̂ 2
�
�; �
�
: Likewise, we have

x
�
�; �
�
� x

�
�; �
�
=

Z �

�

@x
�
�; �
�

@�
d� =

 
1 +

�

(1� �)
� (�)

�
�
�
�!Z �

�

V22
V11V22 � V 212

d�

= �
�
� � �

� 
1 +

�

(1� �)
� (�)

�
�
�
�! V22

V11V22 � V 212

�
�̂; �
�
:

for some �̂ 2
�
�; �
�
; where the last equality follows again by the mean value theorem.

So, we have x (�; �) � x
�
�; �
�
i¤

�
� � �

� �V12
V11V22 � V 212

(�; �̂)�
�
� � �

� 
1 +

�

(1� �)
� (�)

�
�
�
�! V22

V11V22 � V 212

�
�̂; �
�
� 0:
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In turn, this condition is satis�ed if�
� � �

��
� � �

�  1 + �

(1� �)
� (�)

�
�
�
�!min

x;y

�V22
V11V22 � V 212

(x; y)

� max
x;y

V12
V11V22 � V 212

(x; y) :

Since the left-hand side is increasing in �; the condition is hardest to satisfy for � = 0; which

is the condition given in the proposition.

2. The case of substitutes:

For 0 > V12 > V11
(���)
(���)

for all x; y; the neglected constraint is equivalent to �
� (�)� �

�
�
�� �

� � �
� �
y
�
�; �
�
� y

�
�; �
��

+
�
� � �

�
x
�
�; �
�
�
�
�
�
�
� �
� � �

�
x
�
�; �
�
+
�
1� �

�
�
�� �

� � �
�
x
�
�; �
�� ! � 0:

Equivalently, this can be written as �
� (�)� �

�
�
�� �

� � �
� �
y
�
�; �
�
� y

�
�; �
��

+
�
� � �

� �
x
�
�; �
�
� x

�
�; �
��
�
�
�
�
�
� �
� � �

� �
x
�
�; �
�
� x

�
�; �
��� ! � 0:

Recall that for x; y 2 Xd; we have�
� � �

� �
y
�
�; �
�
� y (�; �)

�
� �

�
� � �

� �
x
�
�; �
�
� x (�; �)

�
� 0:

For the case where � (�) = �
�
�
�
, we only need to show that

x
�
�; �
�
� x

�
�; �
�
� 0:

We can write

x
�
�; �
�
� x

�
�; �
�
= x

�
�; �
�
� x

�
�; �
�
+ x

�
�; �
�
� x

�
�; �
�
:

we can write

x
�
�; �
�
� x

�
�; �
�
=

�
� � �

� 
1 +

�

(1� �)

�
� (�)� �

�
�
���

1� �
�
�
�� !

�V12
V11V22 � V 212

�
�; �̂
�

+
�
� � �

� 1

1� �
V22

V11V22 � V 212

�
�̂; �
�
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for some values �̂ 2
�
�; �
�
and �̂ 2

�
�; �
�
: Hence, we have x

�
�; �
�
� x

�
�; �
�
� 0; if

� � �
� � �

 
1� �+ �

�
� (�)� �

�
�
���

1� �
�
�
�� !

min
x;y

V12
V11V22 � V 212

� max
x;y

V22
V11V22 � V 212

Since (
�(�)��(�))
(1��(�))

< 1; the expression on the left-hand side of the inequality is smallest for

� = 0; so the condition is satis�ed if

� � �
� � �

min
x;y

V12
V11V22 � V 212

� max
x;y

V22
V11V22 � V 212

:

Finally, we need to show that the optimal allocations that solve the reduced problems

Pa and Pd; respectively, are elements of Xinta or Xintd ; respectively. Recall from Lemma 4

that the �rst best allocation is an element of Xinta or Xintd ; respectively, precisely under the
conditions that make either program Pa or Pd generate a higher value to the principal. Now

consider, for i = a:b:c:d; the problems

max
x;y2[iXi

Pi

The solution to each of these problems converges uniformly to the �rst-best allocation as �

goes to zero. It follows that the solution of program Pa is in Xinta for � close enough to zero

if 0 < V12 < �
���
���V11 and that the solution of program Pd is in Xintd for � close enough to

zero if
���
���V11 < V12 < 0:

Proof of Proposition 3. From Lemma 4, we have conditions such that the �rst-best

allocation is in Xinti . Hence, in the limit as � goes to zero, the allocations that achieve the
maxima Wi are in Xinti . So, we need to show that these maximizers satisfy the neglected
constraint. We focus on the case of strong complements. Exactly the same argument can be

given for strong substitutes.

For the example, for � 2 (�1; 1) and � su¢ ciently large to generate interior solutions;
the �rst-best allocation is given by

x (�; �) = 1
1��2 (� (1 + �)� � � ��)

y (�; �) = 1
1��2 (� (1 + �)� � � ��)
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The neglected constraint for x; y 2 Xb takes the form

0 �
�
� � �

� �
x
�
�; �
�
� x (�; �)

�
+
�
� � �

� �
y
�
�; �
�
� y

�
�; �
��

+� (�)
�
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� �
y
�
�; �
�
� y

�
�; �
��
+ �

�
�
� �
� � �

� �
y (�; �)� y

�
�; �
��
:

The �rst-best allocation is in Xb for � >
(���)
(���)

: The buyer�s problem remains concave for

� < 1: Both conditions are satis�ed for a nonempty set of parameters only if (
���)
(���)

< 1: For

the example, the neglected constraint is equivalent to

0 �
�
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�� 1

1� �2
�
�
�
� � �

�
+ �

�
� � �

���
+
�
� � �

�� 1

1� �2
�
�
�
� � �

���
+� (�)

�
� � �

�� 1

1� �2
�
�
�
� � �

�
�
��
+ �

�
�
� �
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�� 1

1� �2
��
� � �

�
�
��
;

which is satis�ed if � � (���)
(���)

: Since (
���)
(���)

> 1; this condition is automatically satis�ed.
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